2017-2018学年山东省青岛市九年级(下)期中数学试卷含答案
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
山东省青岛市中考数学试卷含答案解析
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×1054.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含 B.内切C.相交 D.外切6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.58.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=__________.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,si n31°≈,tan39°≈,sin39°≈)21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人 C.1.5万人 D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内 B.内切C.相交 D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD 中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,。
山东省烟台市2017-2018年初三数学第二学期期中考试试题及答案
山东省烟台市2017-2018年初三数学第二学期期中考试试题及答案一、选择题(每题3分,共36分)1、下列各式中,一定是二次根式的是( ) A.4- B.32a C. 24x + D. 1x -2、下列计算结果正确的是( ) A.8182-=- B. 22a b a b -=- C. 527+= D.68322+=+ 3、下列关于x 的一元二次方程中,一定是一元二次方程的是( ) A. x -1=0 B. x 3+x =3 C. x 2+3x -5=0 D. ax 2+bx+c =0 4、下列一元二次方程中,两实根之和为1的是( ) A. x 2-x +1=0 B. x 2+x -3=0 C. 2x 2-x -3=0 D. x 2-x -5=0 5、在二次根式322216,,0.5,,2a x a b x--中,最简二次根式有( )个 A. 1 B. 2 C. 3 D. 4 6、若x<0,则23x x +的结果为( )A. -4xB. 4xC. -2xD. 2x7、某村2015年人均纯收入为26200元,2017年人均纯收入为38500元,设该村年人均纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A. 26200(1+x 2)=38500B. 26200(1+2x )=38500C. 26200(1+x )=38500D. 26200(1+x )2=38500 8、在下列各组二次根式中,不是同类二次根式的是( ) A.4520和 B.1118352和C. 1218和D. -2454和 9、若方程x 2-2x -1=0 的两根为x 1,x 2,则-x 1-x 2+x 1x 2的结果是( )A. -1B. 1C. -3D. 310、用配方法解方程2x 2+6=7x 时,配方后所得的方程为( )A. 2737+=24x ⎛⎫ ⎪⎝⎭B.2737-=24x ⎛⎫ ⎪⎝⎭C.271+=416x ⎛⎫ ⎪⎝⎭ D.271-=416x ⎛⎫ ⎪⎝⎭ 11、使代数式1433x x +-+有意义的整数x 有( ) A. 5个 B. 4个 C. 3个 D. 2个12、如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( ) A .10m B .9m C .8m D .7m 二、填空题(每题3分,共18分)13、已知a<b ,化简二次根式22a b -的结果是 .14、已知n 是一个正整数,48n 是整数,则n 的最小值是 .15、已知实数m 满足m 2-3m +1=0,则代数式2219+2m m +的值等于 . 16、关于x 的一元二次方程x 2+2x +k +1=0实数解是x 1和x 2,若x 1+x 2-x 1x 2<-1,则k 的取值范围是 . 17、把小圆形场地的半径r m 增加5m 得到大圆形场地,场地面积增加了一倍,则小圆形场地的半径为 ..18、已知x=0是一元二次方程(22+320m x x m+-=的一个根,则m 的值为 .三、解答题(66分) 19、(6分)计算:(1) (2)-20、(6分)解方程:(1)2x 2-3x -3=0 (2)(x -1)(x +2)=4.21、(6分)若x 1和x 2是关于x 的方程x 2-2(m +1)x +m 2+2=0的两实数根,且x 1、x 2满足(x 1+1)(x 2+1)=8,求m 的值.22、(6分)(1)是否存在实数m ,使最简二次根式m 的值;若不存在,说明理由.(2x=时的值.23、(6分)(1)若a=,求4a2-8a-3的值.(2)若一元二次方程ax2=b(ab>0)的两个根分别是m+1和2m-4,求ba的值.24、(8分)把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,该怎么剪?(2)这两个正方形的面积之和能等于44cm2吗?