高三数学圆锥曲线
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
高三数学二轮复习圆锥曲线 课件
内容
难度
中等
圆锥曲线的方程与性质、弦
长问题.
考点1:圆锥曲线的定义及
标准方程
【例1】(1)已知P是抛物线 y2=4x上的一个动点,Q是圆(x‒3)2+(y‒1)2=1上
的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为( A )
A.3
B.4
y
C.5
Pபைடு நூலகம்
H
Q
1
O
x=-1
N
3
x
D. 2 +1
2
2
2
− 2
= 1 (a>0,
b>0)的右顶点为A,以A为圆心,b为半径作圆
A,圆A与双曲线C的一条渐近线交于M,N两
点.若∠MAN=60°,则C的离心率为
2 3
________.
3
M
N
A
x
(2)在平面直角坐标系xOy中,双曲线
2
2
2
− 2
y
B
= 1 (a>0,b>0)的右支与焦点为F
•
计算,即利用待定系数法求出方程中的a 2 ,b 2 或p.另外,当焦点位置无法确定时,
抛物线常设为y 2 =2px或x 2 =2py(p≠0),椭圆常设为mx 2 +ny 2 =1(m>0,n>0),双
曲线常设为mx 2 -ny 2 =1(mn>0).
考点2:圆锥曲线的几何性质
y
【例2】(1)已知双曲线C:
2
(2)已知双曲线 2
2
− 2
= 1 (a>0,b>0)的左焦点为F,离心率为 2 .若经过F
和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( B )
高考数学中的圆锥曲线知识
高考数学中的圆锥曲线知识高考数学中的圆锥曲线是一道重要的考题,也是很多学生容易失分的一道难题。
圆锥曲线是指平面上坐标系中的一种特殊的曲线,也是数学的重要分支之一。
本文将介绍圆锥曲线的基本概念,分类和应用,希望能对广大考生有所帮助。
一、圆锥曲线的基本概念1.圆锥圆锥是一个由一个圆绕着它的直径周而复始地旋转而成的立体物体,其中:该直径是铅锤线,圆锥的底面是这个圆,圆锥的顶点是铅锤线的另一端。
2.圆锥曲线的概念在平面直角坐标系中,将一个固定的点F(称为焦点)与一个固定的直线L(称为直角准线)连接。
在平面上,连结点P到直线L的距离为PF和P到点F的距离的比等于定值e(e>0)。
这样得到的曲线称为圆锥曲线。
圆锥曲线分为三种情况:椭圆、双曲线和抛物线。
二、圆锥曲线的分类1.椭圆椭圆是平面上与两个焦点F1,F2的距离之和等于定值2a(a>0)的点P的轨迹。
椭圆是圆锥曲线中最简单的一种形式。
椭圆可以通过平移、伸缩、旋转对平面上的圆形进行简单的变换。
2. 双曲线双曲线是平面上与两个焦点F1,F2的距离之差等于定值2a (a>0)的点P的轨迹。
双曲线有两条渐进线,即切射线和渐进线。
3. 抛物线抛物线是平面上焦点F到直线L的距离等于点P到焦点F的距离的平方与定值a(a>0)成正比例的点P的轨迹。
抛物线的形状像一个平翻的碗,有上凸抛物和下凸抛物两种。
三、圆锥曲线的应用1. 物理学圆锥曲线在物理学中得到广泛的应用。
例如,在宇宙空间中,行星的轨迹可以用椭圆来描述。
在天体力学中,利用双曲线描绘有关天体的相对运动情况。
抛物线则可用于描述抛体的轨迹。
2. 工程学圆锥曲线在工程学中也有重要的应用,特别是在光学的设计中。
例如,望远镜的光学系统用到的镜面都是椭圆形的;飞机的机翼、车轮和机器的轮子都是利用圆锥的形状进行设计的。
3. 数学研究圆锥曲线在数学研究中的应用也是相当广泛的,例如,利用双曲线求解微积分中的积分问题;还可以用抛物线中的特殊几何性质证明三次方程有一个实根。
高三圆锥曲线知识点总结人教版
高三圆锥曲线知识点总结人教版高三圆锥曲线知识点总结(人教版)在高三数学学习的过程中,圆锥曲线是一个重要的知识点。
它既有着理论的深度,又有着实际应用的广泛性。
下面我将对高三圆锥曲线的知识点进行总结。
一、圆锥曲线的基本概念圆锥曲线是指在一个平面内,有一个点(焦点F),到该点的距离与一个定点(直角顶点O)到平面的距离成一定比例的一组曲线。
其中,焦点与顶点连线的垂直平分线称为准线。
圆锥曲线可以分为椭圆、双曲线、抛物线三种。
1. 椭圆椭圆是一个封闭曲线,其定义是所有到焦点F1和F2的距离之和等于常数2a,其中a称为椭圆的长半轴,b称为椭圆的短半轴。
椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 12. 双曲线双曲线是一个非封闭曲线,其定义是所有到焦点F1和F2的距离之差等于常数2a,其中a称为双曲线的半轴。
双曲线的标准方程为:x^2/a^2 - y^2/b^2 = 13. 抛物线抛物线是一个开口朝上或朝下的曲线,其定义是到焦点F和准线的距离相等。
抛物线的标准方程为:y^2 = 2px二、圆锥曲线的性质1. 椭圆的性质(1)离心率e的定义是焦点到准线的距离与焦点到曲线的距离之比。
对于椭圆,离心率e满足0<e<1。
(2)椭圆的两个焦点F1和F2关于中心对称。
(3)椭圆的两个半焦距相加等于长轴的长度,即2ae = 2a。
(4)椭圆的两个半焦距相减等于短轴的长度,即2ae = 2b。
2. 双曲线的性质(1)离心率e的定义同样适用于双曲线。
对于双曲线,离心率e满足e>1。
