8年级数学试题卷
八年级数学试卷
八年级数学试卷篇一:八年级数学综合测试题数学测试题(九)班级:姓名:分数:一、选择题:(每小题5分,共30分)1.若代数式某1某某21某3有意义,则某的取值范围是()A、某2B、某2且某3C、某3D、某2,某3且某12.化简(某242某某24某4某2)某某2,其结果是()A、8某2B、8某2C、8某2D、8某23.已知函数yk某中,某0时,y随某的增大而增大,则yk某k的大致图象是()4.已知ABC中,AB=17,AC=10,BC边上的高AD为8,则边BC的长为()A、21B、15C、6D、21或95.如图,自矩形ABCD的顶点C作CEBD,E为垂足,延长EC至F,使CF=BD,连接AF,则BAF的大小是()A、30oB、45oC、48oD、60o5题图6题图6.在梯形ABCD中,AD//BC,B与C互余,E、F分别是AD、BC的中点,AD=EF=1,则BC的长为()A、2B、3C、4D、5二、填空题(每小题5分,共30分)7.若某1某4,则某2某4某28.已知abc1,则aaba1bbcb1ccac19.关于某的分式方程m某12某13某21CD=23,AB=2,BC=33,则四边形ABCD的周长为三、解答题:(每小题10分,共60分)13.已知某y某y2,某z某z3,yzyz4,求某yyzz某的值。
14.已知非负数a、b、c满足a3b2c3与3a3bc4,k3a2b4c,指出y(k1)某k7的图象所在的象限。
15.求某24某216某80的最小值。
16.如图,在□ABCD中,BC=2AB,AE=AB=BF,且点E、F在直线AB 上。
求证:CEDF。
17.如图,已知五边形ABCDE中,ABC=AED=90o,BAC=EAD,F是CD 的中点。
求证:BF=EF。
18.如图,在梯形ABCD中,AB//DC,DC=2AB=2AD,BD=6,BC=4。
求梯形ABCD的面积。
数学测试题(一)班级____________姓名____________分数__________一、选择题(每小题5分,共30分)1.计算4某62某42某42某3某1的结果是()A、5某2B、5某2C、5某4D、5某42.关于某3的不同实数解共有()A、1个B、2个C、3个D、无数个3.若m,n,p都是大于1的自然数,且mp12348n,则m的最小值为()A、24B、42C、294D、74.如图,ABC中,ADBC于D,BEAC于E,AD与BE相交于点F,若BF=AC,则ABC的大小为()A、40B、45C、50D、605.已知点(m,n)在第二象限,则直线ym某n不经过()CA、第一象限B、第二象限C、第三象限D、第四象限6.设某,y,z都为实数,且某yz,a某2yz,by2某z,cz2某y,则对a,b,c的判断正确的是()A、都大于或等于0B、都不大于0C、至少有一个大于0D、至少有一个小于0二、填空题(每小题5分,共30分)7.772022882022的个位数是______________。
人教版八年级上册数学 全册全套试卷测试卷 (word版,含解析)
人教版八年级上册数学全册全套试卷测试卷(word版,含解析)一、八年级数学三角形填空题(难)1.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.2.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.4.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.5.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD=__________.【答案】119°【解析】【分析】连接BD,构△BCD根据对顶角相等和三角形内角和定理即可求出∠BCD的度数.【详解】如图所示,连接BD,∵∠4=∠1=38°,∠3=∠2=23°,∴∠BCD=180°-∠4-∠3=180°-38°-23°=119°.故答案为:119°.【点睛】本题考查了对顶角的性质与三角形内角和定理. 连接BD,构△BCD是解题的关键.6.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.二、八年级数学三角形选择题(难)7.如图,△ABC 中,E 是 AC 的中点,延长BC 至D,使BC :CD=3:2,以CE,CD 为邻边做▱CDFE,连接 AF,BE,BF,若△ABC 的面积为 9,则阴影部分面积是()A.6 B.4 C.3 D.2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】解:在ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2▱CDFE 中,CD=EF 1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯ 1262=⨯⨯ 6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.8.已知非直角三角形ABC 中,∠A=45°,高BD 与CE 所在直线交于点H ,则∠BHC 的度数是()A .45°B .45° 或135°C .45°或125°D .135°【答案】B【解析】【分析】①△ABC 是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC 是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A ,从而得解.【详解】①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.9.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.B.C.D.不能确定【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333 =S△ABC=1111••••2222BC AH AB PD BC PE AC PF ==+∴1111 3?3?3?3? 2222AH PD PE PF ⨯=⨯+⨯+⨯∴PD+PE+PF=AH=33 2即点P到三角形三边距离之和为33.故选B.10.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.11.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.解:设这个多边形的边数为n ,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B .【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.12.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º【答案】D【解析】【分析】 依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF ∥EG ,∴∠1=∠DFG =40°,又∵∠A =30°,∴∠2=∠A +∠DFG =30°+40°=70°,故选D .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.三、八年级数学全等三角形填空题(难)13.如图,已知△ABC 和△ADE 均为等边三角形,点O 是AC 的中点,点D 在射线BO 上,连结OE ,EC ,则∠ACE =_____°;若AB =1,则OE 的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=14故答案为:30,1 4【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.14.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】234.【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.【详解】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,∵等边△ABC,∴∠ACP+∠PCB=60°,∴∠ECB+∠PCB=60°,即∠ECP=60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC=150°,∠APD=30°,∴∠DPC=120°,∴∠DPE=180°,即D、P、E三点共线,∴ED=3+7=10,∴BD=22=234.DE BE故答案为34【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.15.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=_____.【答案】40°【解析】【分析】做辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80-x,y+x=40,可得结论:∠DEB=40°.【详解】如图,过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD∴EH=EF∵∠BAC=130°,∠BAD=80°∴∠FAE=∠CAD=50°∴EF=EG∴EG=EH∴ED平分∠CDG∴∠HED=∠DEG设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°∴∠GEA=∠FEA=40°∵∠EFB=∠EHB=90°,∠EBH=∠EBF∴∠FEB=∠HEB∴2y+x=80-x,2y+2x=80y+x=40即∠DEB=40°.故答案为:40°.【点睛】本题考查三角形内角和定理和角平分线的性质,正确作辅助线是解题的关键.17.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=12∠BAC=12×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=12(180°﹣∠BAC)=12×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.18.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC; ②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正确的是_____.【答案】①②③④.【解析】【分析】根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.【详解】①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD ,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△EBC (SAS ),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,∴∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,∴△ACE 为等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,∵EF ⊥AB ,∴AF 2=EC 2﹣EF 2;∴③正确;④如图,过E 作EG ⊥BC 于G 点,∵E 是BD 上的点,∴EF=EG ,在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG=BF ,在Rt △CEG 和Rt △AFE 中,EF FG AE CE =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),∴AF=CG ,∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,∴④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.四、八年级数学全等三角形选择题(难)19.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.A .1B .1或3C .1或7D .3或7 【答案】C【解析】【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.20.下列命题中的假命题是()A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等【答案】D【解析】【分析】根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.【详解】解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,故答案为D.【点睛】本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.21.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握22.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.23.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.24.下列条件中,不能判定两个直角三角形全等的是( )A.两条直角边对应相等B.有两条边对应相等C.斜边和一锐角对应相等D.一条直角边和斜边对应相等【答案】B【解析】根据全等三角形的判定SAS,可知两条直角边对应相等的两个直角三角形全等,故A不正确;根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL,能判定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B正确.根据全等三角形的判定AAS,可知斜边和一锐角对应相等的两直角三角形全等,故C不正确;根据直角三角形的判定HL,可知一条直角边和斜边对应相等两直角三角形全等,故D不正确.故选B.点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS,SAS,ASA,AAS,HL,直接判断即可.五、八年级数学轴对称三角形填空题(难)25.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.26.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,3,2∴GD=B′F=2,∴3∵AB=10,∴AG=10﹣6=4,∴7考点:1轴对称;2等边三角形.27.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG 中,OC=2cm ,CG=BC=10cm ,∴OP=OG= 2210246(cm)-=,当点P 运动到点F 或点H 时,BE=8cm ,BH=BF=10cm ,∴EF=EH=6cm∴OP=OF=8-6=2(cm )或OP=OH=8+6=14(cm ),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.28.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC ,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.29.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.30.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.六、八年级数学轴对称三角形选择题(难)31.如图,ABC,分别以AB、AC为边作等边三角形ABD与等边三角形ACE,连接BE、CD,BE的延长线与CD交于点F,连接AF,有以下四个结论:①BE CD=;②FA平分EFC∠;③FE FD=;④FE FC FA+=.其中一定正确的结论有()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据等边三角形的性质证出△BAE≌△DAC,可得BE=CD,从而得出①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,由△BAE≌△DAC得出∠BEA=∠ACD,由等角的补角相等得出∠AEM=∠CAN,由AAS可证△AME≌△ANC,得到AM=AN,由角平分线的判定定理得到FA平分∠EFC,从而得出②正确;在FA上截取FG,使FG=FE,根据全等三角形的判定与性质得出△AGE≌△CFE,可得AG=CF,即可求得AF=CF+EF,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.32.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°)所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.33.如图,△ABC 的周长为32,点D 、E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =12,则PQ 的长为( )A .3B .4C .5D .6【答案】B【解析】【分析】 首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ .【详解】∵BQ 平分∠ABC ,BQ ⊥AE ,∴∠ABQ =∠EBQ ,∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°,∴∠BAQ =∠BEQ , ∴AB =BE ,同理:CA =CD ,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD =AB+AC =32﹣BC =32﹣12=20,∴DE =BE+CD ﹣BC =8,∴PQ =12DE =4. 故选:B .【点睛】 本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.34.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩=== ∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.35.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.36.如图,已知等边△ABC 的边长为4,面积为43,点D 为AC 的中点,点E 为BC 的中点,点P 为BD 上一动点,则PE+PC 的最小值为( )A .3B .2C .3D .3【答案】C【解析】【分析】 由题意可知点A 、点C 关于BD 对称,连接AE 交BD 于点P ,由对称的性质可得,PA=PC ,故PE+PC=AE ,由两点之间线段最短可知,AE 即为PE+PC 的最小值.【详解】解:∵△ABC 是等边三角形,点D 为AC 的中点,点E 为BC 的中点,∴BD ⊥AC ,EC =2,连接AE ,线段AE 的长即为PE+PC 最小值,∵点E 是边BC 的中点,∴AE ⊥BC ,∴PE+PC 22AC E C -224223-=故选C .【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.已知226a b ab +=,且a>b>0,则a b a b +-的值为( ) A 2B 2C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴8ab 4ab∴a b a b +-824ab ab= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.38.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .3【答案】D【解析】【分析】首先把a 2+b 2+c 2﹣ab ﹣bc ﹣ac 两两结合为a 2﹣ab +b 2﹣bc +c 2﹣ac ,利用提取公因式法因式分解,再把a 、b 、c 代入求值即可.【详解】a 2+b 2+c 2﹣ab ﹣bc ﹣ac=a 2﹣ab +b 2﹣bc +c 2﹣ac=a (a ﹣b )+b (b ﹣c )+c (c ﹣a )。