请说明理由.25、(8分)水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现要保证每天盈利6000元,同时又要让顾客尽可能多得到实惠,那么每千克应涨价多少元?(1)设每千克应涨价x元,根据问题中的数量关系,用含x的代数式填表:每千克盈利(元)每天销售量(千克)每天盈利(元)涨价前10 500 5000涨价后6000(2)列出方程,并求出问题的解.26、(10分)某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?27、(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为ts(0<t<2),连接PQ.当△CPQ是以PC为腰的等腰三角形时,求t的值.2017-2018学年度第二学期期中学业水平考试初三数学答案一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的). CACDB CDCCD BD二、填空题(本题共6个小题,每小题3分,满分18分)13. b a 2-- 14. 3 15. 9 16.02≤<-k 17. m)255(+ 18.2- 三、解答题(本大题共8个小题,满分66分,解答应写出文字说明,证明过程或演算步骤) 19.解:(1)23322233272833-=-+-=-+-┄┄ 3分 (2)原式=632232233322=++-- ┄┄┄┄┄┄┄┄ 6分 20. 解(1)43331+=x ,43332-=x ┄┄┄┄┄┄┄┄ 3分 (2)21=x ,32-=x ┄┄┄┄┄┄┄┄ 6分21.解:由题意知 )1(221+=+m x x ,2221+=m x x又8)1)(1(21=++x x , 即812121=+++x x x x 得812)1(22=++++m m 31-=m ,12=m ┄┄┄┄┄┄┄┄ 3分 ()0)2(4)1(222>+-+-=∆m m 解之得21>m ,31-=m 舍去 所以1=m ┄┄┄┄┄┄┄┄ 6分22.(1)解:存在,若1122-=-m m ,9=m ┄┄ 2分(2)解:4)1(4)1(22-+-+-xx x x 22221212xx x x +--++=|1||1|)1()1(22x x x x x x x x --+=--+=┄┄┄┄┄┄ 4分 23)23)(23(23231+=+-+=-=x231-=x 321=+x x ,221=-xx原式2232-=┄┄┄┄┄┄ 3分 23.(1)解:,12)12)(12(12121+=+-+=-=a7)1(47)12(4384222--=-+-=--a a a a a 将12+=a 代入得原式=1┄┄┄┄┄┄ 3分 (2)解:因为)0( 2>=ab b ax 0421=-++m m 解得1=m ,则方程)0( 2>=ab b ax 的两个根分别是2、2- 所以b a =4,4=ab┄┄┄┄┄┄ 6分 24. 解:设剪成的较短的这段为x cm ,较长的这段就为)40(x -cm , 由题意,得52)440()4(22=-+x x ; 解得:24,1621==x x , 当16=x 时,较长的为)(241640cm =-,当24=x 时,较长的为24162440<=-(舍去) ∴较短的这段为cm 16,较长的这段就为cm 24;┄┄┄┄┄┄ 4分(2)设剪成的较短的这段为m )(cm ,较长的这段就为)40(m -cm 由题意得:44)440()4(22=-+m m , 变形为:0448402=+-m m ,0192<-=∆方程无解 这两个正方形的面积之和不可能等于44cm 2.┄┄┄┄┄┄ 8分25. 解:(1)由题意,得涨价后的盈利为:)10(x +元,每天的销量为:)20500(x -千克; 故答案为:)10(x +,)20500(x - ┄┄┄┄┄┄ 4分 (2)设每千克应涨价x 元,则现在的利润为)10(x +元, 销量为)20500(x -, 由题意,得60)20500)(10(=-+x x解得:51=x ,102=x要使顾客得到实惠,5=x答:每千克应涨价5元.┄┄┄┄┄┄ 8分26. 解:(1)设渠深为xm ,则上口宽为(x+2)m , •渠底为(x+0.4)m根据梯形的面积公式可得:(x+2+x+0.4)=1.6整理,得:5x2+6x-8=0解得x1===0.8,x2=-2(舍)∴上口宽为2.8m ,渠底为1.2m ;(2)如果计划每天挖土48m3,需要=25(天)才能把这条渠道挖完答:渠道的上口宽与渠底深各是2.8m 和1.2m ;需要25天才能挖完渠道.27. 解:如图,作CBPM ⊥于点M . ①若PQ PC =,则t BP 5=,t BM 28-=因为ACPM //,所以108528=-t t ,解得34=t ┄┄┄┄┄┄ 4分 ②若CQ PC =,则t PC 4=,t BP 5=,t BM 4=,t PM 3=,从而有t CM 48-=┄┄┄┄┄┄ 6分在PMC Rt ∆中,222CMPM PC += 即222)4()3()48(t t t =+- 0646492=+-t t 解之得:97832±=t . 而297832>+不合题意;2978320<-<,符合题意 所以34=t 或97832-=t 时, CPQ ∆是以PC 为腰的等腰三角形┄┄┄┄┄┄ 10分ABCPQM。
2022-2023学年山东省青岛市胶州市、黄岛区、李沧区八年级(下)期中数学试卷+答案解析(附后)
