材料焊接性5
材料焊接性
焊接性:同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。
工艺焊接性:指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。
冶金焊接性:熔焊高温下的熔池金属与气相、熔渣等相之间发生化学冶金反应所引起的焊接性变化。
屈强比:屈服强度与抗拉强度之比称为屈强比(σs/σb)焊缝强度匹配系数:焊缝强度与母材强度之比S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一。
碳当量法:各种元素中,碳对冷裂纹敏感性的影响最显著。
可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。
点腐蚀:金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。
1、影响材料焊接性的因素:材料、设计、工艺和服役环境2、合金结构钢按性能分类可分为:强度用钢和低中合金特殊用钢3、强度用钢:热轧及正火钢、低碳调质钢、中碳调质钢4、焊缝中存在较高比例针状铁素体组织时,韧性显著提高,韧脆转变温度降低5、低碳调质钢的种类:高强度结构钢、高强度耐磨钢、高强度韧性钢;成分:碳质量分数不大于0.22%。
热处理的工艺一般为奥氏体化→淬火→回火,经淬火回火后的组织是回火低碳马氏体、下贝氏体或回火索氏体6、中碳调质钢成分:含碳量Wc=0.25%~0.5%较高,并加入合金元素(Mn、Si、Cr、Ni、B)以保证钢的淬透性7、提高耐热钢的热强性三种合金方式:基体固溶强化、第二相沉淀强化、晶界强化8、不锈钢的主要腐蚀形式:均匀腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀9、铜及铜合金分为工业纯铜、黄铜、青铜及白铜10、不锈钢的分类:按化学成铬不锈钢、铬镍不锈钢、铬锰氮不锈钢按用途不锈钢、抗氧化钢、热强钢按组织奥氏体钢、铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢11、铝合金的性质:化学活性强、表面极易氧化、导入性强、易造成不溶合、易形成杂质12、铸铁分为:白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁13、引起应力腐蚀开裂条件:环境、选择性的腐蚀介质、拉应力1、材料焊接性包含的两个含义一是材料在焊接加工中是否容易形成接头或产生缺陷;二是焊接完成的接头在一定的使用条件下可靠运行的能力。
材料的焊接性对焊接质量及焊接成本的影响分析
材料的焊接性对焊接质量及焊接成本的影响分析一、引言焊接是一种重要的连接技术,在工程领域有着广泛的应用。
而材料的焊接性是决定焊接质量和焊接成本的关键因素之一。
不同材料的焊接性会影响焊接接头的牢固程度、耐腐蚀性、机械性能等。
不同的焊接性也会导致不同的焊接工艺及焊接材料的选择,从而影响焊接的成本。
对材料的焊接性进行分析,对于提高焊接质量、降低焊接成本具有重要意义。
二、材料的焊接性及其影响1. 材料的成分及结构材料的成分和结构是决定焊接性的重要因素之一。
碳含量高的钢材在焊接时容易产生焊接变脆现象,降低焊接接头的牢固程度;而不锈钢的铬含量高,容易在焊接过程中产生氧化物,影响焊接质量。
材料的结构也会影响焊接性,例如晶粒细小的材料焊接后具有优良的机械性能和耐腐蚀性,而晶粒粗大的材料则容易产生焊接裂纹,降低焊接质量。
2. 材料的热物理性能材料的热物理性能包括热导率、热膨胀系数等,对焊接性有着重要影响。
在焊接过程中,材料的热膨胀系数不同会导致在焊接接头处产生应力集中,影响焊接质量;而热导率低的材料在焊接时需要较长的预热时间,增加焊接成本。
3. 材料的表面状态材料的表面状态对焊接性有着直接影响。
表面粗糙的材料在焊接时会影响焊接接头的质量,易产生缺陷。
表面涂层、氧化物等也会影响焊接性,需要进行特殊的处理以保证焊接质量。
4. 不同材料的焊接特性不同材料的焊接特性不同,需要采用不同的焊接工艺及焊接材料。
碳钢容易进行电弧焊接,而铝合金则需要采用氩弧焊接。
在选择焊接工艺和焊接材料时需要考虑材料的焊接特性,以保证焊接质量。
1. 焊接接头的牢固程度材料的焊接性直接影响焊接接头的牢固程度。
焊接性好的材料在焊接时容易形成均匀的焊缝,焊接接头具有较高的强度和韧性;而焊接性差的材料在焊接时容易产生焊接裂纹、气孔等缺陷,降低焊接接头的牢固程度。
2. 焊接接头的耐腐蚀性1. 焊接工艺的选择不同材料的焊接性决定了需要采用不同的焊接工艺参数。
对于焊接性差的材料需要采用较高的焊接温度、较长的预热时间等,增加了焊接成本。
材料焊接性
材料焊接性材料焊接性在工程设计中,材料的焊接性是一个至关重要的因素。
焊接是将两个或多个材料通过熔化和冷却来组装在一起的过程。
通过焊接,可以将两个成分相同或不同的材料连接在一起,形成一种坚固的结构形状。
材料的焊接性不仅涉及材料的物理和化学性质,还涉及焊接过程中使用的材料和工具的类型和质量。
这是因为焊接是一个高温、高压和高温度变化的过程。
有些材料非常容易焊接,如钢铁、铝和铜。
这些材料具有较高的熔点和热传导性,焊接时易于形成强有力的气密连接。
钢铁可以使用多种方法进行焊接,包括电弧焊接、气体焊接、TIG焊接、MIG焊接等。
铝和铜也可以使用类似的方法进行焊接。
然而,还有很多材料焊接起来比较困难,如不锈钢、钛、瓷砖等。
不锈钢的耐腐蚀性和强度使其成为许多工业应用的理想材料,但是它的结构相对复杂,因此需要特殊的焊接技术。
钛是轻量级、高强度、高温材料,但是其氧化膜在焊接过程中会阻碍焊接过程。
瓷砖是一种脆性材料,焊接会使其容易破裂。
为了解决这些材料的焊接难题,科学家和工程师们花费了很多时间和精力,开发出了各种新的焊接技术和材料。