八年级上册数学测试题及答案
八年级上册数学测试题及答案八年级上册数学测试题及答案一、选择题1、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长度为() A.2.5 B. 3 C. 4 D. 52、已知等腰三角形的一边长为3,腰长为4,则这个三角形的周长为() A. 9 B. 10 C. 11 D. 123、一个正多边形的内角和为1800°,则这个多边形的边数为() A.6 B. 8 C. 10 D. 124、已知一次函数y=kx+b的图象经过点(2,-1)和点(-2,3),则这个函数的表达式为() A. y=-2x+3 B. y=x-2 C. y=x+2 D. y=-x+3二、填空题5、在等腰三角形中,已知底角的度数和腰的长度,则顶角的度数为_______。
51、在直角三角形中,已知一个锐角的度数,以及两直角边的长度,则另一个锐角的度数为_______。
511、等边三角形的边长为4,则它的高为_______。
5111、已知一次函数y=kx+b的图象与x轴的交点为(-2,0),则方程kx+b=0的解为_______。
三、解答题9、在△ABC中,∠A=70°,∠B=60°,CD是∠ACB的角平分线。
求∠BCD的度数。
91、等腰三角形的一个角是70°,求这个等腰三角形的另外两个角的度数。
911、等腰三角形的一边长为4cm,另一边的长为8cm,求这个等腰三角形的周长。
9111、已知一次函数y=kx+b的图象经过点(0,-3),且与x轴相交于点(2,0)。
求这个一次函数的表达式。
四、附加题13、等边三角形的边长为6cm,将它每条边六等分,然后连接每个分点形成新的三角形,求这些新三角形的面积之和。
答案:一、1. D 2. C 3. B 4. C二、5. arcsin(√3/3)或约为35.26° 6. 90°-arcsin(邻边/斜边)或用三角函数计算 7. √(4²-2²)=√12=2√3 8. x=-2三、9. ∵∠A=70°,∠B=60°,∴∠ACB=50°,又CD平分∠ACB,∴∠BCD=25°。
八年级(初二)数学(一次函数)试卷试题附答案解析
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
八年级数学试题及答案
八年级数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 计算下列哪个表达式的结果是正数?A. -1 + (-2)B. 3 - 5C. 4 × (-2)D. -3 ÷ 2答案:D3. 如果a > b > 0,那么下列哪个不等式是正确的?A. a < bB. a > bC. b > aD. a = b答案:B4. 一个数的平方根是它本身,这个数可以是:A. 0B. 1C. -1D. 2答案:A5. 下列哪个分数是最简分数?A. 6/12B. 8/16C. 5/10D. 7/3答案:D二、填空题(共10分,每题2分)6. 一个长方形的长是10厘米,宽是5厘米,它的周长是________厘米。
答案:307. 如果一个数的立方根是2,那么这个数是________。
答案:88. 一个数的绝对值是5,这个数可以是________或________。
答案:5或-59. 一个圆的半径是7厘米,它的面积是________平方厘米。
答案:153.9410. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是________平方厘米。
答案:12三、计算题(共30分,每题6分)11. 计算下列表达式的值:(1) (-3) × 2 + 5(2) √(16) - 4答案:(1) -6 + 5 = -1(2) 4 - 4 = 012. 解下列方程:(1) 2x + 5 = 13(2) 3y - 7 = 8答案:(1) 2x = 8,x = 4(2) 3y = 15,y = 513. 计算下列多项式的值,当x = -2时:(1) 3x^2 - 2x + 1(2) x^3 + 4x - 5答案:(1) 3 × (-2)^2 - 2 × (-2) + 1 = 12 + 4 + 1 = 17(2) (-2)^3 + 4 × (-2) - 5 = -8 - 8 - 5 = -21四、解答题(共50分,每题10分)14. 一个班级有40名学生,其中30名学生参加了数学竞赛。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.数据0.00000011用科学记数法表示正确的是()A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯3.已知一个n 边形的内角和等于1800°,则n =()A .6B .8C .10D .124.下列运算中正确的是()A .235x y xy+=B .()3263x y x y =C .824x x x ÷=D .32622x x x ⋅=5.若216x ax -+是完全平方式,则a 的值等于()A .2B .4或4-C .2或2-D .8或8-6.若分式41x x +-的值为零,则x 的值是()A .4x =B .4x =-C .1x =D .1x =-7.下列四个图中,正确画出△ABC 中BC 边上的高是()A .B .C .D .8.已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .99.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是()A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题11.若点(),1A a 与点()3,B b -关于x 轴对称,则ab =__________.12.计算:22c a a bc⋅=_______.13.分解因式:2m m +=___________.14.使得分式263x x -+有意义的条件是________.15.计算:1022021-+=______16.如图,AB ,CD 相交于点E ,若ABC ADE △≌△,且点B 与点D 对应,点C 与点E 对应,28BAC ∠=︒,则B Ð的度数是_____°.17.如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_______________.18.如图,ABC DEF ≅ ,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.三、解答题19.化简:()()()331x x x x +---.20.解方程:132x x =-21.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.22.如图,点B ,F ,C ,E 在一直线上,B E ∠=∠,BF EC =,AB DE =.求证://AC DF .23.如图,在Rt ABC 中,90B ∠=︒.(1)作AC 的垂直平分线ED ,交BC 于点E ,交AC 于点D (尺规作图,不写作法,保留作图痕迹);(2)当3AB =,5BC =时,求ABE △的周长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.已知:在△ABC 中,AD 是BC 边上的高.(1)尺规作图:作∠BAC 的平分线AE ,交BC 于点E ;(2)在(1)的条件下:若∠ABC =105°,∠C =45°,求∠EAD 的度数.26.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?27.如图,点D 在射线BC 上运动,ABC 与ADE 都是以点A 为直角顶点的等腰直角三角形.(1)在图1中证明:①ABD ACE △△≌;②EC BC ⊥;(2)如图2,当点D 在BC 的延长线上时,若6BC =,()6BD x x =>,CDE △的面积为y ,试求出y 与x 之间的关系式.参考答案1.B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.B【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据多边形的内角和公式,计算可得结论.【详解】解:∵(n ﹣2)×180=1800,∴n =12.故选:D .【点睛】本题考查了多边形的内角和,掌握多边形的内角和公式是解决本题的关键.4.B【分析】根据合并同类项、积的乘方、同底数幂的除法、单项式与单项式的乘法法则逐项分析即可.【详解】A.2x 与3y 不是同类项,不能合并,故不正确;B.()3263x y x y =,正确;C.826x x x ÷=,故不正确;D.32522x x x ⋅=,故不正确;故选B .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a 的值.【详解】解:∵x 2-ax+16=x 2-ax+42,∴-ax=±2•x•4,解得a=8或-8.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】根据分式的值为0的条件,即可求解.【详解】解:根据题意得:40x +=且10x -≠,解得:4x =-.故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件——分子等于0,且分母不等于0是解题的关键.7.C【分析】根据三角形的高的定义,即可判断,从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.【详解】A 选项不是三角形的高,不符合题意;B 选项是AC 边上的高,不符合题意;C 选项是BC 边上的高,符合题意;D 选项不是三角形的高,不符合题意;故选C .【点睛】本题考查了三角形的高的定义,理解定义是解题的关键.8.D【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选:D .【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.9.A【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD 或AC=AD.【详解】解:需要添加条件为:BC=BD 或AC=AD,理由为:若添加的条件为:BC=BD在Rt △ABC 与Rt △ABD 中,BC BD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL);若添加的条件为:AC=AD在Rt △ABC 与Rt △ABD 中,AC AD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL).故选:A.【点睛】本题考查了利用HL 公理判定直角三角形全等,熟练运用HL 公理是解题的关键10.D【详解】解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ).∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ),若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ).当A→B 时,t=4﹣0.5=3.5;当B→A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A→B 时,∴t=4﹣2=2;当B→A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .11.3【分析】关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,先求出a 、b 的值,然后得到答案.【详解】解:∵点(),1A a 与点()3,B b -关于x 轴对称,∴3a =-,1b =-,∴3(1)3ab =-⨯-=;故答案为:3.【点睛】本题考查了关于x 轴对称点的坐标,解题的关键是掌握点的坐标的变化规律.12.acb【分析】分式的乘法法则:把分子的积作为积的分子,把分母的积作为积的分母,再约分即可.【详解】解:22,c a ac a bc b⋅=故答案为:ac b【点睛】本题考查的是分式的乘法运算,掌握“分式的乘法运算的运算法则”是解题的关键.13.(1)m m +【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.14.x≠﹣3【分析】根据分式有意义的条件可得:x+3≠0,再解即可.【详解】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.【点睛】本题考查了分式有意义的条件,熟知分母不为零是解题的关键.15.32##1.5【分析】根据负整指数幂和0次幂的运算法则计算即可.【详解】解:原式=112+=32故答案为:32【点睛】本题主要考查负整指数幂和0次幂的运算,掌握相关运算方法是解题的关键.16.48【分析】由题意知28AC AE B D DAE BAC =∠=∠∠=∠=︒,,,AEC ACE ∠=∠,由三角形的内角和定理得AEC ∠的值,三角形的外角的性质得D ∠,进而得到B Ð的值.【详解】解:∵ABC ADE△≌△∴28AC AE B D DAE BAC =∠=∠∠=∠=︒,,∴AEC ACE∠=∠∵++180AEC ACE BAC ∠∠∠=︒∴180762BAC AEC ︒-∠∠==︒∵AEC D DAE∠=∠+∠∴48D ∠=︒∴48B ∠=︒故答案为:48︒.【点睛】本题考查了三角形全等的性质,等边对等角,三角形的内角和定理,三角形外角的性质等知识.解题的关键在于对知识的灵活运用.17.8【分析】连接AD ,AM ,由EF 是线段AB 的垂直平分线,得到AM=BM ,则△BDM 的周长=BD+BM+DM=AM+DM+BD ,要想△BDM 的周长最小,即要使AM+DM 的值最小,故当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD ,AM ,∵EF 是线段AB 的垂直平分线,∴AM=BM ,∴△BDM 的周长=BD+BM+DM=AM+DM+BD ,∴要想△BDM 的周长最小,即要使AM+DM 的值最小,∴当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,∵AB=AC ,D 为BC 的中点,∴AD ⊥BC ,122BD BC ==,∴1122ABC S AD BC =⋅=△,∴AD=6,∴△BDM 的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A 、M 、D 三点共线时,AM+DM 最小,即为AD .18.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴BC=EF ,∵BC=7,EC=4,∴CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键.19.9x -【分析】由平方差公式、整式乘法、整式的加减运算进行化简,即可得到答案.【详解】解:()()()2233199x x x x x x x x +---=--+=-.【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则,正确的进行化简.20.1x =-【分析】方程两边同乘以()2x x -,将分式方程化为整式方程,再解一元一次方程,最后要检验.【详解】解:方程两边同乘()2x x -,得23x x -=,移项及合并同类项,得22x =-,系数化为1,得1x =-,经检验,1x =-是原分式方程的解,∴原分式方程的解是1x =-.【点睛】本题考查解分式方程,是重要考点,掌握相关知识是解题关键.21.12x x --,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++=1211x x x x --÷++=1112x x x x -+⋅+-=12x x --,∵x≠±1且x≠2,∴x=3,则原式=3132--=2.