2022-2023学年山东省青岛市胶州市、黄岛区、李沧区八年级(下)期中数学试卷1. 在我国古代的房屋建筑中,窗棂是重要的组成部分,具有较高的艺术价值,下列窗棂的图案中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.2. 若,则下列不等式成立的是( )A. B. C. D.3. 如图,在中,,CE是的角平分线,若,则的度数是( )A.B.C.D.4. 如图,在平面直角坐标系中,的顶点坐标分别为,,,将平移后得到,若点A的对应点D的坐标是,则点B的对应点E的坐标是( )A.B.C.D.5. 用反证法证明“直角三角形中至少有一个锐角不大于”,应先假设( )A. 直角三角形中两个锐角都大于B. 直角三角形中两个锐角都不大于C. 直角三角形中有一个锐角大于D. 直角三角形中有一个锐角不大于6. 如图,在中,,将绕点A旋转后,得到,且点在BC上,则的度数为( )A.B.C.D.7. 已知直线与直线在同一平面直角坐标系中的图象如图所示,则下列选项是关于x的不等式的正整数解的是( )A. 1B. 2C. 3D. 48. 如图,点P是等边内一点,将线段PB绕点B沿顺时针方向旋转得到线段,连接,,若,,,则下列结论正确的是( )A. 为等边三角形B.C. ≌D.9. 列不等式:据中央气象台报道,某日我市最高气温是,最低气温是,则当天的气温的变化范围是______.10. 如图,在中,,,点D在斜边AB的延长线上,如果将按顺时针方向旋那么旋转角的度数是______转一定角度后能与重合,11. 如图,一艘船上午9时从海岛A出发,以每小时20海里的速度向正西方向航行,上午11时到达海岛B处,分别从A,B望灯塔C,测得,,则海岛B到灯塔C的距离为______ 海里.12. 如图,已知点B,E,F,C在同一条直线上,,,,若添加一个条件不再添加新的字母后,能判定与全等,则添加的条件可以是______ 写出一个条件即可13. 如图,在中,,,,将沿AB方向平移2cm,得到,BC与DF相交于点M,则四边形BEFM的周长为______14. 小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”,乙说:“至多22元”,丙说:“至多20元”,小明说:“你们三个人都说错了”,则这本书的价格元的取值范围为______ .15. 如图,与关于点B成中心对称,若,,,则AB的长为______ .16. 如图,在中,,,,AD是的平分线.若P,Q分别是AD和AC上的动点,则的最小值是______.17. 如图,OA,OB为两条相交的道路,邮局C在道路OA上,现计划在道路OA和OB 的内部修建一个快递点M,使它到两条道路的距离相等,并且到邮局的距离最短,试作出快递点M的位置.18. 解不等式:;解不等式组:;解不等式组:,并写出它的负整数解.19. 已知关于x的方程的解是不等式的最小整数解,求a的值.20. 如图所示的三种拼块A,B,C,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如拼块A的面积为3个单位.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,这三种拼块拼图时可平移、旋转.若用1个拼块A,2个拼块B,4个拼块C拼正方形,则拼出的正方形的面积为______个单位拼块之间无缝隙,且不重叠;在图1和图2中,各画出了某个正方形拼图中的1个拼块A和1个拼块B,请分别用不同的拼法将图1和图2中的正方形拼图补充完整要求:①正方形拼图的面积为25个单位;②用实线画出边界线;③拼块之间无缝隙,且不重叠21. 如图,在中,D为AC边上一点,,,交BD的延长线于点E,,垂足为F,且求证:;若点D是AC的中点,求的度数.22. 5G时代的到来,给人类生活带来了巨大变化,某营业厅销售A,B两种型号的5G手机,每销售一台A型手机可获利400元,每销售一台B型手机可获利500元,该营业厅计划购进A,B两种型号手机共30台,其中B型手机的数量不多于A型手机数量的2倍,该营业厅购进A,B两种型号手机各多少台时,获得的利润最大?最大利润是多少?23. 如图,是等边三角形,BD是它的中线,延长BC至点E,使求证:;过点D作,垂足为F,若,求BD的长.24. 为了保护环境,某企业决定购买10台污水处理设备,经预算,该企业购买设备的资金不高于130万元,现有A,B两种型号的设备可供选择,其中每台的价格、月处理污水量如表:A型B型价格万元/台1512处理污水量吨/月250220该企业有几种购买方案?若企业每月产生的污水量为2260吨,为节约资金,应选择哪种购买方案?25. 知识再现:角平分线上的点到这个角的两边的距离相等,如图①,E是的平分线OP上任意一点,若,,垂足分别为C,D,则从运动角度看:如图①,射线OP是的平分线,C,D,E分别是OA,OB,OP上的动点,若,则初步探究:如图②,射线OP是的平分线,C,D,E分别是OA,OB,OP上的动点,若,则CE与DE的数量关系是______ ;猜想验证:如图③,射线OP是的平分线,C,D,E分别是OA,OB,OP上的动点,若,则与的大小有什么关系?请写出你的结论并证明;拓展应用:在平面直角坐标系中,点在y轴上,点在函数的图象上,点C在x 轴上,连接AB,BC,若,请直接写出点C的坐标.答案和解析1.