初二数学试卷较难
初二数学超难试卷答案
![初二数学超难试卷答案](https://img.taocdn.com/s3/m/493e3c99d4bbfd0a79563c1ec5da50e2534dd102.png)
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值是()A. 1B. -1C. 3D. -3答案:A解析:首先求f(x)的导数f'(x) = 3x^2 - 3。
令f'(x) = 0,得x = ±1。
再求f''(x) = 6x,将x=1代入,得f''(1) = 6 > 0,所以x=1是极小值点,f(1) = 1^3 - 31 + 1 = 1,故答案为A。
2. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则Sn = ()A. n^2B. n(n+1)/2C. n(n+1)d/2D. n(n-1)d/2答案:C解析:等差数列的前n项和公式为Sn = n/2 [2a1 + (n-1)d],化简得Sn =n(n+1)d/2,故答案为C。
3. 若直角三角形的两条直角边长分别为3和4,则斜边长是()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边长c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5,故答案为A。
4. 若等比数列{bn}的首项为b1,公比为q,则其第n项an = ()A. b1 q^(n-1)B. b1 / q^(n-1)C. b1 (q^n - 1) / (q - 1)D. b1 (q^n +1) / (q + 1)答案:A解析:等比数列的通项公式为an = b1 q^(n-1),故答案为A。
5. 若方程x^2 - 5x + 6 = 0的两根分别为x1和x2,则x1 + x2 = ()A. 5B. -5C. 6D. -6答案:A解析:根据韦达定理,方程x^2 - 5x + 6 = 0的两根之和为x1 + x2 = -(-5)/1 = 5,故答案为A。
二、填空题(每题5分,共25分)6. 已知函数f(x) = 2x - 3,若f(x)的图像关于x=2对称,则f(5) = _______。
初二数学偏难的试卷及答案
![初二数学偏难的试卷及答案](https://img.taocdn.com/s3/m/330f7e9d88eb172ded630b1c59eef8c75fbf95d1.png)
1. 已知等差数列{an}的前n项和为Sn,若S10=55,S20=165,则数列{an}的公差d为:A. 1B. 2C. 3D. 42. 在平面直角坐标系中,点A(2,3),点B(-1,-2),则直线AB的方程为:A. 3x+2y-7=0B. 2x+3y-7=0C. 2x-3y+7=0D. 3x-2y+7=03. 若一个等比数列的前三项分别是2,6,18,则该数列的第四项是:A. 54B. 108C. 162D. 2164. 在三角形ABC中,角A、角B、角C的对边分别为a、b、c,若a=5,b=7,c=8,则角C的度数是:A. 30°B. 45°C. 60°D. 90°5. 已知函数f(x) = x^2 - 4x + 3,则f(-1)的值为:A. -6B. -2C. 2D. 66. 在平面直角坐标系中,点P的坐标为(3,4),点Q在x轴上,且PQ=5,则点Q的坐标为:A. (8,0)B. (-2,0)C. (-8,0)D. (2,0)7. 若一个数的平方等于它本身,则这个数是:A. 0B. 1C. -1D. 0或18. 在等腰三角形ABC中,若AB=AC,且∠BAC=40°,则∠ABC的度数是:A. 40°B. 50°C. 60°D. 70°9. 已知二次函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1,2),则a的值是:A. 1B. 2C. -1D. -210. 在等边三角形ABC中,边长为6,则三角形的高是:A. 2√3B. 3√3C. 4√3D. 5√31. 等差数列{an}的第一项a1=3,公差d=2,则第10项an=__________。
2. 已知二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1+x2=__________。
3. 在平面直角坐标系中,点A(1,2),点B(-3,-1),则线段AB的中点坐标为__________。
初二数学超难试卷及答案
![初二数学超难试卷及答案](https://img.taocdn.com/s3/m/d54c7227a36925c52cc58bd63186bceb18e8ed1f.png)
一、选择题(每题5分,共25分)1. 已知二次函数的图像开口向上,且顶点坐标为(-2,3),则该函数的对称轴方程是:A. x = -2B. y = 3C. x + y = 1D. x - y = -52. 在直角坐标系中,点A(2,3)关于直线y=x的对称点是:A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)3. 下列哪个数是勾股数?A. 3,4,5B. 5,12,13C. 6,8,10D. 7,24,254. 一个正方体的表面积为96平方厘米,那么它的体积是:A. 64立方厘米B. 128立方厘米C. 256立方厘米D. 512立方厘米5. 若a,b,c是等差数列的前三项,且a + b + c = 21,a + c = 13,则b的值为:B. 8C. 9D. 10二、填空题(每题5分,共25分)6. 若∠A = 60°,∠B = 2∠A,则∠B = ______°。
7. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的面积是 ______平方厘米。
8. 已知等差数列的前三项分别是2,5,8,那么第10项是 ______。
9. 一个圆的半径增加了50%,则圆的面积增加了 ______%。
10. 若一个数的平方根是2,则这个数是 ______。
三、解答题(每题15分,共45分)11. (15分)已知二次函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,-4)。
求函数的解析式。
12. (15分)在直角坐标系中,点P(-3,2)关于原点的对称点是哪个点?请画出图形。
13. (15分)一个等腰三角形的底边长为8厘米,腰长为10厘米,求这个三角形的面积。
答案一、选择题1. A2. B3. B4. B5. A6. 1207. 408. 209. 12510. 4三、解答题11. 解析式为f(x) = ax^2 + bx + c,其中a > 0,且顶点坐标为(1,-4)。
初二数学难试卷及答案
![初二数学难试卷及答案](https://img.taocdn.com/s3/m/f22b52df82d049649b6648d7c1c708a1284a0ac5.png)
一、选择题(每题3分,共30分)1. 下列哪个数是负数?A. -3B. 0C. 3D. -2.52. 下列哪个图形是轴对称图形?A. 长方形B. 正方形C. 等腰三角形D. 梯形3. 已知 a + b = 10,a - b = 2,则 a 的值为:A. 6B. 7C. 8D. 94. 下列哪个方程无解?A. 2x + 3 = 7B. 3x - 5 = 4C. 4x + 2 = 0D. 5x - 10 = 05. 在直角坐标系中,点 A(2, 3) 关于 y 轴的对称点坐标是:A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)6. 下列哪个数是立方数?A. 8B. 27C. 64D. 817. 一个长方体的长、宽、高分别是 4cm、3cm、2cm,则它的体积是:A. 12cm³B. 24cm³C. 36cm³D. 48cm³8. 下列哪个图形是旋转对称图形?A. 正方形B. 长方形C. 等腰三角形D. 梯形9. 已知一个数的 1/4 等于 5,则这个数是:A. 20B. 25C. 30D. 3510. 下列哪个图形不是多边形?A. 三角形B. 四边形C. 五边形D. 圆形二、填空题(每题5分,共20分)11. 已知 a - b = 7,a + b = 3,则 a 的值为______。
12. 在直角坐标系中,点 B(5, -2) 关于 x 轴的对称点坐标是______。
13. 一个数的 1/3 等于 8,则这个数是______。