例如,对于不锈钢的焊接,通常需要使用气体钨极焊或高功率激光焊技术,这些技术可以帮助减轻不锈钢的薄壁焊接和手工操作的难度。
钛和瓷砖的焊接也需要特殊的焊接技术和材料。
此外,焊接过程中的热处理也是焊接性要考虑的一个方面。
因为焊接时高温会对材料的性质产生不利影响,而焊缝周围的区域是焊接最容易出问题的地方。
通过一些热处理方法,如退火、淬火、正火等可以改善焊缝的性能。
总之,在工程设计中,选择合适的材料并保证材料的焊接性是至关重要的。
无论焊接什么材料,都需要做一些实验室测试,确定最佳的焊接方法和材料。
通过合理的焊接选择,可以确保完成的结构强度和耐用性。
除了选择合适的材料和焊接方法之外,还需要考虑其他一些因素来确保焊接质量和可靠性。
以下是一些需要考虑的因素:1. 焊接时应该注意环境。
有些焊接方法,如氧乙炔焊和某些复杂的电弧焊需要在较为干燥和通风的环境下进行。
各种材料的焊接性能
金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<0.25);低合金钢(合金元素含量1~3、含碳量<0.20);不锈钢(合金元素含量>3、含碳量<0.18)。
(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量0.25~0.35);低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13~25、含碳量£0.18)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量0.35~0.45);低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。
(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量>0.40);不锈钢(合金元素含量13、含碳量0.30~0.40)。
焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。
异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。
焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。
###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。
***15CrMoR焊接性能良好。
手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。
自动焊丝用H13CrMoA和焊剂250等。
常用金属材料的焊接性
常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。
常用的金属材料包括钢铁、铝、铜、镍、钛等。
这些金属材料在焊接时拥有不同的特性和焊接性能。
下面将针对常见金属材料的焊接性进行详细介绍。
1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。
在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。
其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。
钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。
2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。
由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。
为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。
常见的铝焊接方法有气焊、TIG焊等。
在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。
3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。
常见的铜焊接方法有气焊、TIG焊、电弧焊等。
在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。
TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。
4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。
常见的镍焊接方法有电弧焊、TIG焊等。
镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。
在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。
5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。
常用的钛焊接方法有电弧焊、激光焊等。
在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。
此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。
综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。
了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。
材料焊接性