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.22.见详解【分析】由题意易得BC EF =,然后可根据“SAS”证明三角形全等,进而根据全等三角形的性质可求证.【详解】证明:∵BF EC =,CF CF =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌,∴ACB DFE ∠=∠,∴//AC DF .23.(1)见解析(2)8【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA=EC ,然后利用等线段代换得到△ABE 的周长=AB+BC .(1)解:如图,ED为所作;(2)解:∵DE 垂直平分AC ,∴EA=EC ,∴△ABE 的周长=AB+BE+AE=AB+BE+EC=AB+BC=3+5=8.【点睛】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC =.∴523AE AB EC =-=-=.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)作图见解析;(2)30.︒【分析】(1)以A 为圆心,任意长为半径画弧,得与,AB AC 的两个交点,再分别以这两个交点为圆心,大于这两个交点间的距离的一半为半径画弧,得两弧的交点,以A 为端点,过两弧的交点作射线AE 交BC 于E ,即可得到答案;(2)根据三角形的内角和定理求解BAC ∠,再利用角平分线的定义求解BAE ∠,再利用三角形的高的含义与外角的性质求解BAD ∠,最后利用角的和差关系可得答案.【详解】解:(1)如图,射线AE 即为所求,(2)10545ABC C ∠=︒∠=︒ ,,1801054530BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,1152EAB BAC ∴∠=∠=︒,105ABC AD ∠=︒ ,为高,1059015BAD ABC ADC ∴∠=∠-∠=︒-︒=︒,151530.EAD EAB BAD ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是三角形的高的含义,角平分线的定义与作图,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.26.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据销售单价x 销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据题意得:222096052x x-=,解得:x 30=,经检验,x 30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.27.(1)①证明见解析;②证明见解析(2)213(6)2y x x x =->【分析】(1)①由等腰直角三角形的性质得:90BAC ∠=︒,90DAE ∠=︒,AB AC =,AD AE =,和同角的余角相等可证BAD CAE ∠=∠,继而利用边角边可证得ABD ACE △△≌②根据全等三角形的性质和等腰三角形的性质可证(2)证明ABD ∆≌ACE ,根据全等三角形的性质得到BD EC =,45ACE B ∠=∠=︒,根据三角形的面积公式,求出y 与x 之间的关系式.(1)证明:①ABC ∆ 与ADE ∆都是以点A 为直角顶点的等腰直角三角形90BAC ∴∠=︒,90DAE ∠=︒,AB AC =,AD AE =90BAD DAC CAE DAC ∴∠+∠=∠+∠=︒BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆②ABD ∆ ≌ACE ∆,45ACE B ∴∠=∠=︒.45ACB =︒∠ ,90ECD ∴∠=︒,EC BC ∴⊥;(2)解:90BAD DAC CAE DAC ∠-∠=∠-∠=︒ BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆BD EC ∴=,45ACE B ∠=∠=︒45ACB =︒∠ 90ECD ∴∠=︒EC BC∴⊥12ECD S CD EC∆∴=⋅211(6)3(6)22y x x x x x ∴=-⋅=->.。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()A .1组B .2组C .3组D .4组3.一个多边形的每一个内角都是135°,则这个多边形是()A .七边形B .八边形C .九边形D .十边形4.某病毒的直径为100纳米(1纳米=0.000000001米),100纳米用科学记数法表示为()A .81010-⨯米B .7110-⨯米C .9110-⨯米D .80110-⨯.米5.在直角坐标系中,点A (–2,2)与点B 关于x 轴对称,则点B 的坐标为()A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2)6.把一副三角板按如图叠放在一起,则α∠的度数是()A .165B .160C .155D .150 7.下列各式中,正确的是()A .2242ab b a c c =B .1a b b ab b ++=C .23193x x x -=-+D .22x y x y -++=-8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B ,下列结论中不一定成立的是()A .PA PB =B .PO 平分APB ∠C .=OA OBD .AB 垂直平分OP9.如图,在四边形ABCD 中,AB ∥DC ,DAB ∠的平分线交BC 于点E ,DE AE ⊥,若6AD =,4BC =,则四边形ABCD 的周长为()A .14B .15C .16D .1710.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-11.在ABC 中,已知8AB =,5AC =,6BC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD (如图所示).则下列结论:①DE AB ⊥②ADE V 的周长等于7③:3:4BCD ABD S S = ④CD AD =,其中正确的是()A .①②B .②③C .①②③D .②③④12.由图,可得代数恒等式()A .()2222a b a ab b +=++B .()()22232a b a b a ab b ++=++C .()()2224a b a b a ab b ++=++D .()222232a b a ab b +++=二、填空题13.计算:(20112-⎛⎫-= ⎪⎝⎭________.14.若分式211x x--的值为零,则x 的值为________.15.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________°.16.如图,在ABC 中,AB AC =,点P 在ABC ∠的平分线上,将PBC 沿PC 对折,使点B 恰好落在AC 边上的点D 处,连接PD ,若AD PD =,则A ∠=______.17.分解因式:a -2ax+a 2x =__________.18.如图,∠B =50°,∠C =70°,∠BAD 平分线与∠ADC 外角平分线交于点F ,则∠F =_____.三、解答题19.计算:(1)()()322ab ab ÷-;(2)()()()2412525x x x +-+-.20.解方程:21324x x =--.21.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.22.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A 1B 1C 1的面积.23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.24.如图,已知ABC 中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在CA 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,BPD △与CQP V 是否全等?请说明理由:②若点Q 与点P 的运动速度不相等,要使BPD △与CQP V 全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC 的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC 的哪条边上.25.在直角ABC 中,90ACB ∠= ,60B ∠= ,AD ,CE 分别是BAC ∠和BCA ∠的平分线,AD ,CE 相交于点F .()1求EFD ∠的度数;()2判断FE 与FD 之间的数量关系,并证明你的结论.26.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?27.晓芳利用两张正三角形纸片,进行了如下探究:初步发现:如图1,△ABC 和△DCE 均为等边三角形,连接AE 交BD 延长线于点F ,求证:∠AFB =60°;深入探究:如图2,在正三角形纸片△ABC 的BC 边上取一点D ,作∠ADE =60°交∠ACB 外角平分线于点E ,探究CE ,DC 和AC 的数量关系,并证明;拓展创新:如图3,△ABC 和△DCE 均为正三角形,连接AE 交BD 于P ,当B ,C ,E 三点共线时,连接PC ,若BC =3CE ,直接写出下列两式分别是否为定值,并任选其中一个进行证明:(1)3AP PD PC -;(2)2AP PC PD BD PC PE++-+.参考答案1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,判断即可.【详解】解:(1)223+>,232+>,223-<,322-<,能构成;(2)235+=,不能构成;(3)146+<,不能构成;(4)345+>,354+>,453+>,435-<,534-<,543-<能构成;故选:B .【点睛】本题是对三角形三边关系的考查,熟练掌握三角形三边关系是解决本题的关键.3.B【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【详解】多边形的边数是:n =360°÷(180°﹣135°)=8.故选:B .【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100纳米=0.0000001米7110-=⨯米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.6.A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.C【分析】根据分式的基本性质对选项逐一判断即可.【详解】A 、2242ab b a c ac=,故错误;B 、11a b ab a b+=+,故错误;C 、23193x x x -=-+,故正确;D 、22x y x y -+-=-,故错误;故选C .【点睛】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.8.D【分析】根据角平分线的性质,垂直平分线的判定和三角形全等的判定和性质逐项进行判定即可.【详解】解:对A 、B 、C 选项,∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴PA PB =,∵在Rt PAO ∆和Rt PBO ∆中==PA PB OP OP⎧⎨⎩,∴Rt Rt OPA OPB ∆∆≌,∴APO BPO ∠=∠,=OA OB ,∴PO 平分APB ∠,故A 、B 、C 正确,不符合题意;D .∵PA PB =,=OA OB ,∴OP 垂直平分AB ,但AB 不一定垂直平分OP ,故D 错误,符合题意.【点睛】本题主要考查了角平分线的性质,垂直平分线的判定,全等三角形的判定和性质,根据题意证明Rt Rt OPA OPB ∆∆≌,是解题的关键.9.C【分析】延长AB 、DE 相交于点F ,根据AED AEF ∆∆≌得到DE EF =,AD AF =,再证明DEC FEB ∆∆≌得到DC BF =,从而推算出四边形ABCD 的周长等于2AD BC +得到答案.【详解】解:如下图所示,延长AB 、DE 相交于点F,DAB ∠的平分线交BC 于点E ,∴DAE FAE ∠=∠,∵DE AE ⊥,90AED AEF ∠=∠=︒∴,∵AE=AE ,∴AED AEF ∆∆≌,∴DE EF =,AD AF =,∵AB ∥DC ,∴CDE EFB ∠=∠,∵CDE EFB DE EF DEC FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DEC FEB ∆∆≌,∴DC BF =,∵6AB DC AB BF AF +=+==,∴四边形ABCD 的周长为66416AD AB BC DC AD AF BC +++=++=++=,故选:C .【点睛】本题考查全等三角形、平行线和角平分线的性质,解题的关键是熟练掌握全等三角形、平行线和角平分线的相关知识.10.A【分析】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,由题意得:759011.82x x =+,故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.11.B【分析】由折叠的性质得到CBD EBD ≅ ,继而得到BED C ∠=∠,根据题意90C ∠<︒,据此判断①错误;由折叠的性质得到DC=DE ,BE=BC=6,求得AED △的周长为:AD+AE+DE=AC+AE=7,可判断②;设点D 到AB 的距离为h ,根据三角形面积公式得到11::6:83:422BCD ABD S S h BE AB =⋅⋅== ,可判断③;设点B 到AC 的距离为m ,根据三角形面积公式得到11:::3:422BCD ABD S S m CD m AD CD AD =⋅⋅== ,可判断④.【详解】解:沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,CBD EBD≅ ,CBD EBD BED C∴∠=∠∠=∠90C ∠<︒90DEB ∴∠<︒DE ∴不垂直AB ,故①错误;由折叠的性质可知DC=DE ,BE=BC=68AB = 2AE AB BE ∴=-=AED ∴ 的周长为:AD+AE+DE=AC+AE=7,故②正确;设点D 到AB 的距离为h ,11::6:83:422BCD ABD S S h BE h AB ∴=⋅⋅== ,故③正确;设点B 到AC 的距离为m ,11:::3:422BCD ABD S S m CD m AD CD AD ∴=⋅⋅== ,故④错误,故选:B.【点睛】本题考查翻折变换,三角形周长的求法、三角形的面积公式等知识,是基础考点,掌握相关知识是解题关键.12.B【分析】根据大长方形的面积等于3个正方形的面积加上3个长方形的面积即可求解.【详解】解:依题意,得()()22232a b a b a ab b ++=++.故选B .【点睛】本题考查了多项式乘法与图形的面积,数形结合是解题的关键.13.3【分析】原式根据负整数指数幂、零指数幂的运算法则化简各项后,再进行减法运算即可得到答案.【详解】解:(201141=32-⎛⎫-=- ⎪⎝⎭.故答案为:3.【点睛】本题主要考查了负整数指数幂、零指数幂,熟练掌握负整数指数幂、零指数幂的运算法则是解答本题的关键.14.=1x -【分析】根据分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零,即可得到答案.【详解】解;根据分式的值为零的条件得:210x -=,且10x -≠,解得:=1x -,故答案为:=1x -.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.15.60【分析】连接,BP BE ,先根据等边三角形的性质可得60,ACB BE AC ∠=︒⊥,从而可得30CBE ∠=︒,再根据等边三角形的性质、线段垂直平分线的性质可得PB PC =,从而可得PC PE PB PE +=+,然后根据两点之间线段最短可得当点,,B P E 共线时,PB PE +最小,最后根据等腰三角形的性质可得30BCP CBE ∠=∠=︒,利用三角形的外角性质即可得出答案.【详解】解:如图,连接,BP BE ,ABC 是等边三角形,E 是AC 的中点,60ACB ∠=︒∴,BE AC ⊥,9030CBE ACB ∴∠=︒-∠=︒,AD 是等边ABC 的BC 边上的高,AD ∴垂直平分BC ,PB PC ∴=,PC PE PB PE ∴+=+,由两点之间线段最短得:如图,当点,,B P E 共线时,PB PE +最小,最小值为BE ,此时有30BCP CBE ∠=∠=︒,则60CPE BCP CBE ∠=∠+∠=︒,故答案为:60.【点睛】本题考查了等边三角形的性质、两点之间线段最短等知识点,利用两点之间线段最短找出PC PE +最小时,点P 的位置是解题关键.16.36︒【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得PBC PCB ∠=∠,从而得到BP PC =,PD PC =,进一步证明PDC PCD ∠=∠,再根据ABP ACP ∆∆≌得到PDC BAC ∠=∠,推算出2ABC BCA BAC ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如下图所所示,连接AP ,∵点P 在ABC ∠的平分线上,∴ABP PBC ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∵折叠,∴PCB DCP ∠=∠,∴PBC PCB ∠=∠,∴BP PC =,∵BP PD =,∴PD PC =,∴PDC PCD ∠=∠,∴ABP PBC BCP PCD PDC ∠=∠=∠=∠=∠,∵AD PD =,∴PAD APD ∠=∠,∵2PDC PAD APD PAD ∠=∠+∠=∠,∵AB ACAP AP BP PC=⎧⎪=⎨⎪=⎩,∴ABP ACP ∆∆≌,∴BAP PAC ∠=∠,∴PDC BAC ∠=∠,∴2ABC BCA BAC ∠=∠=∠,∵180ABC BCA BAC ∠+∠+∠=︒∴22180BAC BAC BAC ∠+∠+∠=︒,∴36BAC ∠=︒.