细胞生物学(翟中和第四版)
翟中和细胞生物学第4版教材全彩电子版合集(2024)
细胞生长与凋亡
探讨了细胞生长的调控机制以及细胞 凋亡的程序和调控。
05
04
细胞信号传导
概述了细胞信号传导的基本概念和途 径,包括膜受体介导的信号传导和核 受体介导的信号传导。
当前存在问题及挑战
知识体系繁杂
细胞生物学涉及的知识点众多,需要学生花费大量时间和精力去学 习和掌握。
实验技术难度高
细胞生物学研究需要借助各种先进的实验技术,这些技术的操作难 度较大,需要学生具备较高的实验技能。
有丝分裂和减数分裂的意义
有丝分裂是细胞增殖的主要方式,保证遗传信息的稳定性和连续性;减数分裂是生殖细 胞形成的过程,实现遗传信息的重组和多样性。
染色体复制、分离和遗传规律
染色体复制
在细胞分裂间期,染色体进行复制,形成姐 妹染色单体。
染色体分离
在有丝分裂和减数分裂过程中,染色体按照一定的 顺序和方式进行分离,确保每个子细胞获得完整的 遗传信息。
基因克隆与表达
通过基因工程手段将外源基因导入细 胞,研究基因表达调控及蛋白质功能 。
核酸杂交与测序
利用核酸分子间的互补性进行杂交分 析,或测定核酸序列以研究基因结构 和功能。
蛋白质组学技术
研究细胞内蛋白质组成、相互作用及 功能,包括蛋白质分离、鉴定和相互 作用分析等。
基因编辑技术
利用CRISPR/Cas9等基因编辑工具对 细胞基因组进行定点修饰,研究基因 功能及疾病治疗等。
内质网
由膜结构连接而成的网状管道系统,参与 蛋白质的合成与加工,以及脂质的合成与 运输。
叶绿体
植物细胞特有的细胞器,是光合作用的场 所,可将光能转化为化学能。
细胞核结构与遗传信息储存
细胞核的结构
由核膜、核仁、染色质和核基质组成,是细胞遗传信息储 存和复制的场所。
细胞生物学-物质的跨膜运输(翟中和第四版)-含注释!!!
动物、植物细胞主动运输比较
三、ABC 超家族
• ABC 超家族也是一 类ATP 驱动泵 • 广泛分布于从细菌 到人类各种生物中, 是最大的一类转运 蛋白 • 通过ATP 分子的结 合与水解完成小分 子物质的跨膜转运
(一)ABC转运蛋白的结构与工作模式
• 4 个“核心”结构域
– 2 个跨膜结构域,分别含6 个跨
H+/K+ ATPase Control of acid secretion in the stomach
二、V 型质子泵和 F 型质子泵
• V 型质子泵广泛存在 于动物细胞的胞内体 膜、溶酶体膜,破骨 细胞和某些肾小管细 胞的质膜,以及植物、 酵母及其他真菌细胞 的液泡膜上 (V 为 vesicle) • 转运 H+ 过程中不形成 磷酸化的中间体
导兴奋)
B. 配体门通道(胞外配体)
(突触后膜接收乙酰胆碱的
受体)
C. 配体门通道(胞内配体)
D. 应力激活通道(内耳的 听毛细胞)
含羞草“害羞”的机制
• 估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的 15~30%,细 胞用在物质转运方面的能量达细胞总消耗能量的2/3。
• 两类主要转运蛋白:
P型泵的主要特点:都是跨膜蛋白,并且是由一条多肽完成 所有与运输有关的功能,包括ATP的水解、磷酸化和离子 的跨膜运输。
Na+-K+ATP酶的分子结构:
α β 两种亚基组成的二聚体。
α 亚基具有ATP酶的活性;
β 亚基是具有组织特异性的糖蛋白。
(一)Na+-K+ 泵(Na+-K+ ATPase)
Figure 11-14 Molecular Biology of the Cell (© Garland Science 2008)
2024细胞生物学翟中和第四版PPT大纲
目录•细胞生物学概述•细胞的基本结构与功能•细胞的物质运输与信号转导•细胞的能量转换与代谢•细胞的生长、分裂与分化•细胞衰老、凋亡与疾病细胞生物学概述细胞生物学的定义与研究对象01定义细胞生物学是研究细胞结构、功能和生活规律的科学。
02研究对象包括所有类型的细胞,从原核生物到真核生物,从单细胞生物到多细胞生物的各种细胞。
03研究内容涉及细胞的形态结构、生理功能、遗传变异、生长发育、衰老死亡等方面。
细胞生物学的发展历史早期研究0117世纪,随着显微镜的发明,人们开始观察和研究细胞。
细胞学说的提出0219世纪,德国植物学家施莱登和动物学家施旺提出了细胞学说,奠定了细胞生物学的基础。
现代细胞生物学的发展0320世纪以来,随着分子生物学、遗传学、生物化学等学科的交叉融合,细胞生物学得到了快速发展。
细胞生物学是生命科学领域的基础学科之一,对于理解生命的本质和规律具有重要意义。
基础学科细胞生物学与分子生物学、遗传学、生物化学等学科相互交叉、相互渗透,共同推动了生命科学的发展。
交叉学科细胞生物学在医学、农业、工业等领域具有广泛的应用前景,如疾病治疗、作物改良、生物制药等。
应用前景细胞生物学在现代科学中的地位细胞的基本结构与功能细胞形态多样,有球形、椭球形、柱形、扁平形等,不同形态的细胞具有不同的功能。