《材料焊接性》(专科)学案第一章绪论二、本章习题1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。
2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同?第2章材料焊接性及其试验方法1. 了解焊接性的基本概念。
什么是工艺焊接性?影响工艺焊接性的主要因素有哪些?焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。
工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。
影响因素:材料因素、工艺因素、结构因素、使用条件。
2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题?冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。
工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。
而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。
有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。
金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。
比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好|第3章低合金结构钢的焊接1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。
二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。
热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。
(2)细晶强化,主要强化元素:Nb,V。
(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。
详解典型焊接材料的焊接性
详解典型焊接材料的焊接性典型焊接材料的焊接性是指在焊接过程中所表现出的特性和性能。
焊接性是影响焊接工艺和焊缝质量的重要因素之一、下面将详细介绍常见焊接材料(包括金属和非金属材料)的焊接性。
1.钢材焊接性:钢材是最常见的金属材料之一,具有广泛的应用领域。
钢材的焊接性取决于其成分、钢种和热处理状态。
一般来说,碳含量低的低碳钢和碳含量高的高碳钢都具有良好的焊接性。
焊接低碳钢时,焊接热影响区域(HAZ)容易发生退火,引起冷脆性的问题,需要采取适当的措施进行预热和后热处理。
高碳钢焊接时容易出现冷裂纹和热裂纹,需要选择适合的焊接材料和控制焊接参数。
2.铝合金焊接性:铝合金是一种轻质、高强度的金属材料,广泛用于航空、汽车和建筑等领域。
铝合金的焊接性取决于合金化元素、成分和热处理状态。
一般来说,一些铝合金易于焊接,如铝镁合金和铝锂合金,而一些铝合金焊接性较差,如硬化铝合金。
焊接铝合金时,容易发生氧化和热裂纹等问题,需要采取保护气体和合适的焊接工艺参数。
3.不锈钢焊接性:不锈钢是一种抗腐蚀性能良好的金属材料,被广泛用于食品加工、化工和医疗器械等领域。
不锈钢的焊接性受到合金元素、成分和热处理状态的影响。
普通奥氏体不锈钢(如304和316等)焊接性较好,而马氏体不锈钢焊接性较差。
焊接不锈钢时,易发生气孔和焊接晶间腐蚀等问题,需要控制焊接参数和采用适当的焊接试剂。
4.铜及铜合金焊接性:铜和铜合金是常见的导电材料,被广泛应用于电气、电子和管道等行业。
铜及铜合金的焊接性好,容易焊接。
焊接铜合金时,一般采用气焊、电弧焊或电阻焊等方法。
需要注意的是,铜及铜合金焊接时易发生氧化和高温脆性等问题,需要采取保护措施。
5.非金属材料的焊接性:非金属材料如塑料、陶瓷和橡胶等也可以进行焊接。
其中,塑料焊接性好,常用的焊接方法有热板焊接、高频焊接和超声波焊接等。
陶瓷和橡胶等材料的焊接性较差,难以进行常规焊接,常采用粘接、烧结和激光焊接等特殊方法。
各种材料的焊接性能
各种材料的焊接性能焊接是一种将两个或更多的材料连接在一起的工艺。
焊接性能是指材料在焊接过程中的抗热裂纹、焊接接头的强度、抗脆性、耐腐蚀性等方面的表现。
各种材料的焊接性能有相应的特点。
金属材料是最常见的焊接材料之一、常见的金属材料包括钢铁、铝合金、铜合金、镍合金等。
这些材料具有良好的可焊性,通过适当的焊接工艺和焊接材料的选择,可以得到较高的焊接接头强度。
其中,钢铁是最常见的焊接材料,焊接性能较好,可用多种焊接方法进行焊接,例如电弧焊、气体保护焊等。
铝合金和铜合金由于具有良好的导电性和导热性,在航空航天、汽车制造等领域得到广泛应用,这些材料的焊接性能对接头质量和工件整体性能影响较大。
镍合金具有优异的耐腐蚀性和高温强度,广泛用于航空发动机、核反应堆等领域,其焊接性能对材料的使用寿命和安全性有重要影响。
非金属材料如陶瓷、塑料、纤维等也有一定的焊接性能。
陶瓷一般以粘结剂形式焊接,焊接强度较低,常用于压电陶瓷和绝缘陶瓷制品的焊接。
塑料材料的焊接主要采用热焊和超声波焊接等方法,焊接强度较高,广泛应用于塑料管道、汽车内饰等领域。
纤维材料的焊接主要是指碳纤维、玻璃纤维等复合材料的焊接,一般采用粘合剂或热焊接的方法,焊接性能一般较好。
无机非金属材料如玻璃、石墨等的焊接性能较差。
玻璃的焊接需要采用特殊的焊接工艺,焊接接头强度低,且易发生热裂纹。
石墨材料是具有良好导电和导热性能的材料,但其本身结构特殊,焊接性能较差。
总体而言,各种材料的焊接性能受材料本身性质、焊接工艺和焊接材料等因素的影响。