14. 一个长方体的表面积是100cm²,长、宽、高分别为 5cm、4cm、3cm,则这个长方体的体积是______cm³。
三、解答题(每题10分,共30分)15. 已知 a + b = 15,a - b = 3,求 a 和 b 的值。
16. 在直角坐标系中,点 C(3, 4) 关于原点的对称点坐标是______。
初二数学试卷超难题及答案
![初二数学试卷超难题及答案](https://img.taocdn.com/s3/m/3170bfe31b37f111f18583d049649b6648d70927.png)
一、选择题(每题5分,共50分)1. 下列哪个数是平方数?A. 16B. 25C. 27D. 36答案:B解析:平方数是指一个数乘以自己得到的数,即n^2。
其中,25=5^2,所以25是平方数。
2. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为:A. 1B. 2C. 3D. 4答案:A解析:将x=2代入函数f(x) = 2x - 3中,得到f(2) = 22 - 3 = 4 - 3 = 1,所以x=1。
3. 下列哪个图形是正方形?A. 矩形B. 菱形C. 正方形D. 梯形答案:C解析:正方形是一种特殊的矩形,其四边相等,四个角都是直角。
在给出的选项中,只有正方形符合这个条件。
4. 已知等差数列的前三项分别为1,4,7,则该数列的公差是多少?A. 1B. 2C. 3D. 4答案:B解析:等差数列是指相邻两项之差相等的数列。
由题意知,数列的前三项为1,4,7,因此公差为4 - 1 = 3。
5. 下列哪个方程的解为x=2?A. x + 1 = 3B. 2x - 1 = 3C. x^2 - 1 = 0D. x^2 + 1 = 0答案:B解析:将x=2代入选项B中的方程2x - 1 = 3,得到22 - 1 = 3,所以x=2是方程的解。
二、填空题(每题10分,共30分)6. 已知等比数列的前三项分别为2,6,18,则该数列的公比是______。
答案:3解析:等比数列是指相邻两项之比相等的数列。
由题意知,数列的前三项为2,6,18,因此公比为6/2 = 3。
7. 若三角形ABC中,AB=5,AC=7,BC=8,则三角形ABC是______三角形。
答案:直角三角形解析:根据勾股定理,若三角形的三边满足a^2 + b^2 = c^2,则该三角形是直角三角形。
将AB、AC、BC的值代入,得到5^2 + 7^2 = 8^2,所以三角形ABC是直角三角形。
8. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解是______。
初二超难的数学试卷及答案
![初二超难的数学试卷及答案](https://img.taocdn.com/s3/m/039c83683868011ca300a6c30c2259010302f359.png)
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若f(a) = f(b),则a,b之间的关系是()A. a = bB. a + b = 0C. a - b = 0D. a^2 + b^2 = 32. 若x + y = 5,xy = 6,则x^2 + y^2的值为()A. 11B. 13C. 17D. 193. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S10 = 50,则S15的值为()A. 75B. 80C. 85D. 904. 若一个正方体的对角线长为√3,则其表面积为()A. 3B. 6C. 9D. 125. 已知函数f(x) = |x - 1| + |x + 1|,若f(x) = 4,则x的值为()A. 2B. 3C. -2D. -36. 若等比数列{an}的首项为2,公比为3,则第n项an的值为()A. 3^n - 1B. 2 3^(n-1)C. 2 3^nD. 3^n + 17. 若一个圆的半径为r,则其面积为()A. πr^2B. 2πrC. 4πrD. 8πr8. 已知函数f(x) = 2x + 1,若f(x) > 3,则x的取值范围为()A. x > 1B. x < 1C. x ≥ 1D. x ≤ 19. 若一个正方体的对角线长为√6,则其体积为()A. 6B. 12C. 18D. 2410. 已知函数f(x) = x^2 - 4x + 4,若f(x) = 0,则x的值为()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 若x^2 - 5x + 6 = 0,则x的值为______。
12. 若等差数列{an}的首项为2,公差为3,则第10项an的值为______。
13. 若一个圆的半径为√2,则其面积为______。
14. 已知函数f(x) = |x - 1|,若f(x) ≤ 2,则x的取值范围为______。
初二数学试卷真题超难的
![初二数学试卷真题超难的](https://img.taocdn.com/s3/m/1c2d9723178884868762caaedd3383c4bb4cb4de.png)
一、选择题(每题5分,共50分)1. 已知正方形的边长为a,那么它的面积是()A. a²B. 2a²C. 3a²D. 4a²2. 在直角三角形ABC中,∠C=90°,∠A=30°,AB=8,那么AC的长度是()A. 4√3B. 8√3C. 12D. 163. 已知一元二次方程x²-5x+6=0的两个根为a和b,那么a+b的值是()A. 5B. 6C. 7D. 84. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 已知函数f(x)=x²-4x+4,那么f(2)的值是()A. 0B. 2C. 4D. 66. 在梯形ABCD中,AD∥BC,AB=5,CD=8,梯形的高为4,那么梯形的面积是()A. 24B. 28C. 32D. 367. 已知一元二次方程x²-3x-4=0的两个根为a和b,那么a²+b²的值是()A. 7B. 8C. 9D. 108. 在平面直角坐标系中,点P(3,-2)关于x轴的对称点是()A.(3,2)B.(-3,-2)C.(-3,2)D.(3,-2)9. 已知函数f(x)=2x-1,那么f(3)的值是()A. 5B. 6C. 7D. 810. 在等腰三角形ABC中,AB=AC,∠B=50°,那么∠A的度数是()A. 50°B. 60°C. 70°D. 80°二、填空题(每题5分,共50分)1. 已知正方形的边长为a,那么它的周长是______。
2. 在直角三角形ABC中,∠C=90°,∠A=45°,AB=10,那么BC的长度是______。
3. 已知一元二次方程x²-6x+9=0的根是______。
4. 在平面直角坐标系中,点A(-1,2)关于y轴的对称点是______。
初二数学试卷(较难)
![初二数学试卷(较难)](https://img.taocdn.com/s3/m/b236c494af1ffc4fff47ac0b.png)
初二数学试卷(较难)一.选择题(共8小题)1.(2016•云南)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠22.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣3.(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y 与x之间的函数关系的是()A.B.C.D.4.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5B.3C.﹣3D.﹣55.(2016•绥化)函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>6.(2008•绵阳)若关于x的多项式x2﹣px﹣6含有因式x﹣3,则实数p的值为()A.﹣5B.5C.﹣1D.17.(2012•路北区一模)直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象如图,化简:|m﹣3|﹣得()A.3﹣m﹣nB.5C.﹣1D.m+n﹣58.(2016•广水市一模)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.(2013•株洲)在平面直角坐标系中,点(1,2)位于第象限.10.(2012•东莞)若x,y为实数,且满足|x﹣3|+=0,则的值是.11.(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=.12.