高二数学导数测试题(经典版)78806

合集下载

高二数学导数练习题及答案

高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。

为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。

希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。

练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。

2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。

3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。

答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。

2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。

3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。

练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。

2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。

3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。

答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。

2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。

3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。

练习题三:1. 求函数 f(x) = e^x 的导数。

2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。

高二导数练习题及答案文库

高二导数练习题及答案文库

高二导数练习题及答案文库导数是高中数学中的重要知识点之一,掌握导数的概念和运算方法对学生的数学学习至关重要。

为了帮助高二学生更好地巩固导数知识,提高解题能力,本文整理了一些高二导数练习题及其详细答案,供学生参考和练习。

一、基础练习题1. 求函数f(x) = 3x² - 2x + 1的导数f'(x)。

解:根据导数的定义,可得:f'(x) = lim(Δx→0)⁡[f(x + Δx) - f(x)] / Δx代入函数f(x)的表达式,展开并化简:f'(x) = lim(Δx→0)⁡[(3(x + Δx)² - 2(x + Δx) + 1) - (3x² - 2x + 1)] / Δx= lim(Δx→0)⁡[3x² + 6xΔx + 3(Δx)² - 2x - 2Δx + 1 - 3x² + 2x - 1] /Δx= lim(Δx→0)⁡(6xΔx + 3(Δx)² - 2Δx) / Δx= lim(Δx→0)⁡(6x + 3Δx - 2) = 6x - 2所以,函数f(x) = 3x² - 2x + 1的导数f'(x)为6x - 2。

2. 已知函数g(x) = 4x³ + 2x² - x的导数g'(x),求g'(1)的值。

解:根据导数的定义,g'(x) = lim(Δx→0)⁡[g(x + Δx) - g(x)] / Δx代入函数g(x)的表达式,展开并化简:g(x + Δx) = 4(x + Δx)³ + 2(x + Δx)² - (x + Δx)= 4x³ + 12x²Δx + 12xΔx² + 4(Δx)³ + 2x² + 4xΔx + 2(Δx)² - x - Δx= 4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx代入导数的定义:g'(x) = lim(Δx→0)⁡[(4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) - (4x³ + 2x² - x)] / Δx= lim(Δx→0)⁡(12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) / Δx= lim(Δx→0)⁡(12x² + 12xΔx + 4(Δx)² + 4x + 2Δx - 1)= 12x² + 4x - 1将x = 1代入上述导数表达式,可得:g'(1) = 12(1)² + 4(1) - 1 = 15所以,g'(1)的值为15。

