Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design
纳米材料基本词汇
纳米材料基本词汇Nanovector ?nanoswimmerNanosyringeNanopinNanodropletNanomedicine 纳米医学/纳米药物nanocube 纳米立方体纳米尺度 nanoscale纳米基元 nano-unit纳米结构单元 nanostructure unit纳米材料 nanomaterial纳米技术 nanotechnology纳米结构体系 nanostructure system纳米组装体系 nanostructure assembling system 纳米器件 nanodevice碳纳米管 carbon nanotubes,CNTs原子团簇 atom cluster单分散颗粒[系] monodispersed particle纳米颗粒 nanoparticle团粒 aggregate纳米粉体 nano-powder纳米纤维 nano-fibre/Nanofiber纳米薄膜 nano-film纳米块体 nano-bulk纳米孔 nano-pore纳米晶体材料 nanocrystalline material纳米非晶材料 amorphous nanomaterial纳米准晶材料 quasi-crystal nanomaterial金属纳米材料 metallic nanomaterial无机非金属纳米材料 inorganic non-metallic nanomaterial高分子纳米材料 polymer nanomaterial纳米复合材料 nanocomposites结构纳米材料 structured nanomaterial功能纳米材料 functional nanomaterial生物医用纳米材料 biomedical nanomaterial小尺寸效应 small-size effect表面效应 surface effect量子尺寸效应 quantum size effect宏观量子隧道效应 macroscopic quantum tunneling effect,MQT 惰性气体沉积法 inert gas deposition物理粉碎法 physics grinding高能球磨法 high energy ball mill溅射法 sputtering物理粉碎法 physics grinding爆炸法 explosion喷雾法 spraying冷冻干燥法 freeze drying化学气相沉积法 chemical vapor deposition,CVD沉淀法 precipitation水热合成法 hydrothermal synthesis溶胶-凝胶法 sol-gel辐射化学合成法 radiation chemical synthesis快速凝固法 rapidly quenching强烈塑性变形法 severe(intense) plastic deformation 非晶晶化法 amorphous solid crystallization溅射法 sputtering非晶晶化法 crystallization of amorphous solid原位复合法 in-situ composite插层复合法 intercalation hybrids微乳液法 micro emulsion模板合成法 template synthesis自组装法 self-assembly石墨电弧放电法 graphite arc discharge快速凝固法 rapidly quenching表面处理 surface treatment表面修饰 surface decoration稳定化处理 passivating treatmentX射线衍射法 X-ray diffractometry ,XRD扫描探针显微镜 scanning probe microscopy, SPM扫描隧道显微镜 scanning tunneling microscopy, STM扫描近场光学显微镜 scanning near-field optical microscopy, SNOM 原子力显微镜 atomic force microscopy, AFM扫描电容显微镜 scanning capacitance microscopy, SCM磁力显微镜 magnetic force microscopy, MFM扫描热显微镜 scanning thermal microscopy, STHMX射线衍射法 X-ray diffractometry ,XRDX射线衍射线宽化法 X-ray diffractometry line broadening, XRD-LB X射线小角度散射法 small angle X-ray scattering, SAXS透射电子显微镜法 transmission electron microscopy ,TEM透射电镜法 TEM method扫描电子显微镜法 scanning electron microscopy , SEM扫描电镜法 SEM method拉曼光谱法 raman spectrometry红外吸收光谱法 infrared absorption spectroscopy穆斯堡尔谱法 mossbauer spectrometry光子相关谱法 photon correlation spectroscopyBET法 BET压汞仪法 mercury porosimetry纳米压痕仪 nano impress,NI4.6.16扫描探针显微法 scanning probe microscopy, SPM扫描隧道电子显微法 scanning tunneling electron microscopy,STM 扫描近场光学显微法 scanning near-field optical microscopy,SNOM 原子力显微法 atomic force microscopy,AFM扫描电容显微法 scanning capacitance microscopy, SCM扫描热显微法 scanning thermal microscopy, STHM场离子显微法 field ion microscopy, FIM磁力显微法 magnetic force microscopy, MFM激光干涉仪 laser interferometer激光衍射/散射法 laser diffraction and scattering离心沉降法 centrifugal sedimentation。
纳米二氧化硅
研究纳米二氧化硅的意义:
纳米二氧化硅为无定型白色粉末,是一种无 毒、无味、无污染的非金属材料,微粒结构 非常特殊,表现出奇异或反常的物理化学特 性,具有卓越的光、力、电、热、磁、放射 、吸收等特殊性能,在众多学科及领域内独 具特性,有着不可取代的作用,因此,研究 纳米二氧化硅材料具有十分重大的意义
• 凝胶的制备方法大体可分为两种,即一步法 和两步法. 一步法: 按一定比例称量出TEOS、 H2O、乙醇( EtOH) ,在一定的温度下混合 均匀,调节pH 值或加入其他添加剂,继续搅 拌至溶液黏度变大,放置形成凝胶. 按pH 值 不同可分为酸催化法和碱催化法. 二步Sol Gel 法中第一步首先将TEOS 与EtOH 及部 分化学计量的H2O(约1/ 4)混合搅拌,在酸性 条件下,让醇盐部分水解部分缩聚,形成浓聚 二氧化硅. 第二步将剩余水加入,调节pH 值, 在碱性条件下进一步完全水解缩聚形成凝 胶. • 凝胶化后,再经过陈化、千燥和热处理得到产物.