为了获得良好的焊接性能,需根据具体材料的特点选择合适的焊接方法和焊接材料,并严格控制焊接工艺参数,以确保焊接接头的质量和性能。
各种材料的焊接性能
各种材料的焊接性能焊接是一种将两个或多个材料连接在一起的工艺,通过加热、加压和加入填充材料,使其在接头处产生强固的连接。
不同材料的焊接性能取决于其化学成分、结构和热处理状态等因素。
下面将就几种常见材料的焊接性能进行介绍。
1.钢材焊接性能:钢材是最常用的焊接材料之一,它具有良好的焊接性能。
一般来说,低合金钢和不锈钢等易焊接的钢材,焊接时一般使用通用电弧焊、气体保护焊和电子束焊等方法。
高强度钢、高合金钢等焊接性能较差的钢材则需要采用专用的焊接工艺,如预热、后热处理和控制焊接变形等。
2.铝材焊接性能:铝材具有良好的导热性和导电性,但其氧化膜易与空气中的氧气发生反应,影响焊接质量。
因此,对于铝材焊接,一般需要采用气体保护焊、TIG焊和激光焊等方法。
同时,由于铝合金的热导率较高,所以焊接时需要更高功率的焊接设备。
3.铜材焊接性能:铜材的导热性和导电性良好,在焊接时容易产生较高的焊接温度,进而导致铜材迅速散热,难以形成良好的焊接池。
因此,铜材的常见焊接方法主要有气体保护焊、TIG焊和电弧焊等。
4.镁合金焊接性能:镁合金具有轻量化和高强度等优点,但其善热导性和易氧化的特性使其在焊接过程中面临一定的挑战。
常见的镁合金焊接方法有TIG焊、气体保护焊和电弧焊等。
此外,由于镁合金容易产生热裂纹,焊接过程中需要注意控制焊接温度和热输入。
5.硬质合金焊接性能:硬质合金是一种复合材料,其焊接性能受到合金成分、颗粒尺寸和焊接工艺的影响。
一般来说,硬质合金的焊接方法有等离子焊、电子束焊和惰性气体焊等,其中等离子焊和电子束焊具有较高的能量密度,适合高硬度和高熔点的硬质合金。
综上所述,不同材料的焊接性能受到多个因素的影响,包括化学成分、结构和热处理状态等。
在选择焊接方法时,需要根据材料的特性和要求,合理选择合适的焊接工艺,以保证焊接接头的质量和性能。
各种材料的焊接性能
金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<0.25); 低合金钢(合金元素含量1〜3、含碳量<0.20); 不锈钢(合金元素含量>3、含碳量<0.18 )。
(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量0.25〜0.35); 低合金钢(合金元素含量<3、含碳量<0.30);不锈钢(合金元素含量13〜25、含碳量£ 0.18)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量0.35〜0.45); 低合金钢(合金元素含量1〜3、含碳量0.30〜0.40); 不锈钢(合金元素含量13、含碳量0.20)。
(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>0.45); 低合金钢(合金元素含量1〜3、含碳量>0.40); 不锈钢(合金元素含量13、含碳量0.30〜0.40)。
焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。
异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。
焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76 )、焊条的性能和用途(GB 980〜984-76)等有关国家标准。
###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。
15CrMoR焊接性能良好。
手工焊用E5515-B2 (热307)焊条,焊前预热至200-250C (小口径薄壁管可不预热),焊后650-700 C回火处理。
自动焊丝用H13CrMoA和焊剂250等。
材料焊接性知识点整理
材料焊接性知识点整理1.材料的化学成分:材料的化学成分对焊接性能有很大的影响。
不同元素的存在会导致焊接材料的变化,如碳含量过高会导致焊缝硬化,硫含量过高会导致焊缝脆性增加。
因此,在焊接过程中需要根据材料的化学成分选择适当的焊接材料和焊接工艺。
2.材料的物理性能:材料的物理性能对焊接性能也有很大的影响。
例如,材料的熔点和凝固温度会影响焊接的工艺参数和焊缝的形态。
另外,材料的热导率和热膨胀系数也会影响焊接过程中的热应力和变形。
3.材料的热学性能:材料的热学性能对焊接过程中的热传导和热变形有很大的影响。
例如,材料的热导率决定了焊接热源的传导能力,热膨胀系数决定了焊接材料在热应力下的变形情况。
因此,了解材料的热学性能是选择合适的焊接工艺参数的重要基础。
4.焊接工艺参数:焊接工艺参数包括焊接电流、焊接速度、焊接温度等。
合适的焊接工艺参数可以保证焊接质量的稳定性和焊缝的强度。
不同材料的焊接工艺参数有所差异,因此需要根据材料的热学性能和化学成分选择合适的焊接工艺参数。
5.焊接材料选择:焊接材料的选择对焊接性能也有很大的影响。
焊接材料应具有与母材相似的化学成分和物理性能,以保证焊缝的性能和质量。
此外,焊接材料还应具有良好的可塑性和焊接性能,以便于焊接操作。
6.焊接接头形式:焊接接头形式对焊接性能和焊缝的强度有很大影响。
常见的焊接接头形式包括对接、角接、搭接等。
不同接头形式的焊接过程和焊缝形态不同,因此需要根据具体应用选择合适的接头形式。
7.焊接变形和残余应力:焊接过程中会产生热应力和变形,这对焊接性能和工件的使用寿命有很大的影响。
焊接变形和残余应力的大小取决于材料的热学性能、焊接工艺参数和焊接接头形式等因素。
因此,在焊接过程中需要采取相应的措施来控制焊接变形和残余应力,如采用预留缝、预应力焊接等。
总结起来,材料焊接性的知识点主要包括材料的化学成分、物理性能、热学性能、焊接工艺参数、焊接材料选择、焊接接头形式、焊接变形和残余应力等。