(完整word版)高二数学导数大题练习题

(完整word版)高二数学导数大题练习题

(完整word 版)高二数学导数大题练习题一、解答题1.已知函数()ln f x x x x =-,()2ln 1g x a x x =-+. (1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值; (3)证明:1111232022e 2023+++⋅⋅⋅+>,e 是自然对数的底数. 2.已知函数()ln xf x x=. (1)求曲线()y f x =在点11,e e f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线方程;(2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >.3.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 4.己知数列{}n a 和{}n b ,12a =且()11n n b n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.5.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<.6.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数. 7.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.8.已知函数()e 2,R x f x ax a =-∈. (1)若12a =,求函数()f x 的极小值.(2)存在[]02,3x ∈,使得()00f x ≤成立,求实数a 的取值范围.9.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数. (1)设()'f x 是函数()f x 的导函数,若()'f x 在(2,3)上存在零点,求a 的取值范围; (2)若34ea ≥,证明:()0f x <. 10.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)求导求单调性即可求解;(2)()()220a x g x x x-'=>,分类讨论单调性得到()ln 1222maxg x a a a =-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤, 又由(1)可得到ln 10222a a a -+≥,所以ln 10222a a a -+=,即可求解;(3)由(2)知()22ln 1g x x x =≤-得到22ln 1x x ≤-,所以ln 1t t ≤-,所以e 1xx ≥+,即11e >nn n+,代入证明即可. (1)()f x 的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,当(1,)x ∈+∞时,()0,f x '>故()f x 在()01,上单调递减,在(1,)+∞上单调递增. 所以()()11min f x f ==-. (2)()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾.当0a >时,x ∈时,()0g x '>,)x ∈+∞时,()0g x '<,故()g x 在上单调递增,在)+∞上单调递减,所以()1ln 12222maxa a a ag g x a ==+=-+, 要使()0g x ≤在()0,∞+恒成立,则()0max g x ≤,即ln 10222a a a -+≤又由(1)知()ln 1f x x x x =-≥-,即ln 1x x x -≥-,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 10222a a a -+=且12a = 所以2a =. (3)证明:由(2)知()22ln 1g x x x =≤-得22ln 1x x ≤-(当且仅当1x =时等号成立),令)0x t =>,则ln 1t t ≤-(当且仅当1t =时等号成立),令e x t =,所以ln e e 1x x ≤-,即e 1x x ≥+(当且仅当0x =时等号成立),令()*10x n N n =>∈,则111e >1n n n n++=从而有11111320212022223420222023e e eee>12320212022⋅⋅⋅⨯⨯⨯⨯⨯ 所以111112320212022e 2023.+++⋯++> 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.2.(1)22e 3e 0x y --=; (2)证明见解析 【解析】 【分析】(1)求导,计算1e f ⎛⎫⎪⎝⎭'和1ef ⎛⎫ ⎪⎝⎭,再由点斜式代入写出切线方程;(2)设120x x >>,由题意得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,将证明212e x x >转化为证明()1212122lnx x x x x x ->+,令12x t x =,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,求导判断单调性即可证明. (1)由题意,()21ln x f x x -'=,则212e e f ⎛⎫'= ⎪⎝⎭,1e e f ⎛⎫=- ⎪⎝⎭, 所以函数()y f x =在点11,e e f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为()21e 2e e y x ⎛⎫--=- ⎪⎝⎭,即22e 3e 0x y --=. (2)设120x x >>,由题意,()()120g x g x ==, 所以1122ln 0,ln 0x kx x kx -=-=,可得()1212ln ln x x k x x +=+,()1212ln ln x x k x x -=-,要证明212e x x >,只需证12ln ln 2x x +>,即()122k x x +>,因为1212ln ln x x k x x -=-,所以可转化为证明121212ln ln 2x x x x x x ->-+, 即()1212122lnx x x x x x ->+,令12x t x =,则1t >,即证()21ln 1t t t ->+,令()()()21ln 11t h t t t t -=->+,则()()()()222114011t h t t t t t -'=-=>++, 所以函数()h t 在()1,+∞上是增函数,所以()()211ln1011h t ⨯->-=+, 即()21ln 1t t t ->+得证,所以212e x x >.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 3.(1)1a > (2)证明见解析 【解析】 【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x . 综上,1a >. (2)令()ln 1,()1'-=-+=-=a a xg x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 4.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nkk =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+.于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022na<≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<;当3n ≥时,112222*********3211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnk k k k ==⎛⎫-≥->- ⎪-⎝⎭∑∑,即证明115213nn k k S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题. 5.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142nn n -+<⇒<<.①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数, 则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭, ∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 6.(1)答案见解析; (2)答案见解析. 【解析】 【分析】(1)求得'()f x ,对参数a 进行分类讨论,根据不同情况下导数的正负即可判断对应的单调性;(2)根据(1)中所求函数的单调性,结合零点存在定理,逐一分析每种情况下函数零点的个数即可. (1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减; 当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增, 当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减. 综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减. (2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-, 故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点; 当01a <≤时,ln 0a <,故()f x 在()0,+∞单调递减, 同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ; 若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点; 下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20x x-=<,即2ln y x x =-在()e,∞+单调递减, 故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<>故()()2ln 2ln 0,e f a a a a a =-.故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ;e a >时,()f x 有两个零点.【点睛】本题考察利用导数研究含参函数的单调性,以及函数的零点个数,涉及零点存在定理,属综合中档题.7.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值(2)3【解析】【分析】(1)由导数分析单调性后求解(2)参变分离后,转化为最值问题求解(1)函数()()1ln f x x x =+的定义域为(0,)+∞,由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值(2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x x m x +<-, 设ln ()1x x x g x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x =->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->,∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -=当()01,x x ∈时,()0g x '<,函数ln ()1x x x g x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x x g x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <,∴ m 的最大值为3.8.(1)1; (2)2,+e 4a ∞⎡⎫∈⎪⎢⎣⎭. 【解析】【分析】(1)利用导数求()f x 的单调性,即可求极值.(2)将问题转化为在[]2,3x ∈上min e 2()x a x ≥,再应用导数求()e =x g x x 的最小值,即可求a 的范围.(1) 当12a =时()e x f x x =-,则()e 1x f x '=-,令0f x ,得0x =. 0x >时0f x,函数()f x 的单调递增区间为()0,+∞, 0x <时0f x ,函数()f x 的单调递减区间为(),0-∞; 所以函数()f x 的极小值为()00e 01f =-=.(2)由题设,在[]2,3x ∈上min e 2()x a x≥, 设()e =xg x x ,则()()2e 1x x g x x -'=,显然当[]2,3x ∈时0g x 恒成立,所以()g x 在[]2,3单调递增,则()min 22e ()2g x g ==, 综上,22e e 224a a ≥⇒≥,故2,+e 4a ∞⎡⎫∈⎪⎢⎣⎭. 9.(1)32322e e a <<; (2)证明见解析.【解析】【分析】(1)求出函数()f x 的导数,由()0f x '=分离参数并构造函数,求解其值域作答. (2)将不等式等价转化,构造两个函数,并分别探讨它们的最大、最小值即可推理作答.(1) 依题意,21(1)e ()x x f x ax x -'=-,由()0f x '=得:21(1)e 1(1)e x x x x ax x a x--=⇔=, 令1())(e x x x x ϕ-=,23x <<,则22()(1)e 0xx x x xϕ+'-=>,即()ϕx 在(2,3)上单调递增,当23x <<时,(2)()(3)x ϕϕϕ<<,即23e 2e ()23x ϕ<<, 由()'f x 在(2,3)上存在零点,则方程1(1)e xx a x -=在(2,3)上有根,因此有23e 12e 23a <<,解得32322e e a <<, 所以a 的取值范围是:32322e e a <<. (2) 函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x x x a x f x a x x x<⇔-<⇔->, 令2e ()x a g x x =,0x >,求导得:3e ())(2x a x x g x'-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min 3e 4e 1()(2)4e 4ea g x g ==≥⋅=, 令ln ()x h x x =,0x >,求导得:21ln ()x h x x -'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)eh x h ==, 因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0x ∀>,()()g x h x >成立,即2e ln 0x a x x x->成立,所以()0f x <.【点睛】思路点睛:证明不等式常需构造辅助函数,将不等式证明转化为利用导数研究函数的单调性、求最值等解决.10.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.(2)由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1x x h x e-=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==,令()0h x '=,则sin 42x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.。