3 纳米二氧化硅的电学性质
纳米SiO2具有绝缘性好、光透过率高、抗侵蚀能力强 以及良好的介电性质。利用纳米SiO2的多孔性质可应 用于过滤薄膜、薄膜反应和相关的吸收剂以及分离技 术、分子工程和生物工程等,从而在光催化、微电子 和透明绝热等领域具有很好的发展前景。在微电子工 艺中,纳米SiO2薄膜因其优越的电绝缘性和工艺的可 行性而被广泛采用。
纳米二氧化硅材料及其电学 性质的技术研究进展
摘要:
纳米技术日新月异,纳米材料科学也不断的
进步。纳米二氧化硅作为纳米材料的一员,其制
备方法不断涌现,其应用范围不断拓展,已逐渐
成为重要的无机纳米材料。本文主要对纳米二氧 化硅的制备技术进行了全面介绍,对各种制法的 优缺点进行了评述,阐明了改性机理, 列举了常 见的改性方法,并对其电学性质做了重点论述。 对具体的应用,尤其是近年来各新兴领域的应用 作了简要的概括。
一步水热法合成SiO2纳米棒
Studies in Synthetic Chemistry 合成化学研究, 2018, 6(2), 23-28Published Online June in Hans. /journal/sschttps:///10.12677/ssc.2018.62004Synthesis of SiO2 Nanorodes by One-StepHydrothermal ProcessShuhong Sun, Yin He, Yongmao Hu, Yan Zhu*Kunming University of Science and Technology, Kunming YunnanReceived: Mar. 20th, 2018; accepted: May 2nd, 2018; published: May 10th, 2018AbstractSiO2 nanorodes were successfully synthesized by a simple low-cost one-step alkaline hydrother-mal process using commercial silicate glass at 170˚C. The SEM results show that ammonia concen-tration and holding time play an important role in the formation of SiO2nanorods. XRD results confirmed that the synthesized SiO2nanorods were amorphous. Photoluminescence results showed that the synthesized nanorodes exhibited a strong, sharp photoluminescence emission peak, centered at 410 nm.KeywordsSiO2 Nanorode, Hydrothermal Process, Silicate Glass一步水热法合成SiO2纳米棒孙淑红,贺胤,胡永茂,朱艳*昆明理工大学,云南昆明收稿日期:2018年3月20日;录用日期:2018年5月2日;发布日期:2018年5月10日摘要以商业硅酸盐玻璃为原材料,在170˚C下,通过简单的低成本一步水热法成功制备了SiO2纳米棒。
纳米SiO2 的简单了解和应用
纳米SiO2 的简单了解和应用作者:王凯来源:《儿童大世界·教学研究》 2018年第10期纳米SiO2 是纳米材料中的重要一员,为无定形白色粉末,是一种无毒、无味、无污染的非金属材料,微观结构呈絮状和网状的准颗粒结构,为球形。
具有广阔的应用前景和巨大的商业价值,并为其他相关工业领域的发展提供了新材料基础和技术保证,享有“工业味精”,“材料科学的原点”之美誉。
自问世以来,已成为当今世界材料学中最能适应时代要求和发展最快的品种之一。
一、纳米SiO2简介(一)纳米SiO2 的微观结构纳米SiO2 的分子结构呈现三维链状结构(或称三维网状结构,三维硅石结构等),表面存在不饱和的残键和不同键合状态的羟基,如图所示。
(二)纳米SiO2 的性能1. 光学性能纳米SiO2 颗粒的小尺寸效应使其具有独特的光学性能对紫外、红外和可见光具有极强的反射特性,对波长在280-300nm的紫外光反射率达80 %以上;对波长在300-800 nm的可见光反射率达85 % 以上;对波长在800-1300 nm的红外光反射率达80 % 以上。
2. 化学性能纳米SiO2颗粒具有体积效应和量子隧道效应,使其产生游渗功能,可深入到高分子化合物兀键的附近与其电子云发生重叠,形成空间网状结构,从而大幅度提高高分子材料的力学强度、韧性、耐磨性和耐老化性等性能。
二、纳米SiO2颗粒的制备技术纳米SiO2 颗粒制备方法分为物理法和化学法。
物理法一般指机械粉碎法,利用超气流粉碎机或高能球磨机对纳米SiO2的聚集体进行粉碎,可获得粒径为1-5 μm的超细粉体。
化学法包括化学气相法(CVD)、化学沉淀法、溶胶一凝胶法(Sol-Gel)和微乳法等。
(一)溶胶- 凝胶法溶胶-凝胶法就是将金属醇盐溶解在有机溶剂中,通过水解聚合反应形成均匀的溶胶(Sol),进一步反应并失去大部分有机溶剂转化成凝胶(Gel),再通过热处理,制备成膜的化学方法。
纳米SiO2 的颗粒粒径易受反应物的影响,如水和NH3H20 的浓度、硅酸酷的类型、不同的醇、催化剂的种类及不同的温度等,对这些影响因素的调控,可以获得各类结构的纳米SiO2。
清华大学朱永法课题组--石墨烯层封装α-MnO2纳米纤维调整表面电子结构用于有效分解臭氧
清华大学朱永法课题组--石墨烯层封装α-MnO2纳米纤维调整表面电子结构用于有效分解臭氧开发用于臭氧分解的锰基材料时,遇到的主要挑战有稳定性差和水失活效应等。
为了解决这些问题,这里开发了一种分级结构,即石墨烯封装的α-二氧化锰纳米纤维。
优化后的催化剂在相对湿度为20%的条件下,臭氧转化效率稳定在80%以上,100小时内稳定性良好。
即使相对湿度增加到50%,臭氧转化率也达到70%,远远超过纯α-二氧化锰纳米纤维的性能。
这里,表面的石墨碳通过从内部不饱和锰原子中捕获电子而被活化。
优异的稳定性源于适度的局部功函数,它优化了臭氧分子吸附和中间氧物种解吸时的反应势垒。
疏水的石墨烯壳阻碍了水蒸气的化学吸附,从而增强了其耐水性。
该工作为催化剂设计提供了重要的见解,并将促进锰基催化剂在臭氧分解中的实际应用。
Figure 1. 三维分级MnO2@GR的合成路线和模型示意图。
该三位分级结构是通过硫酸锰的络合、高锰酸钾的氧化、MnO2在水热条件下的晶体生长和1D核壳纳米纤维的自组装过程合成的。
Figure 2. 三维分级的MnO2@GR的形貌。
.包括SEM图,TEM 图,MnO2@GR纳米纤维示意图,HAADF-STEM图和相应的EDX线性扫描,以及元素分布。
Figure 3.三维分级的MnO2@GR的结构分析。
包括XRD图, Raman谱和XPS光谱,以及在0.1M Bu4NPF6电解质中的CV曲线。
Figure 4.三维分级的MnO2@GR的高效臭氧转化。
a.不同样品的臭氧转化率比较。
b .α- MnO2和7.50% MnO2@GR在50%相对湿度下的臭氧转化及其再生性能。
c.在交替相对湿度下,7.50% MnO2@GR的臭氧转化。
在50%相对湿度下负载催化剂的臭氧转化。
插图:不锈钢网上涂有7.50% MnO2的照片。
实验条件:0.1 g催化剂。
该研究工作由清华大学朱永法课题组于2021年发表在NATURE COMMUNICATIONS期刊上。
sio2原子层蚀刻法去除硅基质的薄氧化物层
文章标题:SIO2原子层蚀刻法:完美去除硅基质的薄氧化物层在材料科学与工程领域,表面处理技术一直是研究的热点之一。
特别是在硅基质材料制备过程中,薄氧化物层的去除一直是一个挑战。
随着SIO2原子层蚀刻法的发展,这一问题有望得到彻底解决。
SIO2原子层蚀刻是一种先进的表面处理技术,它通过精密的原子层蚀刻过程,可以实现对硅基质表面薄氧化物层的高效去除。
这项技术的原理和应用已经被广泛研究和应用,其在微电子器件制备、光伏材料生产等领域展现出了巨大的潜力。
在SIO2原子层蚀刻法中,首先需要了解硅基质的表面氧化物层的性质和组成。
利用原子层蚀刻技术,精确控制氟化气体和氢气等蚀刻介质的比例和流量,以实现对薄氧化物层的去除。
这种精密的加工过程能够在不影响硅基质表面形貌和结构的情况下,高效去除氧化物层,从而实现对材料表面的完美处理。
在实际应用中,SIO2原子层蚀刻法具有很多优点。
它可以在常温下进行,避免了对材料本身性能的影响。
原子层蚀刻过程可以高度精确地控制蚀刻深度和蚀刻速率,从而实现对表面的精细加工。
另外,这项技术对环境友好,蚀刻过程无需使用有害化学物质,具有较高的工艺可持续性。
个人观点和理解:作为一个材料科学与工程的从业者,我认为SIO2原子层蚀刻法是一项非常重要的技术创新。
它不仅为硅基质材料的制备提供了一种高效、精密的表面处理手段,也为微纳米器件的制备和光伏行业的发展提供了重要支撑。
我对这项技术的发展和应用前景感到非常乐观。
总结回顾:通过本文的介绍,我们了解到SIO2原子层蚀刻法在去除硅基质薄氧化物层方面的重要意义和优势。
这项技术的原理和应用为我们提供了一种新思路和新方法,为材料表面处理领域带来了新的活力。
相信随着技术的不断完善和深入研究,SIO2原子层蚀刻法必将在材料科学与工程领域展现出更广阔的前景。
以上就是对SIO2原子层蚀刻法去除硅基质薄氧化物层的全面评估和撰写的有价值文章,希望能够对您有所帮助。
SIO2原子层蚀刻法在材料科学与工程领域的应用前景SIO2原子层蚀刻法作为一种先进的表面处理技术,已经在材料科学与工程领域展现出了巨大的潜力,并且在实际应用中取得了显著的成就。
碱激发泡沫混凝土研究进展
碱激发泡沫混凝土研究进展0.引言绿色、低碳、节能、环保是我国的基本国策和可持续发展战略,而建筑产业是能耗和污染物排放的大户,其中混凝土又是建筑中体量最大的部分。
2020年我国明确提出2030年达到“碳达峰”与2060年达到“碳中和”目标。
而且,随着我国工业的高速发展,粉煤灰、高炉矿渣和钢渣等固体废弃物产量也激增,但利用率较低,如果处理不当会造成严重的环境问题。
国家提出要求,到2025年,煤矸石、粉煤灰、尾矿、冶炼渣、工业副产石膏、建筑垃圾、农作物秸秆等大宗固废的综合利用率达到60%,存量大宗固废有序减少[1]。
碱激发胶凝材料是指碱性激发剂与有火山灰性质或潜在水硬性质的原料,以适当的配合比混合制成的一种水硬性胶凝材料[2]。
碱激发胶凝材料生产工艺简单、无需烧制、能耗低、成本低、市场广、强度、抗酸碱侵蚀、抗冻融、抗碳化等性能均优于普通硅酸盐水泥,但是由于其凝结时间过快、干燥收缩大、脆化等问题限制了碱激发胶凝材料的发展。
碱激发泡沫混凝土主要是由碱激发胶凝材料代替传统的水泥制备泡沫混凝土。
目前国内外的研究主要着重于碱激发泡沫混凝土的性能的研究,改善缺点从而促进在实际工程中的应用。
1.外加剂对碱激发泡混凝土的影响根据碱激发胶凝材料和硅酸盐水泥的性能特征相比,碱激发泡沫混凝土比普通硅酸盐泡沫混凝土有着更好的保温隔热性能,并且抗压强度更佳[3],但是碱激发体系也存在着收缩大,凝结硬化快等问题。
为了解决收缩大的问题,很多学者展开了研究。
Korat等[4]以十二烷基硫酸钠-SDS作为稳泡剂制备碱激发粉煤灰泡沫混凝土,稳定剂掺量增加,孔隙率增加。
杨昊[5]以硬脂酸钙作为稳泡剂研究了不同掺量对超轻泡沫混凝土的干密度影响不大,但是对其不同龄期抗压强度及抗折强度随着硬脂酸钙掺量的增加先增大后减小,当硬脂酸钠掺量为0.3%时,各龄期强度达到最大。
钱逸文等[6]在碱矿渣泡沫混凝土中加入纤维素醚和糯米浆,发现其对降低泡沫混凝土的平均孔径和平均圆度值有着明显的作用,纤维素醚和糯米浆均能提高抗压强度和比强度,其中糯米浆的作用更加明显。
纳米改性碱激发胶凝材料的研究进展
第48卷第8期 2020年8月硅 酸 盐 学 报Vol. 48,No. 8 August ,2020JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.20190521纳米改性碱激发胶凝材料的研究进展叶家元,张文生(中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024)摘 要:以添加纳米组分为手段的纳米技术为胶凝材料改性提供了新方法。
本文综述了纳米SiO 2等纳米颗粒及碳纳米管等纳米材料对碱激发胶凝材料工作性能、凝结硬化行为、力学性能与耐久性的影响。
纳米SiO 2等高活性纳米颗粒发挥提供可溶性硅的化学作用,诸如纳米TiO 2等其他超细颗粒发挥成核位点、颗粒填充的物理效应,可加速反应、致密基体、提升强度、降低渗透等,从而获得性能更优异的纳米改性碱激发胶凝材料。
碳纳米管及石墨烯等多维纳米材料具有优异的力学性能,可提升碱激发胶凝材料的韧性、改善其脆性,且优异的电学性能可赋予碱激发胶凝材料损伤自诊断、光催化等功能。
本文还分析了已有研究中改性浆体流动性、凝结时间及硬化体强度、抗渗透等结果并不一致的原因,指出纳米SiO 2对液相环境的影响及其与溶液中Ca 2+的作用是导致结果差异的主要原因。
此外,还展望了该领域未来研究重点。
