《正方形的性质与判定》习题
1.3 正方形的 性质与判定 同步练习(课课练)附答案
1.3正方形的性质与判定1、四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A. OA=OB=OC=OD,AC⊥BDB. AB∥CD,AC=BDC. AD∥BC,∠A=∠CD. OA=OC,OB=OD,AB=BC2、在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A. 12+122B. 12+62C. 12+2D. 24+623、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().(A)150°(B)125°(C)135°(D)112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.6、如右上图,四边形ABCD是正方形,△CDE是等边三角形,求∠AEB的度数.7、已知:如左下图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF与AD交于点F,求证:AE=BF.8、如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?9、如左下图,在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .试说明AE =FG .11、以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF.(1)试探索BE 和CF 的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。
正方形性质与判定练习题
正方形(1)练一练:1、已知:如图,正方形ABCD 中,CM=CD MN 丄AC,连结CN ,则/ DCN=/ B.2.在正方形ABCD 中, AB=12 cm ,对角线AC BD 相交于0,则^ ABO的周长是3、下面的命题是真命题的有A 、有一组邻边相等的平行四边形是正方形;B 、有一组邻边相等且有一角为直 角的四边形为正方形;C 、正方形是一组邻边相等的矩形;D 、正方形是有一个 角为直角的菱形。
精讲精练例1、在正方形ABCD 的边BC 的延长线上取一点 E,使CE=CA 连接AE 交CD 于变式:1、已知如下图,正方形 ABCD 中,E 是CD 边上的一点,F 为BC 延长线上 一点,CE=CF ⑴求证:△ BEC^A DFC; (2)若/ BEC=60°,求/ EFD 的度数.()+12J2 +6^2+72 +6^2/ B,/ MND=F ,求AFD 的度数。
例2:如图,E为正方形ABCD的BC边上的一点,CG平分/ DCF,连结AE,并在CG上取一点G,使EGAE求证:AEX EG例3、P 为正方形ABCD内一点,PA=1, PB=2, PC=3,用中学1、如图,四边形ABCD为正方形,以AB为边向正方形外作等边三角形ABE CE 与DB 相交于点F,AFD =求/APB的度数.则E32、(哈尔滨)若正方形ABCD的边长为4,E为BC边上一点,BE=3, M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE 则BM的长为3.正方形的面积是3,则其对角线长是.为正方形ABCD内一点,且△ EBC是等边三角形,求/ EAD的度数.<31、已知RtVABC 中, 精讲精练C 90 , CD 平分 ACB ,交 AB 于 D , DFEF CD,EG AD, 边形ABCD 中, AC 、BD 相交于点 0, 能判别这个四边形是正方形的条件是(=0B=0C=0D , AC 丄 BD ; // BC, / A=/ C ; (上海市)如图,已知平行四边形ABCD 中,对角线AC , BD 交于点0, E 是 BD 延长线上的点,且△ ACE 是等边三角形.(1) 求证:四边形ABCD 是菱形; (2) 若 AED 2 EAD ,求证:四边形 ABCD 是正方形.// CD, AC=BD ;=0C, 0B=0D , AB=BC 疋菱 正方形(2)练一练:1 .不能判定四边形是正方形的是() A .对角线互相垂直且相等的四边形;B •对角线互相垂直的矩形;C •对角线相等的菱形;D .对角线互相垂直平分且相等的四边形。
初中数学 习题3:正方形的性质与判定
正方形的性质与判定一、填空题1.正方形的一边长5cm,则周长为cm,面积为cm22.E是正方形ABCD对角线AC上一点,且AE=AB,则∠ABE=3.E是正方形ABCD内一点,且△EAB是等边三角形,则∠ADE=4.正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于cm5.正方形有条对称轴.6.如图(1),在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连结AE交CD于F,则∠AFC=(1) (2)7.如图(2),E是正方形ABCD内一点,如果△ABE是等边三角形,那么∠DCE=,如果DE的延长线交BC于G,则∠BEG=8.F是正方形ABCD的对角线AC上一点,AF=AD,FG⊥AC于F,交CD于G,那么∠DFG=9.如图(3),截去正方形ABCD的∠A、∠C后,∠ 1、∠2、∠3、∠4的和为(3)(4)10.如图(4),正方形的对角线相交于O,∠BAC的平分线交BD于E,若正方形的周长是20cm,则DE=二、选择题1.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2.如图(5),在正方形ABCD中,∠DAF=25°,AF交对角线BD于E 点,则∠BEC=( ) A.45°B.60°C. 70°D.75°(5) (6)3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.平行四边形B.等腰三角形C.等边三角形D.菱形4.如图(6),正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A.30 B.34 C.36 D.405.如右图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个三、解答题(每题12分,共24分)1.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?2.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数.四、对于周长为20的矩形,通过填写下表,研究它的长、宽的变化对面积的影响.矩形的长……8 7 6 5 4 3 2 ……矩形的宽…………矩形的面积……观察数据,你有什么结论?五、如图,△ABC中,点O是AC上一动点,过点O作直线MN∥BC,设Mn交∠ACB的平分线于点E,交∠ACH的平分线于点F.⑴说明:EO=FO;⑵当点O运动到何处时,四边形AECF是矩形;⑶当O是AC上怎样的点,且AC与BC具有什么关系时,四边形AECF是正方形?参考答案一、1.20,25;2.°;3.75°;4.8;5.4;6.°7.15°,45°;8.° 9.540°10.5二、三、1.设中间最小正方形的边长为,则右下方正方形的边长为,左下方正方形的边长为,左上方正方形的边长为,右上方正方形的边长为,根据长方形的对边相等可列方程2(1)(2)(4)(3)x x x x+++=+++,解这个方程得,∴长方形的长为13,宽为11,面积为243;2.∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=1(1802°°)30=°四、在周长一定的情况下,当长方形的长与宽的差的绝对值越小,长方形的面积越大,当长与宽相等时,长方形的面积最大.五、⑴证OE OC OF==;⑵AC的中点;⑶当O是AC的中点,且AC⊥BC时,四边形AECF 是正方形.。
正方形性质与判定练习题
正方形性质与判定练习题例1、在正方形ABCD中,以AB为边向外作等腰三角形ABE,连接CE,交BD于F,若BE=2,则CF=______.变式:如图,正方形ABCD中,以AB为边向外作等腰三角形ABE,交CE于F,若BE=2,则.例2、如图,ABCD为正方形,E为AB边上一点,连接CE,交BD于F,若BE=2,则CF=______.例3、如图,正方形ABCD中,E为BC边上一点,F为CD边上一点,CE=CF.求证:AE=AF.用中学1、如图,正方形ABCD中,E为BC边上一点,以AE 为边向外作等腰三角形AEF,交CD于G,若AE=2,则CG=______.2、如图,正方形ABCD中,E为BC边上一点,以AE 为边向外作等腰三角形AEF,交CD于G,若AE=2,则.3、如图,正方形ABCD中,E为BC边上一点,以AE 为边向外作等腰三角形AEF,交CD于G,若AE=2,则△AEG的周长为______.CD=DA。
3.已知RtABC中,CD平分∠ACB,交AB于D,DF//BC,DE//AC,∠C=90°,要证明四边形DECF为正方形。
首先,连接CE,CF。
因为CD平分∠ACB,所以∠DCF=∠ACF,又因为DF//BC,所以∠DCF=∠C,因此∠ACF=∠C。
同理可得∠XXX∠C。
因为∠C=90°,所以∠ACF+∠XXX°,即∠AEC=90°,所以四边形DECF的两条对角线互相垂直。
又因为DE//AC,CF//AB,所以∠DEC=∠A,∠XXX∠B,又因为∠A+∠B=90°,所以∠DEC+∠CFE=90°,即四边形DECF的四个内角都是直角,因此四边形DECF为正方形。
4.在正方形ABCD中,E是对角线AC上的一点,EF⊥CD,EG⊥AD,垂足分别为F、G。
要证明BE=FG。
首先,连接BF、CG。
因为正方形ABCD是等边等角的,所以AB=BC=CD=DA,AC=BD=2AB。
18.2.3正方形的性质与判定练习题
18.2.3正方形的性质与判定练习题一、填空题1、如图,E 是正方形ABCD 的对角线BD 上一点,且BE =BC ,则∠ACE= °. 2、如图,四边形ABDC 是正方形,延长CD 到点E ,使CE=CB ,则∠AEC = °.3、如图,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:①∠E=22.5°; ②∠AFC=112.5°; ③∠ACE=135°;④AC=CE ;⑤AD ∶CE=1∶ 2. 其中正确的有 个.4、如图,等边△EDC 在正方形ABCD 内,连结EA 、EB ,则∠AEB =°;∠ACE = °.5、已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 °.6、如图,四边形ABCD 是正方形,E 是边CD 上一点,若△AFB 经过逆时针旋转角θ(0°<θ<180°)后,与△AED 重合,则θ值为 °.第6题图 第7题图 第8题图 第9题图 7、已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为___________.8、如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为 .9、如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且C B '=3,则CN= ;AM 的长是 .10、正方形的面积是31,则其对角线长是________. 11、如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 .12、如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为 .第12题图 第13题图 第1题图 第2题图 第3题图 第4题图O 2O 1第11题图 第14题图13、边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图所示重叠部分),则这个风筝的面积是.14、如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是.15、如右图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确的结论是.(填序号)16、如右图,四边形ABCD为正方形,以AB为边向正方形外作等边△ABE,CE与DB= 。
