高三数学圆锥曲线
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
高三数学二轮复习圆锥曲线 课件
内容
难度
中等
圆锥曲线的方程与性质、弦
长问题.
考点1:圆锥曲线的定义及
标准方程
【例1】(1)已知P是抛物线 y2=4x上的一个动点,Q是圆(x‒3)2+(y‒1)2=1上
的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为( A )
A.3
B.4
y
C.5
Pபைடு நூலகம்
H
Q
1
O
x=-1
N
3
x
D. 2 +1
2
2
2
− 2
= 1 (a>0,
b>0)的右顶点为A,以A为圆心,b为半径作圆
A,圆A与双曲线C的一条渐近线交于M,N两
点.若∠MAN=60°,则C的离心率为
2 3
________.
3
M
N
A
x
(2)在平面直角坐标系xOy中,双曲线
2
2
2
− 2
y
B
= 1 (a>0,b>0)的右支与焦点为F
•
计算,即利用待定系数法求出方程中的a 2 ,b 2 或p.另外,当焦点位置无法确定时,
抛物线常设为y 2 =2px或x 2 =2py(p≠0),椭圆常设为mx 2 +ny 2 =1(m>0,n>0),双
曲线常设为mx 2 -ny 2 =1(mn>0).
考点2:圆锥曲线的几何性质
y
【例2】(1)已知双曲线C:
2
(2)已知双曲线 2
2
− 2
= 1 (a>0,b>0)的左焦点为F,离心率为 2 .若经过F
和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( B )
高三圆锥曲线知识点总结人教版
高三圆锥曲线知识点总结人教版高三圆锥曲线知识点总结(人教版)在高三数学学习的过程中,圆锥曲线是一个重要的知识点。
它既有着理论的深度,又有着实际应用的广泛性。
下面我将对高三圆锥曲线的知识点进行总结。
一、圆锥曲线的基本概念圆锥曲线是指在一个平面内,有一个点(焦点F),到该点的距离与一个定点(直角顶点O)到平面的距离成一定比例的一组曲线。
其中,焦点与顶点连线的垂直平分线称为准线。
圆锥曲线可以分为椭圆、双曲线、抛物线三种。
1. 椭圆椭圆是一个封闭曲线,其定义是所有到焦点F1和F2的距离之和等于常数2a,其中a称为椭圆的长半轴,b称为椭圆的短半轴。
椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 12. 双曲线双曲线是一个非封闭曲线,其定义是所有到焦点F1和F2的距离之差等于常数2a,其中a称为双曲线的半轴。
双曲线的标准方程为:x^2/a^2 - y^2/b^2 = 13. 抛物线抛物线是一个开口朝上或朝下的曲线,其定义是到焦点F和准线的距离相等。
抛物线的标准方程为:y^2 = 2px二、圆锥曲线的性质1. 椭圆的性质(1)离心率e的定义是焦点到准线的距离与焦点到曲线的距离之比。
对于椭圆,离心率e满足0<e<1。
(2)椭圆的两个焦点F1和F2关于中心对称。
(3)椭圆的两个半焦距相加等于长轴的长度,即2ae = 2a。
(4)椭圆的两个半焦距相减等于短轴的长度,即2ae = 2b。
2. 双曲线的性质(1)离心率e的定义同样适用于双曲线。
对于双曲线,离心率e满足e>1。
(2)双曲线的两个焦点F1和F2关于中心对称,但不在曲线上。
(3)双曲线的两个半焦距相减等于长轴的长度,即2ae = 2a。
(4)双曲线的两个半焦距相加等于短轴的长度,即2ae = 2b。
3. 抛物线的性质(1)抛物线关于准线对称。
(2)焦点和准线的距离等于半焦距的绝对值,即|PF| = |PG|。
(3)抛物线的焦距与抛物线的方程有关,焦距的公式为2p = a/e。
高三数学圆锥曲线详细知识点
高三数学圆锥曲线详细知识点在高中数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
这些曲线在数学和物理学中都有广泛的应用,因此掌握圆锥曲线的知识对于学生来说非常重要。
1. 椭圆椭圆是圆锥曲线中的一种,它由一个动点P和两个定点F1和F2确定。
椭圆的定义是动点P到两个定点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
这个常数2a称为椭圆的长轴长度。
椭圆的形状由参数e = PF1 / 2a来确定,其中e称为离心率。
当e=0时,椭圆退化成一个圆。
椭圆有许多重要性质和公式,比如它的离心率范围是0<e<1,长轴和短轴的长度之间有关系a^2 = b^2(1 - e^2)。
此外,椭圆还有焦点、准线、主轴等概念,对于理解椭圆的性质和应用非常有帮助。
2. 双曲线双曲线是圆锥曲线中的另一种形式。
它由一个动点P和两个定点F1和F2确定,类似于椭圆。
但不同的是,双曲线的定义是动点P到两个定点F1和F2的距离之差的绝对值等于常数2a,即|PF1 - PF2| = 2a。
与椭圆不同的是,双曲线的离心率e>1,因此它的形状更加扁平。
双曲线也有许多重要的性质和公式。
比如,它的离心率范围是e>1,焦点与曲线的准线之间的距离等于常数2a。
双曲线还有渐近线,指的是双曲线两个分支无限远处趋于平行的直线。
3. 抛物线抛物线是圆锥曲线中的第三种形式。
它由一个定点F和一条直线l确定,定点F称为焦点,直线l称为准线。
抛物线的定义是动点P到焦点F的距离等于点P到直线l的距离,即PF = PD。
抛物线的形状是开口向上或向下的U形曲线。
抛物线也有许多特殊的性质和公式。
比如,抛物线的焦半径等于准线与焦点之间的垂直距离,焦半径的长度等于焦距的两倍。
抛物线还有焦平面和直径等概念,对于解决实际问题非常有帮助。
总结:在高三数学中,圆锥曲线是一个重要的学习内容。
它包括了椭圆、双曲线和抛物线三个部分。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是由平面上直线与一个定点及一定曲线相交而形成的曲线,分为圆、椭圆、双曲线和抛物线四种类型。
在高三数学中,学习圆锥曲线是必不可少的。
以下为圆锥曲线的相关知识点总结。
一、坐标系下的圆锥曲线方程式1.圆的方程所谓圆,是指平面上到定点距离等于定长的所有点的集合。
设圆心为$O({{x_0},{y_0}})$,半径为 $r$,则圆的方程为$${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$$3.双曲线的方程二、圆锥曲线的性质(1)对圆上任意一点,作圆的切线,它垂直于切点与圆心的连线。
(2)两个数轴上投影相等的两点与圆心之间的距离相等(称为圆的两点定理)。
(3)圆心为原点的圆,其半径为 $r$,横轴方程为 $x^2 + y^2 = r^2$,纵轴方程为$x^2 + y^2 = r^2$。
2.椭圆(1)椭圆的两个焦点与中心 $O$ 在一条直线上。
(2)椭圆的上下两支称为上半部和下半部,椭圆与 $x$ 轴的交点称为顶点。
(4)椭圆的到两个焦点分别距离和为定值,等于两倍的圆长轴长。
(2)双曲线的两支曲线称为左半支和右半支,曲线的两个交点称为顶点,与左右两支连接的两条直线称为渐近线。
4.抛物线(1)抛物线是关于顶点对称的曲线。
(2)抛物线与横轴交于顶点 $O$。
(3)抛物线与纵轴垂直。