(2012•市中区校级二模)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.13.(2002•湘西州)因式分解:x2﹣5x+6=.14.(2013•衢州)化简:=.15.(2015•郫县模拟)如图所示,六边ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC 平行且等于FE,对角线FD⊥BD.已知FD=24cm,BD=18cm.则六边形ABCDEF的面积是平方厘米.16.(2013•沈阳模拟)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.三.解答题(共10小题)17.(2011•广州)分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.18.(2011•宿迁)已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.19.(2012•巴中)先化简,再求值:(﹣)•,其中x=.20.(2012•黄冈)在平面直角坐标系中,△ABC的三个顶点的坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为.21.(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.22.(2011•营口)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?23.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.24.(2001•福州)为了了解中学生的体能情况,某校抽取了50名初三学生进行一分钟跳绳次数测试,将所得数据整理后,画出部分频率分布直方图.如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0。
初二高难度数学试卷及答案
![初二高难度数学试卷及答案](https://img.taocdn.com/s3/m/14045f6086c24028915f804d2b160b4e767f818d.png)
一、选择题(每题5分,共50分)1. 若m^2 - 4m + 4 = 0,则m的值为()A. 1B. 2C. 3D. 42. 若a^2 - 5a + 6 = 0,则a的值为()A. 1B. 2C. 3D. 43. 若x^2 - 4x + 4 = 0,则x的值为()A. 1B. 2C. 3D. 44. 若x^2 - 6x + 9 = 0,则x的值为()A. 1B. 2C. 3D. 45. 若x^2 - 8x + 16 = 0,则x的值为()A. 1B. 2C. 3D. 46. 若x^2 - 10x + 25 = 0,则x的值为()A. 1B. 2C. 3D. 47. 若x^2 - 12x + 36 = 0,则x的值为()A. 1B. 2C. 3D. 48. 若x^2 - 14x + 49 = 0,则x的值为()A. 1B. 2C. 3D. 49. 若x^2 - 16x + 64 = 0,则x的值为()A. 1B. 2C. 3D. 410. 若x^2 - 18x + 81 = 0,则x的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)11. 若a^2 - 6a + 9 = 0,则a的值为______。
12. 若x^2 - 7x + 12 = 0,则x的值为______。
13. 若x^2 - 9x + 20 = 0,则x的值为______。
14. 若x^2 - 11x + 30 = 0,则x的值为______。
15. 若x^2 - 13x + 36 = 0,则x的值为______。
16. 若x^2 - 15x + 45 = 0,则x的值为______。
17. 若x^2 - 17x + 56 = 0,则x的值为______。
18. 若x^2 - 19x + 72 = 0,则x的值为______。
19. 若x^2 - 21x + 90 = 0,则x的值为______。
20. 若x^2 - 23x + 117 = 0,则x的值为______。
初二数学试卷难题
![初二数学试卷难题](https://img.taocdn.com/s3/m/a2ee3e8c3086bceb19e8b8f67c1cfad6195fe9d7.png)
一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图像与x轴有两个交点,且这两个交点的坐标分别为(1,0)和(-3,0),则下列哪个选项是正确的?A. a=1,b=2,c=3B. a=1,b=-4,c=3C. a=-1,b=4,c=3D. a=-1,b=-4,c=-32. 在直角坐标系中,点A(-2,3)关于直线y=x的对称点为B,则点B的坐标是:A. (3,-2)B. (-2,3)C. (-3,2)D. (2,-3)3. 在等边三角形ABC中,AB=AC=BC=6,D是BC边上的中点,则三角形ABD的周长是:A. 12B. 15C. 18D. 214. 已知正方形的对角线长度为10,则该正方形的面积为:A. 50B. 100C. 200D. 2505. 下列哪个函数是奇函数?A. y=x^2B. y=x^3C. y=|x|D. y=x^2+16. 若一个等腰三角形的底边长为8,腰长为10,则该三角形的面积是:A. 40B. 48C. 50D. 527. 在等差数列{an}中,a1=3,公差d=2,则第10项an是:A. 19B. 21C. 23D. 258. 下列哪个图形是中心对称图形?A. 等腰三角形B. 正方形C. 梯形D. 等边三角形9. 已知一元二次方程x^2-4x+3=0的两个根分别为a和b,则a+b的值是:A. 2B. 4C. 6D. 810. 在直角坐标系中,点P(-1,2)到直线y=3x+2的距离是:A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)11. 若a、b、c是等差数列的前三项,且a+b+c=21,b=7,则c=______。
12. 在等腰三角形ABC中,AB=AC=8,BC=10,则三角形ABC的周长是______。
13. 已知一次函数y=kx+b(k≠0)的图像经过点(-2,-3)和(1,5),则该函数的解析式为______。
初二数学难度大的试卷
![初二数学难度大的试卷](https://img.taocdn.com/s3/m/305a7d9d88eb172ded630b1c59eef8c75fbf959a.png)
一、选择题(每题5分,共25分)1. 下列数中,有理数是()A. √2B. πC. 0.1010010001...D. -3/42. 已知 a > b > 0,那么下列不等式中正确的是()A. a + b > a - bB. a - b < a + bC. a/b > b/aD. a/b < b/a3. 若x² - 5x + 6 = 0,则 x 的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -34. 在等腰三角形 ABC 中,AB = AC,若∠BAC = 40°,则∠ABC 的度数为()A. 40°B. 50°C. 60°D. 70°5. 下列函数中,是二次函数的是()A. y = x² + 3x + 2B. y = x³ - 2x² + 5x - 3C. y = 2x + 3D. y = x² - 2x + 1二、填空题(每题5分,共25分)6. 若 a > b,则 |a| - |b| 的值为________。
7. 已知 x + y = 5,x - y = 1,则x² - y² 的值为________。
8. 在直角三角形 ABC 中,∠C = 90°,AB = 5cm,BC = 12cm,则 AC 的长度为________cm。
9. 若二次函数y = ax² + bx + c 的图象开口向上,且顶点坐标为 (h, k),则 a 的取值范围是________。
10. 在等边三角形 ABC 中,若边长为 6cm,则三角形的高为________cm。
三、解答题(每题15分,共45分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 2\end{cases}\]12. 已知函数 y = -2x² + 4x + 3,求:(1)函数的顶点坐标;(2)函数的对称轴方程;(3)函数的增减性。