(2)双曲线的两个焦点F1和F2关于中心对称,但不在曲线上。
(3)双曲线的两个半焦距相减等于长轴的长度,即2ae = 2a。
(4)双曲线的两个半焦距相加等于短轴的长度,即2ae = 2b。
3. 抛物线的性质(1)抛物线关于准线对称。
(2)焦点和准线的距离等于半焦距的绝对值,即|PF| = |PG|。
(3)抛物线的焦距与抛物线的方程有关,焦距的公式为2p = a/e。
高三数学圆锥曲线详细知识点
高三数学圆锥曲线详细知识点在高中数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
这些曲线在数学和物理学中都有广泛的应用,因此掌握圆锥曲线的知识对于学生来说非常重要。
1. 椭圆椭圆是圆锥曲线中的一种,它由一个动点P和两个定点F1和F2确定。
椭圆的定义是动点P到两个定点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
这个常数2a称为椭圆的长轴长度。
椭圆的形状由参数e = PF1 / 2a来确定,其中e称为离心率。
当e=0时,椭圆退化成一个圆。
椭圆有许多重要性质和公式,比如它的离心率范围是0<e<1,长轴和短轴的长度之间有关系a^2 = b^2(1 - e^2)。
此外,椭圆还有焦点、准线、主轴等概念,对于理解椭圆的性质和应用非常有帮助。
2. 双曲线双曲线是圆锥曲线中的另一种形式。
它由一个动点P和两个定点F1和F2确定,类似于椭圆。
但不同的是,双曲线的定义是动点P到两个定点F1和F2的距离之差的绝对值等于常数2a,即|PF1 - PF2| = 2a。
与椭圆不同的是,双曲线的离心率e>1,因此它的形状更加扁平。
双曲线也有许多重要的性质和公式。
比如,它的离心率范围是e>1,焦点与曲线的准线之间的距离等于常数2a。
双曲线还有渐近线,指的是双曲线两个分支无限远处趋于平行的直线。
3. 抛物线抛物线是圆锥曲线中的第三种形式。
它由一个定点F和一条直线l确定,定点F称为焦点,直线l称为准线。
抛物线的定义是动点P到焦点F的距离等于点P到直线l的距离,即PF = PD。
抛物线的形状是开口向上或向下的U形曲线。
抛物线也有许多特殊的性质和公式。
比如,抛物线的焦半径等于准线与焦点之间的垂直距离,焦半径的长度等于焦距的两倍。
抛物线还有焦平面和直径等概念,对于解决实际问题非常有帮助。
总结:在高三数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是由平面上直线与一个定点及一定曲线相交而形成的曲线,分为圆、椭圆、双曲线和抛物线四种类型。
在高三数学中,学习圆锥曲线是必不可少的。
以下为圆锥曲线的相关知识点总结。
一、坐标系下的圆锥曲线方程式1.圆的方程所谓圆,是指平面上到定点距离等于定长的所有点的集合。
设圆心为$O({{x_0},{y_0}})$,半径为 $r$,则圆的方程为$${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$$3.双曲线的方程二、圆锥曲线的性质(1)对圆上任意一点,作圆的切线,它垂直于切点与圆心的连线。
(2)两个数轴上投影相等的两点与圆心之间的距离相等(称为圆的两点定理)。
(3)圆心为原点的圆,其半径为 $r$,横轴方程为 $x^2 + y^2 = r^2$,纵轴方程为$x^2 + y^2 = r^2$。
2.椭圆(1)椭圆的两个焦点与中心 $O$ 在一条直线上。
(2)椭圆的上下两支称为上半部和下半部,椭圆与 $x$ 轴的交点称为顶点。
(4)椭圆的到两个焦点分别距离和为定值,等于两倍的圆长轴长。
(2)双曲线的两支曲线称为左半支和右半支,曲线的两个交点称为顶点,与左右两支连接的两条直线称为渐近线。
4.抛物线(1)抛物线是关于顶点对称的曲线。
(2)抛物线与横轴交于顶点 $O$。
(3)抛物线与纵轴垂直。
三、曲线的参数方程如果把圆的中心移到原点,半径为 $r$,则圆的参数方程为$$\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}$$如果双曲线的中心移到原点,且 $a>b$,则双曲线的参数方程为$$\begin{cases}x=c\cosh \theta \\y=b\sinh \theta\end{cases}$$其中,$c=\sqrt{{a^2} + {b^2}}$,$\cosh \theta = \frac{{{e^\theta } + {e^{ - \theta }}}{2}}$,$\sinh \theta = \frac{{{e^\theta } - {e^{ - \theta }}}{2}}$。
高三数学圆锥曲线知识点总结大全
高三数学圆锥曲线知识点总结大全在高三数学学习中,圆锥曲线是一个非常重要的知识点,它可以帮助我们更好地理解数学的几何性质和关系。
本文将对圆锥曲线的相关知识进行总结和归纳,希望可以帮助大家更好地掌握这一部分的内容。
一、什么是圆锥曲线圆锥曲线是以两条总称为焦点的直线为边界的平面曲线。
根据焦点的相对位置和离心率的不同,圆锥曲线可以分为四种类型:椭圆、双曲线、抛物线和圆。
二、椭圆1. 椭圆的定义:椭圆可由平面内的一动点 M 和两焦点 F1、F2的距离之和等于常数 2a 的点的轨迹定义。
2. 椭圆的性质:- 椭圆的离心率 e 小于 1,且焦点位于长轴上。