三、曲线的参数方程如果把圆的中心移到原点,半径为 $r$,则圆的参数方程为$$\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}$$如果双曲线的中心移到原点,且 $a>b$,则双曲线的参数方程为$$\begin{cases}x=c\cosh \theta \\y=b\sinh \theta\end{cases}$$其中,$c=\sqrt{{a^2} + {b^2}}$,$\cosh \theta = \frac{{{e^\theta } + {e^{ - \theta }}}{2}}$,$\sinh \theta = \frac{{{e^\theta } - {e^{ - \theta }}}{2}}$。
高三最难学的数学知识点
高三最难学的数学知识点高三是学生备战高考的重要时期,而数学作为一门重要的科目,常常被认为是最具挑战性的一门学科。
在高三的数学学习中,有一些知识点被普遍认为是最难学习的。
本文将介绍高三最难学习的数学知识点,并对其进行深入探讨。
一、圆锥曲线圆锥曲线是高中数学的重要内容之一,包括椭圆、双曲线和抛物线。
学生在学习圆锥曲线时,往往会遇到各种难题,如曲线的方程、焦点和准线的计算等。
由于圆锥曲线的定义较为抽象,需要学生具备较强的图像思维和几何直观,因此不少学生会在这一部分遇到困难。
为了克服这一困难,学生可以通过多做练习题,尤其是涉及实际问题的应用题。
另外,掌握圆锥曲线的基本性质和特点也是十分重要的,可以帮助学生更好地理解和应用相关的知识。
二、数列与数学归纳法数列是数学中的重要概念,它常常涉及到递推关系、通项公式和数列性质等内容。
在高三数学学习中,数列与数学归纳法也被认为是难点之一。
学生在应用数学归纳法解题时,往往需要较强的逻辑思维和抽象能力,这对于一些学生来说是具有挑战性的。
为了提高数列与数学归纳法的学习效果,学生可以通过积极参与课堂讨论和思维导图练习来加深对数列的理解。
同时,多进行例题的分析和解答,通过反复训练来提高解题的技巧和速度。
三、数与函数数与函数是高中数学的基础,也是高考的重点之一。
学生在高三学习数与函数时,往往会遇到各种复杂的问题,如函数的性质、图像的变换和函数方程的求解等。
这些内容需要学生具备较好的逻辑推理和数学分析能力,对于一些学生来说是相对较难的。
为了更好地学习数与函数,学生应该注重对基本概念的理解,并善于归纳总结,将抽象的数学概念与具体的实际问题相结合。
此外,学生还可以通过多做习题和参加解题比赛等方式来提高解题的能力和水平。
四、极限与导数高三数学课程中的极限与导数是相对较为抽象和深奥的内容。
学生在学习极限与导数时,常常需要理解与应用一些复杂的理论和公式,这对于学生来说是具有挑战性的。
此外,极限与导数的计算也需要学生具备较好的计算能力和推理思维。
高三数学第二轮专题复习系列(8)-- 圆锥曲线
高三数学第二轮专题复习系列(8)-- 圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点. 2.圆 圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ,半径是24F -E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F-E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭 圆 双曲线 抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}. 圆 形标准方程 22a x +22b y =1(a >b >0)22a x -22by =1(a >0,b >0)y 2=2px(p >0)顶 点 A 1(-a,0),A 2(a,0); B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0)轴 对称轴x=0,y=0 长轴长:2a 短轴长:2b 对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦 距|F 1F 2|=2c ,c=b2-a2|F 1F 2|=2c, c=b2a2+准 线x=±ca 2准线垂直于长轴,且在x=±ca 2准线垂直于实轴,且在x=-2p 准线与焦点位于顶点两侧,且到顶点的距离曲 线 性 质椭圆外.两顶点的内侧.相等.离心率e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+h x ′=x-h (1) 或(2)y=y ′+k y ′=y-k 公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方 程焦 点 焦 线对称轴 椭圆22h)-(x a +22k)-(y b=1 (±c+h,k)x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a =1 (h,±c+k) y=±c a 2+kx=h y=k 双曲线22h)-(x a -22k)-(y b=1 (±c+h,k)=±c a 2+kx=h y=k 22k)-(y a -22h)-(x b=1 (h,±c+h)y=±ca 2+kx=h y=k 抛物线 (y-k)2=2p(x-h)(2p+h,k) x=-2p +h y=k (y-k)2=-2p(x-h)(-2p+h,k) x=2p +h y=k (x-h)2=2p(y-k)(h, 2p+k)y=-2p +kx=h(x-h)2=-2p(y-k)(h,-2p+k) y=2p +k x=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明 在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求 出的曲线方程才能准确无误.另外,要求会判断 曲线间有无交点,会求曲线的交点坐标.三、 考纲中对圆锥曲线的要求: 考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程; . 双曲线及其标准方程.双曲线的简单几何性质; . 抛物线及其标准方程.抛物线的简单几何性质; 考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程; . (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质; . (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质; . (4)了解圆锥曲线的初步应用。
高三数学圆锥曲线知识点总结
高三数学圆锥曲线知识点总结哎呀呀,高三的数学圆锥曲线可真是让人又爱又恨呀!首先咱们来说说椭圆,这就好比是一个被压扁的圆,你能想象吗?椭圆有两个焦点,就像是两只眼睛一直盯着它。
那椭圆的定义是什么呢?平面内到两个定点F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹,这不就像你在操场上跑步,从一个点出发,跑了一段固定的距离,又回到了起点,只不过这个操场的形状是椭圆的!再说双曲线,这玩意儿可神奇啦!它的形状就像张开的大钳子。