高二数学导数计算试题

高二数学导数计算试题

高二数学导数计算试题1.函数,则().A.B.C.D.【答案】A【解析】因为函数,所以,则2e.故选A.【考点】导数的运算法则.2.曲线在横坐标为l的点处的切线为,则直线的方程为()A.B.C.D.【答案】A.【解析】当时,,而,故切线的方程为,即.【考点】导数的运用.3.若,则等于()A.-2B.-4C.2D.0【答案】B【解析】,则,所以,可知,那么.【考点】求导数.4.若函数,则等于()A.B.C.D.【答案】C【解析】因为,所以,故选C.【考点】导数的计算.5.已知函数,则的导函数()A.B.C.D.【答案】C【解析】根据正弦函数的导数公式及复合函数的求导法则可得:令,则,故选C.【考点】导数的计算.6.设,若,则()A.B.C.D.【答案】A【解析】,若,则,解得.【考点】导数的运算.7.在处有极大值,则常数的值为_________.【答案】6【解析】,则,由题意知,即,得或,当时,,当时,,当时,有极小值,当时,可由导致判断,在时有极大值.【考点】利用导数求函数最值的应用8.已知,若,则的值等于()A.B.C.D.【答案】B【解析】由题意知,,解得.【考点】导函数的应用.9.函数在时有极值10,则的值为()A.-3或4B.4C.-3D.3或 4【答案】B【解析】对函数f(x)求导得f′(x)=3x2+2ax+b,又∵在x=1时f(x)有极值10,∴f′(1)=3+2a+b=0 f(1)=1+a+b+a2=10,解得 a=4,b=-11 或 a=-3,b=3,当a=-3,b=3时,在x=1时f(x)无极值;当a=4,b=-11 符合题意.故选:B.【考点】函数在某点取得极值的条件.10.设,若,则()A.B.C.D.【答案】B【解析】由函数积的求导法则得,故由得,则,故有,故选B.【考点】导数的运算.11.设,若,则()A.B.C.D.【答案】A【解析】因为,所以,即,解得。

故A正确。

高二导数练习题10道

高二导数练习题10道

高二导数练习题10道一、求函数的导数:1. 求函数$f(x) = x^3 - 3x^2 + 2x$的导函数$f'(x)$。

解析:首先对$f(x)$应用幂函数的求导法则,得到$f'(x) = 3x^2 - 6x + 2$。

2. 求函数$g(x) = 2\sin(x) + \cos(2x)$的导函数$g'(x)$。

解析:首先对$2\sin(x)$应用三角函数的求导法则,得到$\frac{d}{dx}(2\sin(x)) = 2\cos(x)$。

然后对$\cos(2x)$应用复合函数的求导法则,得到$\frac{d}{dx}(\cos(2x)) = -2\sin(2x)$。

因此,$g'(x) =2\cos(x) - 2\sin(2x)$。

3. 求函数$h(x) = \ln(x^2 + 1)$的导函数$h'(x)$。

解析:对于复合函数$h(x) = \ln(x^2 + 1)$,应用链式法则求导,得到$h'(x) = \frac{1}{x^2 + 1} \cdot \frac{d}{dx}(x^2 + 1) = \frac{2x}{x^2 + 1}$。

4. 求函数$p(x) = e^{2x}\cos(x)$的导函数$p'(x)$。

解析:对于$p(x) = e^{2x}\cos(x)$,应用乘积法则求导,得到$p'(x) = (e^{2x} \cdot \frac{d}{dx}(\cos(x))) + (\cos(x) \cdot\frac{d}{dx}(e^{2x}))$。

根据三角函数的求导法则和指数函数的求导法则,可以化简得到$p'(x) = e^{2x}(2\cos(x) - \sin(x))$。

5. 求函数$q(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$的导函数$q'(x)$。

解析:对于$q(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$,应用幂函数和倒数函数的求导法则,得到$q'(x) = \frac{1}{2\sqrt{x}} -\frac{1}{2x\sqrt{x}}$。

高二数学导数测试题(经典版)

高二数学导数测试题(经典版)