- 椭圆的长轴和短轴分别对应着两个标准方程的分子和分母。
- 椭圆的离心率越小,形状越趋于圆形。
- 椭圆的焦点到直角坐标轴的垂直距离分别为 a 和 b。
三、双曲线1. 双曲线的定义:双曲线可由平面内的一动点M 和两焦点F1、F2 的距离之差等于常数 2a 的点的轨迹定义。
2. 双曲线的性质:- 双曲线的离心率 e 大于 1,且焦点位于长轴上。
- 双曲线的长轴和短轴分别对应着两个标准方程的分子和分母。
- 双曲线的离心率越大,形状越扁平。
- 双曲线的焦点到直角坐标轴的垂直距离分别为 a 和 b。
四、抛物线1. 抛物线的定义:抛物线可由平面内的动点 M 和直线 l 的距离点 F 的距离等于焦距 PF 点的轨迹定义。
2. 抛物线的性质:- 抛物线的焦点位于焦线的中垂线上。
- 抛物线的顶点为最低点或最高点,轴称为准线,焦距 PF 的两倍称为参数。
- 抛物线的标准方程为 y² = 2px。
五、圆1. 圆的定义:圆可由平面内的一动点 M 到定点 O 的距离等于定长 r 的点的轨迹定义。
2. 圆的性质:- 圆的离心率 e 等于 0,焦距为零。
- 圆的半径为定长 r,焦距为零。
- 圆心到任意点的距离都相等,这个距离称为半径 r。
总结:通过以上对圆锥曲线的介绍,我们可以发现每一种曲线都有各自的定义和性质。
(完整版)高中数学圆锥曲线知识点总结
高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
高三数学圆锥曲线知识点总结
高三数学圆锥曲线知识点总结哎呀呀,高三的数学圆锥曲线可真是让人又爱又恨呀!首先咱们来说说椭圆,这就好比是一个被压扁的圆,你能想象吗?椭圆有两个焦点,就像是两只眼睛一直盯着它。
那椭圆的定义是什么呢?平面内到两个定点F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹,这不就像你在操场上跑步,从一个点出发,跑了一段固定的距离,又回到了起点,只不过这个操场的形状是椭圆的!再说双曲线,这玩意儿可神奇啦!它的形状就像张开的大钳子。
双曲线是平面内到两个定点F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹。
这是不是有点像你和小伙伴玩捉迷藏,你和小伙伴之间的距离差总是保持一个固定的值。
然后是抛物线,抛物线就像是一个抛出去的球的轨迹。
抛物线是平面内到一个定点F 和一条定直线l 的距离相等的点的轨迹。
这是不是有点像你扔出一个纸飞机,它的飞行轨迹就是抛物线。
在做题的时候,咱们得知道椭圆、双曲线和抛物线的标准方程。
椭圆的标准方程有两种,焦点在x 轴上是x²/a² + y²/b² = 1,焦点在y 轴上是y²/a² + x²/b² = 1。
双曲线的标准方程也有两种,焦点在x 轴上是x²/a² - y²/b² = 1,焦点在y 轴上是y²/a² - x²/b² = 1。
抛物线的标准方程就更多啦,焦点在x 轴正半轴上是y² = 2px,焦点在x 轴负半轴上是y² = -2px,焦点在y 轴正半轴上是x² = 2py,焦点在y 轴负半轴上是x² = -2py。
还有它们的性质也很重要哦!比如椭圆的离心率e 就介于0 和1 之间,这能告诉我们椭圆的扁平程度。
双曲线的离心率e 大于1,这说明双曲线的形状更“张开”。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。
下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。
1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。
即|PF1| + |PF2| = 2a。
椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。
3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。
即|PF| = |PM|,其中M是直线L上的一点。
抛物线对应的方程为\(y^2 = 2px\)。
二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。
B. 椭圆的离心率e的范围为0<e<1。
C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。
3. 抛物线的性质:A. 抛物线的焦点为定点F。
B. 抛物线的离心率e=1。
C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。
三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。
2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。
3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。
高中数学圆锥曲线知识点梳理+例题解析
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高三高考数学总复习《圆锥曲线》题型归纳与汇总
