运筹学第15讲 约束最优化方法 (1)
约束优化方法
约束优化方法
约束优化方法是一种常用的数学方法,用于解决在一定条件下优化问题的方法。
其核心思想是将优化问题中的约束条件纳入考虑范围,从而得出最优解。
这种方法在实际应用中具有广泛的适用性,如在工程设计、经济决策、物流规划等领域都有着重要的应用。
约束优化方法的具体实现包括线性规划、非线性规划、动态规划等多种方法。
其中,线性规划是最为常用的一种方法,其基本思想是在满足一定的约束条件下,最大化或最小化目标函数。
非线性规划则是在约束条件下,求解非线性目标函数的最优解。
动态规划则是一种递推算法,通过将大问题分解为小问题,逐步求解最优解。
约束优化方法的优点在于能够考虑到实际问题中的各种限制条件,从而得出更加符合实际的解决方案。
然而,这种方法也存在着一些局限性,如在求解复杂问题时,计算量较大,需要较高的计算能力和时间成本。
综上所述,约束优化方法是一种重要的数学方法,其应用范围广泛,能够解决各种实际问题。
在实际应用中,需要根据具体问题的特点选择合适的约束优化方法,并结合实际情况进行调整和优化,以得出更加符合实际的解决方案。
约束优化方法
约束优化方法概述 约束优化问题的最优解及其必要条件 约束坐标轮换法 约束随机方向法 复合形法 惩罚函数法
教学要求: 1、掌握约束优化局部最优解的必要条件。 2、掌握复合形法得原理及程序设计。 3、掌握内点法和外点法的惩罚函数的构造原理及 程序设计。
约束优化方法概述
可行性:迭代点必须在约束条件所限制的可行域内,即满足 gu(x)0, u=1,2,…,p 适用性:当前迭代点的目标函数值较前一点是下降的,即 满 F(xk+1)<F(xk)
2、间接法
该方法可以求解等式约束优化问题和一般约束优化问题。 其基本思想是将约束优化问题通过一定的方法进行改变,将 约束优化问题转化为无约束优化问题,再采用无约束优化方 法进行求解。如:惩罚函数法
5.2 约束优化问题极小点的条件
约束优化问题极小点的条件,是指在满足约束条 件下,目标函数局部极小点的存在条件。 约束问题最优解的存在条件有两种:一是极小点在 可行域内部,二是极小点在可行域的一个或几个边界交 汇处。 5.2.1 不等式约束问题解的必要条件 第一种情况:如图所示, g1(x*)=0, g2(x*)>0, g3(x*)>0。所以g1(x)为起作用约束, g2(x)、 g3(x)为不 起作用约束。 由于约束最优点是目标函数与约束g1(x)边界的切点, 故目标函数与约束函数的梯度必共线,而且方向一致。
λu μv称为拉格朗日乘子 上式也称为约束优化问题局部最优点的必要条件。
在迭代点 为
处展开式的形式
一般情况下,其作用约束数J不大于问题的维数 其中 是待定系数矢量
……
解上式,得一组λj(j=1,2……J),如果λj(j=1, 2……J)均为非负,标志 满足K-T条件。该条件 是 为极小点的必要条件。 如果点 是最优点,则必须满足K-T条件; 反之,满足K-T条件的点则不一定是约束最优点。 只有当目标函数是凸函数,约束构成的可行域是凸集 时,则满足K-T条件的点 是全局极小点的必要而充 分条件。
约束问题的最优化方法
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
min . g k x s.t. x Rn gu x g k x gu x 0
0
0
u 1, 2,..., S 1 u S 1,..., m
以求得的设计点作为新初始点,继续其判断可行性,若仍有不
满足的约束,则重复上述过程,直至初始点可行。
的选择:
要求: ①
② 方法: ①
在可行域内;
不要离约束边界太近。 人工估算,需要校核可行性;
②
计算机随机产生,也需校核可行性。
§5.2 内点惩罚函数法
方法: ③ 搜索方法: 任意给出一个初始点; 判断其可行性,若违反了S个约束,求出不满足约束中的最大值: g k ( x 0 ) max{ gu x 0 } u 1,2,..., S; 应用优化方法减少违反约束:
uI
Z
I为违反约束的集合。
g u x , 当 g u x 0时, maxg u x ,0 { 0 ,当g u x 0时, x, r
(k )
{
f x r k maxg u x ,0 f x
uI
Z
Z一般取2。
k
k
(k )
H [h ( x
最优化方法4 - 约束最优化 (1)
因子. 又称为GP问题的增广目标函数. • 显然,增广目标函数 F ( X , M k ) 是定义在 R n 上的一个 无约束函数.由增广目标函数 F ( X , M k ) 的构造知:
外点罚函数法
X D
F(X , M k )
F ( X,M k ) f ( X )
X D
F(X , M k )
( X ) 又称为惩罚函数 在式(1)中,
0, 当X D时, (X ) 0, 当X D时. 0, 当gi ( X ) 0时, u ( gi ( X )) i 1,, 2 , l 1, 当gi ( X ) 0时, M k 0, 是一个逐渐增大的参数,F ( X , M k ) 称为惩罚
T
内点罚函数法
• 给定一个罚因子rk ,即可求得一极小点
X * (rk )
X * (rk )
.