【答案】B【解析】解:A、该图形是中心对称图形,不是轴对称图形,故此选项不符合题意;B、该图形既是轴对称图形,也是中心轴对称图形,故此选项符合题意;C、该图形不是中心对称图形,也不是轴对称图形,故此选项不符合题意;D、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:根据中心对称图形的定义和轴对称图形的定义,对选项逐个判断,即可判断出答案.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】A【解析】解:A、,,故本选项正确,符合题意;B、,,故本选项错误,不符合题意;C、,,故本选项错误,不符合题意;D、,,故本选项错误,不符合题意;故选:利用不等式的性质来判定即可.本题考查不等式的性质,关键要掌握不等式两边同乘以负数和同乘以正数时不等号方向要不要改变.3.【答案】D【解析】解:,,,平分,,故选:由等腰三角形的性质及三角形的内角和定理可求得,再由角平分线的定义可求得,利用三角形的内角和即可求的度数.本题主要考查等腰三角形的性质,解答的关键是求得的度数.4.【答案】C【解析】解:平移后对应点D的坐标是,的平移方法是:先向左平移4个单位,再向下平移1个单位,点的平移方法与A点的平移方法是相同的,平移后的坐标是:故选:点A的横坐标减去了4,纵坐标减去了1,所以的平移方法是:先向左平移4个单位,再向下平移1个单位,即可得到答案.此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.5.【答案】A【解析】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于”时,应先假设两个锐角都大于故选:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.【答案】B【解析】解:将绕点A旋转后,得到,,,,,故选:由旋转的性质可得,,由等腰三角形的性质可得,即可求解.本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.7.【答案】AB【解析】解:根据图象可知:两函数的交点坐标为,关于x的不等式的正整数解的取值范围是,和2是关于x的不等式的正整数解.故选:根据函数的图象得出两函数的交点坐标,再根据图象得出即可.本题考查了一次函数与一元一次不等式和一次函数的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.8.【答案】ABCD【解析】解:将线段PB绕点B沿顺时针方向旋转得到线段,,,是等边三角形,故A符合题意;,,是等边三角形,,,,在与中,,≌,故C符合题意;,,,,故B符合题意;,故的符合题意;故选:根据旋转的性质得到,,根据等边三角形的性质得到,,根据全等三角形的性质得到,根据勾股定理的逆定理得到,求得,根据三角形的面积公式得到本题考查了旋转的性质,等边三角形的判定和性质,勾股定理的逆定理,三角形的面积公式,熟练掌握旋转的性质是解题的关键.9.【答案】【解析】解:由题意得,当天的气温的变化范围是,故答案为:根据题意、不等式的定义解答.本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,10.【答案】130【解析】解:,,,绕点B按顺时针方向旋转到的位置,等于旋转角,且,旋转角的度数为故答案为:先利用互余计算出,再根据旋转的性质得到等于旋转角,根据平角的定义得到,所以旋转角的度数为本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.【答案】40【解析】解:一艘船上午9时从海岛A出发,以每小时20海里的速度向正西方向航行,上午11时到达海岛B处,海里,,,,,,海里,即海岛B到灯塔C的距离为40海里.故答案为:根据题意可求得海里,再利用三角形外角性质得,进而求得,最后由等角对等边即可求解.本题主要考查方向角、等腰三角形的判定与性质、三角形外角性质,根据三角形外角性质求得是解题关键.12.【答案】【解析】解:,,即,又,,,当时,依据HL可得≌当时,依据AAS可得≌当时,依据AAS可得≌故答案为:根据全等三角形的判定定理进行分析即可.本题考查了全等三角形的判定.题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.13.【答案】【解析】解:在中,,,,,,根据平移的性质得,,,,,在中,,,,,,四边形BEFM的周长,故答案为:根据等腰直角三角形的性质及平移的性质求解即可.此题考查了等腰直角三角形的性质、平移的性质,熟记等腰直角三角形的性质、平移的性质是解题的关键.14.【答案】【解析】解:依题意得:,解得故答案为:根据甲、乙、丙三人都说错了,即可得出关于x的一元一次不等式组,解之即可得出结论.本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.15.【答案】【解析】解:与关于点B成中心对称,≌,,,,,,,,故答案为:由中心对称的性质推出≌,得到,,由锐角的正切求出AD的长,即可求出AB的长.本题考查中心对称,关键是掌握中心对称的性质.16.【答案】【解析】解:如图,过点C作交AB于点M,交AD于点P,过点P作于点Q,是的平分线.,这时有最小值,即CM的长度,,,,,,故答案为:过点C作交AB于点M,交AD于点P,过点P作于点Q,由AD是的平分线.得出,这时有最小值,即CM的长度,运用勾股定理求出AB,再运用,得出CM的值,即的最小值.本题解题的关键是找出满足有最小值时点P和Q的位置.17.【答案】解:如下图:点M即为所求.