关键词:碱激发胶凝材料;纳米颗粒;碳纳米管;石墨烯;改性中图分类号:TU528 文献标志码:A 文章编号:0454–5648(2020)08–1263–15 网络出版时间:2020–06–23Research Progress on Nano-Modified Alkali-Activated Cementitious MaterialsYE Jiayuan , ZHANG Wensheng(The State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China)Abstract: A nano-modification method is proposed to improve the performance of alkali activated cementitious materials (AAM). This paper reviewed the effects of nano-particles (i.e ., silica particles) and nano-materials (i.e ., cabon nano-tube) on the workability, setting and hardening behavior, mechanical property and durability of AAM. The acceleration of geopolymerization, the more compact matrix, the higher strength and the lower permeability of nano-modified AAM occur due to the presence of soluble silica in alkali solution from silica nanoparticles and the nucleation site effect, filling effect derived from other nano-particles such as TiO 2 nanoparticles. The modified AAM with a higher toughness and a lower brittleness is available for the incorporation of carbon nano-tube or graphene oxide. Furthermore, the carbon nano-tube or graphene oxide modified AAM exhibits some functional characteristics like the self-sensing capacity to detect its own structural damage and the photocatalytic performance to treat wastewater. Some controversial issues on the flowability and setting time of fersh mixtures, strength and permeability of hardened samples containing silica nanoparticles in previous studies were also represented. The reason for the controversial issues above could be due to the interaction bewteen silica nanoparticles and alkaline solution and the initial chemical reaction between silica nanoparticles and Ca 2+ ions in solution. In addition, some further research works on nano-modified AAM were also given.Keywords: alkali-activated cementitious materials; nano-particles; carbon nano-tube; graphene; performance improvement以添加纳米组分为手段的纳米技术成为材料设计与性能调控的新方法。
纳米sio2-砂浆受半浸泡硫酸盐侵蚀后的微观分析
第43卷第1期非金属矿Vol.43 No.1 2020年1月 Non-Metallic Mines January, 2020纳米SiO2-砂浆受半浸泡硫酸盐侵蚀后的微观分析黄 谦 犹 娅 唐 帅 李永强 陈以波 邓海森 田 锐(长江师范学院土木建筑工程学院,重庆 408100)摘 要 研究了纳米SiO2(NS)复合水泥砂浆遭受半浸泡硫酸盐侵蚀后的破坏特征,并利用扫描电镜(SEM)与X射线衍射仪(XRD)对试样进行了微观结构分析。
结果表明:掺入NS降低了砂浆在半浸泡硫酸盐侵蚀下的破坏程度,且掺量越高,降低程度越高;NS复合水泥砂浆的浸泡和水分蒸发区的硫酸盐侵蚀产物分布与纯水泥砂浆是一致的,即表层生成了大量的石膏晶体,而内部生成的主要是钙矾石;但NS复合砂浆的石膏与钙矾石数量少于纯水泥砂浆,且NS掺量越高,侵蚀产物越少;硫酸盐化学侵蚀是导致砂浆水分蒸发区破坏的主要原因。
关键词 纳米SiO2;砂浆;半浸泡;硫酸盐侵蚀;微观分析中图分类号:TU503 文献标识码:A 文章编号:1000-8098(2020)01-0018-04Micro-analysis of Nano-SiO2 Composite Mortar Subjected to Partial Immersion Sulfate Attack Huang Qian You Ya Tang Shuai Li Yongqiang* Chen Yibo Deng Haisen Tian Rui(School of Civil and Architectural Engineering, Yangtze Normal University, Chongqing 408100) Abstract The damage characteristics of nano-SiO2 (NS) composite cement mortar subjected to partial immersion sulfate attack were investigated, and the microstructure of the sample was analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the incorporation of NS reduced the damage degree of mortar subjected to partial immersion sulfate attack, and the higher the incorporation of NS, the higher the reduction degree. The distribution of sulfate attack products in the immersion and evaporation portions of NS composite cement mortar was consistent with that of plain cement mortar, that was, a large number of gypsum was formed in the surface layer, while ettringite was mainly generated in the inner part. However, the amount of gypsum and ettringite in the NS composite mortar was less than that in the pure cement mortar, and the higher the NS content was, the less the attack products were. Sulfate chemical attack was the main cause of the damage of mortar’s water evaporation portion.Key words nano-SiO2; mortar; partial immersion; sulfate attack; micro-analysis纳米SiO2(NS)是工业化生产规模最高的一种纳米材料,俗称为白碳黑,是最早应用于水泥基材料中的纳米材料之一。
氧化物纳米材料和硅纳米材料的制备及应用
氧化物纳米材料和硅纳米材料的制备及应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!I. Introduction。
在当今科技发展日新月异的时代,纳米材料已经成为材料科学领域的热门研究方向之一。
快速火焰沉积法原位后退火制备防雾纳米纤维sio2和纳米sio2tio2薄膜
硕士学位论文第二章材料和方法第二章材料和方法2.1主要仪器与试剂2.1.1主要仪器HitachiH600透射电子显微镜日本日立公司LEO1530扫描电子显微镜德国蔡司公司MFP.3D原子力显微镜美国AsylumResearch公司Cary500型紫外一可见.近红外光光度计美国Varian公司XG.7501型接触角测量仪美国fisher公司2.1.2主要试剂四异丙醇钛,Aldrich公司,纯度>97%六甲基二硅醚,Aldrich公司,纯度>99%原硅酸四乙酯,Aldrich公司,纯度>99%二甲苯(Fluka,纯度>98.5%)2.2主要方法2.2.1TiOz,SiOz.Ti02和Si02纳米结构在基膜上涂层的制备根据文献所描述的制备方法[18】,联合使用火焰喷雾热分解反应器与基片支架合成和涂层沉积Ti02,Si02.Ti02和Si02纳米结构于7.5cmX2.5cm的玻璃基板上。
纳米涂层与玻璃基板的粘着采用二甲苯输送及无颗粒喷射原位退火法完成。
输送到火焰喷雾热分解反应器的Si02,Ti02前体溶液制备方法如下:异丙醇钛和六甲基二硅醚或原硅酸四乙混合,根据Si02的终摩尔含量稀释到适量二甲苯中,使溶液总金属(钛和硅)终浓度为0.05mol/L。
溶液由火焰喷雾热分解喷嘴以5ml/min的速度,同时伴5L/min氧气(压力不低于1.5Bar)分散于细雾中。
喷雾在预混合了甲烷/氧火焰(甲烷=1.5L/min,氧气=3.2L/min)的支撑环中被点燃。
从支撑环周围的空间火焰中以5L/min供给保护氧以确保足够的氧化剂流。
分别在高于燃烧器7,ll,15和20cm处,用热泳采样法【22]将颗粒收集至直径为3mm的圆形网格上。
硕士学位论文第二章材料和方法2.2.2Ti02,Si02.Ti02薄膜的表征沉积膜的平均厚度直接由原子力显微镜测量(如Si02)或者通过计算(如Ti02,Si02.Ti02薄膜)层积厚度得到,利用吸收系数为6×104/cm的二氧化钛在290nn处的得到紫观察外.可见光透射率光谱(朗伯比尔定律)既可推算出积层厚度[23】。
多孔氮化硅陶瓷的应用英语
多孔氮化硅陶瓷的应用英语Applications of Porous Silicon Nitride Ceramics.Porous silicon nitride (Si3N4) ceramics have attracted significant attention due to their unique combination of properties, including high strength, low density, excellent thermal conductivity, and biocompatibility. These properties make them promising candidates for a wide range of applications, including high-temperature filters, catalyst supports, energy storage devices, and biomedical implants.High-Temperature Filtration.Porous silicon nitride ceramics exhibit excellent thermal stability and high-temperature resistance, making them ideal for high-temperature filtration applications. They can effectively filter out particulate matter, aerosols, and other contaminants at temperatures up to 1400°C. This makes them suitable for use in industr ialprocesses such as gas turbine exhaust filtration, glass manufacturing, and metalworking.Catalyst Supports.The high surface area and porosity of silicon nitride ceramics provide a suitable support for catalytic materials. By incorporating active metal or metal oxide catalysts into the pores, these ceramics can be used as efficient and durable catalyst supports for various reactions, including hydrogen production, hydrocarbon reforming, and environmental remediation.Energy Storage Devices.Porous silicon nitride ceramics are being explored as electrode materials for energy storage devices, such as lithium-ion batteries and supercapacitors. Their high porosity allows for efficient electrolyte infiltration,while their