•右图给出不同罚因子时 的轨迹.可看出X * (rk ) 在可行 X * (rk ) 域内,且随着 rk 逐渐逼近于0,
逐渐逼近理论最优点 X * [
2, 2]T .
•例3可帮助读者进一步理解
用内点罚函数法求极小点序列
且 (3)
式(3)中{ X (rk )}为 F ( X , rk )的极小点序列, X *为问题(2)的最优解.
内点罚函数法
二、内点罚函数法迭代步骤
已知对问题(2),构造增广目标函数
F ( X ,rk ) f ( X ) rk
i 1 l
1 gi ( X )
给定终止限 106. 1. 选定初始点 X 0 D, 初始障碍因子 r1 10, 障碍因子 的缩小系数 c 1(可取 c 0.1 ),置 k 1; 2. 假设已获迭代点 X k 1 , 以 X k 1 为初始点,求解 min F ( X,rk ), 设其最优解为 X (rk ).
约束条件下的最优化问题
在约束条件下的最优化问题是指在一定的限制条件下,寻找使目标函数达到最大或最小值的最优解。
这类问题可以通过数学建模和优化算法来解决。
常见的约束条件包括等式约束和不等式约束。
等式约束要求某些变量之间的关系满足特定的等式关系,而不等式约束则要求某些变量之间的关系满足特定的不等式关系。
数学上,约束条件可以表示为:
1. 等式约束:g(x) = 0,其中g(x)是一个关于变量x的函数。
2. 不等式约束:h(x) ≤0,其中h(x)是一个关于变量x的函数。
最优化问题的目标函数可以是线性的、非线性的,甚至是在某些特殊情况下可能是非凸的。
根据问题的具体形式,可以选择适合的优化算法进行求解,如线性规划、非线性规划、整数规划等。
常见的优化算法包括:
1. 梯度下降法:用于求解无约束或有约束的凸优化问题,在连续可导的情况下通过迭代调整参数来逐步接近最优解。
2. KKT条件法:用于求解有约束的凸优化问题,通过构建拉格朗日函数和KKT条件来确定最优解。
3. 内点法:用于求解线性规划和凸优化问题,通过在可行域内寻找目标函数的最优解。
4. 遗传算法:用于求解复杂的非线性优化问题,通过模拟自然进化过程中的选择、交叉和变异操作来搜索最优解。
5. 模拟退火算法:用于求解非线性优化问题,通过模拟固体退火的过程来逐步降低温度并接近最优解。
在实际应用中,约束条件下的最优化问题广泛应用于工程、经济、运筹学、物流等领域。
通过合理地建立数学模型,并选择合适的优化算法,可以有效地解决这类问题,并得到最优解或接近最优解的结果。
约束问题的最优化方法
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0
约束最优化方法
约束最优化方法
约束最优化方法是指通过给定约束条件,寻找目标函数的最优解。
以下是一些常用的约束最优化方法:
1. 拉格朗日乘子法:将约束最优化问题转化为无约束最优化问题,通过求解无约束最优化问题得到原问题的最优解。
2. 罚函数法:将约束条件转化为罚函数项,通过不断增加罚函数的权重,使目标函数逐渐逼近最优解。
3. 梯度下降法:通过迭代计算目标函数的梯度,沿着梯度的负方向搜索目标函数的最优解。
4. 牛顿法:通过迭代计算目标函数的Hessian矩阵,使用Hessian矩阵的逆矩阵乘以梯度向量来逼近最优解。
5. 遗传算法:模拟自然界的遗传机制,通过种群迭代的方式搜索最优解。
6. 模拟退火算法:模拟物理退火过程,通过随机搜索的方式搜索最优解。
7. 蚁群算法:模拟蚂蚁觅食行为,通过模拟蚂蚁的信息素传递过程来搜索最优解。
8. 粒子群算法:模拟鸟群、鱼群等群集行为,通过模拟粒子间的相互作用来搜索最优解。
这些方法各有优缺点,应根据具体问题选择合适的方法进行求解。
最优化方法(约束优化问题的最优性条件)
s.t. c1 ( x ) = x 1 + x 2 + x 3 − 3 = 0 , c 2 ( x ) = − x 1 + x 2 ≥ 0
c 3 ( x ) = x1 ≥ 0 , c 4 ( x ) = x 2 ≥ 0 , c 5 ( x ) = x 3 ≥ 0
带入约束条件可知满足约束条件 将 x = (1,1,1) 带入约束条件可知满足约束条件
验证KT点的步骤 小结
• • • • • • 1 化为标准形式 2 验证约束成立 并且求得有效约束 3 约束规范 ∇f ( x * ) − λ1 ∇c1 ( x * ) − λ 2 ∇c 2 ( x * ) = 0 4 一阶条件方程 例如 5 验证不等式约束互补条件、乘子的非负性 验证不等式约束互补条件、 6结论 结论