初二上学期超难试卷数学
![初二上学期超难试卷数学](https://img.taocdn.com/s3/m/5d343f9c9fc3d5bbfd0a79563c1ec5da50e2d6dd.png)
一、选择题(每题5分,共25分)1. 下列哪个数是负数?A. -2B. 2C. 0D. -0.52. 已知a=3,b=-5,则a-b的值是:A. 8B. -8C. 2D. -23. 下列哪个图形是正方形?A. 矩形B. 平行四边形C. 菱形D. 以上都是4. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积是:A. 32cm²B. 40cm²C. 50cm²D. 64cm²5. 下列哪个方程的解为x=2?A. 2x+1=5B. 3x-2=4C. 4x+3=7D. 5x-1=9二、填空题(每题5分,共25分)6. 两个数的和为10,它们的积为24,则这两个数分别为______和______。
7. 已知一个数的平方根为2,则该数为______。
8. 下列哪个数是2的平方?A. 4B. 3C. 5D. 69. 已知一个等边三角形的边长为6cm,则该三角形的周长为______cm。
10. 下列哪个数是0.1的倒数?A. 10B. 0.1C. 0.01D. 1三、解答题(每题15分,共45分)11. (15分)已知一个数的3倍加上5等于24,求这个数。
12. (15分)已知一个数的平方根为-2,求这个数。
13. (15分)已知一个等腰直角三角形的直角边长为6cm,求该三角形的面积和斜边长。
四、应用题(每题15分,共30分)14. (15分)小明从家出发去图书馆,走了3km后,发现忘带了书,于是返回家取书,再走3km到达图书馆。
请问小明总共走了多少千米?15. (15分)一个长方形的长是宽的2倍,如果长方形的长和宽之和为18cm,求该长方形的面积。
答案:一、选择题1. A2. B3. D4. B5. A二、填空题6. 3,77. 48. A9. 1810. A三、解答题11. 712. 413. 面积为18cm²,斜边长为6√2cm四、应用题14. 6km15. 面积为36cm²。
初二数学难点试卷试题
![初二数学难点试卷试题](https://img.taocdn.com/s3/m/30f7a24bcd7931b765ce0508763231126edb77b9.png)
一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. √9B. 2.5C. 0D. √-12. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-3),则下列结论正确的是()A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<03. 在直角坐标系中,点A(2,3)关于y轴的对称点B的坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)4. 若等差数列{an}的前n项和为Sn,且a1=2,S5=30,则公差d为()A. 2B. 3C. 4D. 55. 已知一元二次方程x^2-4x+3=0的两根为x1和x2,则x1+x2的值为()A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)6. 已知一次函数y=kx+b的图象经过点(1,2)和(3,-4),则k=________,b=________。
7. 在等腰三角形ABC中,AB=AC,底边BC=6cm,高AD=4cm,则腰AB的长度为________cm。
8. 若a、b、c是等差数列的三项,且a+b+c=0,则b的值为________。
9. 在直角坐标系中,点P(-2,3)到原点O的距离为________。
10. 已知一元二次方程x^2-3x+2=0的解为x1和x2,则x1^2+x2^2的值为________。
三、解答题(共60分)11. (12分)已知一次函数y=kx+b的图象经过点(2,3)和(-3,-4),求该一次函数的解析式。
12. (12分)在等边三角形ABC中,边长为6cm,求三角形的高。
13. (12分)已知数列{an}的前n项和为Sn,且a1=1,an=an-1+2(n≥2),求该数列的前5项。
14. (12分)在直角坐标系中,点P(-2,3)到直线y=2x+1的距离为d,求d的值。
初二数学比较难的试卷
![初二数学比较难的试卷](https://img.taocdn.com/s3/m/1b714253591b6bd97f192279168884868762b8a7.png)
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2.5B. -3C. 1.2D. 02. 已知a > b,下列各式中正确的是()A. a + b > 0B. a - b > 0C. ab > 0D. a/b > 03. 在下列各数中,有理数是()A. √16B. √25 - √9C. πD. √2 - √34. 若方程2x - 3 = 5的解为x,则方程4x + 6 = 10的解为()A. xB. x + 2C. x - 2D. x/25. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 70°D. 80°6. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = 3x7. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则函数图像的开口方向是()A. 向上B. 向下C. 向左D. 向右8. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)9. 下列各式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = -bC. a^2 = b^2,则a = ±bD. a^2 = b^2,则a = b或a = -b10. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2二、填空题(每题5分,共25分)11. 若x - 1 > 0,则x的取值范围是__________。
数学试卷初二超难
![数学试卷初二超难](https://img.taocdn.com/s3/m/7427535fcd1755270722192e453610661fd95a63.png)
一、选择题(每题4分,共20分)1. 下列各数中,能被3整除的是()A. 24B. 27C. 30D. 332. 一个长方形的长是5cm,宽是3cm,它的周长是多少cm?()A. 10cmB. 15cmC. 16cmD. 18cm3. 若a、b是方程x²-5x+6=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 54. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √255. 一个等腰三角形的底边长为8cm,腰长为6cm,它的面积是多少cm²?()A. 16cm²B. 24cm²C. 32cm²D. 48cm²二、填空题(每题4分,共20分)6. 若x=2,则2x-3的值为______。
7. 一个数的3倍减去4等于8,这个数是______。
8. 下列各数中,有理数是______。
9. 一个圆的半径是5cm,它的周长是______cm。
10. 若a、b是方程2x²-5x+3=0的两个根,则a²+b²的值是______。
三、解答题(每题10分,共30分)11. (10分)已知:x²-3x+2=0,求x的值。
12. (10分)一个长方形的长是10cm,宽是6cm,求它的面积和周长。
13. (10分)已知:a²+2a+1=0,求a的值。
四、附加题(10分)14. (10分)一个梯形的上底长为5cm,下底长为10cm,高为6cm,求它的面积。
解答:一、选择题1. B2. D3. D4. D5. C二、填空题6. 17. 48. -2、-1、0、1、2、3、4、5、6、7、8、9、109. 31.4cm10. 7三、解答题11. 解:由题意得:x²-3x+2=0(x-1)(x-2)=0∴x₁=1,x₂=212. 解:长方形的面积=长×宽=10cm×6cm=60cm²长方形的周长=(长+宽)×2=(10cm+6cm)×2=32cm13. 解:由题意得:a²+2a+1=0(a+1)²=0∴a=-1四、附加题14. 解:梯形的面积=(上底+下底)×高÷2=(5cm+10cm)×6cm÷2=45cm²。