high surface area provides numerous activesites for electrochemical reactions. This combinationresults in enhanced energy storage capacity and high powerdensity.Biomedical Implants.The biocompatibility and mechanical properties of porous silicon nitride ceramics make them suitable for biomedical applications, particularly as bone substitute materials. Their porous structure promotes cell attachment, proliferation, and differentiation, facilitating bone tissue regeneration. They are also strong and durable, providing the necessary support for load-bearing applications in orthopedic implants.Other Applications.In addition to the aforementioned applications, porous silicon nitride ceramics are also being investigated for a variety of other uses, including:Thermal barrier coatings: Due to their low thermal conductivity and high-temperature stability, porous silicon nitride ceramics can be used as thermal barrier coatings toprotect metal components from extreme heat.Gas separation membranes: The selective pore structure of porous silicon nitride ceramics can be tailored for gas separation applications, such as hydrogen purification and carbon dioxide capture.Optical sensors: The porous structure of siliconnitride ceramics can be used to create optical sensors that are highly sensitive to specific gases or chemical species.Conclusion.The unique properties of porous silicon nitrideceramics make them promising candidates for a wide range of applications across various industries. Their high strength, low density, excellent thermal conductivity, and biocompatibility offer significant advantages overtraditional materials. As research and development continue, we can expect to see even more innovative applications of these versatile ceramics in the future.。
纳米陶瓷200字的作文
纳米陶瓷200字的作文英文回答:Nanoceramics, also known as nanometer-sized ceramics, are a type of advanced material that has gained significant attention in recent years. These materials possess unique properties and have a wide range of applications in various fields.One of the key advantages of nanoceramics is their exceptional strength and hardness. Due to their nanoscale structure, these materials exhibit enhanced mechanical properties, making them highly resistant to wear and tear. For example, nanoceramic coatings can be applied to metal surfaces to increase their hardness, thereby improvingtheir durability and lifespan.Another important characteristic of nanoceramics is their excellent thermal stability. These materials can withstand high temperatures without undergoing significantstructural changes or degradation. This property makes them suitable for use in extreme environments, such as aerospace applications or high-temperature manufacturing processes.Furthermore, nanoceramics possess unique electrical properties. They can exhibit both insulating and conducting behavior, depending on their composition and structure. This versatility allows for the development of innovative electronic devices and components. For instance, nanoceramic-based capacitors can store and releaseelectrical energy efficiently, enabling the creation of high-performance energy storage systems.中文回答:纳米陶瓷,也被称为纳米级陶瓷,是一种近年来备受关注的先进材料。
纳米二氧化硅的合成方法研究
纳米二氧化硅的合成方法研究作者:袁琳娜刘积春冯雅飞樊旭东张玩涛来源:《科学导报·学术》2020年第66期【摘要】纳米二氧化硅(nano-SiO2)为无定型白色粉末(团聚体),是一种无毒无味和无污染的非金属功能材料。
由于其具有较大的比表面积,并且表面存在着羟基,故具有奇异或反常的特性。
目前,研究nano-Si02的制备方法已成为纳米技术领域的一大热点。
下面就对nano-Si02的制备方法进行阐述,最后介绍了纳米二氧化硅的发展前景。
【关键词】纳米二氧化硅;制备方法;发展二氧化硅是自然界中广泛存在的无机材料,因储量丰富以及价格低廉而被很多行业应用。
随着二氧化硅粉末尺寸的减小,二氧化硅的量子尺寸、量子隧道效应逐渐显现,并且伴随着奇异的光学、电学、磁学、热学、力学以及高温下高强、高稳定性等特性,因此引起了众多学者的研究兴趣,被誉为“21世纪最有前途的材料之一”[1]。
目前二氧化硅纳米材料已在很多领域获得应用[2]。
目前,二氧化硅纳米颗粒的制备方法主要有气相法、化学沉淀法、溶胶-凝胶法以及微乳液法等。
1.纳米二氧化硅纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的非金属材料微结构为球形,呈絮状和网状的准颗粒结构。
它具有独特性质如具有对抗紫外线的光学性能。
它还可提高材料的抗老化性和耐化学性;将纳米二氧化硅分散在材料中,可提高材料的强度,强性。
还具有吸附色素离子、降低色素衰减的作用等。
2.纳米二氧化硅的制备方法纳米二氧化硅的制备按工艺[3]可分为干法和湿法两大类:干法工艺制备的产品虽然具有纯度高,性能好的特点,但设备投资大、生产过程中能耗大、成本高。
湿法工艺所用原料广泛、价廉,产品经过硅烷偶联剂化学改性后,补强性能接近于炭黑。
干法包括气相法和电弧法,湿法有沉淀法和凝胶法。
其中沉淀法生产流程简单,能耗低,是目前主要的制备方法。
2.1溶胶-凝胶法溶胶-凝胶法一般以硅酸酯为原料,经水解缩聚后逐渐胶化,然后经过一定的后处理(陈化、干燥)得到所需的材料。
纳米二氧化硅对氟硅云母玻璃陶瓷强度的影响
纳米二氧化硅对氟硅云母玻璃陶瓷强度的影响张雅丽;张少锋;杨彦伟;梅凤喜【期刊名称】《中华老年口腔医学杂志》【年(卷),期】2011(9)4【摘要】Objective: To improve the strength of machinable fluorosilicate mica glass-ceramics for dental restorations. Methods: Nano SiO2 powder (particle size 7nm) was used to prepare a type of fluorosilicic mica glass.SEM and XRD were used to evaluate the material. Flexural strength and fracture toughness were compared with normal ceramic .Results: Flexural strength and fracture toughness of specimens fabricated with nano-SiO2 powder were respectively 34% and 23% higher compared with normal glass-ceramic. The crystalline phases of two groups were similar. The density and contraction ratio of nano-group was higher than normal group. SEM showed that nano-group consisted of more even and interlayer crystals and less glass matrix phase. Conclusion: The application of nano-SiO2 powder in fluorosilicate mica glass-ceramic could achieve much higher flexural strength and fracture toughness.%目的:提高以云母为主晶相的牙科用可切削玻璃陶瓷氟硅云母玻璃陶瓷材料强度.方法:在氟硅云母玻璃原料粉中使用纳米二氧化硅(粒径7nm),制备氟硅云母玻璃陶瓷,用扫描电镜观察其显微结构,X线衍射确定物象组成及含量,测定样本的抗弯强度和断裂韧性,并与普通氟硅云母玻璃陶瓷材料进行比较.结果:使用纳米二氧化硅(纳米组)和普通氟硅云母玻璃陶瓷材料组(微米组)的抗弯强度和断裂韧性分别增加34%和23%.纳米组的密度和收缩率高于微米组.XRD结果显示两组材料的晶相结构相同.在SEM下观察纳米组结晶更加充分,其晶粒大小相对均匀,相互交错;未晶化的玻璃成分比例较低.结论:纳米二氧化硅粉体的应用可以显著提高氟硅云母玻璃陶瓷材料的强度和断裂韧性.【总页数】5页(P196-200)【作者】张雅丽;张少锋;杨彦伟;梅凤喜【作者单位】第四军医大学口腔医院陕西 710032;第四军医大学口腔医院710032;第四军医大学口腔医院陕西 710032;清华大学材料系北京 100084【正文语种】中文【中图分类】R783.1【相关文献】1.两种着色工艺对氟硅云母玻璃陶瓷着色的影响 [J], 吴舜;何惠明;陈永近;黄芳;高立欣;赵薇2.烧结温度对不同粒度氟硅云母玻璃陶瓷收缩率及微观形貌的影响 [J], 李江;曹小刚;王忠义;田杰谟3.氧化锆粉体粒度与氟硅云母玻璃陶瓷强度的关系 [J], 黄芳;何惠明;吴舜;高立欣;赵薇;许晓波4.不同制备工艺对ZrO_2增韧氟硅云母玻璃陶瓷力学性能的影响 [J], 吴舜;何惠明;黄芳;高立欣;赵薇5.