细胞的形态细胞的大小细胞的计量单位细胞大小因生物种类和细胞类型而异,一般细菌细胞较小,动植物细胞较大。
细胞的大小通常以微米(μm)为单位进行计量。
030201细胞的形态与大小03质膜与细胞壁的关系质膜和细胞壁共同构成了细胞的边界,维持细胞内环境的稳定。
01细胞质膜细胞质膜是包裹在细胞质外的一层薄膜,由磷脂双分子层和蛋白质组成,具有选择透过性。
02细胞壁细胞壁是位于细胞质膜外的一层厚壁,主要成分为多糖和蛋白质,具有保护和支持细胞的作用。
细胞质膜与细胞壁细胞器细胞器是细胞内具有一定形态和功能的微小结构,如线粒体、叶绿体、内质网、高尔基体等,各细胞器分工合作,共同完成细胞的生命活动。
细胞生物学名词解释(翟中和第四版)
细胞生物学名词解释(翟中和第四版)各章节概述第1章细胞生物学是研究细胞生命活动基本规律的学科,它是现代生命科学的基础学科之一。
细胞生物学研究的主要方面包括:①生物膜与细胞器;②细胞信号转导;③细胞骨架体系;④细胞核、染色体及基因表达;⑤细胞增殖及其调控;⑥细胞分化及干细胞;⑦细胞死亡;⑧细胞衰老;⑨细胞工程;⑩细胞的起源与进化。
本章回顾了细胞学与细胞生物学发展的简史,阐述了细胞学说的建立及其重要意义,分析了细胞生物学学科形成的基础与条件。
细胞学与细胞生物学发展的历史大致可以划分为以下几个阶段:①细胞的发现;②细胞学说的建立;③细胞学的经典时期;④实验细胞学时期;⑤细胞生物学学科的形成与发展。
当今的细胞生物学是以细胞作为生命活动的基本单位这一概念为出发点,在各层次上探索生命现象的最基本、最核心问题的一门重要的学科。
第2章细胞是一切生命活动的基本单位,包括以下几个方面的涵义:(1)一切有机体都由细胞构成,细胞是构成有机体的形态结构单位。
构成多细胞生物体的细胞虽然是“社会化”的细胞,但它们又保持着形态结构的独立性,每一个细胞具有自己完整的结构体系。
(2)细胞是有机体代谢与执行功能的基本单位,在细胞内的一切生化过程与试管内的生化过程的根本不同点,是细胞有严格自动控制的代谢体系,并且有保证完成生命过程有序性的独立的结构装置。
(3)有机体的生长与发育是依靠细胞增殖、分化与凋亡来实现的。
细胞是研究有机体生长与发育的基础。
(4)细胞是遗传的基本单位,每一个细胞都具有遗传的全能性(除少数特化细胞)。
构成各种生物机体的细胞的种类繁多,结构与功能各异,但它们都具有基本共性:细胞膜,两种核酸(DNA 与RNA),蛋白质合成的机器——核糖体与一分为二的增殖方式,这些是细胞结构与生存不可缺少的基础。
种类繁多的细胞可以分为原核细胞与真核细胞两大类。
近年认为原核细胞并不是统一的一大类,建议将细胞划分为原核细胞、古核细胞与真核细胞三大类。
细胞生物学(翟中和第四版)
包括显微镜观察、细胞计数、细胞体积测量和生物量测定等方法。
细胞的分裂方式及过程
有丝分裂
真核细胞进行的一种分裂方式, 包括前期分离和细胞的分
裂。
无丝分裂
原核细胞和某些真核细胞进行的 分裂方式,不形成纺锤丝,直接 通过细胞膜的内陷将细胞一分为
细胞株和细胞系
通过选择法或克隆形成法从原代培养物或细胞系中获得具有特殊性质或标志物的培养物称为细胞株;当培养 超过50代时,大多数的细胞不再分裂,出现危机,但是有部分细胞可以度过危机继续传代,这些细胞称为 细胞系。
细胞融合技术及应用
细胞融合方法
包括病毒诱导融合、化 学融合法(如PEG融合 法)和电融合法等。
THANKS
感谢观看
探索生物进化机制
通过研究不同物种细胞的结构 和功能差异,可以探索生物进
化的机制和规律。
02
细胞的基本结构与功能
细胞膜的结构与功能
细胞膜的主要成分
01
脂质、蛋白质和糖类。
细胞膜的结构
02
磷脂双分子层构成基本支架,蛋白质分子以不同方式镶嵌其中
。
细胞膜的功能
03
作为细胞的边界,维持细胞内外环境的相对稳定;控制物质进
杂交瘤技术
将具有分泌特异性抗体 能力的致敏B细胞和具 有无限繁殖能力的骨髓 瘤细胞融合为B细胞杂 交瘤。
单克隆抗体
由单一B细胞克隆产生 的高度均一、仅针对某 一特定抗原表位的抗体 。
干细胞技术及应用
干细胞类型
包括胚胎干细胞、成体干细胞和诱导多能干细胞等。
干细胞应用
可用于研究细胞发育和分化机制、建立疾病模型、进行药物筛选和基因治疗等 。如利用干细胞治疗帕金森病、糖尿病、心肌梗死等疾病。
细胞生物学-第10章-细胞骨架(翟中和第四版)
应力纤维
于动态的组装和去组装过 伪足 程中,并通过这种方式实 收缩环 现其功能
(三)影响微丝组装的特异性药物
• 细胞松弛素(cytochalasin)
– 与微丝结合后将微丝切断,并结合在微丝末端阻抑肌 动蛋白在该部位的聚合,但对微丝解聚没有明显影响 – 破坏微丝网络结构,并阻止细胞的运动
• 鬼笔环肽(phalloidin)
微丝是一条直径约为7 nm的扭链,由肌动蛋白单体组装而成。
在电镜下观察,整 根微丝在外观上是