正方形的性质与判定练习
一.选择题(共11小题) 1.(2014•南充)如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C 的坐标为( ),,2.(2014•山西)如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )a 2a 2a 2.a 23.(2014•台州)如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连接BE ,FE ,则∠EBF 的度数是( )4.(2014•郴州)平行四边形、矩形、菱形、正方形都5.(2014•来宾)正方形的一条对角线长为4,则这个正方形的面积是( )46.(2014•福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE相交于点F ,则∠BFC 为( )7.(2014•来宾)顺次连接菱形各边的中点所形成的四9.(2014•株洲)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正10.(2014•红桥区三模)如图,在正方形ABCD 中,CE=MN ,∠MCE=35°,那么∠ANM 等于( )11.(2014•四会市一模)如图,菱形ABCD 中,∠B=60°,AB=5,则以AC 为边长的正方形ACEF 的面积为( )二.填空题(共5小题)12.(2009•江西模拟)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=_________度.13.(2008•佛山)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_________度.14.(2007•吉林)如图,四边形ABCD为正方形,△ADE 为等边三角形.AC为正方形ABCD的对角线,则∠EAC= _________度.15.(2006•昆明)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.16.(2005•常州)如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于_________ cm,四边形EFGH的面积等于_________cm.三.解答题(共6小题)17.(2014•泸州)如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.18.(2014•广安)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.19.(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.20.(2014•鄂州)在平面内正方形ABCD与正方形CEFH 如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.21.(2014•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(2014•随州)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=_________时,四边形MENF 是正方形.一.选择题(共11小题)1.(2014•南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为(),,,,2.(2014•山西)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()a2a2a2a2答:aEC=a a ×a=a 3.(2014•台州)如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连接BE ,FE ,则∠EBF 的度数是( )4.(2014•郴州)平行四边形、矩形、菱形、正方形都5.(2014•来宾)正方形的一条对角线长为4,则这个正4=6.(2014•福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )7.(2014•来宾)顺次连接菱形各边的中点所形成的四9.(2014•株洲)已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正10.(2014•红桥区三模)如图,在正方形ABCD 中,CE=MN ,∠MCE=35°,那么∠ANM 等于( )11.(2014•四会市一模)如图,菱形ABCD 中,∠B=60°,AB=5,则以AC 为边长的正方形ACEF 的面积为( )二.填空题(共5小题) 12.(2009•江西模拟)如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEB= 15 度.13.(2008•佛山)如图,已知P 是正方形ABCD 对角线BD 上一点,且BP=BC ,则∠ACP 度数是 22.5 度.(14.(2007•吉林)如图,四边形ABCD 为正方形,△ADE 为等边三角形.AC 为正方形ABCD 的对角线,则∠EAC= 105 度.15.(2006•昆明)已知:如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为 16 .16.(2005•常州)如图所示,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 8 cm ,四边形EFGH 的面积等于 8 cm .42.由正方形的定义可知四边形三.解答题(共6小题) 17.(2014•泸州)如图,正方形ABCD 中,E 、F 分别为BC 、CD 上的点,且AE ⊥BF ,垂足为点G . 求证:AE=BF .18.(2014•广安)如图,在正方形ABCD 中,P 是对角线AC 上的一点,连接BP 、DP ,延长BC 到E ,使PB=PE .求证:∠PDC=∠PEC .19.(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.20.(2014•鄂州)在平面内正方形ABCD与正方形CEFH 如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.21.(2014•青岛)已知:如图,▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E . (1)求证:△AOD ≌△EOC ; (2)连接AC ,DE ,当∠B=∠AEB= 45 °时,四边形ACED 是正方形?请说明理由.22.(2014•随州)已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)填空:当AB :AD= 1:2 时,四边形MENF 是正方形.。
正方形的性质与判定(八大类型)(原卷版)
专题03 正方形的性质与判定(八大类型)【题型1 正方形的性质】【题型2 正方形的判定】【题型3 矩形的性质与判定综合运用】【题型4 正方形中最小值问题】【题型5 正方形-对角互模型】【题型6 正方形-半角互模型】【题型7 正方形-手拉手模型】【题型8 正方形-十字架模型】【题型1 正方形的性质】1.(2023春•增城区期中)如图,在正方形ABCD的外侧作等边三角形ADE,则∠AEB度数为()A.10°B.15°C.22.5°D.30°2.(2023春•鼓楼区期中)矩形、正方形都具有的性质是()A.对角线相等B.邻边相等C.对角线互相垂直D.对角线平分对角3.(2023春•张北县校级期中)四边形ABCD是正方形,E为CD.上一点,连接AE,过B作BF⊥AE于E,∠ABF=30°且,则正方形ABCD的周长为()A.B.C.24D.6 4.(2023•官渡区校级模拟)用四根长度相等的木条制作学具,先制作图(1)所示的正方形ABCD,测得BD=10cm,活动学具成图(2)所示的四边形ABCD,测得∠A=120°,则图(2)中BD的长是()A.cm B.cm C.cm D.cm 5.(2023•龙川县一模)如图,P为AB上任意一点,分别以AP,PB为边在AB 同侧作正方形APCD、正方形PBEF,连接AF,BC,设∠CBE=x°,∠AFP =y°,则y与x的关系为()A.y=x B.y=2x C.y=180﹣x D.y=90﹣x 6.(2023•巧家县一模)如图,在边长为4cm的正方形ABCD中,对角线AC,BD相交于点E,F为线段BC的中点,连接EF,则线段EF的长为()A.B.C.1D.2 7.(2023•新华区模拟)一个正方形和一个直角三角形的位置如图所示,若∠1=α,则∠2=()A.α﹣45°B.α﹣90°C.270°﹣αD.180°﹣α8.(2023春•苏州期中)如图,在正方形ABCD中,E为AD上一点,连接BE,BE交对角线于点F,连接DF,若∠ABE=35°,则∠CFD的度数为()A.80°B.70°C.75°D.45°9.(2023•碑林区校级二模)如图,在正方形ABCD中,点P在对角线BD上,PE⊥BC,PF⊥CD,E,F分别为垂足,连接AP,EF,若AP=5,则EF=()A.5B.5C.2.5D.10.(2023•五华区校级模拟)如图,有六根长度相同的木条,小明先用四根木条制作了能够活动的菱形学具,他先将该活动学具调成图1所示菱形,测得∠B=60°,对角线AC=10cm,接着将该活动学具调成图2所示正方形,最后用剩下的两根木条搭成了如图3所示的图形,连接BE,则图3中△BCE的面积为()A.cm2B.50cm2C.cm2D.25cm2 11.(2023春•天津期中)如图,在边长为4的正方形ABCD中,点E,点F分别是BC,AB上的点,连接DE,DF,EF,满足∠DEF=∠DEC.若AF=1,则EF的长为()A.B.C.D.12.(2022春•汉阴县期末)如图,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB =S四边形DEOF中,正确结论的个数为()A.4个B.3个C.2个D.1个13.(2022春•新泰市期中)如图,在正方形ABCD中,点O是对角线AC、BD 的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OBE≌△OCF;③四边形CEOF的面积为正方形ABCD面积的;④DF2+CE2=EF2.其中正确的为.(将正确的序号都填入)14.(2022春•长春期末)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=40cm,则图1中对角线AC的长为cm.【题型2 正方形的判定】15.(2023春•黄埔区期中)下列说法错误的是()A.对角线相等的菱形是正方形B.对角线互相平分且垂直的四边形是菱形C.对角线相等的平行四边形是矩形D.对角线垂直且相等的四边形是正方形16.(2023•雁塔区校级二模)如图,在矩形ABCD中,对角线AC,BD交于点O,要使该矩形成为正方形,则应添加的条件是()A.CD=AD B.OD=CD C.BD=AC D.∠AOB=60°17.(2022春•铁岭县期中)小明在学习了正方形以后,给同桌小文出了道题:从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形.现有下列四种选法你认为错误的是()A.①②B.①③C.②③D.②④18.(2022•鼓楼区校级开学)如图,E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,则四边形EFMN的形状是()A.平行四边形B.矩形C.菱形D.正方形19.(2022春•河西区期末)如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半20.