《材料焊接性》课件
焊接生产中的环保问题
02
01
03
焊接过程中会产生烟尘、废气、噪音等污染物,对环 境造成一定的影响。
焊接设备的选用应符合环保要求,尽量选择低烟尘、 低噪音的设备。
定期对焊接设备进行环保检测,确保设备符合相关环 保标准。
焊接废弃物的处理与再利用
超声波焊接技术
超声波振动焊接
利用超声波振动使材料产生局部高温和 压力,从而实现材料的连接。超声波振 动焊接具有快速、低成本和高质量等特 点,适用于塑料、纸张和布料等材料的 焊接。
VS
高频感应焊接
利用高频电流产生磁场,使金属材料产生 涡流热并熔化,最终连接在一起。高频感 应焊接具有高效、节能和环保等特点,适 用于薄板和管材的焊接。
无损检测
利用超声波、射线、磁粉等方法,对焊接接头进行无损检测 ,以发现潜在的缺陷和问题。
05
焊接安全与环保
焊接作业安全防护
焊接作业人员应穿戴防护服、佩戴护目镜、手套等 个人防护装备,以减少焊接过程中产生的飞溅、弧 光和高温对人体的伤害。
在焊接作业现场,应设置相应的安全警示标识,提 醒作业人员注意安全。
焊接工艺参数的调整与控制
在焊接过程中,根据实际情况对工艺参数进行调整和控制,确保焊 接质量的稳定性和可靠性。
04
焊接质量与检验
焊接质量标准与评定
焊接质量标准
根据不同的材料和焊接工艺,制定相应的焊接质量标准,包括焊接接头的强度、致密性、抗腐蚀性等方面的要求 。
焊接质量评定
通过检验和测试,对焊接接头进行质量评定,确保其满足设计要求和使用性能。
如熔化焊、压力焊、钎焊等, 每种工艺有其适用的范围和特 点,需根据具体艺进行可行性评 估,确保其能够满足焊接要求 ,并考虑生产效率和成本等因 素。
焊接冶金学-材料焊接性
焊接冶金学-材料焊接性名词解释:;;1、焊接性:焊接;性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。
2、碳当量:把;钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材料冷裂纹倾向的参数指标。
;;3、焊接性的间;接评定:①碳当量法;②焊接冷裂纹敏感性指数法;③消除应力裂纹敏感性指数法;④热裂纹敏感性指数;法;⑤层;状撕裂敏感性指数法;⑥焊接热影响区最高硬度法。
第三;章合金结构钢的焊接1、热;轧钢HA;Z过热区脆化原因:;采用过;大的焊接热输入,粗晶区将因晶粒长大或出现魏氏组织而降低韧性;采用过小的焊接热输入,粗晶区中的马;氏体组;织所占的比例增大而降低韧性。
2、正火;钢HA;Z过热区脆化原因:1;、晶粒;长大2、沉淀相Ti和Vc发生高温溶解,溶入奥氏体基体,在冷却过程中来不及析出,保留在铁集体内,使其;变脆;。
过热区脆化与魏氏组织无关;采用过大的焊接输入,导致晶粒粗大,主要是1200高温下其沉淀强化作用的碳;化物;和氮化物质点分解并溶于奥氏体,在随后的冷却过程中来不及析出而固溶在基体中,Nb等推迟铁素体的产生,;上贝;氏体的产生,上贝氏体增多,导致韧性下降;采用过小的焊接热输入,冷却速度加快,淬硬组织马氏体增多,导致;韧性下降。
3、分析热;轧;钢和正火钢的强化方式及主要强化元素有何不同,二者焊接性有何差异,在制定工艺时应注意什么?答:⑴强化;;方式:热轧钢用Mn、Si等合金元素固溶强化,加入V、Nb以细化晶粒和沉淀强化;正火钢在固溶强化的基础上加;;入一些碳、氮化合物形成元素C、V、Nb、Ti、Mo进行沉淀强化和晶粒细化。
⑵裂纹-热轧钢对冷、热裂纹都不敏;;感,不出现再热裂纹,出现层状撕裂;正火钢冷裂纹倾向大于热轧钢,对热裂纹不敏感出现再热裂纹和层状撕裂。
;;⑶热影响区性能变化:热轧钢脆化、晶粒粗大和粗晶脆化;正火钢粗晶脆化和组织脆化。
⑷制定工艺时应注意:热;;轧钢线能量需要适中,正火钢应选较小线能量。
各种材料的焊接性能
金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<0。
25);低合金钢(合金元素含量1~3、含碳量<0。
20);不锈钢(合金元素含量〉3、含碳量<0。
18)。
(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量0。
25~0。
35);低合金钢(合金元素含量<3、含碳量〈0.30);不锈钢(合金元素含量13~25、含碳量£0。
18)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量0.35~0。
45); 低合金钢(合金元素含量1~3、含碳量0.30~0.40);不锈钢(合金元素含量13、含碳量0.20)。
(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>0.45);低合金钢(合金元素含量1~3、含碳量〉0。
40);不锈钢(合金元素含量13、含碳量0。
30~0.40).焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。
异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。
焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980—76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。
###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理.***15CrMoR焊接性能良好。
手工焊用E5515—B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650—700℃回火处理.自动焊丝用H13CrMoA和焊剂250等。