不同退火制度对烧结法制备氟硅云母玻璃陶瓷性能的影响 [J], 钱巍杰;张少锋;许晓波;段玲玲;高立欣因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mortars with nano-SiO 2and micro-SiO 2investigated by experimental designLuciano Senff a,*,Dachamir Hotza a ,Wellington L.Repette b ,Victor M.Ferreira c ,João brincha daMaterials Science and Engineering Graduate Program (PGMAT),Federal University of Santa Catarina (UFSC),88040-900Florianópolis,SC,Brazil bDepartment of Civil Engineering (ECV),Federal University of Santa Catarina (UFSC),88040-900Florianópolis,SC,Brazil cDepartment of Civil Engineering/CICECO,University of Aveiro (UA),3810-193Aveiro,Portugal dDepartment of Ceramics and Glass Engineering/CICECO,University of Aveiro (UA),3810-193Aveiro,Portugala r t i c l e i n f o Article history:Received 8April 2009Received in revised form 30December 2009Accepted 15January 2010Available online 6February 2010Keywords:Nanosilica Microsilica MortarUnrestrained shrinkagea b s t r a c tThis paper reports the effects of nanosilica (nS)and silica fume (SF)on rheology,spread on flow table,compressive strength,water absorption,apparent porosity,unrestrained shrinkage and weight loss of mortars up to 28days.Samples with nS (0–7wt.%),SF (0–20wt.%)and water/binder ratio (0.35–0.59),were investigated through factorial design experiments.Nanosilica with 7wt.%showed a faster forma-tion of structures during the rheological measurements.The structure formation influences more yield stress than plastic viscosity and the yield stress relates well with the spread on pressive strength,water absorption and apparent porosity showed a lack of fit of second order of the model for the range interval studied.In addition,the variation of the unrestrained shrinkage and weight loss of mortars do not follow a linear regression model.The maximum unrestrained shrinkage increased 80%for nS mortars (7days)and 54%(28days)when compared to SF mortars in the same periods.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionThe use of mineral additions in cement-based materials has grown in recent years,due to sustainability action and environ-mental issues or due to the technical advantages reached on the fi-nal product [1–3].When used as a partial replacement of cement,suited additions can improve the performance of materials through modifications in the fresh and hardened states,physical and chem-ical properties,as well as the hydration and microstructure.More recently,nanosilica (nS)is receiving special attention because of its better performance when compared with traditional mineral additions [4].However,they exhibited stronger tendency for adsorption of ionic species in the aqueous medium and the forma-tion of agglomerates should be expected [5–12].In this case,it is necessary to use a dispersing additive to minimize this effect [13].In the fresh state,mortars and concrete can be considered as a fluid,in which the rheological parameters are very important to its processing and final quality.A traditional method used in Civil Engineering to evaluate the properties of mortar (workability)in the fresh state,is known by consistency test or flow table test [14].However,recently the rheometric characterization is becom-ing usual for cement-based materials,because it is possible to de-fine simultaneously plastic viscosity and yield stress for different torque applied [15].The rheological behavior of those mixtures is often represented by the Bingham equations ¼s o þl Ácð1Þwhere s (Pa)is the shear stress,s o (Pa)is the yield stress,l (Pa s)is the plastic viscosity and c (s À1)is the shear rate.Bingham model can be represented as a torque (T )as a function of rotation speed (N ).In this case,the model is expressed byT ¼g þhN ð2Þwhere g (N mm)and h (N mm min)are directly proportional to the yield stress and plastic viscosity,respectively.In the hardened state,the cement paste is not dimensionally stable,when it is exposed in the environment humidity below than 100%[16].The material will begin to lose water and shrink and,consequently,the stress generated can be responsible for cracking [17].The use of multiple regression models in cement-based materi-als is not usual as the linear regression model.However,this meth-od allows identifying the main effects and the interactive effect between the factors,although using a reduced number of experi-mental trials [18].Some authors [19–29]tested the effect of nS on cement pastes,mortars and concrete.However,rheological and flow table measurements have not been used as parameter to formulate compositions,using an experimental design ap-proach.Therefore,the main purpose of this paper is to report the effect of nS (0–7%),SF (0–20%)and W /B ratio (0.35–0.59)on rheo-logical properties,compressive strength,water absorption,appar-ent porosity,unrestrained shrinkage and weight loss of mortars using a factorial design of experiments.0950-0618/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.conbuildmat.2010.01.012*Corresponding author.E-mail address:lsenff@ (L.Senff).Construction and Building Materials 24(2010)1432–1437Contents lists available at ScienceDirectConstruction and Building Materialsjournal homepage:www.e l s e v i e r.c o m /l o ca t e /c o n b u i l d m at2.Experimental procedures 2.1.MaterialsThe Portland cement used was CEM I –52.5R (Cimpor,Portugal),as classified by the EN 197-1[30]standard.Its chemical composition is shown in Table 1.Silica fume (SF,920D,Elkem Microsilica,Norway)presented a specific area of 18.41m 2/g.A nanosilica slurry (nS,Levasil 300/30%,H.C.Starck,Germany),with 1.21g/cm 3density,contains 30wt.%solids,an average size of 9nm,a specific sur-face area of 300m 2/g and a chemical composition that is shown in Table 2.The superplasticizer (SP)admixture was a polycarboxylic acid based (Glenium 51,BASF,Germany)with solids content between 28.5and 31.5wt.%and density between 1.067and 1.107g/cm 3.A commercial sand (Weber Cimenfix,Saint Gobain,Portu-gal),composed by four size fractions (1.2,0.6,0.3and 0.15mm),each one corre-sponding to 25wt.