一、选择题〔每小题5分,共70分.每小题只有一项是符合要求的〕1.设函数()y f x =可导,则0(1)(1)lim 3x f x f x∆→+∆-∆等于〔 〕.A .'(1)fB .3'(1)fC .1'(1)3f D .以上都不对2.已知物体的运动方程是43214164S t t t =-+〔t 表示时间,S 表示位移〕,则瞬时速度为0的时刻是〔 〕.A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于〔 〕.AB. C .23 D .23或04.若点P在曲线3233(34y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值X 围是〔 〕.A .[0,]πB .2[0,)[,)23πππC .2[,)3ππD .2[0,)(,)223πππ5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是〔3x ) C .(3,)-+∞ D .(,3)-∞-7.已知函数32()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为〔 〕.A .427 ,0B .0,427C .427- ,0D .0,427-8.由直线21=x ,2=x ,曲线x y 1=与x 轴所围图形的面积是〔 〕.A. 415B.417C.2ln 21D.2ln 29.函数3()33f x x bx b =-+在(0,1)内有极小值,则〔 〕.A .01b <<B .1b <C .0b >D .12b < 10.21y ax =+的图像与直线y x =相切,则a 的值为〔 〕.A .18B .14C .12D .111. 已知函数()x x x f cos sin +=,则=)4('πf 〔 〕A. 2B.0C. 22D. 2-12.函数3()128f x x x =-+在区间[3,3]-上的最大值是〔 〕 A. 32B. 16C. 24D. 17 13.已知〔m 为常数〕在上有最大值3,那么此函数在上的最小值为〔 〕A .B .C .D .14.dx e e x x ⎰-+1)(=〔 〕A .ee 1+B .2eC .e2D .ee 1-二、填空题〔每小题5分,共30分〕 15.由定积分的几何意义可知⎰--2224x=_________.16.函数)0(ln )(>=x x x x f 的单调递增区间是.17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的X 围为______________. 18.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________.19.已知曲线交于点P,过P 点的两条切线与x 轴分别交于A,B 两点,则△ABP 的面积为; 20.220(3)10,x k dx k +==⎰则三、解答题〔50分〕21.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程.22.已知函数xx x f 4)(+=. 〔Ⅰ〕求函数)(x f 的定义域与单调区间;〔Ⅱ〕求函数)(x f 在区间[1,4]上的最大值与最小值.23.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件件次品则损失100元,已知该厂制造电子元件过程中,次品率P 与日产量x 的函数关系是3()432xP x x *=∈+N . 〔1〕将该厂的日盈利额T〔元〕表示为日产量x 〔件〕的函数; 〔2〕为获最大盈利,该厂的日产量应定为多少件? 24.设函数323()(1)1,32a f x x x a x a =-+++其中为实数. 〔Ⅰ〕已知函数()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,##数x 的取值X 围.高二数学导数测试题参考答案一、选择题:CDABC BADAB BCDD 二、填空题15.π2 16.1,e ⎡⎫+∞⎪⎢⎣⎭17.1a ≥18.19.20.1三、解答题21.解:设切点为(,)P a b ,函数3235y x x =+-的导数为'236y x x =+切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3235y x x =+-得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=.22.解:〔Ⅰ〕函数的定义域为}0|{≠x x . 241)('x x f -=, 令0)('=x f ,即0412=-x, 解得 21-=x ,22=x . 当x 变化时,)('x f ,)(x f 的变化情况如下表:x)2,(--∞-2 )0,2(- )2,0(2 ),2(+∞)('x f+ 0- - 0+)(x f↗ -4 ↘ ↘ 4 ↗因此函数xx x f 4)(+=在区间)2,(--∞内是增函数,在区间)0,2(-内是减函数,在区间)2,0(内是减函数,在区间),2(+∞内是增函数.〔Ⅱ〕在区间[1,4]上,当x =1时,f <x >=5;当x =2时,f <x >=4;当x =4时,f <x >=5. 因此,函数)(x f 在区间[1,4]上的最大值为5,最小值为4. 23:解:〔1〕∵次品率3432x P x =+,当每天生产x 件时,有3432xx x +·件次品,有31432x x x ⎛⎫- ⎪+⎝⎭件正品,所以233642001100254324328x x x x T x xx x x -⎛⎫=--= ⎪+++⎝⎭··, 〔2〕由〔1〕得2(32)(16)25(8)x x T x +-'=-+·. 由0T '=得16x =或32x =-〔舍去〕.当016x <<时,0T '>;当16x >时,0T '<.所以当16x =时,T 最大.即该厂的日产量定为16件,能获得最大利润.24.解: 〔Ⅰ〕'2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以'(1)0f =, 即 310,1a a a -++==∴.〔Ⅱ〕方法一:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立, 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈. 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥. 即 220x x --≥,20x -≤≤∴ 于是x 的取值X 围是}{|20x x -≤≤.方法二:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x xx +≤+.20x -≤≤∴. 于是x 的取值X 围是}{|20x x -≤≤.。