由2股纤维以右手
螺旋同向盘绕而成, 螺距为36 nm。
(一)结构与成分
• 肌动蛋白分子上的裂缝 肌动蛋白(actin)
使得该蛋白本身在结构 – 球状 G-actin 上具有不对称性,在整 根微丝上每一个单体上 – 纤维状 F-actin 的裂缝都朝向微丝的同 一端,从而使微丝在结 • 构上具有极性。具有裂 裂缝 / 极性 缝的一端为负极,而相 • 反一端为正极。 ATP/ADP结合位点
三 肌球蛋白(myosin)
马达蛋白 Motor proteins
为细胞内组分的运动提供 动力,使它们能够沿着肌动蛋 白纤维和微管朝向两极运动。 目前已鉴定的马达蛋白多 达数十种。根据其结合的骨架 纤维以及运动方向和携带的转 运物不同而分为不同类型。
p201
目前已知的唯一沿肌动蛋白进行运动的马达蛋白
交联蛋白与微丝的相互作用
(二)细胞皮层
细胞内微丝主要集中在紧贴细胞质膜的细胞质区域, 并由微丝交联蛋白交联成凝胶态三维网络结构,该 区域通常称为细胞皮层(cell cortex)。 • 细胞皮层有助于维持细胞形状。 • 皮层内一些微丝与质膜蛋白连接,从而限制膜蛋白 的流动性。 • 细胞的多种运动,如胞质环流、阿米巴运动、变皱 膜运动、吞噬以及膜蛋白的定位等都与皮层内肌动 蛋白的凝胶态-溶胶态转化相关。
细胞生物学-第4章-细胞质膜(翟中和第四版)
(plasma membrane)
• 真核细胞内膜系统
(endomembrane system)
• 生物膜(biomembrane)
一、细胞质膜的结构模型
• 三明治模型
• 单位膜模型
• 流动镶嵌模型
• 脂筏模型
每种模型对认识生物膜的贡 献及其局限性?
1. 质膜由双层脂分子构成的推测
1. 1895年, E. Overton 发现凡是溶于脂肪的物质很容易透过 植物的细胞质膜,而不溶于脂肪的物质不易透过细胞质膜, 因此推测质膜由连续脂类物质组成。
二、膜脂 (membrane lipid)
(一)成分
• 甘油磷脂 • 鞘脂 • 固醇
1. 甘油磷脂
• 具有一个极性头和两 个非极性的尾
• 脂肪酸碳链为偶数 • 除饱和脂肪酸外常含
1-2 个双键的不饱和 脂
脂分子极性头空间占位对脂双层曲度的影响
(磷脂酰乙醇胺)
(磷脂酰胆碱)
PE 极性头较小,更多地分布在脂双层曲度较小的一侧
该模型的主要论点是:
1)流动的脂双层构成膜的连续主体,球形的膜蛋白质 以各种镶嵌形式与脂双分子层相结合。
2)构成膜的脂双层具有液晶态的特性,它既有晶体的分 子排列的有序性, 又有液体的流动性。 该模型的突出特点是:
1)强调了膜的流动性:即膜蛋白和膜脂均可侧向运动; 2)强调了膜组分分布的不对称性:即膜蛋白有的镶在表 面、有的嵌入、有的横跨脂双分子层。 该模型的不足之处: 1)忽视了蛋白质分子对脂类分子流动性的限制作用; 2)忽视了膜各部分流动性的不均匀性等, 从而使人们
,膜的流动性降低。
二、膜的不对称性
• 膜脂和膜蛋白在生物膜上 呈不对称分布
细胞生物学(翟4版)复习提纲
一、线粒体的基本形态及动态特征 二、线粒体的超微结构 三、氧化磷酸化 四、线粒体与疾病
外膜、内膜、膜间隙、基质的标志酶; 电子传递链四种复合物的名称和作用; 氧化磷酸化;化学渗透假说的内容;ATP 合酶及其机制; 电子传递体、质子移位体、Q 循环
第二节 叶绿体与光合作用
一、叶绿体的基本形态及动态特征 二、叶绿体的超微结构 三、光合作用
第五节
其他细胞表面受体介导的信号通路
一、Wnt-β-catenin 信号通路 二、Hedgehog 受体介导的信号通路 三、NF-κB 信号通路 四、Nctch 信号通路 五、细胞表面整联蛋白介导的信号转导
第六节
细胞信号转导的整合与控制
一、细胞的应答反应特征 二、蛋白激酶的网络整合信息 三、信号的控制:受体的脱敏与下调
第二节
细胞质膜的基本特征与功能
一、膜的流动性 二、膜的不对称性 三、细胞质膜相关的膜骨架 四、细胞质膜的基本功能
3
流动镶嵌模型、脂筏模型、膜脂的成分与运动方式、脂质体 膜蛋白的类型、膜蛋白与膜脂结合的方式、成斑和成帽现象 膜骨架的概念、血影蛋白、血型糖蛋白、带 3 蛋白 —————————————
一、内质网 二、高尔基体 三、溶酶体 四、过氧化物酶体
2 种类型内质网、微粒体、肌质网;内质网的功能; 磷脂转位因子与磷脂转换蛋白、N-连接与 O-连接糖基化的比较、 KDEL 序列、极性细胞器、 糙面内质网------蛋白质的合成、修饰与加工; 光面内质网------脂类的合成与转运; 高尔基体------糖类合成; 溶酶体------细胞内消化; 异质性细胞器、溶酶体膜的特征 初级溶酶体、次级溶酶体、自噬溶酶体、异噬溶酶体、残余小体 初级溶酶体与过氧化物酶体的特征比较 过氧化物酶体的功能 内质网的标志酶是葡萄糖-6-磷酸酶,高尔基体的标志酶是糖基转移酶, 溶酶体的标志酶是酸性磷酸酶,过氧化物酶体的标志酶是过氧化氢酶。 —————————————