(2023•莱西市一模)四边形ABCD为矩形,E是AB延长线上的一点,AC =EC.(1)求证:△BCD≌△CBE;(2)△ACE添加一个条件,矩形ABCD为正方形.请说明理由.21.(2023春•鼓楼区校级月考)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G、F、H分别是BE、BC、CE的中点.连接EF,若BE⊥EC,EF⊥BC,说明:四边形EGFH是正方形.22.(2022秋•皇姑区期末)如图,AD是△ABC的一条角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是菱形;(2)若∠B=35°,当∠C=度时,四边形AEDF为正方形(直接填空).23.(2022秋•东港市期末)如图,在△ABC中,∠ACB=90°,点D是边AB 的中点,连接CD,过点C作CE∥AB,过点B作BE∥CD,CE,BE交于点E.(1)判断四边形CDBE是什么特殊的四边形,并证明;(2)直接写出当△ABC再满足什么条件时,四边形CDBE是正方形.24.(2022春•隆阳区期中)如图,点B,C,F在同一条直线上,AC⊥BF于点C,且AC=BC,连接AB,取AB的中点D,连接CD,过点A作CE的垂线,垂足为E,已知点E到直线AC和CF的距离相等.求证:四边形ADCE是正方形.25.(2021秋•平远县期末)如图,在矩形ABCD中,M,N分别是边AD,BC 的中点,E,F分别是线段BM,CM的中点.(1)判断四边形MENF是什么特殊四边形,并证明你的结论;(2)当AD,AB满足什么条件时,四边形MENF是正方形.【题型3 正方形的性质与判定综合运用】26.(2023春•任城区校级月考)如图所示△ABC中,∠C=90°,∠A,∠B的平分线交于D点,DE⊥BC于点E,DF⊥AC于点F.(1)求证:四边形CEDF为正方形;(2)若AC=12,BC=16,求CE的长.27.(2022春•南谯区校级月考)如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.28.(2022春•海阳市期末)如图,在矩形ABCD中,点E,F分别在边AB,BC上,AF⊥DE,且AF=DE,AF与DE相交于点G.(1)求证:矩形ABCD为正方形:(2)若AE:EB=2:1,△AEG的面积为4,求四边形BEGF的面积.29.(2022春•关岭县期末)如图,在△ABC中,∠BAC=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF∥AC,交AB于点F.(1)求证:四边形AFDE是正方形;(2)若AD=3,求四边形AFDE的面积.30.(2022春•覃塘区期末)如图,在矩形ABCD中,点E,F分别在BC,CD 边上,且AE=AF,∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)若,BE=1,求四边形ABCD的面积.31.(2022春•交口县期末)如图,已知四边形ABCD和CEFG均是正方形,点K在BC上,延长CD到点H,使DH=BK=CE,连接AK,KF,HF,AH.(1)求证:AK=AH;(2)求证:四边形AKFH是正方形;(3)若四边形AKFH的面积为10,CE=1,求点A,E之间的距离.【题型4 正方形中最小值问题】32.(2021春•龙口市期末)如图,在边长为6的正方形ABCD中,点P为对角线AC上一动点,PE⊥AB于E,PF⊥BC于F,则EF的最小值为()A.B.C.4D.333.(河西区一模)如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为()A.2B.4C.D.234.(铜仁地区)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.35.(2021•威海)如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为.36.(2021秋•江汉区月考)已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图1,点E在CD上,点G在BC的延长线上,请判断DM,EM的数量关系与位置关系,并证明;(2)如图2,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论;(3)如图3,连接BG,N为BG中点,若AB=13,CE=5,则MN的最大值为.【题型5 正方形-对角互模型】37.(2021秋•锦江区期末)如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC 于点M,N,记△AOM的面积为S1,△CON的面积为S2,若正方形的边长AB=10,S1=16,则S2的大小为()A.6B.7C.8D.938.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B.C.2D.2 39.(2022春•龙胜县期中)如图,两个边长相等的正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,则两个正方形的重叠部分四边形OMCN的面积()A.不变B.先增大再减小C.先减小再增大D.不断增大40.(2021春•正阳县期中)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2、…A n分别是正方形对角线的交点,则2021个正方形形成的重叠部分的面积和为()A.cm2 B.505cm2C.cm2 D.()2021cm2 41.(2020•呼伦贝尔)已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.42.(2021•深圳模拟)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为6,OE=EM,求MN的长.【题型6 正方形-半角互模型】43.(1)如图①,正方形ABCD①中,点E、F分别在边BC、CD上,∠EAF =45°,延长CD到点C,使DG=BE,连接EF、AG,求证:EF=FG;(2)如图②,在△ABC中,∠BAC=90°,点M、N在边BC上,且∠MAN =45°,若BM=2,AB=AC,CN=3,求MN的长.44.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想.(不需要证明)45.把一个含45°的三角板的锐角顶点与正方形ABCD的顶点A重合,然后把三角板绕点A顺时针旋转,它的两边分别交直线CB、DC于点M、N.(1)当三角板绕点A旋转到图(1)的位置时,求证:MN=BM+DN.(2)当三角板绕点A旋转到图(2)的位置时,试判断线段MN、BM、DN 之间具有怎样的等量关系?请写出你的猜想,并给予证明.【题型7 正方形-手拉手模型】46.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=3,AG=,求EB的长.47.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE 和BCFG,连接AF、BD.(1)如图①,AF与BD的数量关系和位置关系分别为,;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),①如图②,第(1)问的结论是否仍然成立?请说明理由;②若AC=4,BC=,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.【题型8 正方形-十字架模型】48.(2022春•沙坪坝区校级月考)如图,F是正方形ABCD对角线BD上一点,连接AF,CF,并延长CF交AD于点E.若∠AFC=140°,则∠DEC的度数为()A.80°B.75°C.70°D.65°49.(2022•灞桥区校级模拟)如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF的面积是1,OA的长为1,则正方形的边长AB为()A.1B.2C.D.250.(2022春•孝南区期中)如图1,P为正方形ABCD的边BC上一动点(P 与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E.(1)求证:AP⊥BQ;(2)当P运动到BC中点处时(如图2),连接DE,请你判断线段DE与AD 之间的关系,并说明理由;(3)如图3,在(2)的条件下,过A点作AM⊥DE于点H,交BQ、CD于点N、M,若AB=2,求QM的长度.51.(2021春•船营区校级期中)如图,在正方形ABCD中,E是边AB上的点,连接CE,过点D作DF⊥CE,分别交BC,CE于点F、G.(1)求证:CE=DF;(2)若AB=3,图中阴影部分的面积和与正方形ABCD的面积之比为2:3,则△DCG的面积为,CG+DG的长为.52.(2020秋•莲湖区期中)(1)如图1,在正方形ABCD中,AE、DF相交于点O且AE⊥DF则AE和DF的数量关系为.(2)如图2,在正方形ABCD中,E、F、G分别是边AD、BC、CD上的点,BG⊥EF,垂足为H.求证:EF=BG.(3)如图3,在正方形ABCD中,E、F、M分别是边AD、BC、AB上的点,AE=2,BF=5,BM=1,将正方形沿EF折叠,点M的对应点恰好与CD边上的点N重合,求CN的长度.。
正方形的性质与判定经典例题练习
正方形的性质与判定经典例题练习1. 正方形的定义正方形是一种特殊的四边形,具有以下性质:- 所有边长相等- 所有角都是90度- 对角线相等且垂直2. 正方形的性质2.1. 边长和角度关系假设正方形的边长为a,根据正方形的定义,可以得到以下关系:- 正方形的周长为4a- 正方形的面积为a^2- 正方形的任意一个内角为90度- 正方形的任意一个外角为270度2.2. 对角线关系对角线是指连接正方形两个非相邻顶点的线段,根据正方形的定义,可以得到以下关系:- 正方形的对角线长度为a√2- 正方形的两条对角线相等- 正方形的两条对角线相交于90度角3. 正方形的判定方法在判定一个四边形是否为正方形时,可以使用以下方法:3.1. 边长相等如果一个四边形的四条边长都相等,则可以判定为正方形。
3.2. 内角为90度如果一个四边形的任意一个内角都为90度,则可以判定为正方形。
3.3. 对角线相等且垂直如果一个四边形的对角线相等且垂直,则可以判定为正方形。
4. 经典例题练4.1. 例题一已知一个四边形的边长都为5cm,可以判断它是否为正方形吗?4.2. 例题二已知一个四边形的内角都为90度,可以判断它是否为正方形吗?4.3. 例题三已知一个四边形的对角线相等且垂直,可以判断它是否为正方形吗?以上的例题将帮助读者巩固对正方形性质和判定方法的理解,并提供实际应用的训练。
---希望这份文档能帮助你了解正方形的性质和判定方法,并通过经典例题练习加深对该主题的理解。
如果有任何问题,请随时向我提问!。
正方形的性质及判定练习题