初二高难度数学试卷
![初二高难度数学试卷](https://img.taocdn.com/s3/m/8f9784713069a45177232f60ddccda38366be172.png)
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 4x + 3,若f(x)的图像关于直线x = 2对称,则下列哪个选项是正确的?A. f(1) = f(3)B. f(2) = f(4)C. f(1) = f(5)D. f(3) = f(5)2. 在△ABC中,∠A = 30°,∠B = 45°,∠C = 105°,若AB = 6,则BC的长度为:A. 4√3B. 6√3C. 8√3D. 12√33. 已知数列{an}的通项公式为an = 2n + 1,则数列的前n项和Sn为:A. n(n + 3)B. n(n + 1)C. n(n + 2)D. n(n + 3)/24. 下列哪个方程组的解集为空集?A. 2x + 3y = 6, x - y = 2B. 2x + 3y = 6, x - y = -2C. 2x + 3y = 6, x + y = 2D. 2x + 3y = 6, x + y = -25. 已知a、b、c是等差数列的连续三项,且a + b + c = 12,若a = 3,则b的值为:A. 6B. 7C. 8D. 96. 在直角坐标系中,点A(2, 3),点B(5, 1),点C(m, n)在直线y = -x + 7上,则下列哪个选项是正确的?A. m = 4, n = 3B. m = 4, n = 5C. m = 3, n = 4D. m = 3, n = 57. 已知等比数列{an}的公比为q,若a1 = 2,a2 = 4,则q的值为:A. 1B. 2C. 4D. 88. 在平面直角坐标系中,点P(a, b)关于x轴的对称点为P',若P'的坐标为(-3, 2),则点P的坐标为:A. (3, 2)B. (3, -2)C. (-3, 2)D. (-3, -2)9. 已知函数f(x) = |x - 2| + |x + 1|,若f(x) ≥ 3,则x的取值范围是:A. x ≤ -2 或x ≥ 4B. x ≤ -1 或x ≥ 2C. x ≤ 1 或x ≥ 3D. x ≤ 0 或x ≥ 410. 在△ABC中,∠A = 90°,∠B = 30°,∠C = 60°,若AB = 4,则AC的长度为:A. 2√3B. 4√3C. 6√3D. 8√3二、填空题(每题10分,共40分)11. 已知函数f(x) = -2x^2 + 3x + 1,若f(x)的图像与x轴有两个交点,则a的取值范围是______。
初二比较难的数学教辅试卷
![初二比较难的数学教辅试卷](https://img.taocdn.com/s3/m/1a0b9123178884868762caaedd3383c4bb4cb43c.png)
一、选择题(每题3分,共30分)1. 若方程(2x-3)²=1的解为x₁和x₂,则x₁+x₂的值为()A. 1B. 2C. 3D. 42. 在等腰三角形ABC中,AB=AC,AD为底边BC上的高,若∠BAD=30°,则∠BAC的度数为()A. 30°B. 45°C. 60°D. 90°3. 已知一次函数y=kx+b(k≠0)的图象经过点A(1,2)和B(-2,-6),则k的值为()A. 2B. -2C. 1D. -14. 在梯形ABCD中,AD∥BC,AB=CD,若∠DAB=45°,则∠ABC的度数为()A. 45°B. 90°C. 135°D. 180°5. 若一个数x满足不等式2x-3<5,则x的取值范围为()A. x<4B. x<2C. x>2D. x>46. 已知直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 87. 在正方形ABCD中,E为对角线AC上的一点,若AE=BE=1,则CE的长度为()A. 2B. √2C. 3D. √38. 已知等差数列{an}的公差为d,若a₁=3,a₃=9,则d的值为()A. 3B. 6C. 9D. 129. 在平面直角坐标系中,点A(2,3)关于原点的对称点为B,则B的坐标为()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)10. 若一个数的平方根为2,则这个数为()A. 4B. -4C. 2D. -2二、填空题(每题3分,共30分)11. 若方程(3x-2)²-5x+4=0的解为x₁和x₂,则x₁x₂的值为______。
12. 在等边三角形ABC中,AB=AC=BC,若∠BAC=60°,则BC的长度为______。
初二数学偏难试卷
![初二数学偏难试卷](https://img.taocdn.com/s3/m/a4ed726982c4bb4cf7ec4afe04a1b0717fd5b3cf.png)
1. 已知a、b是方程x²-5x+6=0的两根,则a+b的值为()A. 2B. 3C. 4D. 52. 若m、n是方程2x²-3mx+4n=0的两根,且m+n=3,则mn的值为()A. 2B. 3C. 4D. 53. 已知三角形ABC的边长分别为a、b、c,且a=3,b=4,c=5,则△ABC的面积S 为()A. 6B. 8C. 10D. 124. 已知函数f(x)=x²-2x+1,则f(x)的顶点坐标为()A. (1,0)B. (0,1)C. (2,1)D. (1,2)5. 若等差数列{an}的首项为2,公差为3,则第10项an为()A. 29B. 30C. 31D. 326. 已知直角三角形ABC的斜边长为c,两锐角分别为A、B,则sinA+sinB的值为()A. 1B. √2C. √3D. 27. 若函数y=2x-1在x=2时取得最小值,则函数的图像为()A. 上升B. 下降C. 平坦D. 折线8. 已知等比数列{an}的首项为a₁,公比为q,若a₁+a₂+a₃=27,a₁+a₂+a₃+a₄=81,则q的值为()A. 2B. 3C. 4D. 59. 若函数y=x²-4x+4的图像与x轴交于两点,则该函数的图像为()A. 上升B. 下降C. 平坦D. 折线10. 已知正方形的边长为a,则该正方形的面积S为()A. a²B. 2a²C. 3a²D. 4a²1. 已知一元二次方程x²-6x+9=0的两根分别为x₁、x₂,则x₁+x₂=________,x₁x₂=________。
2. 若函数y=ax²+bx+c的图像与x轴交于两点,且a>0,则该函数的图像为________。
3. 若等差数列{an}的首项为2,公差为3,则第10项an=________。
4. 已知直角三角形ABC的斜边长为c,两锐角分别为A、B,则sinA+sinB=________。
八年级上册数学试卷较难
![八年级上册数学试卷较难](https://img.taocdn.com/s3/m/bd561f8fb8f3f90f76c66137ee06eff9aef849e1.png)
一、选择题(每题5分,共25分)1. 下列各组数中,存在互为相反数的一组是:A. 3,-5B. 2,-8C. -1/3,1/3D. 0,-02. 在等差数列 {an} 中,若 a1=1,d=2,则 a10 等于:A. 19B. 21C. 23D. 253. 已知函数 y = 2x - 3,若 x = 4,则 y 的值为:A. 5B. 7C. 9D. 114. 在直角坐标系中,点 A(-2,3)关于 y 轴的对称点为:A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 若 a,b,c 成等比数列,且 a + b + c = 18,ab + bc + ca = 54,则 b 的值为:A. 6C. 12D. 18二、填空题(每题5分,共25分)6. 若 |x| = 5,则 x 的值为 _______(写出所有可能的值)。
7. 已知函数 y = kx + b,若 k = -1,b = 2,则函数的图像经过点 _______。
8. 在△ABC中,若 AB = 5,BC = 6,AC = 7,则△ABC是 _______三角形。
9. 若 a,b,c 成等差数列,且 a + b + c = 12,则 a^2 + b^2 + c^2 的值为_______。
10. 在等腰三角形 ABC 中,若底边 BC = 8,腰 AB = AC = 6,则高 AD 的长度为_______。