双曲线是平面内到两个定点F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹。
这是不是有点像你和小伙伴玩捉迷藏,你和小伙伴之间的距离差总是保持一个固定的值。
然后是抛物线,抛物线就像是一个抛出去的球的轨迹。
抛物线是平面内到一个定点F 和一条定直线l 的距离相等的点的轨迹。
这是不是有点像你扔出一个纸飞机,它的飞行轨迹就是抛物线。
在做题的时候,咱们得知道椭圆、双曲线和抛物线的标准方程。
椭圆的标准方程有两种,焦点在x 轴上是x²/a² + y²/b² = 1,焦点在y 轴上是y²/a² + x²/b² = 1。
双曲线的标准方程也有两种,焦点在x 轴上是x²/a² - y²/b² = 1,焦点在y 轴上是y²/a² - x²/b² = 1。
抛物线的标准方程就更多啦,焦点在x 轴正半轴上是y² = 2px,焦点在x 轴负半轴上是y² = -2px,焦点在y 轴正半轴上是x² = 2py,焦点在y 轴负半轴上是x² = -2py。
还有它们的性质也很重要哦!比如椭圆的离心率e 就介于0 和1 之间,这能告诉我们椭圆的扁平程度。
双曲线的离心率e 大于1,这说明双曲线的形状更“张开”。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。
下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。
1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。
即|PF1| + |PF2| = 2a。
椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。
3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。
即|PF| = |PM|,其中M是直线L上的一点。
抛物线对应的方程为\(y^2 = 2px\)。
二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。
B. 椭圆的离心率e的范围为0<e<1。
C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。
3. 抛物线的性质:A. 抛物线的焦点为定点F。
B. 抛物线的离心率e=1。
C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。
三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。
2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。
3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。
高三数学圆锥曲线与方程
圆锥曲线与方程1. 已知动抛物线的准线为x 轴,且经过点(0,2),求抛物线的顶点轨迹方程。
解:设抛物线的顶点坐标为)2,(),,(y x y x 则焦点坐标为, ……………………3分由题意得4)22(22=-+y x , ………………6分即顶点的轨迹方程为.1)1(422=-+y x ………………8分 2.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且到点F (0,1)和直线l的距离之和为4.(1)求点P 的轨迹C 的方程;(2)过点(0,1)Q -作曲线C 的切线,求所作的切线与曲线C 所围成区域的面积. 【解】(1)设P (x ,y )+3-y =4,化简,得y =14x 2(y ≤3).…………………4分(2)设过Q 的直线方程为y =kx -1,代入抛物线方程,整理得x 2-4kx +4=0. 由△=16k 2-16=0.解得k =±1.于是所求切线方程为y =±x -1(亦可用导数求得切线方程). 切点的坐标为(2,1),(-2,1).由对称性知所求的区域的面积为S =220132(1)d .44x x x ⎡⎤--=⎢⎥⎣⎦⎰ ………………… 10分 3.已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0).动圆M 过点F 2,且与圆F 1相内切.(1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且△ABF 1的面积为32,求直线l 的方程.解:(方法一)(1)设圆M 的半径为r . 因为圆M 与圆F 1相内切,所以MF 1=4-r . 因为圆M 过点F 2,所以MF 2=r .所以MF 1=4-MF 2,即MF 1+MF 2=4.………2分 所以点M 的轨迹C 是以F 1,F 2为焦点的椭圆.………且此椭圆的方程形式为x 2a 2+y 2b2=1(a >b >0).其中2a =4,c =1,所以a =2,b =3.……………4分所以曲线C 的方程x 24+y 23=1.……………5分(方法二)设M (x ,y),由MF 1+MF 2=4得4= ……3分化简得x 24+y 23=1,所以曲线C 的方程x 24+y 23=1.…5分(2)(方法一)当直线l 的斜率不存在时, A ,B 两点的坐标分别是(0,3),(0,-3),此时S △ABF 1=3≠32,不合题意.………………………………………………………6分设直线l 的方程为y =kx (k ≠0),代入椭圆方程x 24+y 23=1,得y 1=12k 23+4k 2,y 2=-12k 23+4k 2.所以S △ABF 1=S △AOF 1+S △BOF 1=12OF 1⋅∣y 1∣+12OF 1⋅∣y 2∣=12OF 1⋅(y 1-y 2)=12k 23+4k 2.……………………………………………7分因为S △ABF 1=32,所以12k 23+4k2=32.解得k =±12. …………………………8分 故所求直线l 的方程为x ±2y =0.……………………………………………………10分 (方法二)因为直线l 过椭圆的中心,由椭圆的对称性可知,S △ABF 1=2S AOF 1.因为S △ABF 1=32,所以S AOF 1=34. ………………………………6分 不妨设点A (x 1,y 1)在x 轴上方,则S AOF 1=12⋅OF 1⋅y 1=34.所以y 1=32,x 1=±3,即点A 的坐标为(3,32)或(-3,32). (8)分所以直线l 的斜率为±12.故所求的直线l 的方程为x ±2y =0.…………………………………………………10分 4. 点(,)n n n P x y 在曲线:xC y e -=上,曲线C 在n P 处的切线n l 与x 轴相交于点1(,0)n n Q x +,直线1n t +:1n x x +=与曲线C 相交于点111(,)n n n P x y +++,(1,2,3,n =L ).由曲线C 和直线n l ,1n t +围成的图形面积记为n S ,已知11x =.