正方形的性质及判定练习题一、知识梳理:1、定义:一组邻边相等的矩形是正方形.2、正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.(4)对称性:既是轴对称图形,又是中心对称图形.3、判定:(1)一组邻边相等的矩形是正方形(2)对角线互相垂直的矩形是正方形(3)有一个是直角的菱形是正方形(4)对角线相等的菱形是正方形总结:矩形+(或)=正方形菱形+(或)=正方形二、基础训练:性质:1、如图,四边形ABCD是正方形,两条对角线相交于点O.(1)一条对角线把它分成_______个全等的________ 三角形;(2)两条对角线把它分成_______个全等的________三角形;图中一共有________个等腰直角三角形;(3)∠AOB=_____度,∠OAB=_____度.(4)AB: AO: AC=________.2、正方形具有而矩形不一定具有的性质是( )A、四个角相等B、对角线互相垂直平分C、对角互补D、对角线相等.3、正方形具有而菱形不一定具有的性质()A、四条边相等.B、对角线互相垂直平分C、对角线平分一组对角D、对角线相等.4、正方形对角线长6,则它的面积为_________ ,周长为________.5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EFGH都是正方形.求证:△ABF≌△DAE.判定:F A B C D 1. 下列说法错误的是( )A.两条对角线相等的菱形是正方形 B.两条对角线相等且垂直平分的四边形是正方形C.两条对角线垂直且相等的四边形是正方形 D. 两条对角线垂直的矩形是正方形2.四个内角都相等的四边形一定是( )A .正方形B .菱形C .矩形D .平行四边形3.已知在□ABCD 中,∠A=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90° B.AB=CD C. AD=BC D. BC=CD4.四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( )A. OA=OB=OC=OD ,AC ⊥BDB. AB ∥CD ,AC=BDC. AD ∥BC ,∠A=∠CD. OA=OC ,OB=OD ,AB=BC5.能使平行四边形ABCD 为正方形的两个条件是 ________ _________ ___________________________________________________________ .(最少填三组)三、【聚焦“中考”】例:如图,在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F . (1)求证:DE=DF .(2)只添加一个条件,使四边形EDFA 是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)自我检测:1.如图,在ABC 中∠ACB=90°,CD 平分∠ACB,DE ⊥BC ,DF⊥AC,垂足分别为E 、F , 求证:四边形CFDE 为正方形2. 如图所示,在Rt ΔABC 中,∠C =90°,∠A 、∠B 的平分线交于点D ,DE ⊥BC 于E ,DF ⊥AC 于F ,试说明四边形CEDF 为正方形。
正方形的性质与判定综合练习题
正方形的性质与判定综合练习题一、判断题(每题4分,共20分)1. 正方形的边长相等。
2. 正方形的对角线长相等。
3. 正方形的对边平行。
4. 正方形的内角都是直角。
5. 正方形的内角和等于360°。
二、选择题(每题4分,共20分)1. 设一个正方形的边长为a,则其对角线的长度为:A. aB. a/2C. a√2D. a²2. 若一个四边形的内角和为360°,则它一定是一个:A. 正方形B. 长方形C. 钝角四边形D. 平行四边形3. 下列说法中正确的是:A. 所有正方形都是长方形B. 所有长方形都是正方形C. 正方形和长方形没有交集D. 正方形和长方形都是平行四边形4. 若一个四边形的内角都是直角,且对边相等,则它一定是一个:A. 正方形B. 长方形C. 菱形D. 三角形5. 如果一个几何图形的边长均相等,对角线长度也相等,且相邻边垂直,则它一定是一个:A. 正方形B. 长方形C. 菱形D. 梯形三、计算题(每题10分,共30分)1. 已知一个正方形的对角线长为10cm,求其边长。
2. 一个正方形的内角和为240°,求其边长。
3. 一个四边形的内角分别是120°、90°、90°和x°,求x的值。
四、解答题(每题20分,共30分)1. 证明:正方形的对边平行。
2. 解答:一个四边形的内角分别是90°、60°、90°和90°,它是什么类型的四边形?3. 解答:一个几何图形的边长均为6cm,它的对角线长度为6√2 cm,它是什么类型的图形?以上是关于正方形的性质与判定的综合练习题,请同学们认真思考并回答。
正方形的性质与判定
正方形的性质与判定一、选择题1. (2011天津)如图,将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为( ) A 、15° B 、30°C 、45°D 、60°故选C .2. (2011山东济南)如图,△ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 1 故选A .3. (2011山东烟台)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是 . 故答案为2.4. (2011福建三明)如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM=DM ;②∠ABN =30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( )A 、1个B 、2个C 、3个D 、4个故选C . 二、填空题5. (2011江苏南京)如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF .将△ABE 绕正方形的中心按逆时针方向旋转到△BCF ,旋转角为α( 0°<α<180°),则∠α= 90° .6. (2011•南通)已知:如图1,O 为正方形ABCD 的中心,分别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD ,连结EF ,将△FOE 绕点O 逆时针旋转α角得到△''F OE (如图2).(1) 探究AE ′与BF'的数量关系,并给予证明; (2) 当α=30°时,求证:△AOE ′为直角三角形.7.(2011江苏宿迁)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△NFM;(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.8.(2011山东日照)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=2时,四边形ABCN的面积最大.9.(2011湖北孝感)已知正方形ABCD,以CD为边作等边△CDE,则∠AED的度数是10.(2011辽宁沈阳)如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).三、解答题11.(2011呼和浩特)如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.12.(2011湖北咸宁)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3求AG,MN的长.13.(2011广西防城港)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.14.(2011广西来宾)已知正方形ABCD的对角线AC 与BD交于点O,点,点E、F分别是OB、OC上的动点,(1)如果动点E、F满足BE=CF(如图).①写出所有以点E或F为顶点的全等三角形(不得添加辅助线)②证明:AE⊥BF(2)如果动点E、F满足BE=OF(如图),问AE⊥BF 时,点E在什么位置,并证明你的结论.(第24(2)题图)(第24(1)题图)B15. 2011天水)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD内作等边△BC E,并与正方形的对角线交于点F、G,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.H FEG D CB A。
北师大版九年级数学上册--第一章 1.3《正方形的性质与判定》同步练习题(含答案)
1.3《正方形的性质与判定》同步练习一、填空题1.正方形的定义:有一组邻边______并且有一个角是______的平行四边形叫做正方形,因此正方形既是一个特殊的有一组邻边相等的______,又是一个特殊的有一个角是直角的______。
2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都是______;四条边都______且__________________;正方形的两条对角线______,并且互相______,每条对角线平分______对角。
它有______条对称轴。
3.正方形的判定:(1)____________________________________的平行四边形是正方形;(2)____________________________________的矩形是正方形;(3)____________________________________的菱形是正方形。
4.对角线________________________________的四边形是正方形。
5.若正方形的边长为a ,则其对角线长为______,若正方形ACEF 的边是正方形ABCD 的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______。
6.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______。
7.如图,E 是正方形ABCD 的对角线BD 上一点,且BE =BC ,则∠ACE = 。
8.如图,已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 。
二、选择题。
1、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ) A .选①② B .选②③ C .选①③ D .选②④2、四边形ABCD 的对角线AC =BD ,AC ⊥BD ,分别过点A ,B ,C ,D 作对角线的平行线,所成的四边形EFMN 是( )A .正方形B .菱形C .矩形D .任意四边形3、已知四边形中,对角线与相交于点,,下列判断中错误的是( ) A.如果=,=,那么四边形是平行四边形 B.如果,=,那么四边形是矩形 C.如果=,,那么四边形是菱形 D.如果=,垂直平分,那么四边形是正方第7题图 第8题图4、满足下列条件的四边形是正方形的是()A.对角线互相垂直平分的平行四边形B.对角线互相平分且相等的矩形C.对角线互相垂直平分的菱形D.对角线互相垂直平分且相等的四边形5、如图,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是( )A.45° B.22.5° C.67.5° D.75°题5图题6图题7图6、如图,点在正方形内,满足,,,则阴影部分的面积是()A.76B.70C.48D.247、如图,在四边形中,点是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.,B.,C.,D.,,8、如图,四边形是正方形,对角线,交于点,下列结论:①;②;③;④正方形有四条对称轴.上述结论正确的有()A.①②③④B.①②③C.②③④D.①③④9、下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.个B.个C.个D.个三、解答题1、已知Rt△ABC中,∠C=90°,CD平分∠ACB交AB于D,DF//BC,DE//AC。
正方形判定与性质培优