【解析】作的平分线和过到C的OA的垂线的交点即为所求.本题考查了作图的应用与设计,掌握角平分线的性质和理解垂线段最短是解题的关键.18.【答案】解:,,,;,由①得:,由②得:,不等式组的解集为:;,由①得:,由②得:,不等式组的解集为:,不等式组的负整数解为:、、【解析】移项合并后将x的系数化为1,即可得到解集.先求出各不等式的解集,再求其公共解集.先求出各不等式的解集,再求其公共解集,最后在解集内找整数解.此题考查了一元一次不等式、不等式组的解法和确定其特殊解,属常规题,其步骤一般为:去分母,去括号,移项合并同类项,将x的系数化为19.【答案】解:,,,,的最小整数为3,把代入得,,【解析】根据一元一次不等式的解法以及一元一次方程的解法即可求出答案.本题考查一元一次不等式,解题的关键是熟练运用一元一次方程以及一元一次不等式的解法,本题属于基础题型.20.【答案】解:图形如图所示:【解析】解:个A种拼块,2个B种拼块,4个C种拼块,面积,故答案为:见答案.求出各个图形的面积和即可.分别再用3个A,2个B,1个C或4个A,1个B,1个C,结合已有图形拼面积为25的正方形即可.本题考查利用旋转,平移设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】证明:,交BD的延长线于点E,,垂足为F,,在和中,,,,,,即,解:点D是AC的中点,,,,由得,,是等边三角形,,的度数是【解析】由,,得,由,,根据直角三角形全等的判定定理“HL”证明,得,而,即可证明,则;由点D是AC的中点,得,而,所以,因为,所以是等边三角形,则此题重点考查全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质等知识,证明是解题的关键.22.【答案】解:设购进A型手机x台,则购进B型手机台,根据题意得:,解得:设30台手机全部售出后可获得的总利润为w元,则,即,随x的增大而减小,又,且x为正整数,当时,w取得最大值,最大值,此时答:当该营业厅购进A型手机10台、B型手机20台时,获得的利润最大,最大利润是14000元.【解析】设购进A型手机x台,则购进B型手机台,根据购进B型手机的数量不多于A型手机数量的2倍,可得出关于x的一元一次不等式,解之可得出x的取值范围,设30台手机全部售出后可获得的总利润为w元,利用总利润=每台手机的销售利润销售数量购进数量,可得出w关于x的函数关系式,再利用一次函数的性质,即可解决最值问题.本题考查了一元一次不等式的应用以及一次函数的应用,根据各数量之间的关系,找出w关于x的函数关系式是解题的关键.23.【答案】证明:是等边三角形,BD是中线,等腰三角形三线合一,,又,等角对等边,由知,,垂直平分BE,,,,,,,是等边三角形,BD是它的中线,【解析】根据等边三角形的性质得到,,再根据角之间的关系求得,根据等角对等边即可得到由CF的长可求出CD,进而可求出AC的长,则的周长即可求出.本题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到是正确解答本题的关键.24.【答案】解:设购买x台A型设备,则购买台B型设备,根据题意得:,解得:,又为自然数,可以为0,1,2,3,该企业共有4种购买方案,方案1:购买10台B型设备;方案2:购买1台A型设备,9台B型设备;方案3:购买2台A型设备,8台B型设备;方案4:购买3台A型设备,7台B型设备;根据题意得:,解得:,又,且x为自然数,可以为2,3,该企业共有2种购买方案,方案1:购买2台A型设备,8台B型设备,所需资金为万元;方案2:购买3台A型设备,7台B型设备,所需资金为万元,为节约资金,应选择购买方案1:购买2台A型设备,8台B型设备.【解析】设购买x台A型设备,则购买台B型设备,利用总价=单价数量,结合该企业购买设备的资金不高于130万元,可得出关于x的一元一次不等式,解之可得出x的取值范围,再结合x为自然数,即可得出各购买方案;根据购买的10台设备月处理污水量不少于2260吨,可得出关于x的一元一次不等式,解之可得出x的取值范围,结合且x为自然数,可得出各购买方案,再求出选项各购买方案所需购买资金,比较后即可得出结论.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.25.【答案】【解析】解:如图:射线OP是的平分线,,在和中,,≌,,故答案为:;或,证明如下:过点E分别作于M,于N,是的平分线,,,当时,在和中,,,;当时,同理得,;,;设,,,,,,,解得或,的坐标为或证明≌,即可得;过点E分别作于M,于N,分两种情况:①由OP是的平分线,,证明,可得;②,同理得,有,可得;设,根据,有,即可解得C的坐标为或本题考查角平分线性质及应用,涉及全等三角形的判定与性质,解题的关键是掌握全等三角形判定定理和性质定理.。
2017-2018学年青岛市胶州市八年级下期中数学试卷(含精品解析)