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学中的重要内容,一共包括圆、椭圆、双曲线、抛物线四种类型。
以下是圆锥曲线的一些基础知识点总结。
一、圆锥曲线的定义圆锥曲线是由一个固定点(称为焦点)F和一条直线(称为准线) l 组成的,为使到焦点的距离与到准线的距离之比等于一个定值(称为离心率),所形成的所有点的轨迹。
二、圆锥曲线的基本方程圆是到焦点距离为R的圆锥曲线,其基本方程为:(x-a)²+(y-b)²=R²其中(a,b)为圆心坐标,R为半径长度。
(x-a)²/a²-(y-b)²/b²=1 或 (y-b)²/b²-(x-a)²/a²=1抛物线是离心率等于1的圆锥曲线,其基本方程有两种形式:① y²=2px (焦点在y轴上)其中p为抛物线焦半距的一半,(0,p)为焦点坐标,对称轴为x或y轴。
三、圆锥曲线的相关参数1、椭圆离心率椭圆离心率的计算公式为:其中e为离心率,a、b分别为椭圆的长短半轴。
离心率越小,椭圆越接近圆形。
2、双曲线离心率e=√(a²+b²)/a 或e=√(a²+b²)/b3、抛物线参数抛物线的参数有焦半距p和直角坐标系下的直线斜率k。
① y²=2px,p=y²/2x1、对称性与x轴、y轴、原点、直线x=y、直线x=-y对称的圆锥曲线仍然是一条圆锥曲线。
2、切线斜率圆锥曲线上任一点处的切线斜率等于到该点的切线与焦点连线的斜率。
椭圆、双曲线和抛物线都可以用参数方程表示。
4、焦点性质离一个点的两条切线的交点一定在该点的焦点上。
以上就是关于圆锥曲线的一些基础知识点总结,希望对大家掌握圆锥曲线有所帮助。
高三数学:圆锥曲线与方程
第八章圆锥曲线的方程脑图一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)若ABC ∆的两个顶点坐标为()4,0A -,()4,0B ,ABC ∆的周长为18,则顶点C 的轨迹方程为 .(Ⅱ)设点Q 是圆C :25)1(22=++y x 上一动点,点()1,0A 是圆内一点,AQ 的垂直平分线与CQ 交于点M ,求点M 的轨迹方程.(Ⅲ)动圆M 过定点(4,0)P -,且与圆C :22(4)16x y -+=相切,求动圆圆心M 的轨迹方程.(Ⅳ)已知1F 、2F 分别为双曲线22221x y a b-=的左、右焦点,点P 为右支上一点,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,求点M 的轨迹. (Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅰ)已知P 是椭圆2214x y +=上一点,12F F 、分别是椭圆的左、右焦点,且1260F PF ∠=︒,则12F PF ∆的面积是 . (Ⅱ)双曲线221916x y -=的左、右焦点分别是12F F 、,点P 在双曲线上,且直线1PF 、2PF 倾斜角之差为3π,则12F PF ∆的面积为 . (Ⅲ)在椭圆2214520x y +=上求一点P ,使它与两焦点12F F 、的连线互相垂直. (Ⅳ)12F F 、是椭圆22194x y +=的两个焦点,点P 为其上一动点,当12F PF ∠为钝角时,点P 的横坐标的取值范围是 . (Ⅴ)设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,当12F PF ∆的面积为1时,12PF PF ⋅ 的值是 .【利用第一定义求最值】例3.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求PA PF +的最值. (Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求PA PF +的最小值.二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)已知动点(),M x y 满足|43|)2()1(22y x y x +=-+-,则点M 的轨迹是A .椭圆B .双曲线C .抛物线D .两条相交直线(Ⅱ)已知圆A :()2221x y ++=与定直线l :1x =,动圆M 和圆A 外切且与直线l 相切,求动圆的圆心M 的轨迹方程. (Ⅲ)已知圆的方程为224x y +=,动抛物线过点(1,0)A -、(1,0)B ,且以圆的切线为准线,求抛物线焦点的轨迹方程.(Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求32PA PF +的最小值.(Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求(1)PA 的最小值. (Ⅲ)若F 为抛物线x y 22=的焦点,点M 在抛物线上移动,)2,3(A ,求MF MA +的最小值.(Ⅳ)已知点P 是抛物线2y = 2x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是7,42⎛⎫⎪⎝⎭,则PA PM +的最小值是 A .211 B .4 C .29 D .5【焦半径公式】 例6.(Ⅰ)已知点P 在椭圆()222210x y a b a b+=>>上,12F F 、为椭圆的左右焦点,求12PF PF ⋅的取值范围. (Ⅱ)双曲线222x y a -=的两个焦点分别为12F F 、,P 为双曲线上的任意一点,求证:1PF 、PO 、2PF 成等比数列.