19.3.2 正方形的判断与性质一.选择题(共 5 小题)1.以下说法错误的选项是()A .有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且相互垂直的四边形是正方形2.在正方形 ABCD 的边 AB 、 BC、 CD 、DA 上分别随意取点 E、 F、 G、H .这样获得的四边形EFGH 中,是正方形的有()A.1 个 B.2 个 C.4 个 D.无量多个3.如图,四边形ABCD 中, AD=DC ,∠ADC= ∠ABC=90 °,DE ⊥ AB ,若四边形 ABCD 面积为16,则 DE 的长为()A . 3B. 2C. 4D. 84.△ ABC 中,∠C=90 °,点 O 为△ ABC 三条角均分线的交点, OD ⊥ BC 于 D , OE⊥AC 于 E, OF⊥ AB 于 F,且AB=10cm , BC=8cm , AC=6cm ,则点 O 到三边 AB 、 AC 、 BC 的距离为()A . 2cm, 2cm, 2cmB .3cm, 3cm, 3cm C. 4cm, 4cm, 4cm D .2cm, 3cm, 5cm5.如图,在一个大正方形,放入三个面积相等的小正方形纸片,这三纸片遮住的总面积是24 平方厘米,且未遮住的面积比小正方形面积的四分之一还少 3 平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25C. 26D. 36二.填空题(共 4 小题)6.现有一边长等于 a( a> 16)的正方形纸片,从距离正方形的四个极点8cm 处,沿 45°角画线,将正方形纸片分成 5 部分,则暗影部分是_________(填写图形的形状)(如图),它的一边长是_________ .7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt △ADE ,∠AED=90 °,连结OE, DE=6 ,OE=8 ,则另向来角边AE的长为_________.8.如图,在四边形 ABCD 中,∠ADC= ∠ ABC=90 °, AD=CD , DP⊥ AB 于 P.若四边形 ABCD 的面积是18,则DP 的长是 _________ .9.四边形 ABCD 的对角线AC 和 BD 订交于点O,设有以下条件:① AB=AD ;②∠ DAB=90 °;③ AO=CO ,BO=DO ;④矩形 ABCD ;⑤ 菱形 ABCD ,⑥ 正方形 ABCD ,则在以下推理不建立的是_________A、①④ ? ⑥;B、①③ ? ⑤;C、①② ? ⑥;D、②③ ? ④三.解答题(共 11 小题)10.如图,已知点 E、 F、G、 H 分别在正方形 ABCD 的各边上,且 AE=BF=CG=DH , AF 、 BG 、CH 、 DE 分别订交于点 A ′、B ′、 C′、 D′.求证:四边形 A ′B′C′D′是正方形.11.如图,在正方形 ABCD 中,点 M 在边 AB 上,点 N 在边 AD 的延伸线上,且 BM=DN .点 E 为 MN 的中点, DE 的延伸线与 AC 订交于点 F.试猜想线段 DF 与线段 AC 的关系,并证你的猜想.12.如图,正方形ABCD 边长为 6.菱形 EFGH 的三个极点E、 G、H 分别在正方形ABCD 的边 AB 、CD、DA 上,且 AH=2 ,连结 CF.(1)当 DG=2 时,求证:菱形 EFGH 为正方形;(2)设 DG=x ,试用含 x 的代数式表示△FCG 的面积.13.如图,正方形ABCD ,动点 E 在 AC 上, AF ⊥ AC ,垂足为 A , AF=AE .(1)求证: BF=DE ;(2)当点 E 运动到 AC 中点时(其余条件都保持不变),问四边形 AFBE 是什么特别四边形?说明原因.14.已知,如图,矩形 ABCD 中, AD=6 , DC=7 ,菱形 EFGH 的三个极点 E, G, H 分别在矩形 ABCD 的边 AB ,CD,DA 上, AH=2 ,连结 CF.(1)若 DG=2 ,求证四边形 EFGH 为正方形;(2)若 DG=6 ,求△ FCG 的面积;(3)当 DG 为什么值时,△ FCG 的面积最小.15.如图,正方形ABCD 中, AC 是对角线,今有较大的直角三角板,一边一直经过点 B ,直角极点P 在射线 AC 上挪动,另一边交DC于Q.( 1)如图 1,当点 Q 在 DC 边上时,猜想并写出PB 与 PQ 所知足的数目关系;并加以证明;( 2)如图 2,当点 Q 落在 DC 的延伸线上时,猜想并写出PB 与 PQ 知足的数目关系,请证明你的猜想.16.如图,已知四边形 ABCD 是正方形,分别过 A 、 C 两点作 l1∥ l2,作 BM ⊥ l1于 M , DN⊥ l 1于 N ,直线 MB 、 ND 分别交 l2于 Q、 P.求证:四边形 PQMN 是正方形.17.在正方形 ABCD 各边前一次截取AE=BF=CG=DH ,连结 EF,FG,GH ,HE.试问四边形EFGH 是不是正方形?18.如图,四边形ABCD 是正方形,点P 是 BC上随意一点,DE⊥ AP于点E,BF⊥AP于点F,CH ⊥ DE于点H,BF 的延伸线交CH 于点 G.(1)求证: AF ﹣ BF=EF ;(2)四边形 EFGH 是什么四边形?并证明;(3)若 AB=2 , BP=1,求四边形 EFGH 的面积.19.如图,△ ABC 中,∠C=90 °,∠ BAC 、∠ ABC 的均分线订交于点 D,DE⊥ BC ,DF⊥ AC ,垂足分别为 E、F.问四边形 CFDE 是正方形吗?请说明原因.20.如图,在△ABC 中,∠BAC=90 °,AB=AC ,点 D 是 BC 的中点, DE ⊥AB ,DF⊥ AC 垂足分别为E,F.求证:四边形 DEAF 是正方形.19.3.2 正方形的判断与性质参照答案与试题分析一.选择题(共 5 小题)1.以下说法错误的选项是()A .有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且相互垂直的四边形是正方形考点:正方形的判断.剖析:正方形:四个角都是直角,四条边都相等,对角线相等,且相互垂直均分的平行四边形;菱形:四条边都相等,对角线相互垂直均分的平行四边形;矩形:四个角都相等,对角线相等的平行四边形.解答:解:A 、有一个角为直角的菱形的特点是:四条边都相等,四个角都是直角,则该菱形是正方形.故本选项说确;B、有一组邻边相等的矩形的特点是:四条边都相等,四个角都是直角.则该矩形为正方形.故本选项说确;C、对角线相等的菱形的特点是:四条边都相等,对角线相等的平行四边形,即该菱形为正方形.故本选项说确;D、对角线相等且相互垂直的平行四边形是正方形.故本选项说法错误;应选 D.评论:本题考察了正方形的判断.正方形集矩形、菱形的性质于一身,是特别的平行四边形.2.在正方形 ABCD 的边 AB 、 BC、 CD 、DA 上分别随意取点E、 F、 G、H .这样获得的四边形EFGH 中,是正方形的有()A. 1个B.2 个C.4 个D.无量多个考点:正方形的判断与性质;全等三角形的判断.专题:计算题.剖析:在正方形四边上随意取点E、 F、 G、 H,若能证明四边形 EFGH 为正方形,则说明能够获得无量个正方形.解答:解:无量多个.如图正方形ABCD :AH=DG=CF=BE , HD=CG=FB=EA ,∠ A= ∠ B=∠ C=∠ D,有△AEH ≌△DHG ≌△CGF≌ △BFE,则 EH=HG=GF=FE ,此外很简单得四个角均为90°则四边形 EHGF 为正方形.应选 D.评论:本题考察了正方形的判断与性质,难度适中,利用三角形全等的判断证明EH=HG=GF=FE .3.如图,四边形ABCD 中, AD=DC ,∠ADC= ∠ABC=90 °,DE ⊥ AB ,若四边形ABCD 面积为 16,则 DE 的长为()A.3B.2C.4D.8考点:正方形的判断与性质.专题:证明题.剖析:如图,过点 D 作 BC 的垂线,交 BC 的延伸线于 F,利用互余关系可得∠ A= ∠ FCD ,又∠ AED= ∠ F=90°,AD=DC ,利用 AAS 能够判断△ ADE ≌ △ CDF,∴ DE=DF , S 四边形ABCD =S 正方形DEBF=16 , DE=4 .解答:解:过点 D 作 BC 的垂线,交 BC 的延伸线于 F,∵ ∠ ADC= ∠ ABC=90 °,∠ CDF+ ∠ EDC=90 °,∴∠A=∠FCD ,又∠ AED= ∠ F=90°, AD=DC ,∴△ADE ≌△CDF,∴DE=DF ,S 四边形ABCD =S 正方形DEBF=16 ,∴ DE=4 .应选 C.评论:本题运用割补法,或许旋转法将四边形ABCD转变为正方形,依据面积保持不变,来求正方形的边长.4.△ ABC 中,∠C=90 °,点 O 为△ ABC 三条角均分线的交点,OD ⊥ BC 于 D , OE⊥AC 于AB=10cm , BC=8cm , AC=6cm ,则点 O 到三边 AB 、 AC 、 BC 的距离为()A .2cm, 2cm, 2cmB .3cm, 3cm, 3cm C.4cm, 4cm, 4cm D .E, OF⊥ AB 于 F,且2cm,3cm, 5cm考点:正方形的判断与性质.剖析:连结 OA , OB, OC,利用角的均分线上的点到角的两边的距离相等可知△BDO≌△ BFO,△CDO ≌△ CEO ,△ AEO ≌△ AFO ,∴BD=BF ,CD=CE ,AE=AF ,又因为点 O 到三边 AB 、AC 、BC 的距离是 CD ,∴ AB=8 ﹣ CD+6 ﹣ CD=10 ,解得 CD=2 ,所以点 O 到三边 AB 、 AC 、BC 的距离为 2.解答:解:连结 OA , OB , OC,则△ BDO ≌ △ BFO ,△ CDO≌ △ CEO,△ AEO ≌ △AFO ,∴BD=BF , CD=CE , AE=AF ,又∵ ∠ C=90, OD⊥ BC 于 D, OE⊥ AC 于 E,且 O 为△ ABC 三条角均分线的交点∴四边形 OECD 是正方形,则点 O 到三边 AB、 AC、BC 的距离 =CD,∴ AB=8 ﹣ CD+6﹣ CD= ﹣ 2CD+14 ,又依据勾股定理可得:AB=10 ,即﹣ 2CD+14=10∴ CD=2 ,即点 O 到三边 AB 、 AC 、 BC 的距离为2cm.应选 A评论:本题主要考察垂直均分线上的点到线段两段的距离相等的性质和边的和差关系.5.如图,在一个大正方形,放入三个面积相等的小正方形纸片,这三纸片遮住的总面积是24 平方厘米,且未遮住的面积比小正方形面积的四分之一还少 3 平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40B.25C.26D.36考点:正方形的判断与性质.专题:计算题.剖析:设小正方形的边长为a,大正方形的边长为b,由正方形的面积公式,依据题意列出方程组解方程组得出大正方形的边长,则可求出头积.解答:解:设小正方形的边长为a,大正方形的边长为 b,由这三纸片遮住的总面积是24 平方厘米,可得ab+a( b﹣ a)=24① ,2 2将①②联立解方程组可得:a=4, b=5,∴大正方形的边长为5,∴面积是 25.应选 B.评论:本题考察了正方形的性质及面积公式,难度较大,重点依据题意列出方程.二.填空题(共 4 小题)6.现有一边长等于a( a> 16)的正方形纸片,从距离正方形的四个极点8cm 处,沿 45°角画线,将正方形纸片分成 5 部分,则暗影部分是正方形(填写图形的形状)(如图),它的一边长是cm.考点:正方形的判断与性质.专题:压轴题.剖析:延伸小正方形的一边交大正方形于一点,连结此点与距大正方形极点8cm 处的点,结构直角边长为8的等腰直角三角形,将小正方形的边长转变为等腰直角三角形的斜边长来求解即可.解答:解:如图,作AB 平行于小正方形的一边,延伸小正方形的另一边与大正方形的一边交于 B 点,∴ △ ABC 为直角边长为8cm 的等腰直角三角形,∴AB=AC=8 ,∴暗影正方形的边长 =AB=8cm .故答案为:正方形, cm.评论:本题考察了正方形的性质与勾股定理的知识,题目同时也浸透了转变思想.7.如图,正方形则另向来角边AE ABCD的长为的对角线交于点10.O,以AD为边向外作Rt △ADE,∠AED=90 °,连结OE, DE=6 ,OE=8 ,考点:正方形的判断与性质;全等三角形的判断与性质;勾股定理.剖析:第一过点 O 作 OM ⊥ AE 于点 M ,作 ON⊥DE ,交 ED 的延伸线于点N,易得四边形EMON 是正方形,点 A ,O, D,E 共圆,则可得△ OEN 是等腰直角三角形,求得EN 的长,既而证得Rt△AOM ≌ Rt△ DON ,得到 AM=DN ,既而求得答案.解答:解:过点 O 作 OM ⊥ AE 于点 M ,作 ON⊥ DE ,交 ED 的延伸线于点N,∵ ∠ AED=90 °,∴四边形 EMON 是矩形,∵正方形 ABCD 的对角线交于点O,∴ ∠ AOD=90 °, OA=OD ,∴ ∠ AOD+ ∠ AED=180 °,∴点 A ,O,D ,E 共圆,∴=,∴∠ AEO= ∠ DEO= ∠ AED=45 °,∴OM=ON ,∴四边形 EMON 是正方形,∴EM=EN=ON ,∴△ OEN 是等腰直角三角形,∵OE=8,∴ EN=8 ,∴EM=EN=8 ,在 Rt△ AOM 和 Rt △ DON 中,,∴Rt△ AOM ≌ Rt△ DON ( HL ),∴AM=DN=EN ﹣ ED=8 ﹣ 6=2,∴AE=AM+EM=2+8=10 .