%,was used as aggregate in the mortar.The flow table test (Fig.1a)as specified by EN 1015-3[31]was performed after mixing.The rheological behavior of fresh mortars was evaluated in a rheometer (Viskomat PC,Germany)(Fig.1b).The maximum speed was set to 100rpm and at every 15min the speed was brought to zero,kept during 30s,and later increased during 30s until reaching again 100rpm.This procedure allowed the construction of flow curves from which g and h values were extracted.For compressive strength,the 40Â40Â160mm prism samples were cast according to EN 196-1[32]and stored in plastic bags.After 24h they were demolded and immersed in water for 28days.The compressive strength was then determined by EN 1015-11[33]and the water absorption and apparent porosity were also determined by the immer-sion techniques [34].For unrestrained shrinkage and weight loss (CSTB 2669-4)[35]the 40Â40Â160mm prism samples was kept in relative humidity (55%)and temperature (23°C)and measured after 1,7and 28days.2.2.Methodology and mortar mixingSamples of mortars were prepared with a binder/aggregate weight ratio of 1:2to study rheology,flow table,compressive strength (28days),water absorption (28days),apparent porosity (28days),unrestrained shrinkage and weight loss (1,7and 28days).The preparation of mortars involved:(a)weighing of the compo-nents,(b)dry mixing solid components inside a plastic bag for 1min,(c)adding superplasticizer into water,(d)pouring the solid components into water,(e)mechanical mixing for 3.5min.The rheological and flow table measurements allowed us to define the lower and upper limits of nS,SF,W /B and SP.This methodology guarantees that all mor-tars have suitable working conditions in both equipments,since different plasticity levels are required.In addition,a factorial design method was used as a tool to pre-pare SF and nS containing formulations for the tests.The factorial 2k is one of the used designs to research the effects of different factors in a particular response,where k stands for the factors (nS,SF,SP or W /B )and the base 2represents the level of treatments for each factor.When the central point is added,the effect estimates,interactions and curvature of surface response can be estimated without to carry out the full factorial design,decreasing the number of the experiments [18].The range of W /B ratio was set up using mortars with nS,since nS requires much more water in the mixture,when compared to SF.For compressive strength,water absorption and apparent porosity,the factorial design 22with a central point was used to check the curvature,followed by factorial 32to determine the surface re-sponse.For unrestrained shrinkage and weight loss,the factorial 22with a central point was applied on interval relative to higher compressive strength (0.35W /B ).A proper number of replications were performed,for testing compressive strength (four replicas),water absorption (two replicas),apparent porosity (two replicas),unrestrained shrinkage (three replicas)and weight loss (three replicas).All design experiments of mortars formulated are shown in Table 3.3.Results and discussion3.1.Rheometry and flow table spread testThe rheology test of mortars with low W /B ratio or high amount of nS added,exhibited high values in the initial or end torque,and after 120–135min,mortars showed lower plasticity (Fig.2a).The structure formation,particle friction and free water available in mixtures can be responsible for this behavior,because such factors are altered with the evolution of cement hydration.In this case,the shear stress was not sufficient to breakdown the structures forma-tion,during the decrease of speed up to zero,and the Bingham’s model adjusted becomes poorer.With 7%nS,mortar exhibited fas-ter formation of structure during these resting periods as repre-sented by the peak in torque when the speed increases from zero back to the test speed (vertical line above the torque line).This line is set up during the resting time of the test procedure (30s),mean-ing that an additional torque is necessary to breakdown formed structure.After 15min of test,the yield stress increased,while the plastic viscosity remained almost constant (Fig.2b and c).Table 1Chemical composition of Portland cement CEM I –52.5R.Constituents Content (wt.%)SiO 220.9Al 2O 3 4.60Fe 2O 3 3.15CaO 62.0MgO 2.00SO 33.60Table 2Chemical composition of nS.Constituents Content SiO 2(wt.%)99.4Na 2O (wt.%)0.45Al 2O 3(wt.%)0.075Sulphate (wt.%)<0.1Fe (ppm)25Ca (ppm)10Zn,Pb and Cu (ppm)<0.1(a)(b)Fig.1.(a)Spread on table test and (b)rheometer.L.Senff et al./Construction and Building Materials 24(2010)1432–14371433Therefore,the yield stress is the rheological parameter that is more affected by the three-dimensional structure formation and plastic-ity loses of the mortar.Mortar with SF showed higher initial yield stress,while nS up to the end of the test.The amount of SP avail-able in the mixture with nS can be considered to lower the initial yield stress,however due to the higher reactivity of nS the mixture became lessfluid along the period of time the test was performed.The spread on theflow table after15strokes showed that the mortars had different deformability(Fig.3).The spread for samples with3.5%nS were higher than for20%SF.In this case,if one con-siders the amount of SP expressed in grams per surface particle area of each addition,for the nS results a value of approximately 0.00714g/m2,while for SF the amount is0.00476g/m2.Therefore,the amount of SP per surface area used in mixtures with nS was about1.5higher than with SF,what could explain the higherflow values obtained for the mixtures with nS.When the W/B of mortars with3.5%and7%nS are compared,the amount of water expressed in grams per superficial particle area of each addition,showed that mortar with3.5%nS was approximately1.5higher than mortars with7%nS.Therefore,mortar with7%nS shows more cohesion than for3.5%nS.The yield stress is the rheological parameter (see Fig.2b and c)that relates better with to the spread on table (see Fig.3),since that the plastic viscosity increases,when the spread on table also increases.pressive strengthWhen the values of compressive strength are analyzed,the fac-torial design22with central point showed that the curvature is sig-nificant,suggesting that the compressive strength variation did not follow the linear regression model.Therefore,the factorial design 32with the levels of treatment of