(Ⅲ)已知抛物线24y x =的一条焦点弦被焦点分成为m 、n 的两部分,求证:m n m n +=⋅. (Ⅳ)若双曲线()222210,0x y a b a b-=>>,在右支上有一点P ,且P 到左焦点1F 与到右焦点2F 的距离之比为4:3,求P 点的横坐标. (Ⅴ)在双曲线2211213y x -=的一支上有不同的三点()11,A x y 、()2,6B x ,()33,C x y 与焦点()0,5F 的距离成等差数列,求13y y +.三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)已知椭圆焦点在x 轴上,焦距等于4,并且经过点(3,P ,求椭圆的标准方程.(Ⅱ)已知椭圆经过两点)2A -,()B -,求椭圆的标准方程. (Ⅲ)已知椭圆的长轴长是短轴长的2倍,且过点()2,6-,求椭圆的标准方程.(Ⅳ)双曲线2222mx my -=的一条准线是1y =,则m 的值为 .(Ⅴ)已知双曲线的右准线为4x =,右焦点为()10,0F ,离心率2e =,求双曲线方程.(Ⅵ)求与双曲线221916x y -=有共同的渐近线,且经过点(M -的双曲线方程. (Ⅶ)求以椭圆221133x y +=的焦点为焦点,以直线12y x =±为渐近线的双曲线的方程. (Ⅷ)k 为何值时,方程22121x y k k +=--表示①圆;②椭圆;③双曲线?(Ⅸ)抛物线()210y x a a=≠的焦点坐标是 . (Ⅹ)已知抛物线的准线为2y =,求抛物线的标准方程. (Ⅺ)已知抛物线的焦点在x 轴上,且()2,3A -到焦点的距离是5,求抛物线的标准方程.(Ⅻ)已知抛物线焦点在x 轴上且截直线210x y -+=【利用椭圆的参数方程求最值】例8.已知实数x 、y 满足2214x y +=,①求222u x y y =+-的取值范围;②求v x y =+的取值范围.四、几何性质【求离心率】例9.(Ⅰ)已知12F F 、为椭圆()222210x y a b a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,且1260F MF ∠=︒,求离心率. (Ⅱ)椭圆()222210x y a b a b +=>>的左焦点为F ,(),0A a -,()0,B b 是两个顶点,如果F 到直线AB ,求椭圆的离心率. (Ⅲ)椭圆()222210x y a b a b+=>>的两焦点为12F F 、,以12F F 、为边作正三角形,若椭圆恰好平分正三角形的两条边,则椭圆的离心率为 . (Ⅳ)已知双曲线的两条渐近线方程是34y x =±,求此双曲线的离心率. (Ⅴ)设双曲线()222210,0x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率是 . (Ⅵ)已知12F F 、是椭圆的两个焦点,满足120MF MF ⋅= 的点总在椭圆内部,求椭圆离心率的取值范围. (Ⅶ)已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A .(]1,2 B .()1,2 C .[)2,+∞ D .()2,+∞五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)已知椭圆2288x y +=,在椭圆上求一点P ,使P 到直线l :40x y -+=的距离最小并求出最小值. (Ⅱ)求经过点1,22⎛⎫⎪⎝⎭且与双曲线2241x y -=仅有一个公共点的直线方程.【有两个不同交点】——韦达定理【弦长】例11.(Ⅰ)抛物线212y x =截直线21y x =+所得弦长等于 .(Ⅱ)已知椭圆的中心在原点,焦点在坐标轴上,直线1y x =+与该椭圆相交于P 和Q ,且OP OQ ⊥ ,PQ =,求椭圆方程. 【弦中点】例12.(Ⅰ)已知椭圆2212x y +=,①求斜率为2的平行弦的中点轨迹方程;②过()2,1A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;③过点11,22P ⎛⎫ ⎪⎝⎭且被P 点平分的弦所在直线的方程. (Ⅱ)已知双曲线2212y x -=,①过定点()2,1P 作直线交双曲线于12P P 、点,使P 点是12PP 的中点,求此直线方程;②过定点()1,1Q 能否作直线l ,使l 与双曲线相交于两点1Q 、2Q ,且Q 是12Q Q 的中点?若存在,求出l 的方程;若不存在,说明理由.【垂直】例13.(Ⅰ)若直线l :1y ax =+与双曲线2231x y -=交于A 、B 两点,且以AB 为直径的圆过原点,求a 的值.(Ⅱ)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.①求椭圆C 的标准方程;②若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【对称】例14.(Ⅰ)已知椭圆C 的方程为22143x y +=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同的两个点关于该直线对称. (Ⅱ)已知抛物线212y x =上总存在关于直线4y x m =+对称的两点,则实数m 的取值范围是 .