故答案为: 10.评论:本题考察了正方形的判断与性质、全等三角形的判断与性质以及等腰直角三角形性质.本题难度较大,注意掌握协助线的作法,注意掌握数形联合思想的应用.8.如图,在四边形 ABCD 中,∠ADC= ∠ ABC=90 °, AD=CD , DP⊥ AB 于 P.若四边形 ABCD 的面积是18,则DP的长是 3 .考点:正方形的判断与性质;全等三角形的判断与性质.剖析:过点 D 作 DE ⊥ DP 交 BC 的延伸线于E,先判断出四边形DPBE 是矩形,再依据等角的余角相等求出∠ ADP= ∠CDE ,再利用“角角边”证明△ ADP 和△ CDE 全等,依据全等三角形对应边相等可得DE=DP ,而后判断出四边形 DPBE 是正方形,再依据正方形的面积公式解答即可.解答:解:如图,过点 D 作 DE ⊥ DP 交 BC 的延伸线于E,∵ ∠ ADC= ∠ ABC=90 °,∴四边形 DPBE 是矩形,∵ ∠ CDE+ ∠CDP=90 °,∠ADC=90 °,∴ ∠ ADP+ ∠CDP=90 °,∴ ∠ ADP= ∠CDE ,∵DP⊥AB ,∴∠ APD=90 °,∴ ∠ APD= ∠E=90 °,在△ADP 和△ CDE 中,,∴ △ ADP ≌△ CDE (AAS ),∴DE=DP ,四边形 ABCD 的面积 =四边形 DPBE 的面积 =18,∴矩形 DPBE 是正方形,∴DP==3 .故答案为: 3.评论:本题考察了正方形的判断与性质,全等三角形的判断与性质,熟记各性质并作协助线结构出全等三角形和正方形是解题的重点.9.四边形 ABCD 的对角线 AC 和 BD 订交于点 O,设有以下条件:① AB=AD;②∠ DAB=90 °;③ AO=CO ,BO=DO ;④矩形 ABCD ;⑤ 菱形 ABCD ,⑥ 正方形 ABCD ,则在以下推理不建立的是CA、①④ ? ⑥;B、①③ ? ⑤;C、①② ? ⑥;D、②③ ? ④考点:正方形的判断与性质;全等三角形的判断与性质;菱形的判断与性质;矩形的判断与性质.专题:证明题.剖析:依据矩形、菱形、正方形的判断定理,对角线相互均分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,依据已知对各个选项进行剖析从而获得最后的答案.解答:解: A 、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由① ,一组邻边相等的平行四边形是菱形,故正确;C、由①②不可以判断四边形是正方形;D、由③得,四边形是平行四边形,再由② ,一个角是直角的平行四边形是矩形,故正确.应选 C.评论:本题用到的知识点是:矩形、菱形、正方形的判断定理,如:一组邻边相等的矩形是正方形;对角线相互均分且一组邻边相等的四边形是菱形;对角线相互均分且一个角是直角的四边形是矩形.灵巧掌握这些判断定理是解本题的重点.三.解答题(共11 小题)ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相10.如图,已知点E、 F、G、 H 分别在正方形交于点 A ′、B ′、 C′、 D′.求证:四边形 A ′B′C′D′是正方形.考点:正方形的判断与性质;全等三角形的判断与性质.专题:证明题.剖析:依照三角形的角和定理能够判断四边形 A ′B′C′D′的三个角是直角,则四边形是矩形,而后证明一组邻边相等,能够证得四边形是正方形.解答:证明:在正方形ABCD 中,∵在△ABF 和△ BCG 中,∴ △ ABF ≌△ BCG (SAS)∴ ∠ BAF= ∠GBC ,∵ ∠ BAF+ ∠AFB=90 °,∴ ∠ GBC+ ∠ AFB=90 °,∴ ∠ BB ′F=90°,∴ ∠ A ′B′C′=90°.∴同理可得∠ B ′C′D′=∠ C′D′A′=90°,∴四边形 A ′B′C′D′是矩形.∵在△AB ′B 和△BC′C 中,∴ △ AB ′B≌ △ BC′C( AAS ),∴AB ′=BC ′∵在△AA ′E 和△BB ′F中,∴ △ AA ′E≌ △ BB ′F( AAS ),∴AA ′=BB ′∴A ′B′=B ′C′∴矩形 A ′B′C′D′是正方形.评论:本题考察了正方形的判断,判断的方法是证明是矩形同时是菱形.11.如图,在正方形DE 的延伸线与ACABCD订交于点中,点 M 在边F.试猜想线段AB 上,点DF 与线段N 在边 AD 的延伸线上,且AC 的关系,并证你的猜想.BM=DN.点E 为MN的中点,考点:正方形的判断与性质;全等三角形的判断与性质;线段垂直均分线的性质.专题:研究型.剖析:猜想:线段 DF 垂直均分线段AC ,且 DF=AC ,过点 M 作 MG ∥ AD ,与 DF 的延伸线订交于点 G,作 GH⊥ BC,垂足为 H,连结 AG 、 CG.依据正方形的性质和全等三角形的证明方法证明△AMG ≌ △CHG 即可.解答:猜想:线段 DF 垂直均分线段AC ,且 DF=AC ,证明:过点 M 作 MG ∥ AD ,与 DF 的延伸线订交于点 G.则∠EMG= ∠N,∠BMG= ∠ BAD ,∵ ∠ MEG= ∠ NED , ME=NE ,∴△MEG ≌△ NED,∴MG=DN .∵BM=DN ,∴MG=BM .作 GH⊥ BC,垂足为 H,连结 AG 、CG.∵四边形 ABCD 是正方形,∴ AB=BC=CD=DA ,∠ BAD= ∠ B= ∠ ADC=90 °,∵ ∠ GMB= ∠ B= ∠ GHB=90 °,∴四边形 MBHG 是矩形.∵MG=MB ,∴四边形 MBHG 是正方形,∴MG=GH=BH=MB ,∠ AMG= ∠ CHG=90 °,∴AM=CH ,∴△ AMG ≌ △CHG .∴GA=GC .又∵ DA=DC ,∴ DG 是线段 AC 的垂直均分线.∵ ∠ ADC=90 °, DA=DC ,∴DF=AC即线段 DF 垂直均分线段AC ,且 DF=AC .评论:本题综合考察了矩形的判断和性质、正方形的判断和性质,垂直均分线的判断和性质,全等三角形的性质和判断等知识点,本题综合性比较强,难度较大,但题型较好,训练了学生剖析问题和解决问题以及敢于猜想的能力.12.如图,正方形ABCD 边长为 6.菱形 EFGH 的三个极点E、 G、H 分别在正方形ABCD 的边 AB 、CD、DA 上,且 AH=2 ,连结 CF.(1)当 DG=2 时,求证:菱形 EFGH 为正方形;(2)设 DG=x ,试用含 x 的代数式表示△FCG 的面积.考点:正方形的判断与性质;全等三角形的判断与性质;菱形的性质.剖析:(1)因为四边形ABCD 为正方形,四边形 HEFG 为菱形,那么∠D= ∠A=90 °,HG=HE ,而 AH=DG=2易证△ AHE ≌ △ DGH ,从而有∠ DHG= ∠HEA ,等量代换可得∠ AHE+∠ DHG=90°,易证四边形HEFG 为正方形;( 2)欲求△ FCG 的面积,由已知得CG 的长易求,只要求出GC 边的高,经过证明△ AHE≌ △ MFG可得.解答:(1)证明:在△ HDG 和△ AEH 中,,∵四边形 ABCD 是正方形,∴ ∠ D=∠ A=90 °,∵四边形 EFGH 是菱形,∴HG=HE ,∵DG=AH=2 ,∴Rt△ HDG ≌ △ AEH ,∴∠ DHG= ∠ AEH ,∴∠ DHG+ ∠ AHE=90 °∴∠ GHE=90 °,∴菱形 EFGH 为正方形;( 2)解:过 F 作 FM ⊥ CD ,垂足为M ,连结 GE∵CD∥ AB ,∴∠AEG= ∠MGE ,∵GF∥ HE ,∴ ∠ HEG= ∠ FGE,∴∠AEH= ∠FGM,在 Rt△ AHE 和 Rt△ GFM 中,∵ ,∴ Rt△ AHE ≌ Rt△ GFM ,∴MF=2 ,∵ DG=x ,∴CG=6﹣ x.∴S△FCG=CG?FM=6 ﹣ x.评论:作 FM ⊥ DC,交本题考察了正方形的性质、菱形的性质、全等三角形的判断和性质,解题的重点是作协助线:过DC 延伸线于M ,连结 GE,结构全等三角形和错角.F13.如图,正方形ABCD ,动点 E 在 AC 上, AF ⊥ AC ,垂足为 A , AF=AE .(1)求证: BF=DE ;(2)当点 E 运动到 AC 中点时(其余条件都保持不变),问四边形 AFBE 是什么特别四边形?说明原因.考点:正方形的判断与性质;全等三角形的判断与性质.剖析:(1)依据正方形的性质判断△ ADE≌△ ABF后即可获得( 2)利用正方形的判断方法判断四边形AFBE 为正方形即可.BF=DE ;解答:(1)证明: ∵ 正方形 ABCD ,∴ AB=AD , ∠BAD=90 °,∵AF ⊥AC ,∴ ∠ EAF=90 °,∴ ∠ BAF= ∠EAD ,在△ADE 和△ ABF 中∴ △ ADE ≌ △ ABF ( SAS ),∴ BF=DE ;( 2)解:当点 E 运动到 AC 的中点时四边形 AFBE 是正方形,原因:∵ 点 E 运动到 AC 的中点, AB=BC ,∴ BE ⊥AC , BE=AE=AC ,∵ AF=AE ,∴ BE=AF=AE ,又 ∵ BE ⊥ AC , ∠FAE= ∠ BEC=90 °,∴ BE ∥AF ,∵ BE=AF ,∴ 得平行四边形 AFBE ,∵ ∠ FAE=90 °,AF=AE ,∴ 四边形 AFBE 是正方形.评论:本题考察了正方 形的判断和性质,解题的重点是正确的利用正方形的性质.14.已知,如图,矩形 ABCD 中, AD=6 , DC=7 ,菱形 EFGH 的三个极点 E , G , H 分别在矩形 ABCD 的边 AB ,CD , DA 上, AH=2 ,连结 CF .( 1)若 DG=2 ,求证四边形 EFGH 为正方形;( 2)若 DG=6 ,求 △ FCG 的面积;( 3)当 DG 为什么值时, △ FCG 的面积最小.考点: 正方形的判断与性质;全等三角形的判断与性质;菱形的性质;矩形的性质.专题: 计算题;压轴题.剖析: (1)因为四边形 ABCD 为矩形, 四边形 HEFG 为菱形,那么 ∠D= ∠A=90 °,HG=HE ,而 AH=DG=2 ,易证 △ AHE ≌ △ DGH ,从而有 ∠ DHG= ∠HEA ,等量代换可得 ∠ AHE+ ∠ DHG=90 °,易证四边形 HEFG 为正方形; ( 2)过 F 作 FM ⊥ DC ,交 DC 延伸线于 M ,连结 GE ,因为 AB ∥ CD ,可得 ∠ AEG= ∠ MGE ,同理有 ∠ HEG= ∠ FGE ,利用等式性质有 ∠ AEH= ∠ MGF ,再联合 ∠ A= ∠ M=90 °,HE=FG ,可证 △ AHE ≌ △ MFG ,从而有 FM=HA=2 (即无论菱形 EFGH 怎样变化,点 F 到直线 CD 的距离一直为定值 2),从而可求三角形面积;HE 2≤53,在 Rt △ DHG ( 3)先设 DG=x ,由第( 2)小题得, S △FCG =7﹣ x ,在△ AHE 中,AE ≤AB=7 ,利用勾股定理可得中,再利用勾股定理可得x 2+16≤53,从而可求 x ≤,从而可适当 x=时, △ GCF 的面积最小. 解答: 解:( 1) ∵四边形 ABCD 为矩形,四边形 HEFG 为菱形,∴ ∠ D=∠ A=9 0°, HG=HE ,又 AH=DG=2 ,∴ Rt △ AHE ≌ Rt △ DGH (HL ),∴ ∠ DHG= ∠ HEA ,∵ ∠ AHE+ ∠ HEA=90 °,∴ ∠ AHE+ ∠ DHG=90 °,∴ ∠ EHG=90 °,∴ 四边形 HEFG 为正方形;( 2)过 F 作 FM ⊥DC ,交 DC 延伸线于 M ,连结 GE ,∵AB ∥CD ,∴∠AEG= ∠MGE ,∵ HE ∥ GF ,∴ ∠ HEG= ∠ FGE ,∴∠AEH= ∠MGF ,在 △ AHE 和 △ MFG 中, ∠ A= ∠M=90 °,HE=FG , ∴△AHE ≌△MFG ,∴ FM=HA=2 ,即不论菱形 EFGH 怎样变化,点 F 到直线 CD 的距离一直为定值 2,所以;( 3)设 DG=x ,则由第( 2)小题得, S △ FCG =7﹣ x ,在 △AHE 中, AE ≤AB=7 ,∴ HE 2≤53,∴ x 2+16≤53,∴ x ≤,∴ S △FCG 的最小值为,此时 DG= ,∴ 当 DG= 时, △ FCG 的面积最小为() .