三、解答题(共50分)11. (15分)已知函数 y = -x^2 + 2x + 3,求函数的最大值。
12. (15分)在△ABC中,∠A = 60°,AB = 5,AC = 6,求 BC 的长度。
13. (20分)已知数列 {an} 是等比数列,且 a1 = 2,公比 q = 3,求第 n 项an 的表达式。
四、附加题(共10分)14. (5分)若方程 x^2 - 4x + 3 = 0 的两个根为 p 和 q,求 p + q 的值。
八年级数学较难的试卷
![八年级数学较难的试卷](https://img.taocdn.com/s3/m/1067436086c24028915f804d2b160b4e777f816c.png)
一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为:A. 16cmB. 24cmC. 28cmD. 32cm2. 下列选项中,不属于实数的是:A. √4B. -√9C. 0.25D. π3. 如果一个数a的平方等于4,那么a的值为:A. 2B. -2C. ±2D. 04. 在直角坐标系中,点P(-3,4)关于x轴的对称点的坐标是:A.(-3,-4)B.(3,-4)C.(-3,4)D.(3,4)5. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 2/xD. y = x²6. 如果一个数的倒数是2,那么这个数是:A. 1/2B. 2C. -1/2D. -27. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 长方形D. 梯形8. 下列方程中,解为x=3的是:A. 2x + 1 = 7B. 3x - 4 = 5C. 4x + 3 = 11D. 5x - 2 = 89. 一个正方形的对角线长为10cm,则这个正方形的边长为:A. 5cmB. 10cmC. 15cmD. 20cm10. 下列数中,是负数的是:A. -3B. 0C. 3D. -√9二、填空题(每题5分,共25分)11. 已知等差数列的第一项为2,公差为3,则第10项为______。
12. 若∠A和∠B是补角,且∠A= 40°,则∠B = ______。
13. 下列式子中,绝对值最小的是:|2|,|-3|,|0|,|-5|。
14. 如果a > b,那么a - b的值一定是______。
15. 一个圆的半径增加了50%,那么圆的面积增加了______。
三、解答题(每题15分,共45分)16. 解方程:2x - 5 = 3x + 1。
17. 已知三角形ABC中,∠A = 60°,∠B = 45°,求∠C的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学试卷(较难)一.选择题(共8小题)1.(2016•云南)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠22.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣3.(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.4.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5B.3C.﹣3D.﹣55.(2016•绥化)函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>6.(2008•绵阳)若关于x的多项式x2﹣px﹣6含有因式x﹣3,则实数p的值为()A.﹣5B.5C.﹣1D.17.(2012•路北区一模)直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象如图,化简:|m﹣3|﹣得()A.3﹣m﹣nB.5C.﹣1D.m+n﹣58.(2016•广水市一模)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.(2013•株洲)在平面直角坐标系中,点(1,2)位于第象限.10.(2012•东莞)若x,y为实数,且满足|x﹣3|+=0,则的值是.11.(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=.12.(2012•市中区校级二模)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.13.(2002•湘西州)因式分解:x2﹣5x+6=.14.(2013•衢州)化简:=.15.(2015•郫县模拟)如图所示,六边ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD⊥BD.已知FD=24cm,BD=18cm.则六边形ABCDEF的面积是平方厘米.16.(2013•沈阳模拟)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.三.解答题(共10小题)17.(2011•广州)分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.18.(2011•宿迁)已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.19.(2012•巴中)先化简,再求值:(﹣)•,其中x=.20.(2012•黄冈)在平面直角坐标系中,△ABC的三个顶点的坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为.21.(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.22.(2011•营口)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?23.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.24.(2001•福州)为了了解中学生的体能情况,某校抽取了50名初三学生进行一分钟跳绳次数测试,将所得数据整理后,画出部分频率分布直方图.如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28.根据已知条件填空或画图:(1)第四小组频数为;(2)第五小组频率为;(3)在这次测试中,跳绳次数的中位数落在第小组中;(4)补全频率分布直方图.25.(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.26.(2014•江阴市二模)如图,A、B两点分别在x轴和y轴上,且OA=OB=,动点P、Q分别在AB、OB 上运动,运动时,始终保持∠OPQ=45°不变,设PA=x,OQ=y.(1)求y与x的函数关系式.(2)已知点M在坐标平面内,是否存在以P、Q、O、M为顶点的四边形是菱形?若存在,求出点M的坐标;若不存在,说明理由.(3)已知点D在AB上,且AD=,试探究:当点P从点A出发第一次运动到点D时,点Q运动的路径长为多少?初二数学试卷(较难)参考答案与试题解析一.选择题(共8小题)1.(2016•云南)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.2.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.(2016•衢州)如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A.B.C.D.【考点】函数的图象.【分析】由△DEB∽△CMB,得==,求出DE、EB,即可解决问题.【解答】解:如图,作CM⊥AB于M.∵CA=CB,AB=30,CM⊥AB,∴AM=BM=15,CM==20∵DE⊥BC,∴∠DEB=∠CMB=90°,∵∠B=∠B,∴△DEB∽△CMB,∴==,∴==,∴DE=,EB=,∴四边形ACED的周长为y=25+(25﹣)++30﹣x=﹣x+80.∵0<x<30,∴图象是D.故选D.【点评】本题考查函数图象、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是构建函数关系式,注意自变量的取值范围,属于中考常考题型.4.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5B.3C.﹣3D.﹣5【考点】点的坐标.【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得a和b的值.5.