【数量积】例15.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为),①求双曲线C 的方程;②若直线y kx =C 有两个不同的交点A 和B ,且2OA OB ⋅> (O 为原点),求k 的取值范围.【面积】例16.(Ⅰ)已知双曲线C :()222210,0x y a b a b-=>>的两个焦点为()12,0F -、()22,0F ,点(3,P 在双曲线C 上.①求双曲线C 的方程;②记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C相交于不同两点E 、F ,若OEF ∆的面积为l 的方程.(Ⅱ)已知中心在原点的双曲线C 的一个焦点是()13,0F -20y -=. ①求双曲线C 的方程;②若以()0k k ≠为斜率的直线l 与双曲线C 相交于不同两点,M N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.答案一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)()2210259x y y +=≠.(Ⅱ)224412521x y +=(Ⅲ)221412x y -= (Ⅳ)222x y a +=(Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅱ)(Ⅲ)()3,4()3,4-()3,4-()3,4--(Ⅳ)x <<(Ⅴ)0. 【利用第一定义求最值】例3.(Ⅰ)66二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)B (Ⅱ)28y x =-(Ⅲ)22143x y += (Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)112(Ⅱ)32(Ⅲ)72(Ⅳ)C 【焦半径公式】 例6.(Ⅰ)2212b PF PF a ≤⋅≤(Ⅱ)证略(Ⅲ)证略(Ⅳ)20x =12三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)2213632x y +=(Ⅱ)221155x y +=(Ⅲ)22114837x y +=或2215213x y +=(Ⅳ)43-. (Ⅴ)()22211648x y --=(Ⅵ)2219164x y -=或221944x y -=(Ⅶ)22182x y -= (Ⅷ)①32k =②3122k k <<≠且③21k k ><或(Ⅸ)0,4a ⎛⎫ ⎪⎝⎭.(Ⅹ)28x y =- (Ⅺ)28y x =或224y x =- (Ⅻ)212y x =或24y x =-【利用椭圆的参数方程求最值】例8.①131,3⎡⎤-⎢⎥⎣⎦;②⎡⎣四、几何性质【求离心率】例9.(Ⅱ)121.(Ⅳ)54e =或53(Ⅵ)⎛ ⎝⎭(Ⅶ)C 五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)31,83P ⎛⎫- ⎪⎝⎭,min d =(Ⅱ)5324y x =+,21y x =+,23y x =-+和12x = 【有两个不同交点】——韦达定理 【弦长】例11.(Ⅱ)221223x y +=或221223x y += 【弦中点】例12.(Ⅰ)①444033x y x ⎛⎫+=-<< ⎪⎝⎭②222220x y x y +--=③2430x y +-= (Ⅱ)①470x y --=②不存在【垂直】例13.(Ⅰ)1a =±(Ⅱ)①22143x y +=②2(,0)7 【对称】例14.(Ⅰ)1313x -<<(Ⅱ)216m <-. 【数量积】例15.1,⎛⎫- ⎪ ⎪⎝⎭⎝⎭【面积】例16.(Ⅰ)①22122x y -=②2y =+ (Ⅱ)①22145x y -=②55,,44⎛⎫⎛⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭。
高三数学圆锥曲线知识点
高三数学圆锥曲线知识点在高中数学中,圆锥曲线是一个重要的概念。
它由圆、椭圆、双曲线和抛物线四种曲线构成。
掌握圆锥曲线的知识对于解决各种数学问题和应用是至关重要的。
本文将介绍高三数学圆锥曲线的知识点。
一、圆锥曲线的定义和性质圆锥曲线是一个平面上到一个定点和一个定直线的距离之比保持不变的点的轨迹。
圆锥曲线分为四种类型:圆、椭圆、双曲线和抛物线。
1. 圆:圆是所有到一个点的距离相等的点的轨迹。
圆的特点是中心坐标为(h, k),半径为r。
2. 椭圆:椭圆是所有到两个定点之和的距离之比为定值的点的轨迹。
椭圆的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,长轴的长度为2a,短轴的长度为2b。
3. 双曲线:双曲线是所有到两个定点之差的距离之差为定值的点的轨迹。
双曲线的特点是有两个焦点F1和F2,两个焦点之间的距离为2a,离心率为e,离心率小于1。
4. 抛物线:抛物线是所有到一个定直线的距离与到一个定点的距离相等的点的轨迹。
抛物线的特点是焦点为F,准线为L,焦距为p,焦点到准线的距离为x,焦点到点P的距离为y。
二、圆锥曲线的方程1. 圆的方程:$(x-h)^2 + (y-k)^2 = r^2$,其中(h, k)为圆心的坐标,r为半径。