评论: 本题考察了矩形、菱形的性质、全等三角形的判断和性质、勾股定理.解题的重点是作协助线:过F 作 FM ⊥ DC ,交 DC 延伸线于 M ,连结 GE ,结构全等三角形和错角.15.如图,正方形 ABCD 中, AC 是对角线,今有较大的直角三角板,一边一直经过点 B ,直角极点P 在射线 AC 上挪动,另一边交 DC 于Q .( 1)如图 1,当点 Q 在 DC 边上时,猜想并写出 PB 与 PQ 所知足的数目关系;并加以证明;( 2)如图 2,当点 Q 落在 DC 的延伸线上时,猜想并写出 PB 与 PQ 知足的数目关系,请证明你的猜想.考点: 正方形的判断与性质;全等三角形的判断与性质.剖析: (1)过 P 作 PE ⊥BC , PF ⊥ CD ,证明 Rt △ PQF ≌ Rt △ PBE ,即可;( 2)证明思路同( 1)解答: (1) PB=PQ ,证明:过 P 作 PE ⊥ BC , PF ⊥ CD ,∵ P , C 为正方形对角线 AC 上的点,∴ PC 均分 ∠ DCB , ∠ DCB=90 °,∴ PF=PE ,∴ 四边形 PECF 为正方形,∵ ∠ BPE+∠ QPE=90°, ∠ QPE+∠ QPF=90 °,∴ ∠ BPE=∠ QPF ,∴ Rt △ PQF ≌ Rt △PBE ,∴ PB=PQ ;( 2) PB=PQ ,证明:过 P 作 PE⊥ BC , PF⊥ CD ,∵ P, C 为正方形对角线AC 上的点,∴PC 均分∠ DCB ,∠ DCB=90 °,∴PF=PE,∴四边形 PECF 为正方形,∵ ∠ BPF+∠ QPF=90°,∠ BPF+ ∠ BPE=90 °,∴ ∠ BPE=∠ QPF,∴Rt△ PQF≌ Rt△PBE,∴PB=PQ .本题考察了正方形,角均分线的性质,以及全等三角形判断与性质.本题综合性较强,注意数形结评论:合思想.16.如图,已知四边形 ABCD 是正方形,分别过 A 、 C 两点作 l1∥ l2,作 BM ⊥ l1于 M , DN⊥ l 1于 N ,直线 MB 、 ND 分别交 l2于 Q、 P.求证:四边形 PQMN 是正方形.考点:正方形的判断与性质.专题:证明题;压轴题.剖析:可由 Rt△ ABM ≌Rt△ DAN , AM=DN同理可得 AN=NP ,所以 MN=PN ,从而可得其为正方形.解答:证明: l1∥ l2, BM ⊥ l 1, DN ⊥ l2,∴ ∠ QMN= ∠P=∠ N=90 °,∴四边形 PQMN 为矩形,∵AB=AD ,∠ M= ∠ N=90 °∠ADN+ ∠ NAD=90 °,∠ NAD+∠BAM=90 °,∴∠ADN= ∠BAM ,又∵ AD=BA ,∴Rt△ ABM ≌ Rt△DAN ( AAS ),∴AM=DN同理 AN=DP ,∴AM+AN=DN+DP ,即 MN=PN .∴四边形 PQMN 是正方形.评论:本题考察了矩形的判断和性质、全等三角形的判断和性质以及正方形的判断,解题的重点是娴熟掌握各样几何图形的性质和判断方法.17.在正方形 ABCD 各边前一次截取AE=BF=CG=DH ,连结 EF,FG,GH ,HE.试问四边形EFGH 是不是正方形?考点:正方形的判断与性质.剖析:依据正方形的性质可得 AB=BC=CD=AD,∠ A= ∠ B= ∠C=∠D ,而后求出 BE=CF=DG=AH ,再利用“边角边”证明△AHE 和△ BEF 和△ CFG 和△ DGH 全等,依据全等三角形对应边相等可得EF=FG=GH=EH ,全等三角形对应角相等可得∠ AHE= ∠ BEF= ∠ CFG= ∠ DGH ,再求出∠ EFG=∠ FGH= ∠ GHE= ∠ FEH=90 °,从而获得四边形EFGH 是正方形.解答:解:四边形 EFGH 是正方形.原因以下:∵四边形 ABCD 是正方形,∴AB=BC=CD=AD ,∠ A= ∠ B=∠ C= ∠D ,∵AE=BF=CG=DH ,∴AB ﹣ AE=BC ﹣ BF=CD ﹣CG=AD ﹣ DH ,即 BE=CF=DG=AH ,∴△ AHE ≌ △ BEF≌ △CFG≌ △DGH ,∴EF=FG=GH=EH ,∠ AHE= ∠ BEF= ∠ CFG= ∠ DGH ,∴∠ EFG= ∠ FGH= ∠ GHE= ∠ FEH=90 °,∴四边形 EFGH 是正方形.评论:本题考察了正方形的判断与性质,全等三角形的判断与性质,熟记各性质并求出被截取的四个小直角三角形全等是解题的重点.18.如图,四边形 ABCD 是正方形,点 P 是 BC 上随意一点, DE⊥ AP 于点 E, BF ⊥ AP 于点 F,CH ⊥ DE 于点 H, BF 的延伸线交 CH 于点 G.(1)求证: AF ﹣ BF=EF ;(2)四边形 EFGH 是什么四边形?并证明;考点:正方形的判断与性质;全等三角形的判断与性质;剖析:(1)利用全等三角形的判断第一得出△ AED≌△ BFA,从而得出AE=BF ,即可证明结论;(2)第一得出四边形 EFGH 是矩形,再利用△AED ≌△ BFA ,同理可得:△ AED ≌ △ DHC ,从而得出 EF=EH ,即可得出答案;解答:(1)证明:∵ DE⊥ AP 于点 E, BF⊥ AP 于点 F, CH ⊥DE 于点 H,∴ ∠ AFB= ∠AED= ∠DHC=90 °,∴ ∠ ADE+ ∠ DAE=90 °,又∵ ∠ DAE+ ∠ BAF=90 °,∴∠ADE= ∠BAF ,在△AED 和△ BFA 中,,∴△AED ≌△BFA,∴AE=BF ,∴AF ﹣ AE=EF ,即 AF ﹣ BF=EF ;( 2)证明:∵ ∠ AFB= ∠AED= ∠DHC=90 °,∴四边形 EFGH 是矩形,∵ △ AED ≌ △ BFA ,同理可得:△ AED≌ △ DHC,∴△AED ≌△BFA≌ △DHC,∴DH=AE=BF , AF=DE=CH ,∴DE﹣ DH=AF ﹣ AE ,∴EF=EH ,∴矩形 EFGH 是正方形;19.如图,△ ABC 中,∠C=90 °,∠ BAC 、∠ ABC 的均分线订交于点 D,DE⊥ BC ,DF⊥ AC ,垂足分别为 E、F.问四边形 CFDE 是正方形吗?请说明原因.考点:正方形的判断;角均分线的性质.剖析:第一利用垂直的定义证得四边形该四边形是正方形.解答:证明:∵ ∠C=90 °, DE ⊥BC ∴四边形 DECF 为矩形,∵ ∠ A 、∠ B 的均分线交于点D,于点CFDE 是矩形,而后利用角均分线的性质获得E, DF⊥ AC 于点 F,DE=DF ,从而判断∴DF=DE ,∴四边形 CFDE 是正方形.评论:本题主要考察了角均分线的性质,三角形的切圆与心,解题的重点是利用正方形的判断方法证得四边形 CFDE 是正方形.20.如图,在△ABC 中,∠BAC=90 °,AB=AC ,点 D 是 BC 的中点, DE ⊥AB ,DF⊥ AC 垂足分别为E,F.求证:四边形 DEAF 是正方形.考点:正方形的判断;全等三角形的判断与性质.专题:证明题.剖析:由题意先证明□AEDF 是矩形,再依据两角及其一角的对边对应相等来证组对边相等的矩形证明□AEDF 是正方形.解答:证明:∵DE⊥AB ,DF⊥AC△ BDE ≌ △ CDF,依占有一∴ ∠ AED=90 °,∠ AFD=90 °∵ ∠ BAC=90 °∴ ∠ EDF=90 °∴ □AEDF 是矩形在△BDE 和△ CDF 中∵ AB=AC∴ ∠ ABC= ∠ ACB∵DE⊥ AB , DF⊥ AC∴ ∠ DEB= ∠DFC又∵D 是 BC 的中点∴BD=DC∴△ BDE ≌△ CDF∴DE=DF∴□AEDF 是正方形评论:本题考察的是正方形的判断方法,考察了矩形、全等三角形等基础知识的灵巧运用,鉴别一个四边形是正方形主假如依据正方形的定义及其性质.。
正方形的性质与判定练习题
克,,
思 才只 在
能有科
成功就是99% 的血汗, 加上 1%的灵感。
达不 学
到畏上
光艰从
------爱迪生
辉险没 的勇 有
顶于 平
点攀坦
----登 的--
的
大
5、已知四边形 ABCD是平行四边形,对角线 AC、BD相交于点 O。
⑴若 AB=BC ,则四边形 ABCD 是( 菱形 ) ⑵若 AC=BD ,则四边形ABCD 是( 矩形 ) ⑶若∠BCD=90 0,则四边形ABCD 是( 矩形 )
⑷若 OA=OB ,则四边形 ABCD 是( 矩形 ) ⑸若AB=BC ,且AC=BD ,则四边形 ABCD 是
欲证∠ MFD =45°,由于
△MDF 是直角三角形 ,只须证 △MDF 是等腰三角形 ,即只要证
_____=_____
要证 MD =FD,大家只须证得哪两个三角形全等 ?
△CMD ≌△ADF
试一试
看能不能完成证明 ???
例4、已知:如图 (4)在正方形 ABCD 中, F为CD延长线上 一点,CE⊥AF于 E,交 AD于M, 求证:∠ MFD=45°
1正方形的一条对角线把正方形分成两个全等的等腰直角三角形3如果一个菱形的对角线相等那么它一定是正方形4如果一个矩形的对角线互相垂直那么它一定是正方形5四条边相等且有一个角是直角的四边形是正方形10正方形矩形菱形都是平行四边a四个角相等
1、判断题 :
(1) 正方形的一条对角线把正方形分成两个全等的
等腰直角三角形( √ )
求证:四边形 ABCD 是正方形。
A
D
O
B
C
第十九章 四边形
13、长见识
数一数图中正方形的个数,你发现了什么 ?
正方形性质与判定练习(含答案)
C. 2
D. 5 1
18.如图,正方形 ABCD 中,AD 5,点 E 、F 是正方形 ABCD 内的两点,且 AE FC 4 ,
BE DF 3,则以 EF 为直径的圆的面积为 ( )
A. 1 2
B. 3 5
C. 3 4
D.
19.如图,在平面直角坐标系中,正方形 A1B1C1D1 、D1E1E2B2 、A2 B2C2 D2 、D2 E3E4 B3 、A3B3C3D3 ,
D.16
21.如图,在正方形 ABCD 中,对角线 AC ,BD 相交于点 O ,E ,F 分别在 OD ,OC 上,
且 DE CF ,连接 DF , AE , AE 的延长线交 DF 于点 M ,则下列四个结论中正确结 论的个数是 ( )
① AE DF ;
② AM DF ;
③ DAE CDF ;
.
38.如图,正方形 ABCD 中, AB 12 ,点 E 在边 CD 上,CD 3DE .将 ADE 沿 AE 对折
至 AFE ,延长 EF 交边 BC 于点 G ,连接 AG ,CF .则下列结论正确的是
.
① ABG AFG ; ② BG GC ;
为
.
31.如图,RtABC 中,C 90 ,AC 2 ,BC 1 ,以斜边为一边向右上方作正方形 ABDE ,
连接 CD ,则 CD 的长为
.
32.如图,将正方形 OABC 放在平面直角坐标系中, O 是坐标原点,点 A 的坐标是 (2,3) ,
则 C 点坐标是
.
33.如图,在平面直角坐标系中,点 A 的坐标是 (0,3) ,点 B 的坐标是 (4,0) ,以 AB 为边
正方形性质与判定练习
1.如果要证明平行四边形 ABCD 为正方形,那么我们需要在四边形 ABCD 是平行四边形的 基础上,进一步证明 ( )
(完整版)正方形的性质与判定习题
(完整版)正方形的性质与判定习题
正方形是几何形状中的一种特殊情况,具有独特的性质和特点。
本文将为您提供关于正方形性质和判定的一些题,帮助您更好地理
解和应用正方形的相关知识。
题一:基本概念与性质
1. 正方形的定义是什么?它有哪些特点?
2. 正方形的边长和周长之间的关系是什么?
3. 正方形的对角线之间有什么关系?
4. 正方形的面积和边长之间的关系是什么?
题二:正方形的判定
1. 已知一个四边形的四个角都是直角,如何判定这个四边形是
正方形?
2. 已知一个四边形的两组对边相等且相邻边垂直,如何判定这
个四边形是正方形?
3. 已知一个四边形的一组对边相等且两组对边平行,如何判定
这个四边形是正方形?
4. 如何判定一个平行四边形是正方形?
题三:正方形的应用
1. 在平面坐标系中,如何表示一个正方形的顶点坐标?
2. 如何计算一个正方形的面积和周长?
3. 如果一个矩形的长度和宽度相等,能否判定该矩形为正方形?为什么?