第11章-细胞核与染色质(翟中和第四版)
大多数的亲核蛋白往往在一个细胞周期中一次性地被转 运到核内,并一直停留在核内行使功能活动,典型的如组 蛋白、核纤层蛋白等;
有一些亲核蛋白需穿梭于核质之间进行功能活动,如 importins。
核定位序列或核定位信号( NLS )
核被膜上由内外两层膜局部融合形成的许多核孔, 核孔是由一组蛋白质(至少50种不同的蛋白质)以 一定方式排布形成的复杂结构,可沟通核质和胞质。
一般哺乳动物细胞平均有3000个核孔。 细胞核活动旺盛的细胞中核孔数目较多,反之较少。
(一)结构模型—— “fish-trap”(鱼笼)
在电镜下观察,核孔是呈圆形或八角形,现在一般认 为其结构如fish-trap(鱼笼)。
• 组成:核被膜、核纤层、染色质、核仁及核体组成。 • 功能:①遗传 ②发育。
哺乳类成 熟红细胞 无细胞核
肝细胞和 心肌细胞 可有双核
植物成 熟筛管 细胞无 细胞核
a
a破骨细
胞可有
a
6-50个
细胞核
a a
本章主要内容
• *核被膜 • *染色质 • 染色质的复制与表达 • *染色体 • *核仁与核体 • 核基质
DNA 3 种构型
三种DNA构型中,大沟的特征在遗传信息表 达过程中起关键作用,调控蛋白都是通过其分 子上氨基酸侧链与沟中碱基对两侧潜在的氢 原子供体(=NH)或受体(O和N)形成氢键而识别 DNA遗传信息的。
另外, Z型DNA同细胞癌变有一定的关系。
二、染色质蛋白
• 组蛋白(histone)
– 与DNA 结合没有序列特异性
2.核孔复合体的主动运输
A 对运输颗粒大小的限制。主动运输的功能直径(约10~ 20nm)比被动运输大,核孔复合体的有效直径的大小是 可被调节的;
最新细胞生物学 翟中和 第四版 课后习题答案
第一章1. 细胞生物学在生命科学中所处的地位,以及它与其他学科的关系1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。
2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。
1.根据细胞生物学研究的容与你所掌握的生命科学知识,客观、恰当地评价细胞生物学在生命科学中所处的地位,以及它与其他学科的关系。
答细胞生物学是一门从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系,从而探索细胞生长、发育、分化、繁殖、遗传、变异、代、衰亡及进化等各种生命现象规律的科学。
生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命,一切生命现象的奥秘都要从细胞中寻找答案。
许多高等学校在生命科学的教学中,将细胞生物学确定为基础课程。
细胞生物学、分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。
细胞生物学与其他学科之间的交叉渗透日益明显。
2.通过学习细胞学发展简史,你如何认识细胞学说的重要性?答1838-1839年,德国植物学家施莱登和德国动物学家施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;每个细胞作为相对独立的单位,但也与其他细胞相互影响。
1858年Virchow对细胞学说做了重要的补充,强调细胞只能来自细胞。
细胞学说的提出对于生物科学的发展具有重大意义。
细胞学说、进化论、孟德尔遗传学称为现代生物学的三大基石,而细胞学说又是后二者的基石。
对细胞结构的了解是生物科学和医学分支进一步发展所不可缺少的。
3.试简明扼要地分析细胞生物学学科形成的客观条件,以及它今后发展的主要趋势。
答(1)细胞生物学学科形成的客观条件细胞的发现(1665-1674)1665年,胡克发表了《显微图谱》(《Micrographia》)一书,描述了用自制的显微镜(30倍)观察栎树软木塞切片时发现其中有许多小室,状如蜂窝,称为“cellar”。
细胞生物学(第4版)
作者介绍
翟中和(1930年8月18日-2023年2月10日 ),男,江苏凓阳人,汉族,中共党员。1991年当选为中国科学 院生命科学和医学学部院士。
王喜忠,男,1940年生,中共党员。2006年评为第二届国家教学名师。 丁明孝,男,北京大学生命科学学院教授,中国电子显微镜学会理事长,中国细胞生物学学会副理事长。
教学资源
《细胞生物学学习指南》是与该教材相配套的辅助性教学参考书;《细胞生物学(第4版)辅导与习题集》是 集教材同步辅导与应试强化练习于一体的辅导与习题集。
《细胞生物学(第4版)》配套设有数字课程资源。
教材特色
1.鉴于细胞生物学研究的发展,对细胞重大生命活动及分子机制的研究已渐成为学科领域的重点。 2.”图文并茂“一直都是教材编者的追求目标,同时作为专业基础课教材也理应有”活泼“的面孔,可读性 强。 3.作为生物类专业基础课教材具有教学适用性。