材料焊接性基本知识
三、焊接性
• 焊接性,是指金属材料在采 用一定的焊接工艺包括焊接 方法、焊接材料、焊接规范 及焊接结构形式等条件下, 获得优良焊接接头的难易程 度。
• 焊接性能包括两方面的内容:①接合性能:金属 材料在一定焊接工艺条件下,形成焊接缺陷的敏 感性。决定接合性能的因素有:工件材料的物理 性能,如熔点、导热率和膨胀率,工件和焊接材 料在焊接时的化学性能和冶金作用等。当某种材 料在焊接过程中经历物理、化学和冶金作用而形 成没有焊接缺陷的焊接接头时,这种材料就被认 为具有良好的接合性能。②使用性能:某金属材 料在一定的焊接工艺条件下其焊接接头对使用要 求的适应性,也就是焊接接头承受载荷的能力, 如承受静载荷、冲击载荷和疲劳载荷等,以及焊 接接头的抗低温性能、高温性能和抗氧化、抗腐 蚀性能等。
• 工艺性能 • 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主 要有以下四个方面: • (1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、 磨削等)对金属材料进行切削加工的难易程度。 • (2)可锻性:反映金属材料在压力加工过程中成型的难易程度, 例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的 大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微 组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导 热性能等。 • (3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表 现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的 均匀性、致密性,以及冷缩率等。 • (4)可焊性:反映金属材料在局部快速加热,使结合部位迅速 熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为 整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、 热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、 对机械性能的影响等。
材料焊接性
材料焊接性
材料焊接是指通过热源对两个或多个材料进行加热,使其熔化并连接在一起的工艺。
常用的材料焊接方法有电弧焊接、气焊、激光焊接、电子束焊接等。
材料焊接具有以下几个特点:
1. 焊接强度高:焊接接头的强度一般可以达到或接近母材强度。
这是因为焊接过程中,焊缝和母材之间会形成较大的结晶颗粒,从而提高了材料的强度。
2. 焊接效率高:材料焊接方法通常能够在短时间内将材料焊接在一起,这大大提高了工作效率。
同时,焊接时只需进行部分预热和局部加热,因此能够节约能源。
3. 焊接适用范围广:材料焊接可以实现对各种类型的材料进行焊接,如金属材料、塑料材料等。
而且,不同种类的材料之间也可以进行焊接,例如金属与塑料的焊接。
4. 焊接工艺复杂:材料焊接涉及到多种工艺和技术,在焊接过程中需要控制好焊接温度、焊接速度、焊接压力等参数。
此外,还需要选择合适的焊接材料和焊接设备。
5. 焊接过程中可能会产生变形:在进行材料焊接时,由于焊接过程中的加热和冷却,会使焊接接头周围的材料发生不均匀变形,从而影响产品的质量。
因此,在焊接过程中需要采取补偿措施,如预留一定的余量,进行后续的修整和整形。
总之,材料焊接是一种常用的连接方法,具有高强度、高效率、
广泛适用等特点。
在实际应用中,需要根据具体的材料和需求选择合适的焊接方法和工艺,以确保焊接质量和产品性能。
常用金属材料的焊接性
当 CE=0.4~0.6%时, 塑性下降,淬硬及冷裂倾向明显, 焊接性较差。
焊前适当预热,焊后缓慢冷却。
当 CE>0.6%时, 塑性较差。 淬硬和冷裂倾向严重, 焊接性很差,
焊前需要高温预热, 焊接时要采取减少焊接应力和防止裂纹的工艺措施, 焊后需要进行适当热处理等。
3、碳钢的焊接性 (1)低碳钢的焊接:C<0.25%, 塑性好,无淬硬倾向,焊接性好,
无需任何工艺措施,适于各种方法。 (2)中碳钢的焊接: C=0.25-0.6%, 淬火钢,焊接性由良好→差。
焊缝及热影响区易产生气孔、裂纹。 工艺措施: ①焊前预热(150~250 ℃ ), 焊后缓冷并去应力回火。 ②焊件开坡口, 且采用细焊条、小电流、多层焊。 ③选用塑、韧性好的低氢型焊条, 提高焊缝塑性,防止裂纹。
(3)高碳钢的焊接: 含碳量高,导热性差,淬硬倾向大, 一般不用于制造焊接结构, 仅对损坏的机件进行焊补。 焊补时也要采取与中碳钢类似的工艺措施,以避免产生裂纹。
4、低合金结构钢的焊接性 普低钢的焊接性与低碳钢类似, 但σb↑→焊接性↓
低强度普低钢:σs<400MPa, CE <0.4%, 焊接性良好, 无需工艺措施。 如:16Mn、9Mn2。
(2)铸铁焊补方法 ①热焊法: 焊前将焊件整体或局部预热至600~700℃并施焊,焊后缓冷。 用于形状复杂,焊后需要机械加工的重要件。 如汽缸体、汽缸盖、机床导轨等。
5、铸铁的焊补 ②冷焊法:焊前不预热或低温预热(400 ℃)的焊补方法。用于易变形件焊补。 冷焊法主要依靠焊条来调整焊缝的化学成分,增强焊缝的石墨化能力, 以防止或减少白口和裂纹的产生:
常用金属材料的焊接性
1、焊接性概念
焊接方法、材料、焊接规范、结 构型式、预热及热处理等。
各种材料的焊接性能
金属材料的焊接性能(1)焊接性能良好的钢材主要有:低碳钢(含碳量<);低合金钢(合金元素含量1~3、含碳量<);不锈钢(合金元素含量>3、含碳量<)。