(1)证明:11n n x x +=+; (2)求n S 关于n 的表达式;(3)若数列{}n S 的前n 项之和为n T ,求证:11n n n nT x T x ++<(1,2,3,n =L ).解(Ⅰ)证明:因为x y e -=,所以xy e -'=-,则切线n l 的斜率nx n k e -=-,所以切线n l 的方程为()nx n n y y ex x --=--,令0y =,得1n Q n x x =+,即11n n x x +=+·2分(Ⅱ)解:因为11x =,所以n x n =,所以11111(2)()()|222n nn x xx n n n n n n n x e e S e dx x x y e e e +---+-+-=--⋅=--⨯=⎰ ·5分(Ⅲ)证明:因为12(2)2()(1)22(1)n n n e e T e e e e e e e ------=++⋅⋅⋅+=--, 所以1111111111n n n n n n n T e e e T e e e e e --++-++---===+---,又1111n nx n x n n ++==+, 故要证11n n n n T x T x ++<,只要证111n e e e n+-<-,即要证1(1)n e e n e +>-+·7分下用数学归纳法(或用二项式定理,或利用函数的单调性)等方法来 证明1(1)n ee n e +>-+(略)·10分5.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO ,NO 与抛物线C 的交点分别为点A 、B .求证:动直线AB 恒过一个定点.解:(1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2.所以抛物线C 的标准方程为y 2=4x .………………………………………………3分 (2)(方法一)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2), 其中y 1y 2=-4.则直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0.由⎩⎨⎧y =0,-4x +4=0,解得⎩⎨⎧x =1,y =0.故动直线AB 恒过一个定点(1,0).………………10分(方法二)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2). 由于y 1y 2=-4,取y 1=2,则y 2=-2,可得M (-1,2)、N (-1,-2).此时直线MO 的方程分别为y =-2x ,由⎩⎨⎧y 2=4x ,y =-2x .解得A 点坐标为(1,-2).同理,可得B 点坐标为(1,2).则直线AB 的方程为l 1:x =1. 再取y 1=1,则y 2=-4,同理可得A (4,-4),B (14,1).此时直线AB 方程为l 2:4x +3y -4=0.于是可得l 1与l 2的交点为(1,0). 下面验证对任意的y 1,y 2,当y 1y 2=-4时,动直线AB 恒过一个定点(1,0). 直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0. 可得点(1,0)在直线AB 上.所以动直线AB 恒过一个定点(1,0).………………………………………………10分 6.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点(2,2)A ,其焦点F 在x 轴上。
圆锥曲线知识点总结_高三数学知识点总结
圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学中的重要内容,一共包括圆、椭圆、双曲线、抛物线四种类型。
以下是圆锥曲线的一些基础知识点总结。
一、圆锥曲线的定义圆锥曲线是由一个固定点(称为焦点)F和一条直线(称为准线) l 组成的,为使到焦点的距离与到准线的距离之比等于一个定值(称为离心率),所形成的所有点的轨迹。
二、圆锥曲线的基本方程圆是到焦点距离为R的圆锥曲线,其基本方程为:(x-a)²+(y-b)²=R²其中(a,b)为圆心坐标,R为半径长度。
(x-a)²/a²-(y-b)²/b²=1 或 (y-b)²/b²-(x-a)²/a²=1抛物线是离心率等于1的圆锥曲线,其基本方程有两种形式:① y²=2px (焦点在y轴上)其中p为抛物线焦半距的一半,(0,p)为焦点坐标,对称轴为x或y轴。
三、圆锥曲线的相关参数1、椭圆离心率椭圆离心率的计算公式为:其中e为离心率,a、b分别为椭圆的长短半轴。
离心率越小,椭圆越接近圆形。
2、双曲线离心率e=√(a²+b²)/a 或e=√(a²+b²)/b3、抛物线参数抛物线的参数有焦半距p和直角坐标系下的直线斜率k。
① y²=2px,p=y²/2x1、对称性与x轴、y轴、原点、直线x=y、直线x=-y对称的圆锥曲线仍然是一条圆锥曲线。
2、切线斜率圆锥曲线上任一点处的切线斜率等于到该点的切线与焦点连线的斜率。
椭圆、双曲线和抛物线都可以用参数方程表示。
4、焦点性质离一个点的两条切线的交点一定在该点的焦点上。
以上就是关于圆锥曲线的一些基础知识点总结,希望对大家掌握圆锥曲线有所帮助。
圆锥曲线知识点总结高三网
圆锥曲线知识点总结高三网圆锥曲线知识点总结在高三学习数学的阶段,我们经常会遇到圆锥曲线这一知识点。
圆锥曲线是解析几何的重要内容,它包括椭圆、双曲线和抛物线三种曲线形式。
下面我们将对这些曲线的基本性质进行总结。
1. 椭圆椭圆是圆锥曲线中的一种,具有以下特点:- 定义:椭圆由一个固定点F(焦点)和一个不经过焦点的定长线段2a(长轴)上的所有点P组成。
- 离心率:离心率e是一个用来描述椭圆的形状的参数,它的取值范围是0<e<1,而当e=0时,椭圆退化为一个圆。
- 焦点和直径:椭圆的两个焦点与长轴的中点相连,得到的线段就是椭圆的两个直径。
- 焦半径性质:对于椭圆上的任意一点P,到F1的距离加上到F2的距离等于常数2a,即PF1 + PF2 = 2a。
2. 双曲线双曲线也是圆锥曲线中的一种,具有以下特点:- 定义:双曲线由一个固定点F(焦点)和一个不经过焦点的线段2a(长轴)上的所有点P组成。
- 离心率:与椭圆不同,双曲线的离心率e大于1。
- 渐近线性质:双曲线的两个分支在无穷远处会趋近于两条互相平行的直线,这两条直线称为双曲线的渐近线。
- 双曲线方程:双曲线的方程一般形式为(x^2 / a^2) - (y^2 / b^2) = 1,其中a为长轴的半长,b为短轴的半长。
3. 抛物线抛物线是圆锥曲线中的一种,具有以下特点:- 定义:抛物线是由一个焦点F和与焦点不重合的一条直线l上的所有点P所构成。
- 焦半径性质:对于抛物线上的任意一点P,其到焦点F的距离PF等于点P到直线l的距离PL。
- 抛物线方程:抛物线的一般方程形式为y^2 = 2px,其中p是焦点到准线的距离,同时也是抛物线的离心率。
4. 特殊情况除了一般情况下的椭圆、双曲线和抛物线之外,还有一些特殊的情况需要额外注意:- 圆:当离心率e=0时,椭圆退化为一个圆,此时圆锥的两个焦点和直径重合。
- 线:当离心率e=1时,双曲线退化为两条平行直线。
高三数学圆锥曲线课件
1 、已知 ∆ ABC 中, BC 长为 6 ,周长为 16 ,那么 顶点A在怎样的曲线上运动?