成书过程
修订情况
出版工作
该版本修订工作始于2009年春季,历时两年多。该次修订以细胞重大生命活动为主线,以分子机制为视点, 对教材结构体系进行了调整,由第3版的15章调整为17章,对全书约1/3的内容进行了修订、改写和补充。对基本 概念、基础知识和基本理论进行了删繁就简,对学科发展前沿和研究新成果严谨引用、准确修正、及时更新,保 持教材内容的基础性、科学性和前沿性。全书共有图片370余幅,其中照片120余幅,全部插图均为作者自主设计、 绘制,全部照片源自作者科研成果或授权使用。
《细胞生物学(第4版)》共17章,内容包括绪论、细胞的统一性与多样性、细胞生物学研究方法、细胞质 膜、物质的跨膜运输、线粒体、叶绿体、细胞质基质与内膜系统、蛋白质分选与膜泡运输、细胞信号转导、细胞 骨架、细胞核与染色质、核糖体、细胞周期与细胞分裂、细胞增殖调控与癌细胞、细胞分化与胚胎发育、细胞死 亡、细胞衰老、细胞的社会等。
细胞生物学翟中和第四版教案[1]
第一章绪论一.细胞生物学研究的内容和现状1.细胞生物学是现代生命科学的重要基础学科细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。
核心问题是将遗传与发育在细胞水平上结合起来。
细胞生物学的主要研究内容一般可分为细胞结构功能与细胞重要生命活动两大基本部分:大致归纳为下面几个领域:1)细胞核、染色体以与基因表达的研究2)生物膜与细胞器的研究3)细胞骨架体系的研究4)细胞增殖与其调控5)细胞分化与其调控6)细胞的衰老与凋亡7)细胞的起源与进化8)细胞工程当前细胞生物学研究的总趋势与重点领域1)细胞生物学与分子生物学(包括分子遗传学与生物化学)相互渗透与交融是总的发展趋势2)当前研究的重点领域:I:染色体DNA与蛋白质相互作用关系——主要是非组蛋白对基因组的作用II:细胞增殖、分化、凋亡的相互关系与其调控III:细胞信号转导的研究IV:细胞结构体系的组装二.细胞学与细胞生物学发展简史1.细胞的发现2.细胞学说的建立其意义1838~1839年,德国植物学家施莱登和动物学家施旺提出了“细胞学说”。
3.细胞学的经典时期4.实验细胞学时期5.细胞生物学学科的形成与发展第二章细胞基本知识概要细胞的基本概念1.细胞是生命活动的基本单位。
1)一切有机体都由细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3)细胞是有机体生长与发育的基础4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命2.细胞概念的一些新思考细胞是多层次非线性的复杂结构体系:细胞具有高度复杂性和组织性2)细胞是物质(结构)、能量与信息过程精巧结合的综合体细胞是高度有序的,具有自组装能力与自组织体系。
3.细胞的基本共性1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。
第3章--细胞生物学研究方法(翟中和第四版)
电子束的波长与加速电压有关。当加速电压为50~100千 伏时,电子束波长约为0.0053~0.0037纳米
2.电子显微镜的分辨本领与有效放大倍数
• 电子显微镜分辨率可达 0.2 nm • 电镜的分辨本领是指电 镜处于最佳状态下的分 辨率
3.电子显微镜的基本构造
• 电子束照明系统 • 成像系统 • 真空系统 • 记录系统
息,形成清晰的二维图像
• 分辨率比普通荧光显微镜1.4~
1.7 倍
(四)激光扫描共焦显微镜
• 可通过“光学 切片” 叠加后重构出样品的三维结构
(二向的)
Figure 9-20 Molecular Biology of the Cell (© Garland Science 2008)
3D Image Reconstruction
• 从细胞的发现、细胞学 说的建立,直至今天光 学显微镜仍然是细胞生 物学研究的重要工具
1. 目镜 3. 物镜
2. 准焦螺旋 4. 载物台
5. 反光镜
(一)普通复式光学显微镜——组成
• 由3 部分组成:
– 光学放大系统(目镜 与物镜) – 照明系统(光源和 聚光镜) – 镜架及调节系统
(一)普通复式光学显微镜——成像
三、特异蛋白抗原的定位与定性
• 细胞内特异蛋白的显示可通过 抗原-抗体特异结合的方法得 以实现
• 若抗体偶联荧光染料,则可以
通过荧光显微镜、激光共焦显 微镜观察 • 为了观察特异蛋白在细胞内的 精细定位,抗体需偶联电子致 密物(胶体金),用电镜观察
(一)免疫荧光技术
• 直接间接免疫荧光技术(A) • 间接免疫荧光技术(B)
y
z
x
y
y
y
细胞生物学(翟中和,高教四版)