2017-2018学年山东省青岛市胶州市八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.已知实数a、b满足a+2>b+2,则下列选项错误的为()A.a>b B.a+1>b+1C.﹣a<﹣b D.2a>3b2.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点5.下列关于等腰三角形的叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C.等腰三角形的三边相等D.等腰三角形是轴对称图形但不是中心对称图形6.如图,将周长为8的△ABC沿BC方向向右平移2个单位长度,得到△DEF,连接AD,则四边形ABFD的周长为()A.6B.8C.10D.127.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为△ABD ()A.3B.4C.5D.68.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.729.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.B.C.D.10.已知=﹣2x﹣1,|x+2|=x+2,那么x的取值范围是()A.x≥﹣2B.x≤﹣C.﹣2D.﹣二、填空题(每小题3分,共24分)11.已知等腰三角形的两边长分别是4和9,则周长是.12.将一个等边三角形至少绕其中心旋转°,就能与本身重合.13.如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=.14.如图,△ABC中,∠B=30°,∠C=45°,AB=3,则BC的长度为.15.如图,正比例函数y=x与一次函数y=kx+3(k≠0)的图象交于点A(a,1),则关于x的不等式(k ﹣3)x+3>0的解集为.16.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,AB=3,将△ABC沿AB方向平移得△DEF,若△ABC与△DEF重叠部分的面积为2,则AD=.18.如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=.三、解答题(本大题共7小题,满分66分)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.20.(20分)解答下列各题:(1)解不等式﹣x+1<7x﹣3;(2)解不等式;(3)解不等式,并把它的解集表示在数轴上.(4)已知关于x的不等式组恰好有两个整数解,试确定实数a的取值范围.21.(6分)已知:如图,△ABC中,D是AB上一点,DE⊥BC于E,DF⊥AC于F,点G在AC上,且DG=DB,FG=BE.求证:CD平分∠ACB.22.(6分)列不等式(组)解答:用20根长度相同的小木棍首尾相接,围成一个等腰三角形,最多可以围成多少种不同的等腰三角形?说明理由并分别写出能摆出的等腰三角形的边长.23.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.24.(10分)如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.25.(12分)某服装店销售一批进价分别为200元、170元的A、B两款T恤衫,下表中是近两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两款T恤衫的销售单价;(2)若该服装店老板准备用不多于5400元的金额再购进这两款T恤衫共30件,求A款T恤衫最多能采购多少件?(3)在(2)的条件下,在销售完这30件T恤衫能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2017-2018学年山东省青岛市胶州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.已知实数a、b满足a+2>b+2,则下列选项错误的为()A.a>b B.a+1>b+1C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+1>b+1,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+1>b+1,﹣a<﹣b.故选:D.【点评】本题考查了不等式的性质,关键是根据不等式的性质解答2.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c【分析】观察图形可知:b=2c;a>b.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选:A.【点评】此题考查不等式的性质,渗透了数形结合的思想,属基础题.4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为D.5.下列关于等腰三角形的叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C.等腰三角形的三边相等D.等腰三角形是轴对称图形但不是中心对称图形【分析】直接利用等腰三角形的性质分别分析得出答案.【解答】解:A、等腰三角形两底角相等,正确,不合题意;B、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;C、等腰三角形的三边相等,错误,符合题意;D、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C.【点评】此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.6.