【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明2ABC BCA BAC ∠=∠=∠.17.a 2(1)x -【分析】首先提取公因式a ,然后利用完全平方公式.【详解】解:原式=a(1-2x+2x )=a 2(1)x -.18.80︒【分析】设∠ADC=x ,则∠ADG=180°-x ,先证明∠BAE=∠C+∠EDC-∠B=x+20°,再由角平分线的定义得到1902ADF x =︒-∠,1102DAF x =︒+∠,再利用三角形内角和定理求解即可.【详解】解:设∠ADC=x ,则∠ADG=180°-x ,∵∠AEB=∠DEC ,∠AEB+∠B+∠BAE=180°,∠DEC+∠C+∠EDC=180°,∴∠B+∠BAE=∠C+∠EDC ,∴∠BAE=∠C+∠EDC-∠B=x+20°,∵AF 平分∠BAD ,DF 平分∠ADG ,∴119022ADF ADG x ==︒-∠∠,111022DAF BAD x ==︒+∠∠,∴1118018090108022F ADF DAF x x =︒--=︒-︒+-︒-=︒∠∠∠,故答案为:80︒.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,正确得到∠BAE=∠C+∠EDC-∠B 是解题的关键.19.(1)4ab(2)8x 29+【分析】(1)根据积的乘方、同底数幂的除法法则解答;(2)根据完全平方公式、平方差公式解答.(1)解:()()322ab ab ÷-6322a b a b =÷4ab =;(2)解:()()()2412525x x x +-+-()()22421425x x x =++--22484425x x x =++-+829x =+.20.1x =【分析】先去分母,方程两边同时乘以(2)(2)x x +-,转化为解一元一次方程,再验根即可.【详解】解:方程两边同时乘以(2)(2)x x +-得,23x +=1x ∴=经检验,1x =是分式方程的解1x ∴=.21.-2【详解】试题分析:原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将0x =代入计算即可求出值.试题解析:原式2541,112x x x x x x x ⎛⎫+-+=-⋅ ⎪++-⎝⎭2541,12x x x x x x +-++=⋅+-()221,12x x x x -+=⋅+-2x =-.当0x =时,原式 2.=-22.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【分析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.23.证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.24.(1)①△BPD ≌△CQP ,理由见解析;②点Q 的运动速度为4cm/s ,理由见解析;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;②因为VP≠VQ ,所以BP≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度;(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得.(1)①1秒钟时,△BPD 与△CQP 全等;理由如下:∵t=1秒,∴BP=CQ=3(cm )∵AB=12cm ,D 为AB 中点,∴BD=6cm ,又∵PC=BC-BP=9-3=6(cm ),∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵VP≠VQ ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD ≌△CPQ ,只能BP=CP=4.5,∵△BPD ≌△CPQ ,∴CQ=BD=6.∴点P 的运动时间 4.5 1.533BP t ===(秒),此时641.5Q CQ V t ===(cm/s ).(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得:4x=3x+2×12,解得:x=24,此时P 运动了24×3=72(cm )又∵△ABC 的周长为33cm ,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题是三角形综合题目,考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用;熟练掌握三角形全等的判定和性质是解决问题的关键.25.(1)120°;(2)FE=FD ;见解析.【分析】(1)由已知条件易得∠BAC=30°,结合AD ,CE 分别是∠BAC 和∠ACB 的角平分线可得∠FAC=15°,∠FCA=45°,由此结合三角形内角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.(2)如下图,在AC 是截取AG=AE ,连接FG ,在由已知条件易证△AGF ≌△AEF ,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,结合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,这样结合∠GCF=∠DCF ,CF=CF 即可得到△GCF ≌△DCF ,由此可得FG=FD ,结合FE=FG 即可得到FE=FD.【详解】(1)∵ABC 中,90ACB ∠= ,60B ∠=∴30BAC ∠= ,∵AD 、CE 分别是BAC ∠、BCA ∠的平分线,∴1152FAC BAC ∠=∠= ,1452FCA ACB ∠=∠= ,∴180120AFC FAC FCA ∠=-∠-∠= ,∴120EFD AFC ∠=∠= ;()2FE 与FD 之间的数量关系为FE FD =;在AC 上截取AG AE =,连接FG,∵AD 是BAC ∠的平分线,∴EAF GAF∠=∠在EAF △和GAF 中,∵AEAGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴AEF △≌AGF ,∴FE FG =,∠AFG=∠AFE=∠FAC+∠ECA=60°,∴∠CFD=∠AFE=60°,∴∠CFD=∠CFG ,∵在FDC △和FGC △中,DFC GFCFC FC FCG FCD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴CFG △≌CFD △,∴FG FD =,∴FE FD =.26.(1)5;(2)962.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解;(2)求出两次的购进千克数,根据利润=售价-进价,可求出结果.【详解】(1)设第一次所购水果的进货价是每千克x 元,依题意,得1650x 0.5+=3500x⨯,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1-5%)×8-500]+[300×(1-2%)×8-1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.27.初步发现:证明见解析;深入探究:CE+DC=AC ,证明见解析;拓展创新:(1)2,证明见解析;(2)1,证明见解析【分析】初步发现:只需要利用SAS 证明△BCD ≌△ACE 得到∠CBD=∠CAE ,由∠BOC=∠AOF ,推出∠AFO=∠BCO=60°,由此即可证明结论;深入探究:在AB 上取一点G 使得BG=BD ,连接DG ,先证明△BDG 是等边三角形,得到BG=BD=DG ,∠BGD=60°,再利用ASA 证明△AGD ≌△DCE 得到CE=GD=BD ,即可证明CE+DC=AC ;拓展创新:(1)如图所示,在AE 上取一点F ,使得EF=PD ,先证明△ACE ≌△BCD 得到AE=BD ,∠AEC=∠BDC ,再证明△CPD ≌△CFE 得到PD=FE ,∠PCD=∠FCE ,PC=CF ,进而证明△PCF 是等边三角形,得到PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,利用面积法证明CG=CH ,得到3BP PE =,得到34AE BD PC PD ==+23AP PC PD =+,由此即可得到结论;(2)根据(1)所求分别用PC 和PD 表示出分子和分母的线段的和差即可得到答案.【详解】解:初步发现:如图所示,设AC 与BF 交于O ,∵△ABC 和△CDE 都是等边三角形,∴CB=CA ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴∠CBD=∠CAE ,∵∠BOC=∠AOF ,∠AOF+∠AFO+∠OAF=180°,∠CBO+∠BOC+∠BCO=180°,∴∠AFO=∠BCO=60°,即∠AFB=60°;深入探究:CE+DC=AC ,证明如下:如图所示,在AB 上取一点G 使得BG=BD ,连接DG ,∵△ABC 是等边三角形,∴AC=BC=AB ,∠ACB=∠B=60°,∴∠ACF=120°,△BDG 是等边三角形,∴BG=BD=DG ,∠BGD=60°,∴∠AGD=120°,AG=DC ,∵CE 平分∠ACF ,∴1602ECF ACE ACF ∠=∠=∠=︒,∴∠DCE=120°,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD ,∠B=∠ADE=60°,∴∠CDE=∠BAD ,在△AGD 和△DCE 中,DAG EDCAG DC AGD DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△DCE (ASA ),∴CE=GD=BD ,∴CE+DC=BD+DC=BC ,∴CE+DC=AC;拓展创新:(1)32AP PDPC -=,证明如下:如图所示,在AE 上取一点F ,使得EF=PD ,∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,∴∠BCD=∠ACE ,在△ACE 和△BCD 中,AC BCACE BCD CE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∠AEC=∠BDC ,在△CPD 和△CFE 中,CD CECDP CEF DP EF=⎧⎪∠=∠⎨⎪=⎩,∴△CPD ≌△CFE (SAS ),∴PD=FE ,∠PCD=∠FCE ,PC=CF ,∴∠PCD+∠DCF=∠FCE+∠DCF ,∴∠PCF=∠DCE=60°,∴△PCF 是等边三角形,∴PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,∵△ACE ≌△BCD ,∴ACE BCD S S =△△,∴1122BD CG AE CH ⋅=⋅,∴CG=CH ,∵BC=3CE ,∴3BCP PCE S S =△△,∴11322BP CG PE CH ⋅=⨯⋅,∴3BP PE =,∴33334AE BD BP PD PE PD PF EF PD PC PD ==+=+=++=+,∴3423AP AE PE PC PD PF EF PC PD =-=+--=+,∴32322AP PD PC PD PDPC PC -+-==;(2)21AP PC PDBD PC PE ++=-+,证明如下:由(1)可得223235AP PC PD PC PD PC PD PC PD ++=+++=+,343435BD PC PE PC PD PC PF EF PC PD PC PC PD PC PD -+=+-++=+-++=+,∴21AP PC PDBD PC PE ++=-+;。
八年级数学上册 全册全套试卷测试卷 (word版,含解析)
八年级数学上册全册全套试卷测试卷(word版,含解析)一、八年级数学三角形填空题(难)1.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.4.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.【答案】5<a<11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,解得:5<a <11,故答案为:5<a<11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.5.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.6.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.二、八年级数学三角形选择题(难)7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°【答案】C【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE,问题得解.【详解】在△ABC中,∵∠ABC=34°,∠ACB=64°,∴∠BAC=180°−∠B−∠C=82°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=41°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【点睛】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.8.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC 为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )A .∠1=∠2+∠AB .∠1=2∠A+∠2C .∠1=2∠2+2∠AD .2∠1=∠2+∠A【答案】B【解析】 试题分析:如图在∆ABC 中,∠A+∠B+∠C=180°,折叠之后在∆ADF 中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A -∠2,又在四边形BCFE 中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A -∠2)=360°,∴∠2+∠1-2∠A -2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。
八年级数学试题及解析
八年级数学试题及解析一、填空:(每题2分,共20分)考点:镜面对称.专题:几何图形问题.分析:关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相对应数字的对称性可得实际数字.解答:解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.点评:考查镜面对称,得到相对应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.2.(2分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE .(不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案能够是:DF=DE.点评:考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3.(2分)如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= 10 cm.考点:全等三角形的性质.分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解答:解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.4.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.考点:全等三角形的判定与性质.分析:求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解答:解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.点评:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.5.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.解答:解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.点评:本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相对应线段相等并实行等量代换.6.(2分)如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.考点:全等三角形的判定与性质.分析:先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.解答:解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4 个.考点:全等三角形的判定;角平分线的性质.分析:根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别实行分析即可.解答:解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;所以其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2分)如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45 度.