细胞生物学(翟中和,高教四版)第一章绪论 (3)第二章细胞的统一性和多样性 (5)第三章细胞生物学研究方法 (9)第四章细胞质膜 (11)第五章物质的跨膜运输 (13)第六章线粒体和叶绿体 (15)第七章细胞质基质与内膜系统 (17)第八章蛋白质分选与膜泡运输 (20)第九章细胞信号转导 (21)第十章细胞骨架 (25)第十一章细胞核与染色质 (27)第十二章核糖体 (34)第十三章细胞周期与细胞分裂 (35)第十四章细胞增殖调控与癌细胞 (36)第十五章细胞分化与胚胎发育 (37)第十六章细胞死亡与细胞衰老 (39)第十七章细胞的社会联系 (40)第一章绪论第一节细胞生物学研究的内容与现状一、现代生命科学的一门重要的基础前沿学科当前细胞生物学研究的课题归纳起来包括3个根本性问题:(1)基因组是如何在时间与空间上有序表达的?(2)基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器?(3)基因及其表达的产物,特别是各种信号分子与活性因子,是如何调节诸如细胞的增殖、分化、衰老、与凋亡等细胞最重要的生命活动过程的?二、细胞生物学得主要研究内容10个方面:(一)生物膜与细胞器(二)细胞信号转导基本研究内容3个方面:①细胞间信号传递:信号分子-受体作用②受体与信号跨膜转导:G蛋白与一系列受体③细胞内信号传递途径与网络调控-生物学效应(三)细胞骨架体系(四)细胞核、染色体及基因表达(五)细胞增殖及其调控增殖调控研究从两方面进行:①找控制增殖的因子②研究控制增殖的主要检验点相关的周期蛋白与依赖于周期蛋白的激酶的调控机理(六)细胞分化及干细胞生物学(七)细胞死亡(八)细胞衰老(九)细胞工程(十)细胞的起源于进化目前全球最热门的研究方向是:①细胞周期调控②细胞凋亡③细胞衰老④信号转导⑤DNA的损伤修复第二节细胞学与细胞生物学发展简史生物科学发展的3个阶段:①>19世纪形态描述为主-生物科学②20世纪前半个世纪(1950年前)-实验生物学③20世纪50年代后-现代生物学一、细胞的发现二、细胞学说的建立及其意义当时“细胞学说”的基本内容:①细胞是有机体,一切动植物都是有细胞发育而来,并有细胞产物所构成②每个细胞作为一个相对独立的单位,既有它自己的生命,又对其他细胞共同组成的整体的生命有所助益③新的细胞可以通过已存在的细胞繁殖产生三、细胞学的经典时期(一)原生质理论的提出(二)细胞分裂的研究(三)细胞器的发现四、实验细胞学与细胞学的分支及其发展(一)细胞遗传学(二)细胞生理学(三)细胞化学五、细胞生物学学科的形成与发展这个新阶段的基本特点可归纳如下:(1)研究对象:细胞(及社会),尤其活细胞(2)研究内容:细胞重大生命活动(3)研究重点:细胞信号调控网络,作为揭示生命活动分子机制方面(4)研究目标:多层次上特别是纳米层次揭示生命活动本质(5)研究特征:多领域、多学科交叉结构&流程示意图1.细胞重大生命活动及其相互关系示意图思考题1.根据细胞生物学研究的内容与你所掌握的生命科学知识,恰当地评价细胞生物学在生命科学中所处的地位及它与其它学科的关系。
细胞生物学名词解释(翟中和第四版)
癌基因oncogene 通常表示原癌基因(proto oncogene)的突变体,这些基因编码的蛋白使细胞的生长失去控制,并转变成癌细胞,故称癌基因。
氨酰-tRNA合成酶aminoacyl tRNA synthetase 将氨基酸和对应的tRNA的3′端进行共价连接形成氨酰-tRNA的酶。
不同的氨基酸被不同的氨酰-tRNA合成酶所识别。
暗反应light independent reaction 光合作用中的另外一种反应,又称碳同化反应(ion)。
该反应利用光反应生成的ATP和NADPH中的能量,固定CO2生成糖类。
白介素-1β转换酶interleukin-1β convertingenzyme,ICECaspase-1,Caspase家族成员之一,线虫Ced3在哺乳动物细胞中的同源蛋白,催化白介素-1β前体的剪切成熟过程。
半桥粒hemidesmosome 位于上皮细胞基底面的一种特化的黏着结构,将细胞黏附到基膜上。
胞间连丝plasmodesma 相邻植物细胞之间的联系通道,直接穿过两相邻细胞的细胞壁。
胞内体endosome 动物细胞内由膜包围的细胞器,其作用是转运由胞吞作用新摄取的物质到溶酶体被降解。
胞内体被认为是胞吞物质的主要分选站。
胞吐作用exocytosis 携带有内容物的膜泡与质膜融合,将内容物释放到胞外的过程。
胞吞作用endocytosis 通过质膜内陷形成膜泡,将细胞外或细胞质膜表面的物质包裹到膜泡内并转运到细胞内(胞饮和吞噬作用)。
胞外基质extracellular matrix 分布于细胞外空间、由细胞分泌的蛋白质和多糖所构成的网络结构,如胶原和蛋白聚糖等,在决定细胞形状和活性的过程中起着一种整合作用。
胞质动力蛋白cytoplasmic dynein 由多条肽链组成的巨型马达蛋白,利用ATP水解释放的能量将膜泡或膜性细胞器等沿微管朝负极转运。