如图,将周长为8的△ABC沿BC方向向右平移2个单位长度,得到△DEF,连接AD,则四边形ABFD 的周长为()A.6B.8C.10D.12【分析】根据平移的性质可得DF=AC、AD=CF=2,然后求出四边形ABFD的周长等于△ABC的周长与AD、CF的和,再求解即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=8+2+2=12.故选:D.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S=15,则CD的长为△ABD ()A.3B.4C.5D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.8.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.72【分析】由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题;【解答】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选:B.【点评】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.B.C.D.【分析】连接AD,根据已知和等腰三角形的性质得出AD⊥BC和BD=6,根据怪怪的求出AD,根据三角形的面积公式求出即可.【解答】解:连接AD,∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:AD===8,∵S=,△ADB∴DE===,故选:D.【点评】本题考查了等腰三角形的性质、勾股定理和三角形的面积,能求出AD的长是解此题的关键.10.已知=﹣2x﹣1,|x+2|=x+2,那么x的取值范围是()A.x≥﹣2B.x≤﹣C.﹣2D.﹣【分析】直接利用二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:=﹣2x﹣1,|x+2|=x+2,∴﹣2x﹣1≥0,x+2≥0,解得:﹣2≤x≤﹣.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确得出各式的符号是解题关键.二、填空题(每小题3分,共24分)11.已知等腰三角形的两边长分别是4和9,则周长是22.【分析】根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.12.将一个等边三角形至少绕其中心旋转120°,就能与本身重合.【分析】一个正三角形的三个顶点中,每两个相邻顶点与中心的角度是,即120°,因此,一个正三角形至少绕其中心旋转120°,就能与本身重合.【解答】解:360°÷3=120°,因此,一个正三角形至少绕其中心旋转120度,就能与本身重合,故答案为:120【点评】本题主要是考查正三角形的特征.一个正多边形每两个相邻顶点与中心构成的角度是360°除以这个多边形的边数,绕中心每旋转这个数度或这个度数的整数倍时,就能与自身重合.13.如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=22.5°.【分析】由DE是AB的垂直平分线,利用线段的垂直平分线的性质得∠B=∠BAD,结合∠CAD:∠DAB =2:1与直角三角形两锐角互余,可以得到答案.【解答】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴4∠B=90°∴∠B=22.5°故答案为22.5°.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由已知条件得出4∠B=90°是正确解答本题的关键.14.如图,△ABC中,∠B=30°,∠C=45°,AB=3,则BC的长度为.【分析】根据直角三角形的性质求出AD,根据勾股定理求出BD,根据等腰直角三角形的性质求出CD,计算得到BC.【解答】解:在△ADB中,∠B=30°,AB=3,∴AD=,由勾股定理得,BD=,在△ADC中,∠C=45°,AD=,∴CD=,∴BC=BD+CD=,故答案为:,【点评】本题考查的是勾股定理,掌握直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.15.如图,正比例函数y=x与一次函数y=kx+3(k≠0)的图象交于点A(a,1),则关于x的不等式(k ﹣3)x+3>0的解集为x>3.【分析】把点A(a,1)代入正比例函数,进而利用一次函数与一元一次不等式的关系解答即可.【解答】解:把点A(a,1)代入正比例函数y=x,可得:a=3,即点A的坐标为(3,1),所以关于x的不等式(k﹣3)x+3>0的解集为x>3;故答案为:x>3【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).【分析】先画出旋转后的图形,然后写出B′点的坐标.【解答】解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为:(1,0).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,AB=3,将△ABC沿AB方向平移得△DEF,若△ABC与△DEF重叠部分的面积为2,则AD=.【分析】依据△ABC与△DEF重叠部分的面积为2,即可得到DG=BG=2,再根据勾股定理可得BD==2,即可得出AD=AB﹣BD=.