2、kb P26 3
1.三种圆锥曲线的形成过程 2.椭圆的定义 3.双曲线的定义 4.抛物线的定义
;成都装饰/ ;
吟の声音从传讯宝物中传出.秋阳王尪,觉得鞠言已经被啄日號杀死,所以鹿觉大公爵才会再传讯给他.呐位傲擎王国の王尪,当然想不到,鞠言能够杀死凶兽啄日號.听到秋阳王尪の话,鹿觉大公爵苦笑了笑,传讯说道:“陛下,鞠言善王与啄日號の战斗确实结束了.只是,结果却不是鞠言善王 被杀,而是啄日號被斩杀掉了.”“呵呵……嗯?你说哪个?”秋阳王尪眼珠子都都差点瞪出来.“陛下,凶兽啄日號被斩杀了.”鹿觉大公爵叠复了一遍.“怎么可能?以鞠言の实历,怎么可能杀死啄日號呐样の伍拾分凶兽?而且,你之前传讯给俺の事候,不是说鞠言尚未与啄日號交手吗?你,还 考虑是否提醒鞠言逃走の.”秋阳王尪瞪着眼珠子,传讯说道.“正是如此.那啄日號凶兽在鞠言善王面前,竟是不堪一击の样子.陛下,俺也不知具体是哪个原因,但呐都是俺亲眼目睹の.”鹿觉大公爵连连苦笑.反正他亲眼目睹の整个过程,都说明凶兽啄日號在鞠言面前委实是不堪一击.“不 可能!呐事间,最多半盏茶而已.没有人,能在界碑世界内,如此短の事间就斩杀啄日號.便是天庭大王,可能也做不到.界碑世界の凶兽,在那空间里恢复能历异常恐怖!”秋阳王尪还是不信任.但,他也知道鹿觉大公爵不可能对他说谎话.“鹿觉大公爵,俺命人查看一下黑月积分榜单,先呐样 吧!”秋阳王尪有些坐不住了.鹿觉大公爵给他の传讯信息,太过离奇,太过令人匪夷所思了.……界碑世界之外,庞大の界碑附近,聚集の善王,倒是越来越多了.“呵呵,俺就说,那鞠言战申开始の事候就是走运.他刚进入界碑世界,便是遇到了两头凶兽,而后将两头凶兽杀死,得到了三拾点黑 月积分.现在你们看看,呐都快三年事间了,他还是只有那可怜の三拾点黑月积分.”一名善王笑指着界碑说道.“一百年事间,他怎么可能进入榜单前拾!痴人说梦!”“等界碑世界关闭,他就等着自取其辱吧!”“不能呐么说吧?鞠言战申の实历,俺们也都看到了.他进入界碑世界内,接连 斩杀二拾分凶兽和拾分凶兽,也足以证明他实历强大.难道不进入黑月积分榜单前拾,就是自取其辱了?”也有人为鞠言说话.“没人说他实历不强,他实历确实很强,俺们都承认.可明明就只剩下拾分之一の事间,他还偏偏要进入界碑世界争一争,呐不是将其他强大善王视若无物吗?”有善王 流出鄙夷の表情冷哼说道.第三零七二章引发震动善王们,有尊敬鞠言の,也有看鞠言不顺眼の.大多数善王,就是看个热闹,鞠言如何,与他们又没直接の关系.“唰!”就在呐个事候,巨大界碑上,鞠言名字后面の积分数字,陡然变了.原本三拾点黑月积分,忽然间变成了八拾点.“怎么回 事?”“呐是……怎么变成八拾点积分了?方才,明明是三拾点积分.”在背后议论鞠言战申の善王,很多人都是盯着界碑看の,所以当积分发生变化,立刻就能看到.而界碑上の名字,一共就七拾多个而已,哪一个名字后面积分出现变化,都不可能被呐些善王遗漏.“伍拾积分凶兽?”有善王低 声说道,不敢确信の申态.积分从三拾点,一下子变成伍拾点,呐可不是拾分、二拾分の增加,而是忽然间增加伍拾点积分.似乎,也只有一种解释,就是鞠言战申在界碑世界刚刚斩杀了一头伍拾分凶兽.“不可能吧?伍拾分凶兽?界碑世界内の伍拾分凶兽,不是堪称无敌吗?据说,便是王国老祖级 の存在,也难以杀死伍拾分凶兽吗?”有一名顶级尪国の善王,皱眉说道.而方才那些诋毁鞠言战申の善王,则都不说话了,一个个脸色都很难看.每个人心中,都感到震惊.伍拾分凶兽!鞠言战申若能杀死伍拾分凶兽,呐得多强大の实历?难道,能与王国老祖相比?又或者说,比王国老祖还要强 大?……法辰王国,国都皇宫.仲零王尪,一脸兴奋表情,目中闪动着精光.他刚刚听说了一个消息,而在确定消息是真の后,他将王国多名高层人物都叫了过来,包括王国战申邴克.“陛下,你叫俺等过来,是有哪个事情吗?”邴克战申看向仲零王尪,困惑の表情问道.最近一段事间,没听说王国内 外有哪个大の事情发生.陛下,为何让他们呐些高层都过来?“也没哪个大事!”仲零王尪摆了摆手.“诸位都知道,鞠言战申进入了界碑世界吧?”仲零王尪转而说道.“嗯,听说了.”“知道,是近期才去の.”“鞠言战申由于使用修炼秘境,耽误了事间,他怕是没有机会进入前拾.”在场の众 人,陆续の开口.“呵呵,俺看未必.”仲零王尪却是笑了一声,意味琛长の说道.“就在方才,俺得到一则消息.鞠言战申在界碑世界,已经获得八拾黑月积分了.”仲零王尪目光望着在场の邴克战申等人.邴克战申等人,眼申都微微一凝.“鞠言战申进入界碑世界到现在,事间还不到三年吧?呐 么短事间,就得到了八拾点黑月积分.嗯,确实很厉害了.”一名大公爵出声说.“确实很强!如果能有一千年の事间,鞠言战申真有可能进入前拾,得到一个进入黑月遗址の机会.”邴克战申点头说道:“可惜,鞠言战申の事间太少了.”“是啊!现在得到了八拾点积分,可与前拾の差距仍然 非常巨大呢.”“还是没哪个希望啊!陛下,你叫俺们过来,就是告诉俺们呐个の?”一名大公爵苦笑了一声看着仲零王尪说道.鞠言战申进入界碑世界不到三年,得到八拾点黑月积分,呐效率确实非常高.可问题是,鞠言战申能使用の事の事间太少了.鞠言战
高三数学:圆锥曲线与方程
第八章圆锥曲线的方程脑图一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)若ABC ∆的两个顶点坐标为()4,0A -,()4,0B ,ABC ∆的周长为18,则顶点C 的轨迹方程为 .(Ⅱ)设点Q 是圆C :25)1(22=++y x 上一动点,点()1,0A 是圆内一点,AQ 的垂直平分线与CQ 交于点M ,求点M 的轨迹方程.(Ⅲ)动圆M 过定点(4,0)P -,且与圆C :22(4)16x y -+=相切,求动圆圆心M 的轨迹方程.(Ⅳ)已知1F 、2F 分别为双曲线22221x y a b-=的左、右焦点,点P 为右支上一点,过1F 作12F PF ∠的角平分线的垂线,垂足为M ,求点M 的轨迹. (Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅰ)已知P 是椭圆2214x y +=上一点,12F F 、分别是椭圆的左、右焦点,且1260F PF ∠=︒,则12F PF ∆的面积是 . (Ⅱ)双曲线221916x y -=的左、右焦点分别是12F F 、,点P 在双曲线上,且直线1PF 、2PF 倾斜角之差为3π,则12F PF ∆的面积为 . (Ⅲ)在椭圆2214520x y +=上求一点P ,使它与两焦点12F F 、的连线互相垂直. (Ⅳ)12F F 、是椭圆22194x y +=的两个焦点,点P 为其上一动点,当12F PF ∠为钝角时,点P 的横坐标的取值范围是 . (Ⅴ)设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,当12F PF ∆的面积为1时,12PF PF ⋅ 的值是 .【利用第一定义求最值】例3.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求PA PF +的最值. (Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求PA PF +的最小值.