高二导数测试题及答案

高二导数测试题及答案

高二导数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^3 - 5x^2 + 3x + 1的导数f'(x)为:A. 6x^2 - 10x + 3B. 6x^2 - 10x + 1C. 6x^2 - 10x + 2D. 6x^3 - 10x^2 + 32. 已知某函数的导数为g'(x) = 4x^3 + 6x^2,那么g(x)为:A. x^4 + x^3 + CB. x^4 + 2x^3 + CC. x^4 + 3x^3 + CD. x^4 + 4x^3 + C3. 函数h(x) = sin(x) + cos(x)的导数h'(x)为:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)4. 如果函数F(x)的导数F'(x) = e^x,那么F(x)为:A. e^x + CB. e^(2x) + CC. (1/2)e^x + CD. 2e^x + C5. 函数f(x) = (x^2 - 1)^3的导数f'(x)为:A. 6x(x^2 - 1)^2B. 3x^2(x^2 - 1)C. 3(x^2 - 1)^2D. 6(x^2 - 1)^36. 已知函数f(x) = 1/x,则f'(x)为:A. -1/x^2B. 1/x^2C. -1/xD. 1/x7. 函数G(x) = x^n (n为正常数)的导数G'(x)为:A. nx^(n-1)B. n/x^(n-1)C. n/x^nD. nx^n8. 函数H(x) = ln(x)的导数H'(x)为:A. 1/xB. xC. ln(x)D. 19. 函数R(x) = sqrt(x)的导数R'(x)为:A. 1/(2sqrt(x))B. 1/sqrt(x)C. 2/sqrt(x)D. 2/(2sqrt(x))10. 已知函数S(x)在点x=2处的导数为5,则S(2)的值是:A. 10B. 7C. 5D. 无法确定二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 6x^2的导数f'(x)为_________。

(完整word版)高二数学导数大题练习题

(完整word版)高二数学导数大题练习题

(完整word 版)高二数学导数大题练习题一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围. 3.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.4.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数.5.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.6.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.7.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<. 8.已知函数()ln xf x x=, ()()1g x k x =-.(1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.9.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.10.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e e xx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以极大值点为2x =,无极小值点(2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e e e 22e e ex xx x x x x F x +----'=-=. 当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立.2.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 3.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln ab<令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t -+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 4.(1)0a =或4; (2)答案见解析. 【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x xϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a ⎛⎫'-=---< ⎪⎝⎭,()11101h a '=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+,∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 5.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证.(1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t tt t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >= 所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t >又()()12h t h t =,所以121()()h t h t >因为21e t <<,所以2101t <<由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 6.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e x xrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 7.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>. ∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭. 故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值. (2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142nn n -+<⇒<<.①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 8.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx xx ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解. (1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.9.(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围. (1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减,所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122xax x x ax ---≥-恒成立可得3211e 2x x x a x++-≥恒成立, 设3211e 2()xx x h x x ++-=,则()4223333111e 222(2)1e e 22x x xh x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x ⎛⎫ ⎪⎝⎭=⎛⎫-+-+----- ⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.10.(1)25y x =+ (2)0b = 【解析】 【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+. (2)当1a =时,令函数()()()2e 11xg x f x b x =-=+--,则()2f x ≥恒成立等价于()0g x ≥恒成立. 又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值. 又因为()00g =,所以0x =为g (x )的最小值点. 所以ln(1)0b -=,解得0b =.。