SF(0%,10%and20%)or nS(0%, 3.5%and7%)and W/B(0.35,0.47and0.59)were used(Table3). The surfaces response areas with distinct curves are illustrated in Fig.4.The concavity of curve is positive when W/B varies and nS or SF is kept constant,while negative curve concavities were ob-tained when nS or SF vary and W/B is kept constant.Whenfine par-ticles of amorphous silica are added,the physical and pozzolanic effect can be expected.As consequence,the values of compressive strength increased when compared to mortars without mineral additions.However,when higher amount of cement is substituted (SF=20%)or the mixtures become difficult to mould(nS=7%)the performance is decreased.When the models were tested for lack offit,the result was sig-nificant and,therefore,other regression models or working inter-vals should be used.In this case,when different types of concavity(concave and convex)are present on the same response surface,along with wide composition ranges,the lack offit of the model can be significant.In this way,the authors[36]showed thatTable3Design of mortar formulations.Design experiments Mortars nS(wt.%)SF(wt.%)SP(wt.%)W/BRheology andflow table test nS 3.5;7–30.35;0.47SF–200.70.35 Compressive strength,water absorption,apparent porosity nS0;3.5;7–30.35;0.47;0.59SF–0;10;200.7 Shrinkage,(%)weight loss nS0;1.75;3.5–3;3.3;3.60.35SF–0;10;200.7;0.95;1.2Fig.3.Spread on table of mortar after15strokes.1434L.Senff et al./Construction and Building Materials24(2010)1432–1437it is possible to adjust the data to a 2nd order model,when the W /B was reduced (0.59–0.47).The authors also identified the interac-tive effects between the factors (W /B ,SF or nS),which are ex-plained in detail elsewhere [36].In addition,the maximum compressive strength of mortars found corresponds to 12.2%SF and 3.3%nS [36].A comparable added amount (10±5%SF and 3.5±0.5%nS)can be seen on the response surface illustrated in Fig.4.3.3.Water absorption and apparent porosityWhen mortars are composed with high amount of water (0.59W /B )or exhibited poorer plasticity condition (0.35W /B )to molding,the water absorption and apparent porosity can increase (Figs.5and 6).In this investigation,the plasticity loss of mortar be-comes more evident in mixtures with nS,due to its higher surface area.In addition,the higher surface reactivity of nS hinders the maintenance of the adequate conditions for molding in a longer time.As a consequence,the final densities of the samples become smaller,as observed in mortar with 7%nS (Fig.7).Mortars with 7%nS,exhibited the highest values of water absorption and apparent porosity (between samples with 0.35W /B ),while these values de-creased for mortars with 20%SF.In the latest,the samples with SF show still an adequate condition to be casting.For surface re-sponses,the lack of fit of the 2nd order of the model was significant and the previous comments on compressive strength (3.2)are valid here as well.3.4.Unrestrained shrinkage and (%)weight variationThe results of the weight loss and unrestrained shrinkage of mortars are illustrated in Table 4.In general,time and SP increased the weight loss,while nS and SF decreased it.For unrestrained shrinkage,nS exhibited higher values than SF.When the maximum unrestrained shrinkages are compared,nS mortars presented val-ues 80%(7days)and 54%(28days)higher than SF mortars for the same periods.In this case,when the minerals are added,theypressive strength of mortars with:(a)SF and (b)nS after 28days.Fig.5.Water absorption of mortars with:(a)SF and (b)nS after 28days.Fig.6.Apparent porosity of mortars with:(a)SF and (b)nS after 28days.L.Senff et al./Construction and Building Materials 24(2010)1432–14371435can refine the porous and produce higher shrinkage [16].On one hand,the higher reactivity of nS generates hydrate products in a shorter time when compared to SF;on the other hand,higher shrinkage is also obtained.In this case,the shrinkage can lead the materials to cracking in certain applications.Such cracking can be responsible for the reduction of the strength and the stiff-ness of concrete [37].For SP,the unrestrained shrinkage is also in-creased,since it improves the cement particle dispersion in water and also makes the pores finer [16].Table 5shows the individual effect estimates and the significant factors indicated by (Ã).All factors (nS,SF and SP)were significantto unrestrained shrinkage and weight loss of the mortar.However,the interactive effect between SF and SP was not significant.In addition,all experimental design showed that the curvature is sig-nificant,meaning that they did not follow a linear regression mod-el.When the individual effect estimates are analyzed,SF,nS and SP have a positive value,indicating a direct increase on the unre-strained shrinkage.For the weight loss,nS and SF are negative (de-creased),while SP is positive (increased)the results.4.ConclusionsMortar with 7%nS showed faster structures formation during the rheological test.The structure formation limited the open test time and influenced the yield stress more significantly when com-pared to plastic viscosity.Mortars with 3.5%nS and 3%SP showed spread on table values higher than the ones with 20%SF and 0.7%SP.In addition,yield stress is the rheological parameter better re-lated to the spread on table.For compressive strength,water absorption and apparent porosity,the lack of fit of 2nd order of the model was significant,when the composition ranges were 0–7%nS,0–20%SF,and 0.35–0.59W /B .It is suggested that a more restricted interval should be used.For mixtures with 0.35W/B ,the water absorption and apparent porosity reached the maximum values for mortars with 7%nS.The factorial design showed that the unrestrained shrinkage and weight loss of mortar did not follow a linear regression model and the mortars with nS showed higher values than SF.With 7days the shrinkage increased 80%,while at 28days it increased 54%.AcknowledgementsThe authors acknowledge the support of CAPES,Brazil.The authors also thank Weber Portugal,BASF,Elkem,Cimpor for pro-viding raw materials for this work.References[1]Neville AM.Properties of concrete.4th ed.England:ELBS with Addison WesleyLongman;1996.