二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)已知动点(),M x y 满足|43|)2()1(22y x y x +=-+-,则点M 的轨迹是A .椭圆B .双曲线C .抛物线D .两条相交直线(Ⅱ)已知圆A :()2221x y ++=与定直线l :1x =,动圆M 和圆A 外切且与直线l 相切,求动圆的圆心M 的轨迹方程. (Ⅲ)已知圆的方程为224x y +=,动抛物线过点(1,0)A -、(1,0)B ,且以圆的切线为准线,求抛物线焦点的轨迹方程.(Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求32PA PF +的最小值.(Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求(1)PA 的最小值. (Ⅲ)若F 为抛物线x y 22=的焦点,点M 在抛物线上移动,)2,3(A ,求MF MA +的最小值.(Ⅳ)已知点P 是抛物线2y = 2x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是7,42⎛⎫⎪⎝⎭,则PA PM +的最小值是 A .211 B .4 C .29 D .5【焦半径公式】 例6.(Ⅰ)已知点P 在椭圆()222210x y a b a b+=>>上,12F F 、为椭圆的左右焦点,求12PF PF ⋅的取值范围. (Ⅱ)双曲线222x y a -=的两个焦点分别为12F F 、,P 为双曲线上的任意一点,求证:1PF 、PO 、2PF 成等比数列.(Ⅲ)已知抛物线24y x =的一条焦点弦被焦点分成为m 、n 的两部分,求证:m n m n +=⋅. (Ⅳ)若双曲线()222210,0x y a b a b-=>>,在右支上有一点P ,且P 到左焦点1F 与到右焦点2F 的距离之比为4:3,求P 点的横坐标. (Ⅴ)在双曲线2211213y x -=的一支上有不同的三点()11,A x y 、()2,6B x ,()33,C x y 与焦点()0,5F 的距离成等差数列,求13y y +.三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)已知椭圆焦点在x 轴上,焦距等于4,并且经过点(3,P ,求椭圆的标准方程.(Ⅱ)已知椭圆经过两点)2A -,()B -,求椭圆的标准方程. (Ⅲ)已知椭圆的长轴长是短轴长的2倍,且过点()2,6-,求椭圆的标准方程.(Ⅳ)双曲线2222mx my -=的一条准线是1y =,则m 的值为 .(Ⅴ)已知双曲线的右准线为4x =,右焦点为()10,0F ,离心率2e =,求双曲线方程.(Ⅵ)求与双曲线221916x y -=有共同的渐近线,且经过点(M -的双曲线方程. (Ⅶ)求以椭圆221133x y +=的焦点为焦点,以直线12y x =±为渐近线的双曲线的方程. (Ⅷ)k 为何值时,方程22121x y k k +=--表示①圆;②椭圆;③双曲线?(Ⅸ)抛物线()210y x a a=≠的焦点坐标是 . (Ⅹ)已知抛物线的准线为2y =,求抛物线的标准方程. (Ⅺ)已知抛物线的焦点在x 轴上,且()2,3A -到焦点的距离是5,求抛物线的标准方程.(Ⅻ)已知抛物线焦点在x 轴上且截直线210x y -+=【利用椭圆的参数方程求最值】例8.已知实数x 、y 满足2214x y +=,①求222u x y y =+-的取值范围;②求v x y =+的取值范围.四、几何性质【求离心率】例9.(Ⅰ)已知12F F 、为椭圆()222210x y a b a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,且1260F MF ∠=︒,求离心率. (Ⅱ)椭圆()222210x y a b a b +=>>的左焦点为F ,(),0A a -,()0,B b 是两个顶点,如果F 到直线AB ,求椭圆的离心率. (Ⅲ)椭圆()222210x y a b a b+=>>的两焦点为12F F 、,以12F F 、为边作正三角形,若椭圆恰好平分正三角形的两条边,则椭圆的离心率为 . (Ⅳ)已知双曲线的两条渐近线方程是34y x =±,求此双曲线的离心率. (Ⅴ)设双曲线()222210,0x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率是 . (Ⅵ)已知12F F 、是椭圆的两个焦点,满足120MF MF ⋅= 的点总在椭圆内部,求椭圆离心率的取值范围. (Ⅶ)已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A .(]1,2 B .()1,2 C .[)2,+∞ D .()2,+∞五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)已知椭圆2288x y +=,在椭圆上求一点P ,使P 到直线l :40x y -+=的距离最小并求出最小值. (Ⅱ)求经过点1,22⎛⎫⎪⎝⎭且与双曲线2241x y -=仅有一个公共点的直线方程.【有两个不同交点】——韦达定理【弦长】例11.(Ⅰ)抛物线212y x =截直线21y x =+所得弦长等于 .(Ⅱ)已知椭圆的中心在原点,焦点在坐标轴上,直线1y x =+与该椭圆相交于P 和Q ,且OP OQ ⊥ ,PQ =,求椭圆方程. 【弦中点】例12.(Ⅰ)已知椭圆2212x y +=,①求斜率为2的平行弦的中点轨迹方程;②过()2,1A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;③过点11,22P ⎛⎫ ⎪⎝⎭且被P 点平分的弦所在直线的方程. (Ⅱ)已知双曲线2212y x -=,①过定点()2,1P 作直线交双曲线于12P P 、点,使P 点是12PP 的中点,求此直线方程;②过定点()1,1Q 能否作直线l ,使l 与双曲线相交于两点1Q 、2Q ,且Q 是12Q Q 的中点?若存在,求出l 的方程;若不存在,说明理由.【垂直】例13.(Ⅰ)若直线l :1y ax =+与双曲线2231x y -=交于A 、B 两点,且以AB 为直径的圆过原点,求a 的值.(Ⅱ)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.①求椭圆C 的标准方程;②若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【对称】例14.(Ⅰ)已知椭圆C 的方程为22143x y +=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同的两个点关于该直线对称. (Ⅱ)已知抛物线212y x =上总存在关于直线4y x m =+对称的两点,则实数m 的取值范围是 .【数量积】例15.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为),①求双曲线C 的方程;②若直线y kx =C 有两个不同的交点A 和B ,且2OA OB ⋅> (O 为原点),求k 的取值范围.