胞质分裂cytokinesis 细胞周期的一部分,在此期间一个细胞分裂为两个子细胞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞生物学教学课件第十三章~~~~~~第十八章第十三章细胞周期与细胞分裂第一节细胞周期第二节细胞分裂第一节细胞周期一、细胞周期概述二、细胞周期中各不同时相及其主要事件三、细胞周期同步化四、特殊的细胞周期标准的细胞周期(图13-1)细胞周期检查点及其主要事件(图13-2)从培养细胞中收集M期细胞的同步化方法(图13-3)应用过量的TdR阻断法进行细胞周期同步化(图13-4)植物细胞的有丝分裂(图13-7)细菌的细胞周期(图13-8)第二节细胞分裂一、有丝分裂二、减数分裂高等动物细胞的有丝分裂过程(图13-9)Smc蛋白(A)及其黏连蛋白(Smc1/3)(B)、凝缩蛋白(Smc2/4)(C)异二聚体的作用(图13-10)动物细胞中心体的复制与细胞周期的关系(图13-11)细胞分裂过程中核被膜和核纤层的动态变化(图13-12)高等动物细胞纺锤体结构(图13-13)纺锤体组装过程(图13-14)动粒位置和结构(图13-15)染色体整列(图13-16)解释染色体在赤道面整列的两种假说(图13-17)细胞有丝分裂后期由ATP驱动的马达蛋白沿微管向极部运动试染色体分开(图13-18)细胞分裂后期A和后期B产生染色体向极部运动的示意图(图13-19)有丝分裂中后期转换(图13-20)动物细胞胞质分裂示意图(图13-21)中央纺锤体和星体微管作用于细胞皮层并诱导分裂沟形成(图13-22)真核细胞减数分裂的3种类型(图13-23)有丝分裂与减数分裂比较(图13-1)减数分裂过程图解(图13-24)偶线期DNA在减数分裂前期Ⅰ才进行复制示意图(图13-25)联会复合体和重组节结构(图13-26)双线期二价染色体图解(图13-27)减数分裂中期Ⅰ(A)与减数分裂中期Ⅱ(B)动粒与纺锤体的联系示意图(图13-28)粗线期的联会复合体(图13-29)本章概要细胞增殖是细胞生命活动的重要特征之一。
细胞增殖是生物繁殖和生长发育的基础。
细胞增殖是通过细胞周期来实现的。
细胞周期是细胞生命活动的全过程。
细胞从一次分裂结束到下次分裂结束,即走完一个细胞周期。
细胞种类繁多,各种细胞之间的细胞周期长短差别很大。
同种细胞的细胞周期时间长短,也随生理活动、营养状况等变化而有所变化。
细胞周期的时间长短可以通过多种方法测定。
细胞周期还可以通过某些方法实现同步化。
最重要的人工细胞周期同步化方法包括DNA合成阻断法和中期阻断法。
真核细胞的细胞周期一般可以分为四个时期,即G1期、S期、G2期和M期。
前三个时期合称为分裂间期,M期即分裂期。
分裂间期是细胞分裂前重要的物质准备和积累阶段,分裂期即为细胞分裂实施过程。
根据细胞繁殖状况,可将机体内所有细胞相对地分为三类,即周期中细胞、静止期细胞(G0期细胞)和终末分化细胞。
周期中细胞一直在进行细胞周期运转。
静止期细胞为一些暂时离开细胞周期,去执行其生理功能的细胞。
静止期细胞在一定因素诱导下,可以很快返回细胞周期。
体外培养的细胞在营养物质短缺时,也可以进入静止期状态。
终末分化细胞为那些一旦生成后终身不再分裂的细胞。
在一个细胞周期中,DNA复制一次,而且只有一次。
DNA复制发生在S期。
在M期,复制的DNA伴随其它相关物质,平均分配到新形成的两个子细胞中。
M期也可以人为地划分为前期、前中期、中期、后期、末期和胞质分裂等几个时期。
减数分裂是一种特殊的有丝分裂方式。
生殖细胞在成熟过程中发生减数分裂。
其特点是,DNA复制一次,然后发生两次连续的有丝分裂,导致最终生成的细胞的染色体数减半。
第十四章细胞增殖调控与癌细胞细胞增殖是通过严格调控的细胞周期来实现的,在细胞周期的不同阶段有一系列检查点对该过程进行严密监控。
不然,不受约束而生成的细胞将被机体免疫系统所清除,或者癌变,转化为癌细胞。
癌细胞不仅表现出增殖失控,同时还具有侵润和转移的特征,最终导致个体的死亡。
第一节细胞增殖调控第二节癌细胞第一节细胞增殖调控一、MPF的发现及其作用二、p34cdc2激酶的发现及其与MPF的关系三、周期蛋白四、CDK和CDK抑制因子五、细胞周期运转调控六、其他因素在细胞周期调控中的作用一、MPF 的发现及其作用MPF (maturation-/mitosis-/ M-phase-promoting factor ):即(卵细胞)成熟促进因子,或细胞有丝分裂促进因子,也称M 期促进因子,在细胞周期调控中起重要作用。
PCC (premature chromosome condensation ):即早熟染色体凝缩,主要是指与M 期细胞融合的间期细胞(G 1、S 和G 2)发生的形态各异的染色体凝缩。
G 1期PCC 为细单线状(因DNA 未复制),S 期PCC 为粉末状(因DNA 由多个部位开始复制),G 2期PCC 为双线染色体状(说明DNA 复制已完成),这样的形态变化可能与DNA 复制状态有关。