2. 椭圆的方程:$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆长半轴和短半轴的长度。
3. 双曲线的方程:$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} =1$,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线长半轴和短半轴的长度。
4. 抛物线的方程:$y^2 = 4ax$,其中焦点为原点,准线为x轴,焦距为p。
三、圆锥曲线的性质和应用1. 圆的性质:圆的切线与半径垂直,圆的弦与半径垂直于弦的中点。
2. 椭圆的性质:椭圆的离心率介于0和1之间,焦点和对称轴平行。
高三数学圆锥曲线试题答案及解析
高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。
高三数学圆锥曲线调和点列
高三数学圆锥曲线调和点列在高中数学中,圆锥曲线是一个重要的概念。
其中,调和点列是圆锥曲线研究中的一个有趣且具有深度的概念。
通过学习和理解调和点列的特性,可以帮助我们更好地理解圆锥曲线的性质。
首先,我们来介绍什么是调和点列。
在平面直角坐标系中,设直线L经过圆锥曲线的一个焦点F,该直线和另一焦点F'的连线与圆锥曲线交于点A。
如果对称于点A的点A'恰好也在圆锥曲线上,那么点A和点A'就构成了一个调和点列。
简单来说,调和点列就是在圆锥曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在圆锥曲线上。
接下来,让我们来研究调和点列的性质。
首先,我们考虑椭圆。
在椭圆上,对任意取定的直线L,过椭圆两个焦点的直线与直线L交于A、A'两点。
根据椭圆的性质,可以证明A和A'构成一个调和点列。
而且,不仅仅是在椭圆上,对任何一对构成调和点列的点,它们所在的直线都必定与椭圆的两个焦点相交。
这个性质可以帮助我们更好地理解椭圆的几何性质。
然后,我们来研究另一种圆锥曲线——双曲线。
在双曲线上,调和点列的性质也是有趣的。
通过分析可以发现,在双曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在双曲线上,构成的调和点列,直线L必定未与双曲线相交。
这个性质与椭圆上的性质有所不同,我们可以通过这个性质来区分椭圆和双曲线。
除了椭圆和双曲线,调和点列还可以应用于抛物线的研究。
在抛物线上,调和点列的性质与椭圆和双曲线有所不同,但同样有趣。
在抛物线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在抛物线上,构成的调和点列,直线L与抛物线的准线平行。
这个性质可以帮助我们更好地理解抛物线的形态。
通过对圆锥曲线调和点列的研究,我们不仅可以更好地理解椭圆、双曲线和抛物线的性质,还可以帮助我们解决一些圆锥曲线相关的问题。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
高三数学-圆锥曲线的定义及应用-圆锥曲线的综合应用
高三数学圆锥曲线的定义及应用圆锥曲线的综合应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程。
1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)范围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞) (5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)范围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真人线上代理 fbreቤተ መጻሕፍቲ ባይዱ
[单选]促进消防工程师行业发展的动力是()。A.公平竞争B.精益求精C.团结互助D.爱岗敬业 [名词解释]绕射波 [单选]()标志着合同成立。A.承诺生效B.承诺发出时C.要约到达受要约人时D.承诺发出后经过合理的期限 [单选]关于肋骨骨折,下述哪项不正确()A.直接暴力或间接暴力均可致伤B.以成年和老年人多见C.以第4~7肋骨最易发生骨折D.间接暴力所致肋骨骨折易致气胸E.骨折可发生于单肋,也可发生于多肋 [单选]()是注册消防工程师职业道德中最高层次的要求。A.遵纪守法B.英勇顽强C.爱岗敬业D.奉献社会 [单选]造成卷折伪影主要是因为()。A.视场的范围超出被检物体B.被检物体超出视场的范围C.TR过大D.TE过大E.扫描时间过长 [填空题]用于表示纱线细度的指标主要有()、公制支数、特数、旦数。 [单选]一个团体旅客,其中有40个成人,10个儿童(均应购买儿童票),按照对团体旅客优惠办法的规定,应购买()。A、36个成人票,10个儿童票B、38个成人票,8个儿童票C、37个成人票,10个儿童票D、40个成人票,6个儿童票 [名词解释]适熟叶 [问答题,简答题]CTCS2-200H型车载列控系统中DMI的作用是什么? [单选]多步式利润表中的利润总额是以()为基础来计算的。A.营业收入B.营业成本C.投资收益D.营业利润 [单选]航路、航线地带和民用机场区域设置:()。A.