(2)焊接性能一般的钢材主要有:中碳钢(合金元素含量<1、含碳量~);低合金钢(合金元素含量<3、含碳量<);不锈钢(合金元素含量13~25、含碳量£)(3)焊接性能较差的钢材主要有:中碳钢(合金元素含量<1、含碳量~);低合金钢(合金元素含量1~3、含碳量~);不锈钢(合金元素含量13、含碳量)。
(4)焊接性能不好的钢材主要有:中、高碳钢(合金元素含量<1、含碳量>);低合金钢(合金元素含量1~3、含碳量>);不锈钢(合金元素含量13、含碳量~)。
焊条和焊丝选择的基本要点如下:同类钢材焊接时选择焊条主要考虑以下几类因素:考虑工件的物理、机械性能和化学成分;考虑工件的工作条件和使用性能;考虑工件几何形状的复杂程度、刚度大小、焊接坡口的制备情况和焊接部位所处的位置等;考虑焊接设备情况;考虑改善焊接工艺和环保;考虑成本。
异种钢材和复合钢板选择焊条主要考虑以下几类焊接情况:一般碳钢和低合金钢间的焊接;低合金钢和奥氏体不锈钢之间的焊接;不锈钢复合钢板的焊接。
焊条和焊丝的选择参数查阅机械设计手册中焊条和焊丝等章节和焊条分类及型号(GB 980-76)、焊条的性能和用途(GB 980~984-76)等有关国家标准。
###15CrMoR的换热器的热处理工艺***当板厚超过筒体内径的3%时,卷板后壳体须整体热处理。
***15CrMoR焊接性能良好。
手工焊用E5515-B2(热307)焊条,焊前预热至200-250℃(小口径薄壁管可不预热),焊后650-700℃回火处理。
自动焊丝用H13CrMoA和焊剂250等。
###压力容器用钢的基本要求压力容器用钢的基本要求:较高的强度,良好的塑性、韧性、制造性能和与相容性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-6
板厚及接头形式对焊缝气体含量的影响(MIG) 1—对接接头 2—T型接头
铝合金的线膨胀系数比钢约大1倍,在拘束条 件下焊接时易产生较大的焊接应力,也是促使铝 合金具有较大裂纹倾向的原因之一。 关于易熔共晶的作用,不仅要看其熔点高低, 更要看它对界面能量的影响。易熔共晶成薄膜状 展开于晶界上时,促使晶体易于分离,而增大合 金的热裂倾向;若成球状聚集在晶粒顶点间时, 合金的热裂倾向小。 近缝区液化裂纹同焊缝凝固裂纹一样,也与 晶间易熔共晶有联系,但这种易熔共晶夹层并非 晶间原已存在的,而是在不平衡的焊接加热条件 下因偏析而形成的,所以称为晶间液化裂纹。
如图5-9所示,wCu=6%~7%时,正好处在裂纹倾向不 大的区域。由于Mn能提高再结晶温度而改善热强性,所 以Al-Cu-Mn合金也可作为耐热铝合金应用。为了细化晶 粒,加入wTi=0.1%~0.2%是有效的。wFe>0.3%时,降低 强度和塑性;wSi>0.2%时,增大裂纹倾向。特别是Si、 Mg同时存在时,裂纹倾向更为严重,因Cu与Mg不能共存, Mg含量越少越好,一般限制wMg<0.05%。
超硬铝的焊接性差,尤其在熔焊时易产生裂纹,而 且接头强度远低于母材。其中Cu的影响最大,在Al6%Zn-2.5%Mg中只加入wCu=0.2%即可引起焊接裂纹。 对于Al-Zn-Mg系合金,同样不允许Cu、Mg共存。Zn及 Mg增多时,强度增高但耐蚀性下降。 为改善超硬铝的焊接性,发展了Al-Zn-Mg系合金。 它是在Al-Zn-Mg-Cu系基础上取消Cu,稍许降低强度而 获得比较优异的焊接性的一种时效强化铝合金。Al-ZnMg合金焊接裂纹倾向小,焊后不经人工热处理而仅靠自 然时效,接头强度即可基本恢复到母材的水平。合金的 强度主要决定于Mg及Zn的含量。Mg及Zn总量越高,强 度也越高。Al-Zn-Mg系合金所用焊丝不允许含有Cu, 且应提高Mg含量,同时要求wMg>wZn。
焊前处理十分重要。焊丝及母材表面的氧化膜应彻 底清除,采用化学方法或机械方法均可,若两者 并用效果更好。
化学清洗有两个步骤:脱脂去油和去除氧化膜。清 洗后到焊前的间隔时间(即存放时间)对气孔的 产生有一定影响。存放时间延长,焊丝或母材吸 附的水分增多。所以,化学清洗后应及时施焊, 一般要求化学清洗后2~3h内进行焊接,一般不要 超过12h。对于大型构件,清洗后不能立即焊接时, 施焊前应再用刮刀刮削坡口端面并及时施焊。
图 5-5
MIG焊接时焊缝气孔倾向与焊接工艺参数的关系 (板Al-2.5%Mg,焊丝Al-3.5%Mg)
改变弧柱气氛的性质,对焊缝气孔倾向也 有一些影响。例如,在氩弧焊时,Ar中加入少 量CO2或O2等氧化性气体,使氢发生氧化而减 小氢分压,能减少气孔的生成倾向。但是CO2 或O2的数量要适当控制,数量少时无效果,过 多时又会使焊缝表面氧化严重而发黑。
Al-Cu系硬铝合金2A16是为了改善焊接 性而设计的硬铝合金。Mg可降低Al-Cu 合金中Cu的溶解度,促使增大脆性温度 区间。为此,应取消Al-Cu-Mg(硬铝) 中的Mg,添加少量Mn(wMn<1%), 得到Al-Cu-Mn合金(2A16)
图5-9 焊丝成分对不同母材焊缝热裂倾向的影响 1—3A21 2—Al-2.5%Mg 3—Al-3.5%Mg 4—Al-5.2%Mg
图 5-4
焊接工艺参数对气孔倾向的影响(5A06,TIG)
在MIG焊条件下,焊丝氧化膜的影响更明显,减少 熔池存在时间,难以有效地防止焊丝氧化膜分解出来 的氢向熔池侵入。因此希望增大熔池时间以利气泡逸 出。
因此,在MIG焊条件下,接头冷却条件对焊缝气体含 量有较明显的影响。必要时可采取预热来降低接头冷 却速度,以利气体逸出,这对减少焊缝气孔倾向有一 定好处。
调整焊缝合金系的着眼点,从抗 裂角度考虑,在于控制适量的易熔 共晶并缩小结晶温度区间。由于铝 合金为共晶型合金,少量易熔共晶 会增大凝固裂纹倾向,所以,一般 都是使主要合金元素含量超过xm, 以便能产生“愈合”作用。