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,能够根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.解答:解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质.注意,在证明△ACE≌△BCD时,一定要找准相对应的边与角.9.(2分)如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,实行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.考点:全等三角形的判定与性质.分析:数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.解答:解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想水平和分析问题和解决问题的水平,题目具有一定的代表性,是一道比较好的题目.10.(2分)长为20,宽为a的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为12或15 .考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:首先根据题意可得可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,第二次操作时正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.然后分别从20﹣a>2a﹣20与20﹣a<2a﹣20去分析求解,即可求得答案.解答:解:由题意,可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,所以第二次操作时剪下正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.此时,分两种情况:①如果20﹣a>2a﹣20,即a<,那么第三次操作时正方形的边长为2a﹣20.则2a﹣20=(20﹣a)﹣(2a﹣20),解得a=12;②如果20﹣a<2a﹣20,即a>,那么第三次操作时正方形的边长为20﹣a.则20﹣a=(2a﹣20)﹣(20﹣a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.点评:此题考查了折叠的性质与矩形的性质.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用,注意折叠中的对应关系.二、选择:(每题3分,共27分)11.(3分)下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.解答:解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.点评:轴对称的关键是寻找对称轴,两边图象折叠后可重合.12.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,所以测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角考点:全等三角形的应用.分析:由已知能够得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.解答:解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.点评:本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.13.(3分)如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD 于E,图中全等三角形有()A.3对B.5对C.6对D. 7对考点:全等三角形的判定.分析:根据题目的意思,能够推出△ABE≌△CDF,△AOE≌△COF,△ABO≌△CDO,△BCO≌△DOA,△ABC≌△CDA,△ABD≌△CDB,△ADE≌△CBF.再分别实行证明.解答:解:①△ABE≌△CDF∵AB∥CD,AD∥BC∴AB=CD,∠ABE=∠CDF∵AE⊥BD于E,CF⊥BD于E∴∠AEB=∠CFD∴△ABE≌△CDF;②△AOE≌△COF∵AB∥CD,AD∥BC,AC为ABCD对角线∴OA=OC,∠EOA=∠FOC∵∠AEO=∠CFO∴△AOE≌△COF;③△ABO≌△CDO∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠AOB=∠COD,OA=OC∴△ABO≌△CDO;④△BOC≌△DOA∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠BOC=∠DOA,OC=OA∴△BOC≌△DOA;⑤△ABC≌△CDA∵AB∥CD,AD∥BC∴BC=AD,DC=AB,∠ABC=∠CDA∴△ABC≌△CDA;⑥△ABD≌△CDB∵AB∥CD,AD∥BC∴∠BAD=∠BCD,AB=CD,AD=BC∴△ABD≌△CDA;⑦△ADE≌△CBF∵AD=BC,DE=BF,AE=CF∴△DEC≌△BFA.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同时考查了平行四边形的性质,题目比较容易.14.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.15.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D. 15cm考点:轴对称的性质.分析:先根据轴对称的性质得出PA=AG,PB=BH,由此可得出结论.解答:解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=AG,PB=BH,∴△PAB的周长=AP+PB+AB=AG+AB+BH=GH=10cm.故选B.点评:本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.16.(3分)下列各条件不能作出唯一直角三角形的是()A.已知两直角边B.已知两锐角C.已知一直角边和一锐角D.已知斜边和一直角边考点:全等三角形的判定.分析:根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.解答:解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选B.点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.(3分)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB 于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.专题:压轴题.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.18.(3分)如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ)B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ)D.∠G=∠α考点:全等三角形的判定与性质;三角形的外角性质.分析:由于∠α是△BEC的外角,可以得到∠α=∠β+∠G ①,而∠γ是△CFG的外角,可以得到∠γ=∠CFG+∠G ②,而∠AFE和∠CFG是对顶角,由∠AD平分∠BAC,EG⊥AD于H可以推出∠α=∠AFE,然后利用①②即可得到答案.解答:解:∵∠α是△BEC的外角,∴∠α=∠β+∠G ①,∵∠γ是△CFG的外角,∴∠γ=∠CFG+∠G ②∵AD平分∠BAC,EG⊥AD于H,AH公共边,∴△AEH≌△AFH,∴AE=AF,∴∠α=∠AFE,而∠AFE=∠CFG,∴∠AFE=∠CFG=∠α,∴∠γ=∠α+∠G ③,①﹣③得∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,即∠α=(∠β+∠γ).故选A.点评:此题利用了全等三角形的判定与性质,三角形的内角和外角的关系等知识解题,综合性比较强.做题时,要结合已知条件与全等的判定方法对选项逐一验证.19.(3分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68考点:全等三角形的判定与性质.专题:压轴题.分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解答:解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.点评:本题考查的是全等三角形的判定的相关知识,是中考常见题型.三、作图(4+6=10分):20.(4分)现有三个村庄甲、乙、丙,现要新建一个水泵站P,使它到三个村庄的距离相等,应建在何处?(尺规作图,不写作法,保留痕迹)考点:作图—应用与设计作图;线段垂直平分线的性质.分析:利用线段垂直平分线的作法以及其性质得出,连接各点作出任意两边垂直平分线进而得出交点即可.解答:解:如图所示:P点即为所求.点评:此题主要考查了应用设计与作图,熟练利用线段垂直平分线的性质得出是解题关键.21.(6分)已知一个三角形的两边长分别是1cm和2cm,一个内角为40°.(1)请你借助图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在下图画这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°,”那么满足这一条件,且彼此不全等的三角形共有几个?分别画出草图,并在图中相应位置标明数据.(画图请保留作图痕迹,并把符合条件的图形用黑色笔画出来)考点:作图—应用与设计作图;全等三角形的判定.分析:(1)利用已知条件画出符合要求的图形即可;(2)利用已知条件画出符合要求的图形即可;(3)利用已知条件画出符合要求的图形即可.解答:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图所示:.点评:此题主要考查了应用设计与作图,利用三角形的形状不确定得出是解题关键.三、解答:(共43分)22.(6分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:考点:全等三角形的判定与性质;命题与定理.专题:压轴题.分析:此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.解答:情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.点评:此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.23.(6分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.考点:等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.解答:证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.点评:本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.24.(6分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC 于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.考点:线段垂直平分线的性质.分析:(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.解答:解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.25.(6分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.26.(11分)(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=120;如图2,∠BOC=90°;如图3,∠BOC=72°;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)考点:全等三角形的判定与性质;等边三角形的性质;多边形内角与外角;正方形的性质.分析:根据等边三角形的性质可以得出△DAC≌△BAE,再根据三角形的外角与内角的关系就可以求出∠BOC的值,在图2中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作n边形的时候就可以求出图4∠BOC的值.解答:①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.点评:本题考查了全等三角形的判定与性质,根据正多边形的性质证明三角形全等是解题关键.27.(8分已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.考点:旋转的性质;直角三角形全等的判定.专题:综合题.分析:先作出恰当的辅助线,再利用全等三角形的性质进行解答.解答:解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.点评:利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.。
国家八年级数学质量测试题(六套)
八年级数学测试题卷1一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....). 1.2的绝对值是( ). A .-2 B .21C . 21D .22.下表是世界五大洲的最低点及其海拔高度: 世界五大洲的最低点 亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球 6.某地区研究人员发现,该地区PM 2.5有五个重要来源, 分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反 映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2%7.超市举行“满58元即可抽奖”的活动,林阿姨想买纸巾和洗衣液凑够58元,如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价为y 元,则可列出的二元一次方程组为( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n 的长方形围成了一个 大正方形,能表示阴影部分面积的代数式是( ).A .m 2+ n 2B .m 2-n 2C .(m + n )2D .(m -n )29.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而 形成的,根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF10.小明买了一盒牛奶,如图1所示,正面有“牛奶”.右侧面有一根吸管,小明喝完牛奶后将纸盒剪开,展开如图2所示,那么在展开图中,吸管所在侧面的编号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm ,若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在中Rt △ABC 中,∠A = 30︒.AB 的垂直平分线分别交AB , AC 于点D 、点E ,连接BE .则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?牛奶吸管牛奶②①③④ACDF B EmnBCE DA(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式. (3)画出(2)中所求函数表达式的图象.16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形. (1)请根据筝形的图形特点,解答下面两个问题:(2)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由)(3)请你给筝形下一个数学定义.八年级数学测试题卷2一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ). A .30︒ B .60︒ C .70︒ D .120︒ 5.将x 2-9y 2分解因式的结果是( ).A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )2 6.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.超市举行“满58元即可抽奖”的活动,林阿姨 想买纸巾和洗衣液凑够58元.如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价a bc21 骑车 步行公共交通其他上学方式人数ABCD为y 元,则可列出的二元一次方程组为( ).A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n (m >n )的长方形围成了一个大长方形,能表示阴影部分面积的代数式是( ).A .m 2 + n 2B .m 2-n 2C .(m + n )2D .(m -n )2 9.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而形成的. 根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF 10.小明买了一盒牛奶,如图所示,正面写有“牛奶”,右侧面有一根吸管. 小明喝完牛奶后将纸盒剪开,展开图如后,那么在展开图中,吸管所在侧面的编 号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm .若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在Rt △ABC 中,∠C = 90︒,∠A = 30︒.AB 的垂直平分线分别交 AB ,AC 于点D 、点E ,连接BE ,则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌ACE .14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65ACD FBEm nB CE D AABD EC牛奶吸管牛奶②①③④岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形.请根据筝形的图形特点,解答下面两个问题:(1)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由) (2)请你给筝形下一个数学定义.八年级数学测试题卷3一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在答题卡的相应位置上)1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g 3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ).A .30︒B .60︒C .70︒D .120︒ 5.将x 2-9y 2分解因式的结果是( ).人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542ABCDabc21A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )26.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为 (-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印多少 页?( ).A .31B .32C .33D .3411.一滴墨水滴在了正方体的一个角上,那么正方体的展开图可能是( ).A .B .骑车 步行公共交通其他上学方式人数CDEBAF 1 23 45图书馆操场花坛教学楼 旗杆小明C .D .12.直线l 1:y = kx + b 的图象如右下图所示,直线l 2上部分点的坐标如左下表所示,那么直线l 1与l 2的交点坐标是( ).A .(3,2)B .(7,6)C .(0,-1)D .(-1,0) 二、解答题(共4题,请将解答过程写在填答卡的相应位置上.........) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌△ACE .14.请你写出完全平方式(a + b )2= a 2+ 2ab + b 2的推导过程.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达x … -3 -1 3 5 … y…-123…xyl 111ABD EC人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷4一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).A .B .C .D .3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组( ).A .先向右平移1格,后向下平移4格B .先向右平移2格,后向下平移4格C .先向右平移3格,后向下平移3格D .先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是( ).A .3x + 2x = 7 + 5B .3x -2x = 7 + 5C .3x -2x = 7-5D .2x -3x = 7-5小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮5.在-1,3,2,5这四个数中,最大的数是( ).A .-1B .3C .2D .5 6.⎩⎨⎧-=-=1,2y x 是下面哪个方程的解?( ).A .2x + y = 0B .2x + y -5 = 0C .2x + y + 5 = 0D .2x -y = 0 7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为(-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印 多少页?( ).A .31B .32C .33D .34二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x .14.请你写出完全平方式(a + b )2 = a 2 + 2ab + b 2 的推导过程.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.CDEBAF 1 2345 图书馆操场花坛教学楼 旗杆小明(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷5一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).s/km6 4 NQP Ot/h0.42ABC小张 小丽小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮A.B.C.D.3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组().A.先向右平移1格,后向下平移4格B.先向右平移2格,后向下平移4格C.先向右平移3格,后向下平移3格D.先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是().A.3x + 2x = 7 + 5 B.3x-2x = 7 + 5 C.3x-2x = 7-5 D.2x-3x = 7-55.在-1,3,2,5这四个数中,最大的数是().A.-1 B.3 C.2D.56.⎩⎨⎧-=-=1,2yx是下面哪个方程的解?().A.2x + y = 0 B.2x + y-5 = 0 C.2x + y + 5 = 0 D.2x-y = 07.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐.如图,每一个小方格的边代表实际长度为100 m的街道,他们各自选择沿小方格的边......以最短路线去早餐店,经过t min同时到达,那么小明的速度比小华的速度快().A.t500m∕min B.t400m∕min C.t300m∕minD.t200m∕min 8.平面直角坐标系内有五个点:A(4,2),B(4,-2),C(-4,2),D(-4,-2),E(3,-1),将点A,B,C,D分别与点E连接,在所得的线段中,与x轴及y轴都相交的线段是().A.AE B.BE C.CE D.DE9.下图分别是某中学七年级和八年级男、女学生人数的分布图,关于这两个年级女生人数说法正确的是().A.七年级较多B.八年级较多C.一样多D.无法比较10.在矩形ABCD中,AD = 5,AB = 4,以A为圆心,小华家早餐店小明家女生60%男生40%女生54%男生46%八年级男、女学生人数分布七年级男、女学生人数分布AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 … y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′ 的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短三、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x . 14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.计算从11到19这九个两位数中任何两个数的乘积, 有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132; 13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221; 17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272. (1)类比上述做法,再写出1个相同类型的式子; (2)请用字母表示上述做法的规律,并说明其合理性; (3)受到上述过程的启发,请你再提出1个数学问题.A BCEDAB CDPP ′ s/km6 4NQP Ot/h0.42ABC小张 小丽八年级数学测试题卷6一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.2的绝对值是( ). A .-2 B .21C .21D .22.下表是世界五大洲的最低点及其海拔高度 世界五大洲的最低点亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球6.某地区研究人员发现,该地区PM 2.5有五个重要来源,分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2% 7.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐. 如图,每一个小方格的边代表实际长度为100 m 的街道,他们各自选择 沿小方格的边......以最短路线去早餐店,经过t min 同时到达,那么小明的 速度比小华的速度快( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%小华家早餐店小明家A .t 500m ∕min B .t 400m ∕min C .t300m ∕min D .t 200m ∕min8.平面直角坐标系内有五个点:A (4,2),B (4,-2),C (-4,2),D (-4,-2),E (3,-1),将点A ,B ,C ,D 分别与点E 连接,在所得的线段中,与x 轴及y 轴都相交的线段是( ).A .AEB .BEC .CED .DE 9.下图分别是某中学七年级和八年级男、女学生人数的 分布图,关于这两个年级女生人数说法正确的是( ).A .七年级较多B .八年级较多C .一样多D .无法比较10.在矩形ABCD 中,AD = 5,AB = 4,以A 为圆心, AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 …y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式; (3)画出(2)中所求函数表达式的图象.女生 60%男生 40%女生 54%男生 46%八年级男、女学生人数分布七年级男、女学生人数分布 ABCEDAB CDPP ′16.计算从11到19这九个两位数中任何两个数的乘积,有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132;13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221;17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272.(1)类比上述做法,再写出1个相同类型的式子;(2)请用字母表示上述做法的规律,并说明其合理性;(3)受到上述过程的启发,请你再提出1个数学问题.。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333…(循环小数)答案:C2. 已知a > 0,b < 0,c < 0,下列不等式成立的是:A. a + b < 0B. a - c > 0C. b - c < 0D. a × b < 0答案:D3. 若x² + 5x + 6 = 0,下列哪个是方程的解?A. x = -1B. x = -6C. x = -2 或 x = -3D. x = 2 或 x = 3答案:C4. 下列哪个是二次根式?A. √3x²C. √xD. √x²答案:B5. 函数y = 3x + 5的斜率是:A. 3B. 5C. -3D. -5答案:A6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A7. 已知一个数列1, 3, 5, 7, ...,这个数列的第10项是:A. 17B. 19C. 21D. 23答案:B8. 下列哪个是完全平方数?B. 25C. 27D. 29答案:B9. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B10. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是:A. 24B. 12C. 36D. 48答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。
答案:1612. 一个数的相反数是-7,这个数是________。
答案:713. 一个数的绝对值是5,这个数可能是________或________。
答案:5 或 -514. 一个二次方程的一般形式是________。
答案:ax² + bx + c = 0(a≠0)15. 一个正数的倒数是1/8,这个正数是________。
人教版八年级上数学试题
人教版八年级上数学试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,8C. 5,6,10D. 5,6,11解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
选项A:公式,不满足两边之和大于第三边,不能组成三角形。
选项B:公式,不满足两边之和大于第三边,不能组成三角形。
选项C:公式,公式,公式,满足三边关系,可以组成三角形。
选项D:公式,不满足两边之和大于第三边,不能组成三角形。
所以答案是C。
2. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形解析:多边形的外角和是公式,设这个多边形有公式条边。
根据内角和公式公式,由题意得公式公式公式公式所以这个多边形是六边形,答案是C。
二、填空题(每题3分,共15分)1. 等腰三角形的一个底角为公式,则它的顶角为______。
解析:等腰三角形两底角相等,三角形内角和为公式。
所以顶角公式。
2. 若点公式与点公式关于公式轴对称,则公式______,公式______。
解析:关于公式轴对称的点纵坐标相等,横坐标互为相反数。
所以公式,公式。
三、解答题(共55分)1. (10分)如图,在公式中,公式,公式,公式是公式的角平分线,求公式的度数。
解析:1. 首先求公式的度数:在公式中,根据三角形内角和为公式,已知公式,公式,则公式。
2. 然后求公式的度数:因为公式是公式的角平分线,所以公式。
2. (12分)已知公式,公式两点在一次函数公式的图象上,且公式,公式,试比较公式与公式的大小。
解析:1. 对于一次函数公式,当公式时,公式随公式的增大而减小。
2. 已知公式,根据公式随公式的增大而减小的性质,可得公式。
数学测试题及答案八年级
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
人教版八年级上册数学期末考试试卷带答案
人教版八年级上册数学期末考试试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .2,4,7B .1,3,2C .6,8,10D .3,2,63.下列计算正确的是()A .()235aa =B .()2322a a =C .34a a a ⋅=D .2a-a=24.已知等腰三角形的两边长分别为6和2,则它的周长是()A .10B .14C .10或8D .10或145.若分式211x x --的值为0,则x 的值是()A .1B .0C .1-D .±16.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A .6cmB .5cmC .4cmD .3cm7.若23m =,22n =,则22m n +=()A .5B .6C .7D .128.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10cm ,则△DEB 的周长为()A .4cmB .6cmC .10cmD .不能确定9.如果a+b=3,那么2b aa a ab ⎛⎫-⋅⎪-⎝⎭的值是()A .3B .-3C .13D .13-10.如图,在Rt ABC 中,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若8cm,5cm BC BD ==,则DE 的长为()A .23cmB .3cmC .4cmD .5cm二、填空题11.点P (-2,4)关于x 轴对称的点的坐标为________.12.分解因式:3m 2﹣3n 2=_____.13.要使分式13x -有意义,x 需满足的条件是________.14.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是____度.15.(﹣8)2019×0.1252020=_________.16.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.17.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距_________m .18.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.三、解答题19.(1)计算:212232-⎛⎫--+⎪⎝⎭;(2)分解因式:22363x xy y -+-.20.解方程:(1)31511x x =---;(2)214111x x x +-=--.21.先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.22.如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1).