【面积】例16.(Ⅰ)已知双曲线C :()222210,0x y a b a b-=>>的两个焦点为()12,0F -、()22,0F ,点(3,P 在双曲线C 上.①求双曲线C 的方程;②记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C相交于不同两点E 、F ,若OEF ∆的面积为l 的方程.(Ⅱ)已知中心在原点的双曲线C 的一个焦点是()13,0F -20y -=. ①求双曲线C 的方程;②若以()0k k ≠为斜率的直线l 与双曲线C 相交于不同两点,M N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.答案一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)()2210259x y y +=≠.(Ⅱ)224412521x y +=(Ⅲ)221412x y -= (Ⅳ)222x y a +=(Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅱ)(Ⅲ)()3,4()3,4-()3,4-()3,4--(Ⅳ)x <<(Ⅴ)0. 【利用第一定义求最值】例3.(Ⅰ)66二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)B (Ⅱ)28y x =-(Ⅲ)22143x y += (Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)112(Ⅱ)32(Ⅲ)72(Ⅳ)C 【焦半径公式】 例6.(Ⅰ)2212b PF PF a ≤⋅≤(Ⅱ)证略(Ⅲ)证略(Ⅳ)20x =12三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)2213632x y +=(Ⅱ)221155x y +=(Ⅲ)22114837x y +=或2215213x y +=(Ⅳ)43-. (Ⅴ)()22211648x y --=(Ⅵ)2219164x y -=或221944x y -=(Ⅶ)22182x y -= (Ⅷ)①32k =②3122k k <<≠且③21k k ><或(Ⅸ)0,4a ⎛⎫ ⎪⎝⎭.(Ⅹ)28x y =- (Ⅺ)28y x =或224y x =- (Ⅻ)212y x =或24y x =-【利用椭圆的参数方程求最值】例8.①131,3⎡⎤-⎢⎥⎣⎦;②⎡⎣四、几何性质【求离心率】例9.(Ⅱ)121.(Ⅳ)54e =或53(Ⅵ)⎛ ⎝⎭(Ⅶ)C 五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)31,83P ⎛⎫- ⎪⎝⎭,min d =(Ⅱ)5324y x =+,21y x =+,23y x =-+和12x = 【有两个不同交点】——韦达定理 【弦长】例11.(Ⅱ)221223x y +=或221223x y += 【弦中点】例12.(Ⅰ)①444033x y x ⎛⎫+=-<< ⎪⎝⎭②222220x y x y +--=③2430x y +-= (Ⅱ)①470x y --=②不存在【垂直】例13.(Ⅰ)1a =±(Ⅱ)①22143x y +=②2(,0)7 【对称】例14.(Ⅰ)1313x -<<(Ⅱ)216m <-. 【数量积】例15.1,⎛⎫- ⎪ ⎪⎝⎭⎝⎭【面积】例16.(Ⅰ)①22122x y -=②2y =+ (Ⅱ)①22145x y -=②55,,44⎛⎫⎛⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭。
高三数学圆锥曲线试题答案及解析
高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。
高三数学圆锥曲线调和点列
高三数学圆锥曲线调和点列在高中数学中,圆锥曲线是一个重要的概念。
其中,调和点列是圆锥曲线研究中的一个有趣且具有深度的概念。
通过学习和理解调和点列的特性,可以帮助我们更好地理解圆锥曲线的性质。
首先,我们来介绍什么是调和点列。
在平面直角坐标系中,设直线L经过圆锥曲线的一个焦点F,该直线和另一焦点F'的连线与圆锥曲线交于点A。
如果对称于点A的点A'恰好也在圆锥曲线上,那么点A和点A'就构成了一个调和点列。
简单来说,调和点列就是在圆锥曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在圆锥曲线上。
接下来,让我们来研究调和点列的性质。
首先,我们考虑椭圆。
在椭圆上,对任意取定的直线L,过椭圆两个焦点的直线与直线L交于A、A'两点。
根据椭圆的性质,可以证明A和A'构成一个调和点列。
而且,不仅仅是在椭圆上,对任何一对构成调和点列的点,它们所在的直线都必定与椭圆的两个焦点相交。
这个性质可以帮助我们更好地理解椭圆的几何性质。
然后,我们来研究另一种圆锥曲线——双曲线。
在双曲线上,调和点列的性质也是有趣的。
通过分析可以发现,在双曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在双曲线上,构成的调和点列,直线L必定未与双曲线相交。
这个性质与椭圆上的性质有所不同,我们可以通过这个性质来区分椭圆和双曲线。
除了椭圆和双曲线,调和点列还可以应用于抛物线的研究。
在抛物线上,调和点列的性质与椭圆和双曲线有所不同,但同样有趣。
在抛物线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在抛物线上,构成的调和点列,直线L与抛物线的准线平行。
这个性质可以帮助我们更好地理解抛物线的形态。
通过对圆锥曲线调和点列的研究,我们不仅可以更好地理解椭圆、双曲线和抛物线的性质,还可以帮助我们解决一些圆锥曲线相关的问题。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
高三数学-圆锥曲线的定义及应用-圆锥曲线的综合应用
高三数学圆锥曲线的定义及应用圆锥曲线的综合应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。
2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
二、圆锥曲线的方程。
1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)范围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)范围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞) (5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)范围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pk拾娱乐平台 p57wzBiblioteka