对于裂纹倾向大的硬铝之类高强铝合 金,在原合金系中进行成分调整以改善抗 裂性,往往成效不大。生产中不得不采用 含wSi=5%的Al-Si合金焊丝(4A01)来解 决抗裂问题。因为可以形成较多的易熔共 晶,流动性好,具有很好的“愈合”作用, 有很高的抗裂性能,但强度和塑性不理想, 不能达到母材的水平。
5.1.2 铝及铝合金的焊接性
铝及其合金焊接时主要问题是:
① 气孔问题
②热裂纹问题
③高强度铝合金接头失强、弱化问题
1. 焊缝中的气孔 (1)铝及其合金熔焊时形成气孔的特点: 氢是铝及其合金熔焊时产生气孔的主要原因 氢的来源: 弧柱气氛中的水分、焊接材料以及母材所 吸附的水分,其中焊丝及母材表面氧化膜的吸 附水分对焊缝气孔的产生有重要的影响。
热处理强化铝合金:固溶体成分随温度的变化 而改变,可用热处理强化。包括: 锻铝:LD ×,合金系: Al-Mg-Si-Cu 硬铝:LY × ,合金系: Al-Cu-Mg ; Al-CuMn 超硬铝:LC ×,合金系: Al-Zn-Mg-Cu
均不适用于焊接结构,很难用熔化方法焊接
非热处理强化铝合金可通过加工硬化、固 溶强化提高力学性能,特点是强度中等、塑性 及耐蚀性好,主要为防锈铝,焊接性良好,是 焊接结构中应用最广的铝合金。 热处理强化铝合金是通过固溶、淬火、时 效等工艺提高力学性能。经热处理后可显著提 高抗拉强度,但焊接性较差,熔焊时产生焊接 裂纹的倾向较大,焊接接头的力学性能下降。 热处理强化铝合金包括硬铝、超硬铝、锻铝等。
(Al-4Mg-1Mn,MIG)
2)控制焊接工艺
焊接参数的影响可归结为对熔池高温存在 时间的影响,也就是对氢溶入时间和氢析出时 间的影响。熔池高温存在时间增长,有利于氢 的逸出,但也有利于氢的溶入;反之,熔池高 温存在时间减少,可减少氢的溶入,但也不利 于氢的逸出。
对于TIG焊参数的选择,一方面采用小热输入以减少熔池存在 时间,从而减少气氛中氢的溶入,因而须适当提高焊接速度; 同时又要保证根部熔合,以利根部氧化膜中的气泡浮出,又须 适当增大焊接电流。采用大焊接电流配合较高的焊接速度较为 有利
表5-6 纯铝焊%NaOH(2min)+ 的 未处 15%HNO3(8min)+ 理 机械刮 水洗干燥 削
沸腾蒸馏水中 加 热 1h , 室 内存放1d
气体总量 /mL•100g-1
氢量 /mL•100g1
2.8
2.1
1.6
1.3 81.3
1.0
3)焊接参数的影响 焊接参数影响凝固过程的不平衡性和凝固的 组织状态,也影响凝固过程中的应力变化,因而 影响裂纹的产生。 热能集中的焊接方法,可防止形成方向性强 的粗大柱状晶,因而可以改善抗裂性。采用小焊 接电流,可减少熔池过热,也有利于改善抗裂性。 焊接速度的提高,促使增大焊接接头的应力,增 大热裂的倾向。因此,增大焊接速度和焊接电流, 都促使增大裂纹倾向。大部分铝合金的裂纹倾向 都比较大,所以,即使是采用合理的焊丝,在熔 合比大时,裂纹倾向也必然增大。因此,增大焊 接电流是不利的,而且应避免断续焊接
2)氧化膜中水分的影响
氧化膜不致密、吸水性强的铝合金(如Al-Mg合金), 比氧化膜致密的纯铝具有更大的气孔倾向。因Al-Mg 合金中, Al2O3、MgO不致密,易于吸附水分,是气泡 形核的地点。气孔依附在氧化物表面,难上浮
MIG焊由于熔深大,坡口端部的氧化膜能迅速熔化, 有利于氧化膜中水分的排除,氧化膜对焊缝气孔的 影响就小得多。TIG熔深小,氧化膜的影响大。气孔 分布在溶合线上,气孔较大,内壁有氧化色。
大部分高强铝合金焊丝中几乎都有Ti、Zr、V、 B等微量元素,一般是作为变质剂加入的。 不仅可以细化晶粒而且可以改善塑性、韧 性,并可显著提高抗裂性能。
2)焊丝成分的影响 不同的母材配合不同的焊丝,在刚性T形接头 试样上进行TIG焊,具有不同的裂纹倾向。采用 成分与母材相同的焊丝时,具有较大的裂纹倾向, 不如改用其他合金组成的焊丝。采用Al-5%Si焊 丝(国外牌号4043)和Al-5%Mg焊丝(5A05或 5556)的抗裂效果是令人满意的。 Al-Zn-Mg合金专用焊丝X5180(Al-4%Mg2%Zn-0.15%Zr)也具有相当高的抗裂性能。
1)弧柱气氛中水分的影响 弧柱空间或多或少存在一定量的水分,尤其在 潮湿季节或湿度大的地区进行焊接时,由弧柱 气氛中水分分解而来的氢,溶入过热的熔融金 属中,凝固时来不及析出成为焊缝气孔。这时 所形成的气孔具有白亮内壁的特征。 弧柱气氛中的氢之所以能使焊缝形成气孔,与 它在铝中的溶解度变化有关,如图5-2所示。
2. 焊接热裂纹 铝及其合金焊接时,常见的热裂纹主要是焊缝 凝固裂纹和近缝区液化裂纹。 (1) 铝合金焊接热裂纹的特点 铝合金属于共晶型合金。从理论上分析,最 大裂纹倾向与合金的“最大凝固温度区间”相对 应。但是,由平衡状态图得出的结论与实际情况 有较大出入。例如,在T形角接接头的焊接条件下, Al-Mg 合金焊缝裂纹倾向最大时的成分 xm 是 在 2%Mg附近(图5-7),并不是凝固温度区间最大 (l5.36%Mg)的合金。其他铝合金的情况也是如 此。
图 5-2
氢在铝中的溶解度 (=101kPa)
不同合金系对弧柱气氛中水分的影响是不同 的。纯铝对气氛中的水分最为敏感。Al-Mg合金 Mg含量增高,氢的溶解度和引起气孔的临界氢 分压pH2随之增大,因而对吸收气氛中水分不太 敏感。相比之下,同样焊接条件下,纯铝焊缝产 生气孔的倾向要大些。
不同的焊接方法对弧柱气氛中水分的敏感性也 不同。MIG焊时,焊丝以细小熔滴形式通过 弧柱落入熔池,由于弧柱温度高,熔滴比表 面积大,熔滴金属易于吸收氢;TIG焊时, 熔池金属表面与气体氢反应,因比表面积小 和熔池温度低于弧柱温度,吸收氢的条件不 如MIG焊时容易。同时,MIG焊的熔深一般 大于TIG焊的熔深,也不利于气泡的浮出。 所以,在同样的气氛条件下,MIG焊时焊缝 气孔倾向比TIG焊时大。