(完整word版)高二数学导数大题练习题

(完整word版)高二数学导数大题练习题

(完整word 版)高二数学导数大题练习题一、解答题1.已知函数()()2e 1=-+xf x ax x (a ∈R ,e 为自然对数的底数). (1)若()f x 在x=0处的切线与直线y=ax 垂直,求a 的值; (2)讨论函数()f x 的单调性; (3)当21ea ≥时,求证:()2ln 2x x f x x ---≥. 2.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数. 3.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <4.已知()2ex x af x -=.(1)若()f x 在3x =处取得极值,求()f x 的最小值; (2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围. 5.已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.6.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.7.设函数()1eln 1x af x a x -=--,其中0a >(1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.8.已知函数()ln (1af x x a x =+-为常数),且函数()f x 的图象在2x =处的切线斜率小于1.2-(1)求实数a 的取值范围;(2)试判断(1)ln e a -与(e 1)ln a -的大小,并说明理由. 9.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 10.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)1a = (2)答案见解析 (3)证明见解析 【解析】 【分析】(1)由导数的几何意义求出切线的斜率,再由直线的位置关系可求解;(2)由于()()(1)e 2xf x x a =+-',令()0f x '=,得1x =-或2ln x a=,通过比较两个值分类讨论得到单调区间;(3)方法一:通过单调性,根据求最值证明;方法二:运用放缩及同构的方法证明. (1)()()(1)e 2x f x x a =+-',则(0)2f a '=-,由已知(2)1a a -=-,解得1a = (2)()()(1)e 2x f x x a =+-'(ⅰ)当0a ≤时,e 20x a -<,所以()01f x x '>⇒<-,()01f x x '<⇒>-,则()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减;(ⅱ)当0a >时,令e 20x a -=,得2ln x a=, ①02e a <<时,2ln 1a>-,所以()01f x x '>⇒<-或2ln x a >,()012ln af x x <⇒-<<',则()f x 在(,1)-∞-上单调递增,在21,ln a⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;②2e a =时,()1()2(1)e 10x f x x +=+'-≥,则()f x 在(,)-∞+∞上单调递增;③2e a >时,2ln 1a<-,所以2ln ()0x a f x >⇒<'或1x >-,2ln ()01f x ax <⇒<<-',则()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增.综上,0a ≤时,()f x 在(,1)-∞-上单调递增,在(1,)-+∞上单调递减;02e a <<时,()f x 在(,1)-∞-上单调递增,在21,ln a ⎛⎫- ⎪⎝⎭上单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭上单调递增;2e a =时,()f x 在(,)-∞+∞上单调递增;2e a >时,()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭上单调递增,在2ln ,1a ⎛⎫- ⎪⎝⎭上单调递减,在(1,)-+∞上单调递增. (3) 方法一:2()ln 2(0)f x x x x x ≥--->等价于e ln 10(0)x ax x x x --+≥>当21ea ≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 令221()e ln 1,()(1)e x x g x x x x g x x x --⎛⎫=--+=+- ⎝'⎪⎭令21()ex h x x-=-,则()h x 在区间(0,)+∞上单调递增 ∵11(1)10,(2)02h h e=-<=>, ∴存在0(1,2)x ∈,使得()00h x =,即020001e,2ln x x x x -=-=- 当()00,x x ∈时,()0g x '<,则()g x 在()00,x 上单调递减,当()0,x x ∈+∞时,()0g x '>,则()g x 在()0,x +∞上单调递增∴()02min 000000001()e ln 1210x g x g x x x x x x x x -==--+=⋅+--+=∴()0g x ≥,故2()ln 2f x x x x ≥--- 方法二: 当21a e≥时,2e ln 1e ln 1(0)x x ax x x x x x x ---+≥--+> 2ln 2()e ln 1e (ln 2)1x x x g x x x x x x -+-=--+=-+--令ln 2t x x =+-,则t R ∈, 令()e 1t k t t =--,则()e 1t k t =-'当0t <时,()0k t '<;当0t >时,()0k t '>∴()k t 在区间(,0)-∞上单调递减,(0,)+∞上单调递增. ∴()(0)0k t k ≥=,即()0g x ≥ ∴2()ln 2f x x x x ≥---, 【关键点点睛】解决本题的关键:一是导数几何意义的运用,二是通过导函数等于零,比较方程的根对问题分类讨论,三是隐零点的运用及放缩法的运用. 2.(1)0a =或4; (2)答案见解析. 【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =.综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x x ϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a⎛⎫'-=---< ⎪⎝⎭,()11101h a'=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+,所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 3.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞(2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x=-<<, 则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 4.(1)2e - (2)[)1,+∞ 【解析】 【分析】(1)先求得函数的导函数,然后利用极值的必要条件求得a 的值,进而判定导数的正负区间,得到函数的单调性,然后结合左右两端的极限值与极小值,求得函数的最小值;(2)分离参数得到2(1)e x a x x ≥--对于任意[)1,x ∞∈+恒成立.构造函数,利用导数求得不等号右侧的最大值,进而根据不等式恒成立的意义得到实数a 的取值范围. (1)∵()2ex x af x -=,∴()()()2222e e 2e e x xxx x x a x x a f x ⋅--⋅--'==-, ∵()f x 在3x =处取得极值,()2332330e af -⨯-'=-=,∴3a =,∴()23e x x f x -=,()223(1)(3)e e x xx x x x f x --+-'=-=-,当1x <-时,()’0f x <;当13x 时,()’0f x >;当3x >时,()’0f x <. ∴()f x 在(],1-∞-上单调递减,在[]1,3-上单调递增,在[)3,+∞上单调递减. 又∵当3x >时,()0f x >,()12e 0f -=-<, ∴()f x 的最小值为2e -. (2)由已知得221(1)e ex x x ax a x x -≤-⇔≥--对于任意[)1,x ∞∈+恒成立.令2()(1)e x g x x x =--,则()2e (2e )x x g x x x x '=-=-,在1≥x 时,()(2e )0x g x x '=-<,所以函数()g x 在1≥x 时上单调递减, 所以max ()(1)1g x g ==, 所以a 的取值范围是[)1,+∞. 5.(1)详见解析; (2)详见解析; 【解析】 【分析】(1)由2a =-,得到2()2ln f x x x =-,然后求导2()2f x x x'=-求解; (2)令2()ln (2)22=+-+++g x x a x a x a ,求导()()21()--'=x a x g x x,分0a ≤,012a <<,12a =,122a<<讨论求解. (1)解:当2a =-时,2()2ln f x x x =-, 所以2()2f x x x'=-,令()0f x '=,得1x =, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以1x =是函数()f x 的极小值点; (2)当2(]0,x ∈时,令2()ln (2)22=+-+++g x x a x a x a ,则()()2212(2)()2(2)---++'=+-+==x a x a x a x a g x x a x x x, 当0a ≤时,01x <<时,()0g x '<,12x <≤时,()0g x '>, 所以当1x =时,()g x 取得极小值,且0x →,()g x ∞→+,当()110g a =+>,即10a -<≤,函数()f x 的图象与函数(2)22y a x a =+--的图象无当()110g a =+=,即1a =-时,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+≥⎪⎩,即21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点;当()()11022ln 20g a g a ⎧=+<⎪⎨=+<⎪⎩,即2ln 2a <-,函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当012a <<,即02a <<时,02ax <<或1x >时,()0g x '>,12a x <<时,()0g x '<,所以当2ax =时,()g x 取得极大值,当1x =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>恒成立,所以函数()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当12a =,即2a =时,()0g x '≥恒成立,所以()g x 在(0,2]上递增,所以函数()f x 的图象与函数(2)22y a x a =+--的图象有1个公共点; 当122a <<,即24a <<时,01x <<或22a x <<时,()0g x '>,12ax <<时,()0g x '<,所以当1x =时,()g x 取得极大值,当2ax =时,()g x 取得极小值,且0x →,()g x →-∞,因为()110g a =+>,()22ln 20=+<g a ,2ln 20242⎛⎫=-+++> ⎪⎝⎭a a a g a a 恒成立,所以()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点.综上: 当10a -<≤时,函数()f x 的图象与函数(2)22y a x a =+--的图象无公共点;当1a =-或 2ln 2a <-或04a <<时,()f x 的图象与函数(2)22y a x a =+--的图象只有1个公共点; 当21ln 2-≤<-a 时,函数()f x 的图象与函数(2)22y a x a =+--的图象有2个公共点.(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫ ⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=,所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=,所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫ ⎪⎝⎭上单调递增,所以212x x ->,122x x +<; 设1ln ()12t t F t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <, 所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x -+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-.所以()()21f x f x <.【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.7.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增;(2)证明见解析.【解析】【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a +=,构造()ln 1x h x x a =+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫ ⎪+⎝⎭、()1e a h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1) 当1a =时,()1e ln 1x f x x -=--,定义域为()0,+∞,则()11e xf x x -'=-,()121e 0x f x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=,当01x <<时,0f x,所以()f x 在区间0,1上单调递减; 当1x >时,0f x ,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增.(2)由题意,()11e x a f x x -='-,()1211e 0x a f x a x -=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111x x x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增.当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x ,令0f x ,则e e x a x ⋅=,两边取自然对数可得ln 1x x a +=, 令()ln 1x h x x a =+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e e ln e e 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥:因为()01001e 0x a f x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-, 所以()010000eln 11120x a x a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立, 综上,()f x 有唯一极值点0x 且()00f x ≥,得证.【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式.8.(1)(1,)+∞(2)答案见解析【解析】【分析】(1)求导后根据题意解不等式(2)化为相同形式,构造函数根据单调性判断(1) 由22(2)1()(1)x a x f x x x '-++=-,且函数()f x 在2x =处的切线斜率小于12-, 知2222(2)11(2)2(21)2a f -++'=<--,解得 1.a > 故a 的取值范围为(1,)+∞(2)由(1)可知(1)ln e a -与(e 1)ln a -均为正数.要比较(1)ln e a -与(e 1)ln a -的大小,可转化为比较ln e e 1-与ln 1a a -的大小. 构造函数ln ()(1)1x x x x ϕ=>-,则211ln ()(1)x x x x ϕ--'=-,再设1()1ln m x x x =--,则21()x m x x -'=, 从而()m x 在(1,)+∞上单调递减,此时()()10m x m <=,故()0x ϕ'<在(1,)+∞上恒成立,则ln ()1x x x ϕ=-在(1,)+∞上单调递减. 综上可得,当(1,e)a ∈时,(1)lne (e 1)ln a a -<-当e a =时,(1)lne (e 1)ln a a -=-当(e,)a ∈+∞时,(1)lne (e 1)ln a a ->-9.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减(2)证明见解析【解析】【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--.令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++ 设()32333x g x a x x =-++, 则()g x '()()222269033x x x x x ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 10.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围; (2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增,故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.。