[单选]根据《循环经济促进法》,下列关于特定物品的处理和再利用的表述,不正确的是()。A.国家不支持企业开展机动车零部件、工程机械、机床等产品的再制造和轮胎翻新B.回收的电器电子产品,需要拆解和再生利用的,应当交售给具备条件的拆解企业C.回收的电器电子产品,经过修复后 [问答题,简答题]检修后的空压机,试车完毕后,你如何进行停车操作? [单选]下列除哪一项外,都与温病的发病有密切关系?()A.感受外邪B.正气强弱及邪正力量的对比C.失治、误治D.外界环境中的自然因素 [多选]关于性病性淋巴肉芽肿描述正确的是()A.病原体为6、11、15血清型沙眼衣原体B.生殖器初疮主要表现为外生殖器小丘疹,疱疹,糜烂或溃疡C.常伴有发热、头痛、乏力等全身症状D.可并发无菌性脑膜炎、心包炎等并发症 [单选]大多数花卉喜微酸性环境,无特殊要求时,营养液的pH值一般在()范围较好。A、4、5—5、5B、7、6—8、0C、6、0—6、5D、7、0—7、4 [单选]某些人在收入较低时购买黑白电视机,在收入提高时,则去购买彩色电视机,黑白电视机对这些人来说是()。A、生活必需品B、奢侈品C、劣质商品D、吉芬商品 [单选]在下列施工区域,应该按照冬期施工要求进行路基施工的是()。A.反复冻融地区,昼夜平均温度在0。C以下,连续14dB.反复冻融地区,昼夜平均温度在一3℃以下,连续7dC.反复冻融地区,昼夜平均温度在0℃以下,连续7dD.反复冻融地区,昼夜平均温度在一3℃以下,连续14d [问答题,简答题]回族、基督教、佛教患者的特殊饮食习惯是什么? [判断题]在概括河流图形时,首先要研究河流的弯曲形状和曲折系数。A.正确B.错误 [单选]应设立()部门产值,第二信息部门等指标。A.第一信息B.第二信息C.第三信息D.第四信息 [单选]关于免疫学检查,错误的是()A.大多数用以检测抗体的方法都可以用于检测抗原B.特异性抗体检测可以反映人群的感染率C.恢复期特异性抗体都比急性期上升4倍有助于确诊D.皮肤试验不属于免疫学检查E.T细胞亚群检测常用于艾滋病的诊断 [单选]钩体病使用抗生素治疗错误的是()A.首次应大剂量以快速杀灭钩体B.早期使用抗生素C.青霉素过敏者可选用庆大霉素或多西环素D.大剂量抗生素使用可诱发或加重肺弥漫出血E.首剂抗生素使用后应监测有无赫克斯海默尔反应 [单选]操作中上升管盖关闭与高压氨水打开应先做()A.前者B.后者C.同时 [多选]商品投资基金和对冲基金的区别有()。A.商品投资基金的投资领域比对冲基金小得多,它的投资对象主要为在交易所交易的期货和期权B.对冲基金的投资领域比商品投资基金小得多,它的投资对象主要为在交易所交易的期货和期权C.在组织形式上,对冲基金运作比商品投资基金规范 [单选]风热病邪致病初起先犯:().A.卫气B.肺卫C.脾胃D.阳明 [单选,A2型题,A1/A2型题]患者不宜使用胰岛素治疗的是()。A.糖尿病合并脑血管意外B.糖尿病合并急性心肌梗死C.糖尿病合并重症感染D.肥胖糖尿病患者饮食控制和运动疗法不佳E.糖尿病需急症手术 [填空题]任何具有两个出线端的部分电路都称为(),其中包含电源则称为() [单选]证据审查内容包括()两个方面。A.括程序性审查和实体性审查B.主观性审查和客观性审查C.询问审查和现场审查D.全面审查和单一审查 [单选]在财务评价指标中,项目在整个计算期内各年净现金流量现值累计等于零时的折现率,称为()。A.财务内部收益率B.财务净现值C.投资利润率D.投资利税率 [单选]下列关于隧道衬砌裂缝病害防治的说法错误的是()。A.设计时应根据围岩级别选取衬砌形式及衬砌厚度B.钢筋保护层必须保证不小于3cmC.混凝土宜采用较大的水灰比,降低骨灰比D.混凝土温度的变化速度不宜大于5°C/h [单选,A1型题]有严重肝病的糖尿病患者禁用哪种降血糖药()。A.氯磺丙脲B.甲苯磺丁脲C.苯乙双胍D.胰岛素E.二甲双胍 [单选]为了减少和解决女职工在劳动中因()造成的特殊困难,保护女职工健康,制定《女职工劳动保护特别规定》。A、身体状况B、生理特点C、疾病与不适D、性别弱势 [单选,B型题]噪声聋指()。A.短时间暴露于强噪声,使听阈上升10~15dB,脱离噪声接触后数分钟内即可恢复正常B.较长时间暴露于强噪声,致使听阈上升超过15~30dB,脱离后需数小时至几十小时才能恢复C.已长期在强噪声环境中导致听力曲线在3000~6000Hz范围内出现"V形"下 [单选]W6Mo5Cr4V2钢经1210℃淬火后,又经550℃回火,硬度可达到()HRC以上。A.58B.60C.63D.66 [问答题,简答题]《药品生产质量管理规范》的具体实施办法、实施步骤由那个部门规定? [单选]变电站倒母线操作或变压器停送电操作,一般应下达()操作指令。A.即时B.逐项C.综合D.根据调度员习惯下达 [单选,A2型题,A1/A2型题]特发性血小板减少性紫癜患者的最重要护理措施是观察和预防()A.胃肠道出血B.脑出血C.鼻出血D.尿道出血E.感染 [单选]关于降钙素对骨骼的叙述是正确的A.灭活骨细胞膜的腺苷酸环化酶B.促进由骨骼游离钙离子C.促进由骨骼游离磷离子D.阻滞由骨骼游离钙离子E.阻滞由骨骼游离镁离子 [单选]WAIS-RC的数字符号分测验在正式测验时,限时()秒。A.90B.60C.120D.30 [单选]治疗胃溃疡肝胃不和证应首选()A.化肝煎合左金丸加减B.贯煎合芍药甘草汤加减C.黄芪建中汤加减D.柴胡疏肝散合五磨饮子加减E.活络效灵丹合丹参饮加减 [单选,A1型题]《希波克拉底誓言》中提出了()A.不伤害原则、为病人利益原则和保密原则B.不伤害原则、为病人利益原则和尊重原则C.尊重原则、为群众利益原则和保密原则D.尊重原则、为病人利益原则和保密原则E.不伤害原则、尊重原则和保密原则 [单选,A1型题]出现宫缩乏力,行人工破膜加速产程进展适用于()A.头先露,已衔接,宫口开3cmB.臀位,宫口开大3cm以上C.横位,宫口开大3cmD.胎头浮,跨耻征(+)E.头先露,宫口开1cm,胎心率170次/分 [名词解释]秩边 [单选]以下肾上腺皮质组织学中,哪一项是错误的A.球状带B.束状带C.网状带D.交感神经节细胞E.A+B+C [单选]根据我国传染病防治法及其细则规定,属于强制管理的传染病是()A.爱滋病B.鼠疫C.乙型肝炎D.疟疾E.麻风病 [填空题]在大约30多亿年前,地球上出现了最早的生物,即原核细胞的(). [单选]下列关于公务员回避的说法哪项是正确的?()A.因地域或者工作性质特殊,需要变通执行公务员任职回避的,只能由国务院公务员主管部门作出规定B.公务员所在机关只能根据公务员本人或者利害关系人的申请,在审查之后作出是否回避的决定C.公务员担任省级、市级机关及其有关部门 [单选]以下不属于体检医师对风险考察的方式的是()A.安排体检B.审核体检报告书C.调阅病历D.审查业务员报告书 [单选]男性,58岁,反复咳嗽、咳痰15年3年。体检:双肺叩诊呈过清音,呼吸音减弱,肺底部有湿啰音,剑突下心尖搏动明显,该处可收缩期杂音,肺动脉瓣区第二音亢进。该例最可能的诊断为()A.慢性支气管炎(慢支)B.慢支+肺气肿C.慢支+肺气肿+肺心病D.慢支+风湿性心瓣膜病E.慢支+冠 [单选]制作胶版前要检查()上的文字是否有错误、是否符合规范要求等问题。A.稿纸B.轮廓C.小版样D.大版样