* T
并且有效约束集合为 并且有效约束集合为 I = {1,2}
*
∇f ( x ) = ( −3,−1,−2) T , ∇c1 ( x ) = ( 2,2,2) T , ∇c 2 ( x ) = ( −1,1,0) T T T 线性无关。 且 ∇c 1 ( x ) = ( 2,2,2) 与 ∇c 2 ( x ) = ( −1,1,0) 线性无关。
向量 d ,如果对任意的 i ∈ I ( x) 有 ∇ci ( x)T d > 0 , 则 d 是点 x 的 可行方向。
令 证明: x ' = x + t d , t > 0。 则对任意的 i ∈ I ( x ) , 有
ci ( x' ) = ci ( x) + t ∇ci ( x)T d + o( || td ||2 )
= t ∇ci ( x)T d + o( || td ||2 )
运筹学第15讲 约束最优化方法 (1)
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
g3=0 x2 2 1 1
▽g2(x*)
第六章
例
-▽f(x*) (3,2)T
x* 2 3 g1=0
▽g1(x*)
4
g4=0 x1 g2=0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
在 x *点 ⎧ g 1 ( x1 , x 2 ) = 0 ⎨ ⎩ g 2 ( x1 , x 2 ) = 0
∗ ∗ ∗பைடு நூலகம்
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件 (续)
如果 x ∗ − l .opt .那么 ∃ u i∗ ≥ 0 , i ∈ I , v ∗j ∈ R , j = 1, 2 , L , l ∇f (x ) −
∗
∑u
约束优化方法
条件,以用来作为约束极值的判断条件。
对于目标函数和约束函数都是凸函数的情 况, 符合K-T条件的点一定是全局最优点。这种
情况K-T条件即为多元函数取得约束极值的充分 必要条件。
约束优化设计问题求解方式:
(1)直接法 直接法是在满足不等式约束的可行设计区域内直 接搜索问题的最优解x*和f(x*)。 (2)间接法 间接法是将优化问题转化为一系列无约束优化问 题来求解。
随机方向法基本原理
1 初始点的选择
1) 人为确定; 2) 随机选择:
(1)输入设计变量的下限值和上限值,即
ai≤xi≤bi (i=1,2,…,n) (2)产生n个随机数qi. ( 0≤ qi ≤ 1) xi=ai+qi(bi-ai) (3)计算随机点x的各分量:
(4)判别随机点x是否可行,若随机点x为可行点,则取初始
§5-1 约束最优解及其必要条件
min s.t. f ( x1 , x2 ) ( x1 2) 2 x22 g1 ( x1 , x2 ) x1 0 g 2 ( x1 , x2 ) x2 0 g 3 ( x1 , x2 ) 1 x12 x2 0
§5-1 约束最优解及其必要条件
3
4)判断k个随机点的可行性:
x1 x3
5)判断可行搜索方向:
f 1 (0.6 3) 2 0.8 2 13.6 f 3 (1 3) 2 02 4
f 3 f ( x ( 0) )
d x 3 x ( 0) [1
6)从可行点沿着可行方向前进:
0]T
1 1 2 x x 0 d x 3 d 0 0 0
§5-1 约束最优解及其必要条件
约束问题的最优化方法
3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0
§5.3 外点惩罚函数法
二. 惩罚函数的形式:
①
x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:
《约束优化方法》课件
牛顿法
01 总结词
基本原理、优缺点
02
基本原理
牛顿法基于泰勒级数展开,通 过迭代更新参数,构造出目标 函数的二次近似模型,并利用 该模型求解最优解。在约束优 化问题中,牛顿法通常用于处 理等式约束或非线性不等式约 束。
03
优点
04
收敛速度快,通常只需要较少的 迭代次数就能找到最优解。
缺点
对初值选择敏感,如果初值选择 不当,可能无法收敛到最优解; 同时计算量较大,需要存储和计 算Hessian矩阵。