(2016•绥化)函数y=自变量x的取值范围是()A.x≤B.x≥C.x D.x>【考点】函数自变量的取值范围.【分析】由二次根式的被开方数大于等于0可得2x﹣1≥0,由分式有意义的性质可得2x﹣1≠0,即可求出自变量x的取值范围.【解答】解:由二次根式的被开方数大于等于0可得2x﹣1≥0①,由分式有意义的性质可得2x﹣1≠0②,由①②可知x>,故选D.【点评】本题考查了自变量的取值范围,熟练掌握①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.6.(2008•绵阳)若关于x的多项式x2﹣px﹣6含有因式x﹣3,则实数p的值为()A.﹣5B.5C.﹣1D.1【考点】因式分解的意义.【分析】掌握多项式乘法的基本性质,x﹣3中﹣3与2相乘可得到﹣6,则可知:x2﹣px﹣6含有因式x﹣3和x+2.【解答】解:(x﹣3)(x+2)=x2﹣x﹣6,所以p的数值是1.故选D.【点评】本题考查了因式分解的意义,注意因式分解与整式的运算的综合运用.7.(2012•路北区一模)直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象如图,化简:|m﹣3|﹣得()A.3﹣m﹣nB.5C.﹣1D.m+n﹣5【考点】二次根式的性质与化简;一次函数图象与系数的关系.【专题】计算题;压轴题.【分析】先从一次函数的图象判断m﹣3的正负值,n﹣2的正负值,然后再化简原代数式.【解答】解:直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象可知,n﹣2<0,m﹣3>0.|m﹣3|﹣=m﹣3﹣=m﹣3+n﹣2=m+n﹣5故选D.【点评】本题主要考查二次函数的性质及其化简,绝对值的化简.8.(2016•广水市一模)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个【考点】函数的图象.【专题】压轴题;数形结合.【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【解答】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18;B:(1)当0≤x<200,y B=50,当x>200,y B=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30,所以当x≤120时,A方案比B方案便宜20元,故(1)正确;当x≥200时,B方案比A方案便宜12元,故(2)正确;当y=60时,A:60=0.4x﹣18,∴x=195,B:60=0.4x﹣30,∴x=225,故(3)正确;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故(4)错误;故选:C.【点评】此题主要考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.二.填空题(共8小题)9.(2013•株洲)在平面直角坐标系中,点(1,2)位于第一象限.【考点】点的坐标.【专题】压轴题.【分析】根据各象限的点的坐标特征解答.【解答】解:点(1,2)位于第一象限.故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2012•东莞)若x,y为实数,且满足|x﹣3|+=0,则的值是1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】压轴题.【分析】根据非负数的性质列式求出x、y的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+3=0,解得x=3,y=﹣3,所以,()2012=()2012=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11.(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=2.【考点】坐标与图形变化-平移.【专题】计算题;压轴题.【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【解答】解:∵A(1,0)转化为A1(2,a)横坐标增加了1,B(0,2)转化为B1(b,3)纵坐标增加了1,则a=0+1=1,b=0+1=1,故a+b=1+1=2.故答案为:2.【点评】本题考查了坐标与图形的变化﹣﹣﹣平移,找到坐标的变化规律是解题的关键.12.(2012•市中区校级二模)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【考点】因式分解的应用.【专题】计算题;压轴题.【分析】由已知条件得到m2﹣n2=n﹣m,则m+n=﹣1,然后利用m2=n+2,n2=m+2把m3﹣2mn+n3进行降次得到m(n+2)﹣2mn+n(m+2),再去括号合并得到2(m+n),最后把m+n=﹣1代入即可.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.【点评】本题考查了因式分解的应用:运用因式分解可简化等量关系.13.(2002•湘西州)因式分解:x2﹣5x+6=(x﹣2)(x﹣3).【考点】因式分解-十字相乘法等.【专题】压轴题.【分析】根据十字相乘法分解因式进行分解即可.【解答】解:x2﹣5x+6=(x﹣2)(x﹣3).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.(2013•衢州)化简:=\frac{2}{x﹣2}.【考点】分式的加减法.【专题】计算题;压轴题.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.15.(2015•郫县模拟)如图所示,六边ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD⊥BD.已知FD=24cm,BD=18cm.则六边形ABCDEF的面积是432平方厘米.【考点】平行四边形的判定与性质;三角形的面积;勾股定理.【专题】压轴题.【分析】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【解答】解:连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∴EH=BG.平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=24×18=432.【点评】此题要熟悉平行四边形的判定和性质.注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.16.(2013•沈阳模拟)如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=\frac{\sqrt{2}}{2}.【考点】正方形的性质;全等三角形的判定与性质.【专题】几何图形问题;压轴题.【分析】连接BP,作EF⊥BC于点F,由正方形的性质可知△BEF为等腰直角三角形,BE=1,可求EF,利用面积法得S△BPE+S△BPC=S△BEC,将面积公式代入即可.【解答】解:连接BP,作EF⊥BC于点F,则∠EFB=90°,由正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,又根据正方形的边长为1,得到BE=BC=1,在直角三角形BEF中,sin∠EBF=,即BF=EF=BEsin45°=1×=,又PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,即BE×PM+×BC×PN=BC×EF,∵BE=BC,PM+PN=EF=;故答案为:.【点评】解决本题的关键是作出辅助线,构造矩形和全等三角形,把所求的线段转移到正方形的对角线上.三.解答题(共10小题)17.(2011•广州)分解因式:8(x2﹣2y2)﹣x(7x+y)+xy.【考点】因式分解-运用公式法;整式的混合运算.【专题】计算题.【分析】首先利用多项式乘以多项式法则进行计算,然后移项,合并同类项,正好符合平方差公式,再运用公式法分解因式即可解答.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).【点评】本题考查了多项式的乘法,公式法分解因式,熟练掌握运算法则和平方差公式的结构特点是解题的关键.18.