高二数学导数练习题

高二数学导数练习题

高二数学导数练习题一、选择题1. 设函数f(x)在R上可导,下列结论正确的是()A. 若f(x)为奇函数,则f'(x)为偶函数B. 若f(x)为偶函数,则f'(x)为奇函数C. 若f(x)为周期函数,则f'(x)也为周期函数D. 若f(x)在x=0处取得极值,则f'(0)=02. 已知函数f(x)=x^33x,则f'(0)的值为()A. 3B. 0C. 1D. 33. 设函数f(x)在x=1处可导,且f'(1)=2,则下列极限等于2的是()A. lim(x→1) [f(x)f(1)] / (x1)B. lim(x→1) [f(x)f(1)] / (x1)^2C. lim(x→1) [f(x)f(1)] / (x+1)D. lim(x→1) [f(x)f(1)] / (x^21)二、填空题1. 已知函数f(x)=x^2+2x+1,则f'(x)=______。

2. 设函数f(x)在x=2处可导,且f'(2)=3,则f(x)在x=2处的切线方程为______。

3. 已知函数f(x)=|x1|,则f'(x)在x=1处的值为______。

三、解答题1. 求下列函数的导数:(1)f(x)=3x^22x+1(2)f(x)=x^32x^2+x(3)f(x)=x^44x^3+2x^2x+12. 设函数f(x)=x^2e^x,求f'(x)。