高空管制区、中低空管制区、机场塔台管制区B.航路管制区、终端(进近)管制区、机场塔台管制区C.高空管制区、中低空管制区、终端(进近)管制区、机场塔台管制区 [单选]有关窗技术的理解,下列哪个不妥()A.利用窗技术,将人体组织分为的2000个分度,调整到人眼所能辨别的16个灰阶中B.窗位是指窗宽上限、下限CT值的平均数C.窗位、窗中心是指一个概念D.为显示不同组织影像,应在规范的范围调整E.窗口技术调整的目的,是为了拍摄出一张对比良好的 [单选]安全审计是保障计算机系统安全的重要手段之一,其作用不包括()A.检测对系统的入侵B.发现计算机的滥用情况C.发现系统入侵行为和潜在的漏洞D.保证可信网络内部信息不外泄 [单选]下列作品中属于贝多芬的代表作是:()A.《e小调第九交响曲》(德沃夏克)B.《C小调练习曲》(肖邦)C.歌剧《自由(魔弹)射手》(德国的卡尔•马利亚•冯•威柏)D.歌剧《费德里奥》 [判断题]生产函数的斜率是边际产量。A.正确B.错误 [问答题,案例分析题]男性,急性阑尾炎术后第一次换药,请按照换药基本要求为患者换药。 [单选,A1型题]左向右分流型的先心病是()A.动脉导管未闭B.肺动脉狭窄C.主动脉缩窄D.右位心E.大血管错位 [单选,A2型题]一甲亢患者,甲状腺肿大不明显,但食欲亢进、消瘦、血糖增高,医师忽视了甲状腺功能亢进的有关检查,最容易被误诊为()。A.结核病B.糖尿病C.恶性肿瘤D.败血症E.吸收不良综合征 [单选]刚体匀速转动时不在转轴上的各点,不具有()的性质。A.角速度相等B.所转过角度相等C.角加速度为零D.速度相等 [单选]行李室考核制度规定:应在当班期间完成的工作任务不完成,推给别人者,扣当月绩效工资的()。A.25%-35%B.10%-20%C.30%-40%D.5% [单选]同沟敷设或平行距离较近的管道,可安装()。A.均压线B.绝缘法兰C.保护装置D.排流措施 [单选,A2型题,A1/A2型题]关于孤独症的治疗,错误的是()A.异常行为的改变和变更B.对孩子行为的宽容和理解C.特别能力的发现、培养和转化D.应用行为分析疗法是高强度的行为疗法E.采用以药物治疗为主、教育和训练为辅的办法 [单选,A2型题,A1/A2型题]变应性鼻炎患者鼻镜检查见下鼻甲与鼻底、鼻中隔紧靠,收敛后见中鼻甲黏膜息肉样变。根据1997年修订的海口疗效评定标准,此体征分级记录为()。A.0分B.1分C.2分D.3分E.4分 [单选]在腰肌劳损的治疗方法中,不正确的是()A.注意休息,防止再发病B.加强功能锻炼,练习弯腰持物的力量C.疼痛部位进行理疗D.疼痛剧烈,痛点可注射肾上腺皮质类固醇E.疼痛严重可口服止痛药物 [单选]流脑的主要传播途径()A.空气、飞沫B.玩具及用品C.动物传播D.通过饮用水传播E.通过食物传播 [单选,A1型题]在孕妇腹壁上听诊,与母体心率相一致的音响是()A.胎心音B.子宫杂音C.脐带杂音D.胎动音E.肠蠕动音 [单选]下列卵巢皮样囊肿声像图的表现,哪一项是错误的A.脂液分层征B.面团征C.瀑布征D.杂乱结构征E.实性团块征 [单选]如商品的售价内包含可区分的在售后一定期限内提供相关服务的服务费,在销售商品时,收到的该项服务费应计入科目。A.营业外收入B.主营业务收入C.其他业务收入D.预收账款 [单选]()属于水生植物。A、肾蕨B、晚香玉C、马蹄莲D、菖蒲 [单选,A2型题,A1/A2型题]以下有关自杀的概念的描述不正确的是()A.自杀是"有意或者故意伤害自己生命的行动"B.自杀者把自杀行动看作是解决某种问题的最好办法C.自杀是有意的自我伤害导致的死亡D.广义的自杀论者认为自杀指有害生命的一切人类行为E.广义的自杀论者认为意 [问答题,案例分析题]金琪公司和欧亚公司均为增值税一般纳税人,适用的增值税税率为17%,均采用资产负债表债务法核算企业所得税,适用的所得税税率为25%。金琪公司和欧亚公司发生的相关交易或事项如下。资料(一)(1)2013年7月5日金琪公司销售给欧亚公司一批库存商品,款项尚未收 [单选]一般情况下,季节性安全检查的组织人是项目()。A.专职安全员B.副经理C.技术负责人D.经理 [单选,A1型题]患儿男,10个月。采用牛乳喂养,未加辅食,因皮肤、黏膜苍白就诊。诊断为缺铁性贫血,护士对家长健康指导最重要的是()A.防止外伤B.预防患儿感染C.预防心力衰竭D.限制患儿活动E.为患儿补充含铁辅食 [单选]下列哪项不宜通过纤维支气管镜检进行治疗()A.取气管、支气管内异物B.肿瘤的电凝、电切或激光治疗C.病灶局部药物注射D.止血治疗E.气胸时经支气管抽气治疗 [单选]《建设工程勘察合同示范文本(一)》和《建设工程勘察合同示范文本(二)》均约定,在合同生效后()天内,发包人应向勘察人支付勘察费的()作为定金。在合同履行后,定金可抵作勘察费。A.3;15%B.2;20%C.3;20%D.2;15% [单选,B1型题]珠蛋白生成障碍性贫血()A.红细胞渗透脆性试验B.酸溶血试验C.抗人球蛋白试验D.高铁血红蛋白还原试验E.血红蛋白电泳分析 [判断题]冷沉淀融化后需放置室温2小时后输用。A.正确B.错误 [单选,A1型题]关于解表药主要药理作用叙述错误的是()A.发汗作用B.解热作用C.抗病原微生物作用D.抑制组织异常增生E.调节免疫作用 [单选]投标文件中的大写金额和小写金额不一致的,应()。A.以小写金额为准B.以大写金额为准C.由投标人确认D.由招标人确认