物流配送问题旨在在满足客户需求和运输能力等约束 条件下,合理安排货物的配送路线和运输方式,以最 小化运输成本或最大化运输效率。
详细描述
物流配送问题需要考虑客户分布、运输网络、运输能 力、时间限制等多个约束条件,通过优化配送路线和 运输方式,提高物流效率和客户满意度。
2023
REPORTING
THANKS
非线性规划的解法包括梯度法、牛顿 法、共轭梯度法等,这些方法可以用 于解决函数优化、机器学习、控制系 统等领域的问题。
整数规划
整数规划是约束优化方法中的一种特殊类型,它要求所有决策变量均为整数。
整数规划的解法包括分支定界法、割平面法等,这些方法可以用于解决车辆路径问题、背包问题、布局问题等具有整数约束 的问题。
REPORTING
线性规划
线性规划是最早的约束优化方法之一 ,它通过寻找一组变量的最优解来满 足一系列线性不等式约束和等式约束 ,并最大化或最小化某个线性目标函 数。
线性规划的解法包括单纯形法、分解 法、网络流算法等,这些方法可以用 于解决生产计划、资源分配、运输问 题等实际应用。
非线性规划
非线性规划是约束优化方法的一个重 要分支,它研究的是目标函数和约束 条件均为非线性的优化问题。
运筹学--约束最优化方法共44页文档
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
运筹学--约束最优化方法
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
约束优化方法的讲解共45页
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
约束优化方法的讲解4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
40、学而不思则罔,思而不学则殆。——孔子
约束优化法
约束优化法约束优化法分为两种,一种是线性规划,另一种是非线性规划。
线性规划问题中,约束条件和目标函数都是线性的,求解方法较为简单;非线性规划问题中,约束条件和目标函数均为非线性的,求解方法相对复杂,需要使用数值方法进行近似求解。
在约束优化法中,约束条件是对决策变量的限制,而目标函数则是我们所期望最大化或最小化的指标。
例如,一个企业决定购买机器时,它需要考虑到各种成本,如购买成本、运输成本、维修成本等等。
它需要最小化这些成本,同时确保机器的质量符合要求。
这就是一个典型的约束优化问题,它的决策变量是机器的数量和型号,约束条件是成本和质量要求,目标函数是成本的最小化。
数学上,约束优化法可以形式化地表达为:\begin{aligned} \max_{x} \qquad & f(x)\\ \text{s.t.} \qquad & g_i(x) \leq 0, \; i=1,\dots,m \\ & h_j(x) = 0, \; j=1,\dots,p \\ \end{aligned}其中,x是决策变量向量,f(x)是目标函数,g_i(x)是不等式约束条件,h_j(x)是等式约束条件,m和p分别是不等式约束条件和等式约束条件的个数。
通常情况下,决策变量向量包含多个变量,而不等式和等式约束条件则限制了这些变量的取值范围,使其满足某些条件。
目标函数则是根据实际需求确定的指标,它的取值与决策变量有关。
线性规划问题可以通过线性规划算法求解,常见的有单纯形法、内点法等。
这些算法的核心思想是在变量的可行域中不断移动到更优值,直到找到最优的值;这就要求问题满足某些性质,如线性性、可凸性等。
非线性规划问题比较困难,通常需要使用近似求解方法,如牛顿法、拟牛顿法、共轭梯度法等。
不管是线性规划还是非线性规划,约束优化方法在实际问题中广泛应用。
例如,企业生产和分配问题中需要优化各种资源的利用,以获得最大的利润;金融领域中需要优化投资组合,以获得最大的收益且风险最小化;交通规划中需要优化城市道路布局,以达到最小的通行成本和最大的交通流量等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解线性约束问题的可行方向法
⎧ min f ( x) ⎪ ⎪s.t. Ax ≥ b 问题:(P) ⎨ m m 秩 = ∈ ∈ , , , A E A m b R e R ⎪ Ex = e m×n l ×n ⎪ x≥0 ⎩ 可行集:S = {x | Ax ≥ b, Ex = e, x ≥ 0}.