3. 已知函数f(x)=x^3+ax^2+bx+c,其中a、b、c为常数,且f'(0)=2,f'(1)=1,f(0)=3,求a、b、c的值。

4. 讨论函数f(x)=x^33x在区间(∞,+∞)上的单调性。

5. 求函数f(x)=e^xx^2在区间(0,+∞)上的最大值。

6. 已知函数f(x)在R上可导,且f'(x)>0,证明:对于任意x1<x2,有f(x1)<f(x2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题5分,共70分.每小题只有一项是符合要求的)
1.设函数()y f x =可导,则0(1)(1)
lim 3x f x f x
∆→+∆-∆等于( ).
A .'(1)f
B .3'(1)f
C .1
'(1)3
f D .以上都不对
2.已知物体的运动方程是4321
4164
S t t t =-+(t 表示时间,S 表示位移),则瞬时速度
为0的时刻是( ).
A .0秒、2秒或4秒
B .0秒、2秒或16秒
C .2秒、8秒或16秒
D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ).
A
B
. C .23 D .23
或0
4.若点P
在曲线323
3(34
y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ).
A .[0,]π
B .2[0,)[,)23
ππ
πU
C .2[,)3ππ
D .2[0,)(,)223πππU
5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( ).
6.函数3
(
)2f x x ax =+-在区间[1,)
+∞内是增函数,则实数a 的取值范围是( ).
A .[3,)+∞
B .[3,)-+∞
C .(3,)-+∞
D .(,3)-∞-
7.已知函数32
()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小
值分别为( ).
'()f x
A .
427 ,0 B .0,427 C .427- ,0 D .0,4
27
-
8.由直线21=x ,2=x ,曲线x y 1
=及x 轴所围图形的面积是( ).
A. 415
B. 4
17 C. 2ln 21 D. 2ln 2
9.函数3
()33f x x bx b =-+在(0,1)内有极小值,则( ).
A .01b <<
B .1b <
C .0b >
D .1
2
b < 10.21y ax =+的图像与直线y x =相切,则a 的值为( ).
A .18
B .14
C .1
2 D .1
11. 已知函数()x x x f cos sin +=,则=)4
('π
f ( )
A. 2
B.0
C. 22
D. 2- 12.函数3
()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知
(m 为常数)在
上有最大值3,那么此函数在上的最小值为
( )
A .
B .
C .
D .
14.
dx e e x x ⎰
-+1
)(=
( )
A .e
e 1
+
B .2e
C .
e
2
D .e
e 1-
二、填空题(每小题5分,共30分) 15.由定积分的几何意义可知⎰
--2
2
2
4x
=_________.
16.函数
)0(ln )(>=x x x x f 的单调递增区间是 .
17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设
是偶函数,若曲线
在点
处的切线的斜率为1,则该曲线在
处的切线的斜率为_________.
19.已知曲线交于点P ,过P 点的两条切线与x 轴分别交于A ,B 两
点,则△ABP 的面积为 ; 20.
2
20(3)10,x k dx k +==⎰则 三、解答题(50分)
21.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程.
22.已知函数x
x x f 4
)(+=.
(Ⅰ)求函数)(x f 的定义域及单调区间;
(Ⅱ)求函数)(x f 在区间[1,4]上的最大值与最小值.
23.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件件次品则损失100元,已知该厂制造电子元件过程中,次品率P 与日产量x 的函数关系是
3()432
x
P x x *=
∈+N . (1)将该厂的日盈利额T(元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件?
24.设函数32
3()(1)1,32
a f x x x a x a =
-+++其中为实数. (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;
(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围.
高二数学导数测试题参考答案
一、选择题:CDABC BADAB BCDD 二、填空题
15.π2 16.1,e ⎡⎫
+∞⎪⎢⎣⎭
17. 1a ≥ 18.
19.
20. 1
三、解答题
21.解:设切点为(,)P a b ,函数3235y x x =+-的导数为'2
36y x x =+
切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到32
35y x x =+-
得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=.
22.解:(Ⅰ)函数的定义域为}0|{≠x x 。

24
1)('x
x f -=, 令0)('=x f ,即04
12
=-
x , 解得 21-=x ,22=x 。

当x 变化时,)('x f ,)(x f 的变化情况如下表:
x
)2,(--∞
-2 )0,2(- )2,0(
2 ),2(+∞
)('x f + 0 - - 0 + )(x f

-4


4

因此函数x
x x f 4
)(+
=在区间)2,(--∞内是增函数,在区间)0,2(-内是减函数,在区间)2,0(内是减函数,在区间),2(+∞内是增函数。

(Ⅱ)在区间[1,4]上,
当x =1时,f (x )=5;当x =2时,f (x )=4;当x =4时,f (x )=5。

因此,函数)(x f 在区间[1,4]上的最大值为5,最小值为4。

23:解:(1)∵次品率3432x P x =
+,当每天生产x 件时,有3432x
x x +·件次品,有31432x x x ⎛⎫- ⎪
+⎝⎭
件正品,所以233642001100254324328x x x x T x x
x x x -⎛
⎫=--= ⎪+++⎝⎭
··, (2)由(1)得2
(32)(16)25(8)x x T x +-'=-+·.
由0T '=得16x =或32x =-(舍去).
当016x <<时,0T '>;当16x >时,0T '<.所以当16x =时,T 最大.即该厂的日产量定为16件,能获得最大利润.
24.解: (Ⅰ) '2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '(1)0f =, 即 310,1a a a -++==∴.
(Ⅱ)方法一:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立, 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.
设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈. 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥. 即 220x x --≥,20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤.
方法二:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.
于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22
202
x x
x +≤+. 20x -≤≤∴. 于是x 的取值范围是}{|20x x -≤≤.。

相关文档
最新文档