(1)在图中作出△ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上画出点P ,使PA+PB 最小(保留作图痕迹).23.已知:如图所示,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠ACB=∠F ,AC=DF .求证:BE=CF .24.已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .25.某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?26.观察下列等式,用你发现的规律解答问题.111122=-⨯,1112323=-⨯,1113434=-⨯……(1)计算:111111223344556++++⨯⨯⨯⨯⨯的值.(2)求()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 的值(用含n 的式子表示).27.如图所示,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E .(1)若∠C=50°,∠BAC=60°,求∠ADB 的度数;(2)若∠BED=45°,求∠C 的度数;(3)猜想∠BED 与∠C 的关系,并说明理由.参考答案1.A 2.C 3.C 4.B 5.C 6.B 7.D 8.C 9.A 10.B 11.(2,4)--12.()()3m n m n +-13.3x ≠14.50或65【详解】试题解析:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50或65.15.-0.125【详解】解:()()20192019202080.1250.12580.1250.125-⨯=-⨯⨯=-.故答案为:-0.125.【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.16.400400210x x-=-【分析】设实际每天修x 米,则原计划每天修(x−10)米,根据实际比原计划提前2天完成了任务,列出方程即可.【详解】解:设建筑公司实际每天修x 米,由题意得:400400210x x-=-,故答案为:400400210x x-=-.【点睛】本题考查分式方程的应用,理解题意,找到合适的等量关系是解决问题的关键.本题的等量关系为原计划用的天数-实际用的天数=2.17.200【详解】解:由已知得:∠ABC=90°+30°=120°,∠BAC=90°﹣60°=30°,∴∠ACB=180°﹣∠ABC ﹣∠BAC=180°﹣120°﹣30°=30°,∴∠ACB=∠BAC ,∴BC=AB=200.18.75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故答案为:75︒19.(1)1-;(2)()23x y --【分析】(1)先化简绝对值、计算负整数指数幂与零指数幂,再计算加减法即可得;(2)综合利用提取公因式法和完全平方公式分解因式即可得.【详解】解:(1)原式241=-+1=-;(2)原式()2232x xy y=--+()23x y =--.20.(1)95x =(2)无解【分析】(1)先去分母,即方程两边同时乘以(x-1),将方程化成整式方程求解,然后检验即可求解;(2)先去分母,即方程两边同时乘以(x-1)(x+1)将方程化成整式方程求解,然后检验即可求解;(1)解:方程两边同时乘以(1-x),得-3=1-5(x-1)解得:95x =,检验:把95x =代入x-1=45≠0,所以95x =是原分式方程的解,∴95x =;(2)解:方程两边同时乘以(x-1)(x+1),得()()()21114x x x +-+-=222114x x x -+-+=-2x=2x=-1,检验:把x=-1代入(x-1)(x+1)=0,所以x=-1不是原分式方程的解,∴原方程无解.21.x 1x 2+-,4【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:原式=()()()2x 2x 11x 1x 1x 1---÷-+-()()()2x 1x 1x 2x 1x 2+--=⋅--x 1x 2+=-.当x=3时,原式=31432+=-.【点睛】本题考查分式的化简求值、完全平方公式、平方差公式,熟练掌握分式的混合运算法则是解答的关键.22.(1)见解析(2)见解析【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)作点A 关于x 轴的对称点A ',连接A B '与x 轴的交点即为所求.(1)解:111A B C △如图所示,(2)如图所示,点P 即为所求.【点睛】本题考查了作图—轴对称变换以及轴对称最短路径问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.【详解】证明:∵AB DE ∥,∴B DEF ∠=∠,在ABC 和DEF 中,B DEF ACB F AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF AAS △≌△,∴BC EF =,∴BE CF =.24.【详解】证明:∵AD 平分∠EDC ,∴∠ADE=∠ADC ,又DE=DC ,AD=AD ,∴△ADE ≌△ADC ,∴∠E=∠C ,又∠E=∠B ,∴∠B=∠C ,∴AB=AC.25.2元.【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:2500100020.5x x=⨯+,解得:x =2,经检验,x =2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)56(2)1n n +【分析】(1)根据所给的等式的特点进行求解即可;(2)根据所给的等式得出规律,然后对所求的式子进行拆项即可求解.(1)解:111111223344556++++⨯⨯⨯⨯⨯1111111111223344556=-+-+-+-+-116=-56=;(2)解:∵111122=-⨯,1112323=-⨯,1113434=-⨯,…,∴()11111n n n n =-⨯++,∴()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 1111111111112233445561n n =-+-+-+-+-++-+ 111n =-+1n n =+.27.(1)80°(2)90°(3)1902BED C ∠=︒-∠,理由见解析【分析】(1)由角平分线的定义可得∠DAC =30°,再由三角形外角性质即可求∠ADB 的度数;(2)由三角形的外角性质可得∠BAD +∠ABE =45°,再由角平分线的定义得∠BAC =2∠BAD ,∠ABC =2∠ABE ,从而得∠BAC +∠ABC =90°,利用三角形的内角和即可求∠C 的度数;(3)由三角形的外角性质得∠BED =∠BAD +∠ABE ,结合角平分线的定义可求得∠BAD +∠ABE =12(∠BAC +∠ABC ),由三角形的内角和可求解.(1)∴1302DAC BAC ∠=∠=︒.∵ADB ∠是ADC 的外角,∴503080ADB C DAC ∠=∠+∠=︒+︒=︒;(2)∵BED ∠是ABE △的外角,45BED ∠=︒,∴45BAD ABE BED ∠+∠=∠=︒.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴2BAC BAD ∠=∠,2ABC ABE ∠=∠,∴()290BAC ABC BAD ABE ∠+∠=∠+∠=︒.11∵180BAC ABC C ∠+∠+∠=︒,∴()1801809090C BAC ABC ∠=︒-∠+∠=︒-︒=︒;(3)1902BED C ∠=︒-∠.理由:∵BED ∠是ABE △的外角,∴BED BAD ABE ∠=∠+∠.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴12BAD BAC ∠=∠,12ABE ABC ∠=∠,∴()12BAD ABE BAC ABC ∠+∠=∠+∠.∵180BAC ABC C +=︒-∠∠∠,∴()()11118090222BED BAD ABE BAC ABC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,即:1902BED C ∠=︒-.。
浙江省嘉兴市2023-2024学年八年级上学期期末数学试题(含答案)
嘉兴市八年级(上)学科期末检测数学 试题卷(2024.1)【考生须知】1.本卷为试题卷,请将答案做在答题卷上;2.本次检测不使用计算器.一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)1.下列图形为轴对称图形的是()A .B .C .D .2.下列各点中位于第二象限的是()A .B .C .D .3.如图是某校园内对汽车的限速标志,表示该校园内汽车行驶的速度x (千米/小时)应满足的不等关系为()A .B .C .D .4.已知一次函数的图象经过点,则该函数的图象不经过( )A .第一象限B .第二象限且C .第三象限D .第四象限5.下列长度的线段能组成三角形的是( )A .B .C .D .6.不等式组的解为()()2,3()2,3-()2,3()2,3-5x >5x ≥5x ≤5x <()()2,0,0,2A B --1cm,2cm,3.5cm 6cm,13cm,8cm 5cm,9cm,4cm 11cm,5cm,5cm2022x x +>⎧⎨≤⎩A .B .C .D .7.根据如图所示的尺规作图痕迹,下列结论不一定成立的是()A .B .C .D .8.小明和爸爸两人从相距4千米的甲地前往乙地,两人同时出发,小明骑自行车,爸爸骑电瓶车.线段,折线分别表示小明和爸爸距离甲地路程S (千米)与时间t (分)之间的函数关系.下列说法正确的是()A.小明骑车速度为千米/小时 B .爸爸中途停留了20分钟C .小明在第15分钟追上爸爸D .小明比爸爸早到5分钟9.如图,的面积为平分于点P ,连结,则的面积为()A .B .C .D .10.一次函数的图象与x 轴的交点坐标为,且,则p 的取值范围是( )A .B .C .D .二、填空题(本题有6小题,每小题3分,共18分)11.若用表示第3排第2座,则第5排第4座可表示为_____________.12.命题“若,则”是_____________命题.(填“真”或“假”)13.如图,将一副三角尺叠放在一起,其中点B,E,C 三点共线,则的度数为_____________.21x -<≤21x -<<21x -≤≤21x -≤<EA ED =DE AB ⊥AF DE ∥AE AF=OA OBCD 215ABC △27cm ,BP ,ABC AP BP ∠⊥PC PBC △23cm 23.5cm 24cm 25cm 6y kx =+()0,0x 013,101x p k <≤=+6121p -<≤-6121p -≤<-5919p -<≤-5919p -≤<-()3,2a b >22a b >CFD ∠14.一艘轮船8:00从A 港出发向西航行,10:00折向北航行,平均航速均为20千米/时,则11:30时该轮船离A 港的距离为_____________.15.如图,函数与的图象相交于点,则关于x 的不等式的解为_____________.16.如图,中,,点D 是上一动点,将沿折叠得到,当与重叠部分是直角三角形时,的度数为_____________.三、解答题(本题有8小题,第17~22题每题6分,第23、24题每题8分,共52分)17.在解不等式时,小马同学给出了如下解法:解:去括号,得.移项,得.合并同类项,得.两边都除以,得.判断小马同学的解法是否有错误?若有错误,请写出正确的解答过程.18.如图,是的斜边上的中线,.(1)求的度数.(2)若,求的周长.12y x =-3y kx =+(,1)A m 1302kx x ++≤ABC △,40AB AC B =∠=︒BC ABD △AD ADE △ADE △ABC △BAD ∠3(1)1x x -+≥311x x --≥311x x -≥+22x -≥2-1x ≤-CD Rt ABC △AB 30A ∠=︒B ∠10AB =BDC △19.已知一次函数的图象经过点.(1)求此一次函数的表达式.(2)判断点是否在该函数图象上,并说明理由.20.把点向左平移3个单位得到点.(1)当时,求点的坐标.(2)若点与点A 关于y 轴对称,求a 的值.21.如图,.(1)求证:.(2)判断的形状,并说明理由.22.如图,在直角坐标系中,已知点,直线l 是第二、四象限的角平分线.(1)操作:连结线段,作出线段关于直线l 的轴对称图形.(2)发现:请写出坐标平面内任一点关于直线l 的对称点的坐标.(3)应用:请在直线l 上找一点Q ,使得最小,并写出点Q 的坐标.23.根据表中素材,探索完成以下任务:建设“美丽乡村”,落实“乡村振兴”素材1己知甲、乙两仓库分别有水泥40吨和60吨.素材2现在A 村需要水泥48吨,B 村需要水泥52吨.问题情境素材3从甲仓库往A,B 两村运送水泥的费用分别为20元/吨和25元/吨;y x b =+()1,2A -()2,1-(),3A a -1A 1a =1A 1A ,AB DC ABC DCB =∠=∠AC DB =PBC △()()()1,2,1,3, 2.5,1A B C --AB AB 11A B (),P a b P 'QA QC +从乙仓库往A,B 两村运送水泥的费用分别为15元/吨和24元/吨.分析设从甲仓库运往A 村水泥x 吨,补全以下表格.运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A 村xB 村①______②________问题1设总运费为y 元,请写出y 与x 的函数关系式并求出最少总运费.问题解决问题2为了更好地支援乡村建设,甲仓库运往A 村的运费每吨减少元,这时甲仓库运往A 村的水泥多少吨时总运费最少?最少费用为多少元?(用含a的代数式表示)24.如图,在直角坐标系中,点,点B 为x 轴正半轴上一个动点,以为边作,使,且点C 在第一象限内.图1 图2 图3(1)如图1,若,求点C 的坐标.(2)如图2,过点B 向x 轴上方作,且,在点B 的运动过程中,探究点C,D 之间的距离是否为定值.若为定值,求出该定值,若不是,请说明理由.(3)如图3,过点B 向x 轴下方作,且,连结交x 轴于点E ,当的面积是的面积的2倍时,求的长.嘉兴市八年级(上)学科期末检测数学 参考答案一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)48x-20x15(48)x -40x-25(40)x -()48a a <<xOy ()0,4A AB ABC △,90BC AB ABC =∠=︒()2,0B BD OB ⊥BD BO =BD OB ⊥BD BO =CD ABD △BEC △OE题号12345678910答案ADCABABCBC二、填空题(本题有6小题,每小题3分,共18分)11.;12.假;13.;14.50千米;15.;16.或或.三、解答题(本题有8小题,第17~22题每题6分,第23、24题每题8分,共52分)17.解:有错误. 2分正确解答如下:去括号,得. 1分移项,得. 1分合并同类项,得. 1分解得.1分18.(1)解:,,.3分(2)解:是的斜边边上的中线,且,, 1分,是等边三角形, 1分的周长为15.1分19.解:(1)把点代入得:, 1分解得:,故所求一次函数表达式为. 2分(2)当时,, 2分故点在该函数图象上. 1分20.(1).3分(2)解:由题意得, 1分∵点与点A 关于y 轴对称,1分即. 1分21.(1)证明:在和中,,,2分()5,475︒2x ≤-25︒50︒75︒331x x --≥313x x -≥+24x -≥2x ≤-90C ∠=︒ 30A ∠=︒60B ∴∠=︒CD Rt ABC △AB 10AB =152CD DB AB ∴===60B ∠=︒ BDC ∴△BDC ∴△()1,2A -y x b =+21b =-+3b =3y x =+2x =-231y =-+=()2,1-()12,3A --()13,3A a --1A 30a a ∴-+=32a =ABC △DCB △,,AB DC ABC DCB BC CB =∠=∠= ()SAS ABC DCB ∴△≌△.1分(2)是等腰三角形,理由如下:,,2分是等腰三角形.1分22.(1)2分(2) 2分(3).2分23.问题1: 2分化简,得 1分当时,则2分问题2:由题意得,设新的总运费为W ,则1分,随着x 的增大而减小,∴当时,则.2分24.解:(1)过点C 作轴于点,,1分在和中,,1分AC DB ∴=PBC △ABC DCB △≌△PBC PCB ∴∠=∠PBC ∴△(,)P b a '--(1,1)Q -2015(48)25(40)24(12)y x x x x =+-+-++42008(040)y x x =+≤≤0x =min 2008y =(4)2008(040)W a x x =-+≤≤48,40a a <<∴-< W ∴40x =min 402168y a =-+CD x ⊥,90D ABC ∠=︒ 90,90ABO CBD OAB ABO ∴∠+∠=∠+∠=︒︒OAB CBD ∴∠=∠OAB △DBC △AOB BDC ∠=∠ ,,()OAB CBD AB BC OAB DBC AAS ∠=∠=∴△≌△.,∴点C 的坐标为.1分(2)点C,D 之间的距离是为定值,理由如下:连结,,1分在和中,,.1分(3)过点C 作轴于点F ,由(1)可知,,.在和中,,,1分由题可知,.,1分.1分2,4CD BO BD AO ∴====246OD OB BD ∴=+=+=(6,2),90,90CD OBA ABD DBC ABD ∠+∠=︒∠+∠=︒ OBA DBC ∴∠=∠OAB △DCB △OB DB = ,,,4OBA DBC AB CB OAB DCB CD AO ∠=∠=∴∴==△≌△CF x ⊥OAB FBC △≌△,,,4CF BO BD BO CF BD BF OA ∴==∴=== CFE △DBE △,90,CEF DEB CFE DBE CF BD ∠=∠∠=∠=︒= ,2CFE DBE EF EB ∴∴==△≌△1122BEC EFC BFC ABO S S S S ∴===△△△△2,ABD BEC ABD ABO S S S S =∴=△△△△1122BD OB OB OA ∴⨯⨯=⨯⨯4BD OA ∴==426OE OB BE ∴=+=+=其他解法酌情给分.。