第六章
m ⎧ ∗ ∇ f ( x ) − ∑ u i∗ ∇ g i ( x ∗ ) = 0 ⎪ i =1 ⎪ ⎪ u i* ≥ 0 i = 1, 2 , L , m ⎨ ⎪ ∗ i = 1 , 2 , L , m ( 互补松弛条件 ⎪u i g i ( x ∗ ) = 0 ⎪ ⎩ 满足 K − T 条件的点 x * 称 K − T 点。
)
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
⎧ min f ( x1 , x 2 ) = ( x1 − 3 ) 2 + ( x 2 − 2 ) 2 ⎪ ⎪ s .t . 2 2 = − − ( , ) g x x x x 1 1 2 1 2 + 5 ≥ 0 ...( 1 ) ⎪ ⎨ g 2 ( x 1 , x 2 ) = − x 1 − 2 x 2 + 4 ≥ 0 ...( 2 ) ⎪ g 3 ( x 1 , x 2 ) = x 1 ≥ 0 ...( 3 ) ⎪ ⎪ g 4 ( x 1 , x 2 ) = x 2 ≥ 0 ...( 4 ) ⎩
2
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
第六章
6.1 Kuhn-Tucker 条件
一、等式约束性问题的最优性条件: (续) 若(x*,y*)是条件极值,则存在λ* ,使 fx(x*,y*)+ λ* фx (x*,y*) =0 fy(x*,y*)+ λ* фy(x*,y*) =0 Ф (x*,y*)=0 推广到多元情况,可得到对于(fh)的情况: min f(x) 分量形式: s.t. hj(x)=0 j=1,2, …,l 若x*是(fh)的l.opt. ,则存在υ*∈ Rl使
◊ 若 ( fgh )为凸规划 , 则 x ∗ − l .opt . ⇔ x ∗ 是 K − T 点。
第六章
6.2 可行方向法
基本思想:从可行点出发,沿下降可行方向作搜索,求出目标函数下降的 新的可行点。 主要步骤:选择搜索方向和确定沿此方向移动的步长。 搜索方向的选择方式不同形成不同的可行方向法。 Zoutendijk可行方向法:核心是通过求解线性规划问题确定目标函数在一 点的搜索方向。
充要条件是
⎧ min ∇ f ( x ) T d ⎪ A 1d ≥ 0 ⎪ ⎨ Ed = 0 ⎪ ⎪ | d j |≤ 1 , j = 1 , L n ⎩ 0。
的目标函数最优值为
第六章
6.2 既约梯度法
显 然 d = 0 是 可 行 解 , 所 以 P1的 最 优 值 必 ≤ 0 。 1 o 若 目 标 函 数 的 最 优 值 < 0 , 则 d 为 ( P )的 下 降 可 行 方 向 ; 2 o 若 目 标 函 数 的 最 优 值 = 0, 则 x 为 K − T 点 。 < 确定一维搜索的步长: 设 x( k )是 可 行 解 , d ( k ) 为 下 降 可 行 方 向 , 求 λ k 使 x( k + 1 ) = x( k ) + λ k d ( k ) . ⎧ m in f ( x( k ) + λ d ( k ) ) ⎪ ⎪ s .t . A ( x( k ) + λ d ( k ) ) ≥ b λk满 足 : ⎨ ⎪ E ( x( k ) + λ d ( k ) ) = e ⎪ ⎩ λ ≥ 0 $ = b − A x( k ) , d $ = A d (k), 显 然 b $ < 0. 令b 2 2 2 利 用 定 理 1可 得 λ 的 上 限 λ m a x $i ⎧ b $ i < 0} ⎪ m in { $ | d = ⎨ di ⎪ +∞ ⎩ $< 0 d $≥ 0 d
第六章 约束最优化方法
6.1 Kuhn-Tucker 条件
一、等式约束性问题的最优性条件: 考虑 min f(x) s.t. h(x)=0 回顾高等数学中所学的条件极值: 问题 求z=f(x,y) 在ф(x,y)=0 条件下的极 值。 即 min f(x,y) S.t. ф(x,y)=0 引入Lagrange乘子:λ
第 六 章
约束最优化方法
第六章 约束最优化方法
问题 min f(x) s.t. g(x) ≥ 0 h(x)=0 约束集 S={x|g(x) ≥ 0 , h(x)=0}