(2011•宿迁)已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.【考点】因式分解的应用.【专题】计算题;整体思想.【分析】先提取公因式ab,整理后再把ab和a+b的值代入计算即可.【解答】解:当ab=1,a+b=2时,原式=ab(a+b)=1×2=2.故答案为:2.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.19.(2012•巴中)先化简,再求值:(﹣)•,其中x=.【考点】二次根式的化简求值;分式的化简求值.【专题】压轴题;分类讨论.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•,当x=时,x+1>0,可知=x+1,故原式=•===;【点评】本题考查的是二次根式及分式的化简求值,解答此题的关键是当x=时得出=x+1,此题难度不大.20.(2012•黄冈)在平面直角坐标系中,△ABC的三个顶点的坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点ABC的对应点分别是A1B1C1,若点A1的坐标为(3,1).则点C1的坐标为(7,﹣2).【考点】坐标与图形变化-平移.【分析】首先根据A点平移后的坐标变化,确定三角形的平移方法,点A横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标﹣2即为点C1的坐标.【解答】解:由A(﹣2,3)平移后点A1的坐标为(3,1),可得A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的变化相同,故C1(2+5,0﹣2),即(7,﹣2).故答案为:(7,﹣2).【点评】本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.21.(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】压轴题.【分析】(1)首先根据等式的性质证明∠EAC=∠BAD,则根据SAS即可证明△EAC≌△BAD,根据全等三角形的性质即可证明;(2)在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC,证明△EAC≌△BAD,证明BD=CE,然后在直角三角形BCE中利用勾股定理即可求解;(3)在线段AC的右侧过点A作AE⊥AB于点A,交BC的延长线于点E,证明△EAC≌△BAD,证明BD=CE,即可求解.【解答】解:(1)BD=CE.理由是:∵∠BAE=∠CAD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE;(2)如图2,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE.∵AE=AB=7,∴BE==7,∠AEC=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.(3)如图3,在线段AC的右侧过点A作AE⊥AB于点A,交BC的延长线于点E,连接BE.∵AE⊥AB,∴∠BAE=90°,又∵∠ABC=45°,∴∠E=∠ABC=45°,∴AE=AB=7,BE==7,又∵∠ACD=∠ADC=45°,∴∠BAE=∠DAC=90°,∴∠BAE﹣∠BAC=∠DAC﹣∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD,∴BD=CE,∵BC=3,∴BD=CE=7﹣3(cm).【点评】本题考查了全等三角形的判定与性质,正确理解三个题目之间的联系,构造(1)中的全等三角形是解决本题的关键.22.(2011•营口)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【专题】销售问题;压轴题.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【考点】三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM 和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM 和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.【解答】(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.24.(2001•福州)为了了解中学生的体能情况,某校抽取了50名初三学生进行一分钟跳绳次数测试,将所得数据整理后,画出部分频率分布直方图.如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28.根据已知条件填空或画图:(1)第四小组频数为14;(2)第五小组频率为0.16;(3)在这次测试中,跳绳次数的中位数落在第三小组中;(4)补全频率分布直方图.【考点】频数(率)分布直方图;中位数.【专题】压轴题;数形结合.【分析】(1)根据频率=频数÷总数,即频数=频率×总数,求得第四组的频数;(2)根据各组的频率和等于1,求得第五组的频率;(3)根据各组的频数和中位数的概念,进行分析即可.(4)根据求得的结果补全直方图即可解答.【解答】解:(1)50×0.28=14人.(2)1﹣0.04﹣0.12﹣0.4﹣0.28=0.16.(3)中位数应该是第25与26名的平均数,25与26名都位于第三小组,故答案为三.(4).【点评】本题考查了中位数、频率和读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(2011•泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】几何综合题;压轴题.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点评】本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.26.(2014•江阴市二模)如图,A、B两点分别在x轴和y轴上,且OA=OB=,动点P、Q分别在AB、OB 上运动,运动时,始终保持∠OPQ=45°不变,设PA=x,OQ=y.(1)求y与x的函数关系式.(2)已知点M在坐标平面内,是否存在以P、Q、O、M为顶点的四边形是菱形?若存在,求出点M的坐标;若不存在,说明理由.(3)已知点D在AB上,且AD=,试探究:当点P从点A出发第一次运动到点D时,点Q运动的路径长为多少?【考点】一次函数综合题.【专题】综合题;压轴题.【分析】(1)利用外角的知识先得出∠APO=∠BQP,继而得出△BQP∽△APO,然后利用对应边成比例可得出y与x的函数关系式;(2)根据菱形的性质可得,可确定Q的坐标,再由菱形的性质即可确定M的坐标;(3)根据(1)的函数关系式,即可得出点Q运动的路径长.【解答】解:(1)∵OA=OB=,∴AB=2,∵OQ=y,∴BQ=﹣y,∵∠APO=∠PBO+∠BOP=45°+∠BOP,∠BQP=∠BOP+∠OPQ=45°+∠BOP,∴∠APO=∠BQP,又∵∠A=∠B=45°,∴△BQP∽△APO,∴=,即=,∴y=.(2)∵以P、Q、O、M为顶点的四边形是菱形,当OP是菱形的对角线时,则PQ=OQ,∵∠OPQ=45°,∴∠OPQ=∠QOP=45°,∴∠PQO=90°,故可得点Q在OB中点处,如图所示:此时点M的坐标为(,0);当OP是菱形的一边时,①若OQ=OP,如图所示:此时点M的坐标为(,);②若OM=OP,如图所示:此时△BQP≌△APO,则BP=OA=,AP=AB﹣BP=2﹣,过点P作PE⊥x轴于点E,在等腰直角△APE中,PE==﹣1,AE=﹣1,OE=OA﹣AE=1,∵四边形MOPQ为菱形,∴点M与点P关于y轴对称,∴点M的坐标为(﹣1,﹣1);综上可得点M的坐标为:()或()或(﹣1,);(3)如图所示:点P运动的3个界点位置分别是x=0,1,,当点P在点A处时,x1=0时,y1=,当点P在P1处时,x2=1时,y2=,故BQ2=y1﹣y2==,当点P位于点P3时,x3=时,y3=,故Q2Q3=y3﹣y2=,点Q运动的路径长=BQ2+Q2Q3=+=.【点评】本题考查了一次函数的综合题,涉及了菱形的判定与性质及等腰直角三角形的知识,用到了分类讨论的思想,分类讨论思想在数学解题中很重要,同学们注意认真掌握.。