(完整版)8年级数学试卷
2021~2021 学年度第一学期八年级期末调研考试数学本卷须知考生在答题前请认真阅读本本卷须知1.本试卷共6 页,总分值为 100 分,考试时间为 100 分钟.考试结束后,请将本试卷和答题纸一并交回.2.答题前,请务必然自己的姓名、考试证号用0.5 毫米黑色字迹的签字笔填写在试卷及答题纸指定的地址.3.答案必定按要求填涂、书写在答题纸上,在试卷、稿本纸上答题一律无效.一、选择题〔本大题共10 小题,每题 2 分,共 20 分.在每题给出的四个选项中,恰有一项为哪一项吻合题目要求的,请将正确选项前的字母代号填涂在答题纸相应地址上〕1.下面四个图形分别是绿色食品、节水、低碳和节能标志,是轴对称图形的是x A.B.C.D.有意义,那么x 的取值范围是2.假设式子x4A . x= 0B. x= 4C. x≠ 0 D . x≠ 4 3.计算 (- a3)2的结果是A . a6B.- a6C.- a5 D .a54.以下根式是最简二次根式的是1B.3C.D.20A .35.如图,∠ ABC=∠ BAD ,增加以下条件还不能够判断△ABC≌△ BAD 的是A .∠ CAB=∠ DBAD CB.∠ C=∠ DC. AC= BDD. BC= AD A〔第 5题〕B6.假设 a+ b= 3,那么代数式b 2a b的值为(- a) ÷a a1B.- 31D .3A .-C.337.直角三角形有一条直角边为6,另两条边长是连续偶数,那么该三角形周长为A.20B. 22C. 24 D .268.如图,小莹和小华在棋盘中练习摆图案,小莹执圆子,小华执星子.棋盘中心圆子的地址用〔-1, 0〕表示,右下角圆子的地址用〔0,- 1〕表示.假设小华将第4枚星子放入棋盘后,所有棋子构成一个轴对称图形,那么他放的地址是A .〔- 2, 1〕B.〔 0,- 2〕C.〔 1,- 2〕D.〔- 1, 1〕〔第 8题〕9.如图是 5×5 的正方形网格中,以 D , E 为极点作地址不同样的格点的三角形与△ABC 全等,这样格点三角形最多能够画出A CA.2 个B.3 个B··C.4 个D ED.5 个〔第 9题〕10.如图,在长方形ABCD 中, AB = 10, BC= 30.E, F,G,H 分别是 AB, BC, CD, DA 上的点,且∠ 1=∠ 2=∠ 3=∠ 4,那么四边形 EFGH 的周长为A.3010A H DB. 201014 GE3 C. 642D. 60B F C〔第 10 题〕二、填空题〔本大题共8 小题,每题 2 分,共 16 分.不需写出解答过程,请把答案直接填写在答题纸相应地址上〕11.肥皂泡沫的泡壁厚度约是0.0007mm ,那么 0.0007 用科学记数法表示为▲.12.因式分解x2y- 4xy+4y=▲.13.如图,在△ ABC中,∠ C= 90°, AD 是∠ BAC的角均分线,假设 CD = 2, AB= 8,那么△ ABD的面积是▲.〔第 13 题〕14. 实数 a 在数轴上的地址如图,化简|1-a|+2aa- 1·1的结果为▲ .〔第 14 题〕15. 如图①是一个边长为 a 的大正方形剪去一个边长为1 的小正方形,面积记为S ;图②是1一个边长为 (a - 1)的正方形,面积记为SS 1 可化简为 ▲ .2,那么S 216. 如图,在高 3m ,斜坡长为 5m 的楼梯表面铺地毯,那么地毯长度最少需 ▲ m .5m3m图①图②〔第 16 题〕〔第 15 题〕17. 假设关于 x 的方程xm + 2m= 3 的解为正实数,那么实数 m 的取值范围是▲.x 2 2 x18. x =m 时,多项式 x 2+ x + n 2 的值为-1,那么当 x =- m 时,那么该多项式的值为▲ .4三、解答题〔本大题共 8 小题,共 64 分.请在答题纸指定地域内作答,解答时应写出文字说明、证明过程或演算步骤〕19.〔本小题总分值 9 分〕计算:〔 1〕 |1- 2 |- (π- 3)0+ (1)-1;〔 2〕18+10 1-8 +145 .25320.〔本小题总分值 10 分〕计算:〔 1〕 (a 2b - 2ab 2- b 3) ÷b - (a + b)(a - b);x 8-2x 4 .〔2〕( 24) ÷ 24x 4x x 2 x21.〔本小题总分值 7 分〕如图,在直角坐标系中,△ABC 的极点坐标分别为 A〔- 3,2〕,B〔- 1,4〕,C〔0, 2〕.〔1〕在直角坐标系中,画出△ABC 关于 y 轴对称的△ A1 1 111,C 1B C ,并直接写出A, B的坐标;〔2〕假设将△ ABC 三个极点的纵坐标分别乘以-1,横坐标不变,将所得的三个点用线段按次连接,获取的△A2B2C2,那么△ A2B2C2与△ ABC 的地址关系是▲.〔第 21 题〕22.〔本小题总分值 7分〕如图,点C, E,F, B 在同素来线上,点A, D 在 BC 异侧, AB∥ CD , AE= DF ,∠A=∠ D.(1〕求证: AB =CD;(2〕假设 AB= CF,∠ B= 30°,求∠ D 的度数.A BFEC〔第 22题〕D23.〔本小题总分值7 分〕小张去离家 2520 m 的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有 23 min ,于是他跑步回家,拿到票后立刻骑车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了 4 min,且骑车的平均速度是跑步的平均速度的 1.5 倍.(1〕求小张跑步的平均速度;(2〕若是小张在家取票用了 2 min,他可否在演唱会开始前赶到奥体中心?说明原由.24.〔本小题总分值7 分〕阅读下面的情况对话,尔后解答问题:2 倍的三角形叫做奇异三老师:我们新定义一种三角形,两边平方和等于第三边平方的角形.小华:等边三角形必然是奇异三角形!小明:那直角三角形可否存在奇异三角形呢?〔1〕依照“奇异三角形〞的定义,请你判断小华提出的命题:“等边三角形必然是奇异三角形〞是▲〔填“真〞或“假〞〕命题;〔2〕在 Rt△ ABC 中,三条边分别为a,b,c,假设 a=5 2 ,c=10,这个三角形是否是奇异三角形?请说明原由.25.〔本小题总分值9 分〕如图,在等边三角形 ABC 的内部,作∠ BAD=∠ CBE=∠ ACF , AD,BE ,CF 两两订交与 D,E,F 三点〔 D,E, F 三点不重合〕.(1〕△ ABD ,△ BCE,△ CAF 可否全等?若是是,请选择其中一对进行证明.(2〕△ DEF 可否为等边三角形?请说明原由.(3〕进一步研究发现,△ ABD 的三边存在必然的等量关系.设BD = a,AD = b,AB= c,请研究 a, b, c 满足的等量关系.AAFD E c bB〔第25题〕CBaD〔备用图〕26.〔本小题总分值8 分〕1如图,四边形ABCD 中, AB=AD ,∠ ABC+∠ ADC= 180°,且∠ EAF =∠ BAD.(1〕假设 E, F 分别是边 BC, CD 上的点,求证: EF= BE+ FD ;(2〕假设 E, F 分别是边 BC, CD 延长线上的点,〔1〕中的结论可否依旧成立?假设成立,请证明;假设不成立,请写出它们之间的数量关系,并证明.A AD DBFBE C C 〔第 26 题〕〔备用图〕。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 三角形与四边形一、学习指引1.知识要点:三角形的性质,全等三角形的定义、判定和性质,结合等腰三角形、直角三角形以及平行四边形(含矩形、菱形、正方形),梯形等性质的应用,中位线的应用. 2.方法指导:(1)处理有关三角形和四边形的问题,常转化成基本图形来考虑. (2)解题过程中常需添加辅助线.(3)折叠问题中应重视轴对称知识的应用.二、典型例题例1.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED BC ⊥,则CE 的长是( ) A .10315- B.1053- C .535- D.20103-例2.如图,O 为□ABCD 的对角线交点,E 为AB 的中点,DE 交AC 于点F ,若S □ABCD =12,则S △DOE 的值为 ( )A .1B .32C .2D .94例3.如图,已知每个小方格的边长为1,A 、B 、C 都在小方格的顶点上,则点C 到AB 所在直线的距离等于 .例4.(07湖州)如图,点A 是5×5网格图形中的一个格点(小正方形的顶点),图中每个小正方形的边长为1,以A 为其中的一个顶点,面积等于25的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )A.10个B.12个C.14个D.16个A (例4图)BA C (例3图) ABCDEF(例1图)(例2图)例5.(09烟台市)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .例6.(09深圳市)如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .例7.(09兰州市)如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.例8.(09丽水市).如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( )A.172 B .52C .24D .7(例8图)l 1 l 2 l 3AC B(例5图)A D A C BA E A C AB A F A D AC D B EAF CG B A B A E A F C G B A 图a 图b 图c例9.(09黔东南州)如图,l 1、l 2、l 3、l 4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h ,正方形ABCD 的四个顶点分别在这四条直线上,且正方形ABCD 的面积是25.(1)连结EF ,证明△ABE 、△FBE 、△EDF 、△CDF 的面积相等.(2)求h 的值.例10.(09台州市).定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点....如图1,PH PJ =,PI PG =,则点P 就是四边形ABCD 的准内点.(1)如图2, AFD ∠与DEC ∠的角平分线,FP EP 相交于点P . 求证:点P 是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明) (3)判断下列命题的真假,在括号内填“真”或“假”. ①任意凸四边形一定存在准内点.( ) ②任意凸四边形一定只有一个准内点.( )③若P 是任意凸四边形ABCD 的准内点,则PD PC PB PA +=+ 或PD PB PC PA +=+.( )(例10图)图3图2图4FEDCB AP G H JI 图1 B J I H G D CA P例11.如图,四边形ABCD中,∠A=∠BCD=90º,BC=CD,E是AD延长线上一点,若DE=AB=3cm,CE=42cm,求AD的长?例12. (09河北)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图14-2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图14-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图1AHC(M) D E BF G(N)G图2AHCDEBF NMAHCDE图3BF GMN(例11图)第四讲 三角形与四边形同步练习活动基地 班级 姓名【基础巩固】1.(2006年烟台市)如图4,∠A=65°,∠B=75°,将纸片的一角折叠,使点C•落在△ABC 内,若∠1=20°,则∠2的度数为______.2.(2009湖州)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .3.(2009湖州)如图,已知矩形ABCD ,将BCD △沿对角线BD 折叠,记点C 的对应点为C ′,若ADC ∠′=20°,则BDC ∠的度数为 _.4.(09淄博市)如图,梯形ABCD 中,∠ABC 和∠DCB 的平分线相交于梯形中位线EF 上的一点P ,若EF=3,则梯形ABCD 的周长为 A.9 B.10.5 C.12 D.155.(09淄博市)矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为 A. 8 B.112C. 4D.526.(09吉林)将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A .233cm B .433cm C .5cm D .2cm 7.如图,在由24个边长都为1的小正三角形的网格中,点P 是 正六边形的一个顶点,以点P 为直角顶点作格点直角三角形 (即顶点均在格点上的三角形),请你写出所有可能的直角三 角形斜边的长(第3题)C ′ AD C B 20° (第2题) CABS 1S 2 P(第7题)AB CD E FP(第4题)ABC D EGF(第5题)F (第1题)60°P Q2cm(第6题)8.(06年河南省)如图3,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E•是AB 边上一动点,则EC+ED 的最小值是________.9.如图,已知正方形ABCD 的边长为2,△BPC 是等边三角形,则△CDP 的面积是 ;△BPD 的面积是 .10.如图,∠AOB =60°,过OA 上到点O 的距离分别为1,3,5, 7, 9,11,…的点作OA 的垂线与OB 相交,得到并标出一组黑色 梯形,它们的面积分别为1S ,2S ,3S ,4S ,….观察图中的规 律,求出第100个黑色梯形的面积100S =_______________.11.(09江苏省)如图,在梯形ABCD 中,AD BC AB DE AF DCE F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC 时,求证:ABCD是矩形.【能力拓展】12.(09重庆市).如图,在等腰Rt△ABC 中,∠C=90º,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
在此运动变化的过程中,下列结论:①△DFE 是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤ (第10题) C A BDP (第9题) A D C F E B (第8题)E FDC B A (第12题)13.(09 江苏省)如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.14. 如图,在平行四边形ABCD 中,A 1,A 2,A 3,A 4和B 1,B 2,B 3,B 4分别是AB 和DC 的五等分点,C 1,C 2和D 1,D 2分别是AD 和BC 的三等分点,若四边形C 1A 4D 2B 1的面积为1,则S ABCD = . 15.(09年宜宾市)已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为___________16.如图,O 是平行四边形ABCD 对角线的交点,OE ∥AD 交CD 于E ,OF ∥AB 于F ,那么OEF S ∆∶ABCD S 平行四边形= 。
17. 如图,所示的阴影部分由方格纸上3个小方格组成,我们 称这样的图案为L 形,那么54⨯小方格组成的方格纸上可以画出 不同位置的L 形图案个数是( ) A .16 B .32 C .48 D .6418.如图,矩形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA上,点P 在矩形ABCD 内.若AB =4cm ,BC =6cm ,AE =CG =3cm ,BF =DH =4cm ,四边形AEPH 的面积为5cm 2,则四边形PFCG 的面积为_________cm 2.2题图O FE D C B A(第16题) (第17题) (第18题)ADE B CF (第13题)AB C EF H 第12题图(第15题) (第14题图)A BCD A 1A 2A 3A 4B 1B 2B 3B 4C 1C 2D 1D 219.(09吉林)两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE =2cm ,将长方形ABCD 绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度.(1)当旋转到顶点D 、H 重合时,连接AG (如图②),求点D 到AG 的距离; (2)当45α=°时(如图③),求证:四边形MHND 为正方形.20.如图,在平面直角坐标系内放置一个直角梯形AOCD ,已知AD=3,AO=8,OC=5,若点P 在梯形内,且P A D P O CS S ∆∆=,PAO PCD S S ∆∆=,求点P 的坐标?AOCD3 58xy(第20题)图② A D B C G E F l 图① A D B C H G E Fl 图③A DM C H G E F l BN (第19题)(H )答 案第四讲 三角形与四边形(典型例题)例1. D . 例2. B 例3.108. 例4. D . 例5.17. 例6. 120°.例7. 证明:如图,连结AC .BD .∵ PQ 为△ABC 的中位线,∴ PQ 21AC .同理 MN 21AC . ∴ MNPQ ,∴ 四边形PQMN 为平行四边形.在△AEC 和△DEB 中, AE =DE ,EC =EB ,∠AED =60°=∠CEB , 即 ∠AEC =∠DEB .∴ △AEC ≌△DEB .∴ AC =BD .∴ PQ =21AC =21BD =PN ∴ □PQMN 为菱形. 例8. A.例9.解:连结EF∵l 1∥l 2∥l 3∥l 4,且四边形ABCD 是正方形 ∴BE ∥FD ,BF ∥ED∴四边形EBFD 为平行四边形 ∴BE=FD又∵l 1.l 2.l 3和l 4之间的距离为h∴S △ABE =21BE ·h ,S △FBE =21BE ·h ,S △EDF =21FD ·h ,S △CDF =21FD ·h ∴S △ABE = S △FBE = S △EDF = S △CDF(2)过A 点作AH ⊥BE 于H 点。