问题: (1)最优解不一定在S的顶点 (2)约束问题迭代法运用困难,需在下降可行方向找 新的可行点。 介绍两类最优化方法: (1)把约束极值问题转化为无约束极值问题来求解的 方法。如内点法、外点法。 (2)对约束极值问题不预先作转化,直接进行处理的 方法。如可行方向法。
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件
⎧ min f ( x) ⎪ ⎪ ( fgh)⎨s.t. gi ( x) ≥ 0 i = 1,2,L, m ⎪ ⎪ hj ( x) = 0 j = 1,2,L, l ⎩
定理:问题( fgh),x∗ ∈ S = {x | gi (x) ≥ 0, hj (x) = 0}, I为起作用集 设gi ( x)(i ∈ I )在x∗可微 hj,(j = 1,2,L, l) , gi ( x)(i ∉ I )在x∗连续, 在x∗的某邻域内连续可微。 (CQ, 约束规格)。 向量组 {L,∇gi ( x )(i ∈ I ),L, ∇h1 ( x ),L, ∇hl ( x )}线性无关。
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
∇ f (x
*
) +
∑
l
υ
j=1
* j
∇ h
j
(x
*
) = 0
矩阵形式:
∇ f ( x
*
) +
∂ h ( x ∂ x
*
)
υ
*
=
0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: 考虑问题 min f(x) (fg) s.t. gi(x) ≥ 0 i=1,2, …,m 设 x*∈S={x|gi(x) ≥ 0 i=1,2, …,m} 令 I={i| gi(x*) =0 i=1,2, …,m} 称I为 x*点处的起作用集(紧约束集)。 如果x*是l.opt. ,对每一个约束函数来说,只有当它是起作用约 束时,才产生影响,如:
2 ( x1 − 3 ) − u 1 2 x1 − u 2 + u 3 = 0 L L ( 5 ) ⎧ ⎪ 2 ( x 2 − 2 ) − u1 2 x 2 − 2u 2 + u 4 = 0 L L (6 ) ⎪ ⎪ u1 , u 2 , u 3 , u 4 ≥ 0 ⎪ 2 − 5) = 0 L L (7 ) ⎨ u 1 ( x 12 + x 2 ⎪ u 2 ( x1 + 2 x 2 − 4 ) = 0 L L (8 ) ⎪ 10 个方程 , 6 个变量 u 3 x1 = 0 L L ( 9 ) ⎪ ⎪ u 4 x 2 = 0 L L (10 ) ⎩
g2(x)=0 x* g1(x)=0
第六章
g1(x*)=0, g1为起作用约束
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续) 若x*在R的内部,则▽f(x*)=0,可求出x*. 若x*在R的边界上, 情况1:在x*处有一个起作用约束。不妨设x*位于第一个 约束形成的可行域边界上,即设g1(x*)=0
▽h(x*) ▽h(x )
x
h(x)=0 这里 x* ---l.opt. -▽f(x*)与 ▽h(x*) 共线方向相反,
-▽f(x*)
-▽f(x )
而x非l.opt. ▽f(x)与▽h(x )不共线。
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续) 在x* : ▽f(x*)-u* ▽g1(x*)=0 u*>0 情况2:若x*处有两个起作用约束。不妨设g1(x*)= g2(x*)=0, 则▽f(x*)必处于▽g1(x*) 和▽g2(x*)的夹角之内,否则点x*处有 下降可行方向,矛盾。 又若▽g1(x*) ,▽g2(x*)线性无关 则存在u1 *≥0, u2 *≥0使▽f(x*)-u1* ▽g1(x*) –u2* ▽g2(x*) =0
∗
∑v
j =1
l
∗ j
∇h j (x∗) = 0
如果还有 g i ( x )( i ∉ I ) 在 x ∗ 亦可微,那么
l m ⎧ ∗ ∗ ∗ ∗ ∗ ∇ f x − u ∇ g x − v ∇ h x ( ) ( ) ( )=0 ∑ ∑ j j i i ⎪ ⎪ j =1 i =1 ⎨ ∗ u i ≥ 0 ⎪ i = 1, 2 , L , m ∗ ∗ ⎪ ui gi (x ) = 0 ⎩