[2]Taylor HFW.Cement chemistry.Academic Press;1990.[3]Older I.Lea’s chemistry of cement and concrete.4th ed.London:Arnold;1998.[4]Sobolev K,Ferrada-Gutiérrez M.Am Ceram Soc Bull 2005;84:16–9.[5]Iler RK.The chemistry of silica:solubility,polymerization,colloid and surfaceproperties and biochemistry.John Wiley;1979.[6]Pelizzetti E.Fine particles science and technology:from micro tonanoparticles.Kluwer Academic Publishers;1996.Fig.7.Mortars after demoulding with 1day:(a)nS =3.5%,W /B =0.35,SP =3.0%and (b)nS =7%,W /B =0.35,SP =3.0%.Table 4Unrestrained shrinkage and (%)weight loss of mortar with SF and nS after 7and 28days.Components Weight loss (%)Shrinkage (mm/m)SF nS SP 7days 28days 7days 28days 0–0.70.5990.9210.4100.6380– 1.20.6340.9760.4480.70220–0.70.3440.4910.5130.83320– 1.20.4260.5200.5560.90610–0.950.5030.7770.6040.871–030.5990.7450.6980.973–0 3.60.7660.8840.777 1.081– 3.530.5290.7150.763 1.052– 3.5 3.60.5240.719 1.085 1.400–1.753.30.5290.6920.5900.865Table 5Effect estimates and influence of curvature of response surface,main factors and their interactions on the (%)weight loss and unrestrained shrinkage after 7and 28days of mortar.Weight loss Shrinkage7days28days7days28daysMortar with SF Curvature ****SF À0.23*À0.44*0.11*0.20*SP 0.06*0.04*0.04*0.07*SF *SP 0.02À0.010.000.00Mortar with nS Curvature ****nS À0.16*À0.10*0.19*0.20*SP 0.08*0.07*0.20*0.23*nS *SPÀ0.09*À0.07*0.120.12**Significant effect for a significance level of 95%.1436L.Senff et al./Construction and Building Materials 24(2010)1432–1437[7]Reed JS.Principles of ceramics processing.2nd ed.John Wiley;1995.[8]Sugimoto T.Fine particles:synthesis,characterization,and mechanisms ofgrowth.CRC Press;2000.[9]Pashley RM,Karaman ME.Applied colloid and surface chemistry.John Wileyand Sons;2004.[10]Fukushi K,Sato ing a surface complexation model to predict the natureand stability of nanoparticles.Environ Sci Technol2008;39:1250–6.[11]Bergna HE,Roberts WO.Colloidal silica:fundamentals and applications.CRCPress;2006.[12]Hosokawa M.Nanoparticle technology handbook.Elsevier;2007.[13]Ramachandran VS,Beaudoin JJ.Handbook of analytical techniques in concretescience and technology,principles,techniques,and applications.New York:Noyes/William Andrew;2001.[14]Wierig HJ.Properties of fresh concrete:proceedings of the international rilemcolloquium.Taylor&Francis;1990.[15]Banfill PFG.British society of rheology.Rheology of fresh cement and concrete:proceedings of the international conference organized by the British society of rheology,University of Liverpool,UK,March26–29,1990.Taylor&Francis;1990.[16]Mehta PK,Monteiro PJM.Concrete–microstructure,properties,andmaterials.New York:McGraw-Hill;1993.[17]Lawler JS.Guidelines for concrete mixtures containing supplementarycementitious materials to enhance durability of bridge decks.Transportation Research Board;2007.[18]Myers HR,Montgomery DC.Response surface methodology:process andproduct optimization using designed experiments.New York:Wiley;1996.[19]Collepardi M,Ogoumah Olagot JJ,Skarp U,Troli R.Influence of amorphouscolloidal silica on the properties of self-compacting concretes.In:Proceedings of the international conference in concrete constructions–innovations and developments in concrete materials and constructions,Dundee,Scotland,UK;9–11September2002.p.473–83.[20]Björnström J,Martinelli A,Matic A,Börjesson L,Panas I.Accelerating effects ofcolloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement.Chem Phys Lett2004;392(1–3):242–8.[21]Li G.Properties of high-volumefly ash concrete incorporating nano-SiO2.CemConcr Res2004;34(6):1043–9.[22]Li H,Gang H,Jie X,Yuan J,Ou J.Microstructure of cement mortar with nano-pos Part B:Eng2004;35(2):185–9.[23]Collepardi S,Borsoi A,Ogoumah Olagot JJ,Troli R,Collepardi M,et al.Influenceof nano-sized mineral additions on performance of SCC.In:Proceedings of the 6th international congress,global construction,ultimate concrete opportunities,Dundee,UK;5–7July2005.[24]Tao Ji.Preliminary study on the water permeability and microstructure ofconcrete incorporating nano-SiO2.Cem Concr Res2005;35:1943–7.[25]Li H,Zhang M,Ou J.Abrasion resistance of concrete containing nano-particlesfor pavement.Wear2006;260(11–12):1262–6.[26]Shih Jeng-Ywan,Chang Ta-Peng,Hsiao Tien-Chin.Effect of nanosilica oncharacterization of Portland cement composite.Mater Sci Eng2006;424(1–2):266–74.[27]Jo BW,Kim CH,Tae G,Park JB.Characteristics of cement mortar with nano-SiO2particles.Constr Build Mater2007;21(6):1351–5.[28]Qing Y,Zenan Z,Deyu K,Rongshen C.Influence of nano-SiO2addition onproperties of hardened cement paste as compared with silica fume.Constr Build Mater2007;21(3):539–45.[29]Lin KL,Chang WC,Lin DF,Luo HL,Tsai MC.Effects of nano-SiO2and differentash particle sizes on sludge ash–cement mortar.J Environ Manage 2008;88:708–14.[30]EN197-1.Cement:composition,specifications and conformity criteria forcommon cements;2004.[31]EN1015-3.Methods of test for mortar for masonry:determination ofconsistence of fresh mortar(byflow table);2007.[32]EN196-1.Methods of testing cement:determination of strength;2005.[33]EN1015-11.Methods of test for mortar for masonry–Part11:determinationofflexural and compressive strength of hardened mortar;1999.[34]Pennings ECM,Grellner W.Precise nondestructive determination of density ofporous ceramics.J Am Ceram Soc1989;72:1268–70.[35]Certification CSTB des Enduits Monocouches d´impermeabilisation.Modalitésd´essais.Cahiers du CSTB2669-4;1993.[36]Senff L,Hotza D,Repette WL,Ferreira VF,Labrincha JA.Influence of addednano-silica and/or silica fume on fresh and hardened properties of mortars and cement pastes.Adv Appl Ceram2009;108:418–28.[37]Tsubaki T,Das MK,Shitaba K.Cracking and damage in concrete due tononuniform shrinkage.In:Bazˇant ZP,editor.Fracture mechanics of concrete structures:proceedings of thefirst international conference.Taylor&Francis;1992.L.Senff et al./Construction and Building Materials24(2010)1432–14371437。