以上是关于正方形性质与判定的一些题,希望能够帮助您巩固
对正方形的相关知识。
通过解答这些题,您将能更深入地理解正方
形的特点和应用,为解决相关问题提供有效的方法。
> 注意:本文所提供的内容仅供参考,请在参考后自行验证并
确认。
正方形的性质和判定典型试题综合训练(含解析)
正方形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.37.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.758.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.710.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.1611.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或613.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣414.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.35.已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.正方形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项A错误;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形,选项B错误;∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项C正确;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项D错误.故选:C.2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 【分析】根据正方形的判定对角线互相垂直平分且相等的四边形是正方形,对各个选项进行分析从而得到最后的答案.【解答】解:A、正确,AC⊥BD且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形;B、错误,不能判定为正方形;C、错误,只能判定为菱形;D、错误,不能判定为正方形;故选A.4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选A.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.6.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.3【分析】求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.【解答】解:∵AB=4,AE=1,∴BE=AB﹣AE=4﹣1=3,∵四边形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四边形EFCH平行四边形,∴EF=CH,∵四边形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB﹣AE=BC﹣CH,∴BE=BH=3.故选:C.7.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.8.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.10.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16【分析】连DB,GE,FK,则DB∥GE∥FK,再根据等底等高的三角形面积相等,正方形BEFG的边长为4可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.【解答】解:连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△GDB=S△EDB(同底等高)∴S△GDB﹣公共三角形=S△EDB﹣公共三角形即∴S△DGE=S△GEB,S△GKE=S△GFE同理S△GKE=S△GFE∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=42=16 故选:D.11.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.【分析】根据旋转的性质及正方形的性质分别求得△ABC与△CD′E的面积,从而不难求得重叠部分的面积.【解答】解:∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∴CD′=D′E,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.故选:D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选D.13.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣4【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得EG=EF,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【解答】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴EG=EF,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴4=x+x+x,解得x=2(2﹣)=4﹣2.故选B.14.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个【分析】(1)(3)(4)正确.只要证明△BOE≌△COF,即可解决问题,(2)图中全等三角形不止两对,故(2)错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC,ABC=90°,∠BAO=∠ABO=∠OBC=45°,AC⊥BD,∵∠EOF=90°,∴∠BOE+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴OE=OF,BE=CF,∴△EOF是等腰直角三角形,故(1)正确,∴BE+BF=CF+BF=BC=OA,故(3)正确,∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,∴S正方形ABCD=4S四边形OEBF故(4)正确;图中全等三角形有△BOE≌△COF,△AOB≌△AOD≌△DOC≌△BOC,故(2)错误.故选C.15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【解答】解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=45°.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是(2+,1).【分析】过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.【解答】解:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×=,∴D(2+,1).故答案为:(2+,1).21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.【分析】能画3条:①与EF互相垂直且垂足为O,构建直角三角形,可以证明两直角三角形全等得EF=PQ;②在AD上截取AP=AD,连接PO延长得到PQ;③同理在AB了截取BQ=AB,连接QO并延长得到PQ.【解答】解:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.【分析】根据已知可得到△BFE,△CGE是等腰直角三角形,得到BF=EF,EG=GC,则四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD【解答】解:∵EF⊥BO于F,EG⊥CO,∠BAC=∠ACB=45°∴△BFE,△CGE是等腰直角三角形∴BF=EF,EG=GC∴四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD=10cm 故答案为10.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【分析】首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=2.【分析】由正方形的性质得出∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,证出∠AOE=∠DOF,由ASA证明△AOE≌△DOF,得出AE=DF=6,同理:DE=CF=4,由勾股定理求出EF即可.【解答】解:∵四边形ABCD是正方形,∴∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,∴∠AOD=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠DOF,在△AOE和△DOF中,,∴△AOE≌△DOF(ASA),∴AE=DF=6,同理:DE=CF=4,∴EF===2.故答案为:2.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.【分析】(1)连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD ⊥EF,可证得四边形BEDF为菱形;(2)由正方形的边长可求得BD、AC的长,则可求得EF的长,利用菱形的面积公式可求得其面积.【解答】(1)证明:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形;(2)解:∵正方形边长为4,∴BD=AC=4,∵AE=CF=,∴EF=AC﹣2=2,∴S菱形BEDF=BD•EF=×4×2=8.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)【分析】(1)根据CE平分∠ACB,MN∥BC,可知∠ACE=∠BCE,∠PEC=∠BCE,PE=PC,同理:PF=PC,故PE=PF.(2)根据矩形的性质可知当P是AC中点时四边形AECF是矩形.(3)当∠ACB=90°时四边形AECF是正方形.【解答】证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.(2)当P是AC中点时四边形AECF是矩形,∵PA=PC,PF=PC,∴四边形AECF是平行四边形.∵PE=PC,∴AC=EF,四边形AECF是矩形.(3)当∠ACB=90°时,四边形AECF是正方形.32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.【分析】(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.【解答】解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=OD=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.。
正方形的性质及判定典型题(精选)
一、正方形的性质【例1】 正方形有 条对称轴.【例2】 已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形【例3】 如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且20AE AF AF ⊥=,,则BE 的长为FE D CBA【例4】 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .【例5】 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 1正方形的性质及判定【例6】 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =OFE DC BA【例7】 如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA【例8】 如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例9】 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【例10】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【例11】 如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例12】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.GEHDFCBA【例13】 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例14】 如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【例15】 如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA【例16】 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【例17】 如图,过正方形顶点A 引AE BD ∥,且BE BD =.若BE 与AD 的延长线的交点为F ,求证DF DE =.GFEBDA【例18】 如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLB A【例19】 如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA【例20】 (2007年三帆中学期中考试)如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【例21】 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例22】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 . ABCDEF E 'G【例23】 如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【例24】 如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.BO D CAQP【例25】 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA【例26】 如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证: DG DA =G FEC DBA【例27】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【例28】 如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF交于H ,求证:AH =正方形的边长.HEGCDFBA【例29】 把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例30】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【例31】 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF二、正方形的判定【例32】 四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.HEFG DCBA【例33】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【例34】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【例35】 如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDC BA【例36】 如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【例37】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE∆ 的面积为GFEDCB A【例38】 如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠=P1PDCBA【例39】如图,若在平行四边形ABCD各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.P RQS NM FEDCBA【例40】已知:PA4PB=,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB的大小.PDCBA。
正方形的性质和判断
正方形温故知新1. 如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2. 如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.课前热身1. 在四边形中,能判定这个四边形是正方形的条件是()A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分2. 已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.遗漏分析1.对正方形的性质不熟悉;2.对正方形和菱形、矩形的转换关系不清楚.知识精讲精讲:正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.性质:正方形是特殊的矩形和菱形,所以正方形既具有矩形的性质,又有菱形的性质.按边、角、对角线分类,正方形的性质有:①正方形的四个角都是直角;②正方形的四条边都相等;③正方形的两条对角线相等,并且互相垂直平分,每条对角线相等,并且互相垂直平分,每条对角线平分一组对角;④正方形是轴对称图形,它有四条对称轴,分别是过对边中点的直线和两条对角线所在的直线.判定方法:①平行四边形+一组邻边相等+一个角为直角(定义法);②矩形+一组邻边相等;③矩形+对角线互相垂直;④菱形+一个角为直角;⑤菱形+对角线相等.例:下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形巩固练习1. 在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,在正方形ABCD的外侧,作等边三角形AEB,则∠AED为()A.10°B.15°C.20°D.125°3. 在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF,则下列结论中错误的是()A.∠AFB+∠BEC=90°B.AF⊥BE C.∠DAF=∠BEC D.BE=AF4. 正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.35. 平行四边形、矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直平分且相等5. 如图,四边形ABCD中,∠ABC=∠BCD=∠CDA=90°,请添加一个条件,可得出该四边形是正方形.课堂小结补充:正方形:正方形的性质=矩形的性质+菱形的性质;矩形的判定条件+菱形的判定条件=正方形的判定条件.强化提升1. 顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形 B.矩形 C.菱形 D.正方形2. 已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.cm D.2cm3. 正方形面积为36,则对角线的长为()A.6 B. C.9 D.4. 如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30°B.45°C.60°D.90°5. 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=90°时,测得AC=2,当∠C=120°时,如图2,AC=()A.2 B.C.D.课后作业【第1天】1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的()A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC⊥BD时,它是正方形D.当AC=BD时,它是矩形2. 有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:93. 如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.【第7天】1. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为()A.B.3C.5 D.62. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【第15天】1. 如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°2. 如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【第28天】1. 下列命题中,不成立的是()A.等腰梯形的两条对角线相等B.菱形的对角线平分一组对角C.顺次连接四边形的各边中点所得的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2. 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个3. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【阶段检测】1. 用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A .①④⑤B .②⑤⑥C .①②③D .①②⑤2. 正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是( )A.62B.122 C .6 D .83. 如图,已知正方形的面积为25,且AC 比AB 小1,BC 的长为( )A .3B .4C .5D .64. 下列说法中,正确的是( )A .等腰梯形的对角线互相垂直B .菱形的对角线相等C .矩形的对角线互相垂直D .正方形的对角线互相垂直且相等5. 如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为( )A .6B .8C .10D .126. 如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.7. 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若添加条件,则四边形AEDF是矩形;(3)若添加条件,则四边形AEDF是菱形;(4)若添加条件,则四边形AEDF是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D
O
E F
12
《正方形》习题
1.如图,正方形ABCD 的三边中点E 、F 、G .连ED 交AF 于M ,GC 交DE 于N ,下列结论 ①GM ⊥CM ②CD =CM ③四边形MFCG 为等腰梯形.④∠CMD =∠AGM .其中正确结论的个数是()
G
N
M
F E
D C B A
A 、①②③
B 、①②④
C 、①③④
D 、①②③④
2.(1)在正方形ABCD 中,∠1=∠2.求证:BE OF 21=
(2)在正方形ABCD 中,∠1=∠2.AE ⊥DF ,求证:CE OG 2
1=
3.如图正方形ABCD 中,E 为AD 边上的中点,过A 作AF ⊥BE ,交CD 边于F ,M 是AD 边上一点,且有BM =DM +CD .
A B C D
F O
E
G
H 12
M F E C
D
B A
(1)求证:点F 是CD 边的中点;
(2)求证:∠MBC =2∠ABE .
4.已知在正方形ABCD 中.
(1)如图1,如果M 是BC 上一点,AN 平分∠DAM 交CD 于N ,那么AM =BM +DN ;
(2)如图2如果M 在BC 的延长线上,AN 平分∠DAM 交CD 于N ,那么线段AM 、BM 、DN 的长度关系是_________________________.
(3)如图3如果M 在BC 的延长线上,AN 平分∠DAM 交CD 于N ,那么线段AM 、BM 、DN 的长度关系是__________.(写出结论并证明)
5.如图,P 为正方形ABCD 边BC 上的一点,BP 的垂直平分线MN 交AC 于点N ,M 为垂足.
(1)求证:ND =NP ;
(2)延长DN 交AB 于点E ,求证:AE +CP =EP ;
(3)若正方形ABCD 的边长为2,P 为BC 的中点,请直接写出线段AN 的长为
D
A
P B C
N
E 图1N C M 图2B P
A
D
6、如图,正方形ABCD 对角线BD 、AC 交于O ,E 是OC 上一点,AG ⊥DE 交BD 于F , 求证:EF ∥DC .
A B D C
A C
B D
M N
A
B
C
D E F G A B C
D O
E
F
G A B C D
O E F G A B
C D E F
G O
7、如图,正方形ABCD 对角线AC 、BD 交于O ,DE 平分∠ADB ,CN ⊥DE 于N ,
求证:OF =AG .
A B
C D
E
F
O G N
8、如右图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE =CF .
(1)AE 与BF 相等吗?为什么?
(2)AE 与BF 是否垂直?说明你的理由.
9、如图,正方形ABCD 中对角线AC 、BD 相交于O ,E 为AC 上一点,AG ⊥EB 交EB 于G ,AG 交BD 于F .
(1)说明OE =OF 的道理;
(2)在(1)中,若E 为AC 延长线上,AG ⊥EB 交EB 的延长线于G ,AG 、BD 的延长线交于F ,其他条件不变,如图2,则结论:“OE =OF ”还成立吗?请说明理由.。