M 期细胞中可能存在细胞有丝分裂促进因子:M 期细胞可以诱导PCC ,暗示在M 期细胞中可能存在一种诱导染色体凝缩的因子,称为细胞有丝分裂促进因子(MPF )。
M期细胞与G1(A)、S(B)和G2(C)期细胞融合诱导早熟染色体凝缩(PCC)(图14-1)成熟卵细胞细胞质移植发现成熟促进因子的存在:两位科学家分离出第Ⅳ期等待成熟的非洲爪蟾卵母细胞,并用孕酮进行体外刺激,诱导卵母细胞成熟,然后进行细胞质移植实验,他们发现,在成熟的卵细胞的细胞质中必然有一种物质可以诱导卵母细胞成熟,即成熟促进因子(MPF);后来还证明,在成熟卵细胞中,MPF已经存在,只需通过翻译后修饰即可转化为活性状态的MPF。
1998年分离获得了MPF:1998年,科学家们以非洲爪蟾卵为材料,分离获得了微克级的纯化MPF,并证明其主要含有p32和p45两种蛋白,并且是一种蛋白激酶。
非洲爪蟾卵细胞成熟过程(Ⅰ~Ⅵ)、受精和第一次卵裂示意图(图14-2)成熟卵细胞细胞质移植发现成熟促进因子(MPF )的存在(图14-3)二、p34cdc2激酶的发现及其与MPF 的关系(已知)非洲爪蟾卵:MPF =p32+p45;MPF 是激酶裂殖酵母:cdc2(基因)→ p34cdc2(蛋白)p34cdc2激酶→调控G 2/M 转换;p34cdc2+p56cdc13。
cdc 即细胞分裂周期之缩写。
芽殖酵母:cdc28(基因)→ p34cdc28(蛋白)p34cdc28激酶→调控G 1/S 和G 2/M 转换;p34cdc28 ≈p34cdc2(同源物)。
p34cdc2≈ p32(同源物)。
海胆卵:含量随细胞周期进程变化而变化的蛋白质即周期蛋白(cyclin ),cyclinB 是MPF 的另一种主要成分;cyclinB ≈p56cdc13(同源物)。
结论:MPF =催化亚基单位(CDK )+调节亚单位(Cyclin )。
CDK 为周期蛋白(cyclin )依赖性蛋白激酶三、周期蛋白周期蛋白(cyclin ):指含量随细胞周期进程变化而周期性变化的蛋白质,一般在细胞间期内积累,在细胞分裂期内消失,在下一个细胞周期中又重复这一消长现象。
周期蛋白有多种:酵母中的周期蛋白有Cln1~3、Clb1~6;哺乳动物细胞中的周期蛋白A1~2、B1~3、C 、D1~3、E1~2、F 、G 、H 、L1~2、T1~2等。
周期蛋白框(cyclin box ):指所有周期蛋白中都存在的约由100个残基组成的相当保守的氨基酸序列,其功能是介导周期蛋白与CDK 结合。
破坏框/降解盒(destruction box ):指M 期周期蛋白近N 端含有的一段由9个氨基酸残基组成的特殊序列(RXXLGXIGX ),其功能是参与泛素依赖性的cyclinA 和B 的降解。
在破坏框之后有一段约40个氨基酸残基组成的Lys (K )富集区。
PEST 序列:指G 1期周期蛋白的C 端含有的一段特殊的PEST 氨基酸序列,其功能可能与G 1期周期蛋白的更新(降解)有关。
不同的Cyclin-CDK 复合体表现不同的CDK 活性:不同的周期蛋白在细胞周期中表达的时相不同,并通过不同的周期蛋白框与不同的CDK 结合,组成不同的cyclin-CDK 复合体,表现出不同的CDK 活性。
周期蛋白含量随细胞周期的变化部分周期蛋白分子结构特征(图14-4)细胞周期蛋白的降解盒与降解途径部分哺乳动物(A)和酵母细胞(B牙殖和C裂殖)周期蛋白在细胞周期中的积累及其与CDK活性的关系(图14-5)四、CDK 和CDK 抑制因子周期蛋白依赖性蛋白激酶(cyclin-dependent kinase, CDK ):由周期蛋白结合并活化的调控细胞周期进程的蛋白激酶。
CDK 通过磷酸化其底物而对细胞周期进行调控。
CDK 有多种:在人体中发现并命名的CDK 包括CDK1(Cdc2)~CDK13。
不同的CDK 在细胞周期中起调节作用的时期不同。
某些CDK 与cyclin 的配对关系及执行的功能的时期:见表14-1。
CDK 激酶结构域:各种CDK 的CDK 激酶结构域保守程度有所不同,但其中有一小段序列则相当保守,即PSTAIRE 序列,与周期蛋白结合有关。
CDK 的活性受磷酸化修饰调节:细胞内存在多种因子,对CDK 分子结构进行磷酸化修饰,从而调节CDK 的活性。
CDK 抑制蛋白(CDK inhibitor, CKI ):指对CDK 起负调控作用的蛋白质,包括Cip/Kip 家族和INK 家族。
①Cip/Kip 家族:包括p21、p27和p57等,其中p21主要对G 1期CDK (CDK2~4和CDK6)起抑制作用p21还与DNA 聚合酶δ的辅助因子增殖细胞核抗原(PCNA )结合,抑制DNA 的复制;②INK 家族:包括p16、p15、p18和p19等,其中p16主要抑制CDK4和CDK6活性。
通过PCR技术测定与CDK1类似的CDK 蛋白分子图解(图14-6)。