【解答】解:由平移可得∠BDG=∠A=45°=∠ABC,∴△BDG是等腰直角三角形,∵△ABC与△DEF重叠部分的面积为2,∴DG×BG=2,∴DG=BG=2,∴BD==2,∴AD=AB﹣BD=3﹣2=,故答案为:.【点评】本题主要考查了平移的性质以及等腰直角三角形的性质的运用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.18.如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=5.【分析】根据等腰三角形的性质、三角形内角和定理求出∠B=∠C=30°,根据直角三角形的性质得到AD=BD,计算即可.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=30°,AD=BD,∴DA=DC,∴BC=DC+2DC=15,∴CD=5,故答案为5.【点评】本题考查的是等腰三角形的性质、直角三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.三、解答题(本大题共7小题,满分66分)19.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.【分析】作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD 的垂线,从而得出△ABC.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查作图﹣复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.20.(20分)解答下列各题:(1)解不等式﹣x+1<7x﹣3;(2)解不等式;(3)解不等式,并把它的解集表示在数轴上.(4)已知关于x的不等式组恰好有两个整数解,试确定实数a的取值范围.【分析】(1)移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项、系数化为1可得;(3)去分母、去括号、移项、合并同类项、系数化为1可得;(4)首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.【解答】解:(1)﹣x﹣7x<﹣3﹣1,﹣8x<﹣4,x>;(2)2(1﹣2x)≥4﹣3x,2﹣4x≥4﹣3x,﹣4x+3x≥4﹣2,﹣x≥2,x≤﹣2;(3)3(x+1)﹣2(x﹣2)≤6,3x+3﹣2x+4≤6,3x﹣2x≤6﹣3﹣4,x≤﹣1,将解集表示在数轴上如下:(4)解不等式3+4(x+1)>1,得:x>﹣,解不等式a﹣>﹣1,得:x<2a+1,∵不等式组恰有2个整数解,∴0<2a+1≤1,解得:﹣<a≤0.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.(6分)已知:如图,△ABC中,D是AB上一点,DE⊥BC于E,DF⊥AC于F,点G在AC上,且DG=DB,FG=BE.求证:CD平分∠ACB.【分析】根据全等三角形的判定和性质解答即可.【解答】证明:∵DE⊥BC于E,DF⊥AC于F,∴∠DEB=∠DFG=90°,在Rt△DBE与Rt△DGF中,∴Rt△DBE≌Rt△DGF(HL),∴DE=DF,∴CD平分∠ACB.【点评】此题考查全等三角形的判定和性质,关键是根据HL证明Rt△DBE≌Rt△DGF.22.(6分)列不等式(组)解答:用20根长度相同的小木棍首尾相接,围成一个等腰三角形,最多可以围成多少种不同的等腰三角形?说明理由并分别写出能摆出的等腰三角形的边长.【分析】根据等腰三角形的性质和三角形三边的关系,可以求得腰长的取值范围,从而可以解答本题.【解答】解:设腰长为x根,那么底边长为(20﹣2x)根,,得5<x<10,∵x为整数,∴x=6,7,8,9,∴最多可以围成四种不同的等腰三角形,它们的边长分别为:6,6,8;7,7,6;8,8,4;9,9,2.【点评】本题考查等腰三角形的判定、由实际问题抽象出一元一次不等式、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件.23.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.24.(10分)如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.【分析】(1)PD=PE,通过证△DPC≌△PEB,可得结论(2)分三种情况讨论,可求解.【解答】解:(1)PD=PE如图连接PB∵△ABC是等腰直角三角形,P是AB中点∴CP⊥AB,∠ACP=∠BCP=∠ACB=45°∴∠ACP=∠B=∠BCP=45°∴BP=CP∵∠DPC+∠CPE=90°=∠BPE+∠CPE∴∠DPC=∠PBE且BP=CP,∠ACP=∠B∴△DPC≌△PEB∴DP=PE(2)∵AC=BC=2,∠C=90°∴AB=2∴AP=BP=CP=△PCE是等腰三角形当PC=PE=时,即B,E重合,BE=0当PC=CE=时,E在线段BC上,则BE=2﹣E在线段BC的延长线上,则BE=2+当PE=EC,且∠PCB=45°∴∠PEC=90°∴EC=1∴BE=1【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,分类讨论思想,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.25.(12分)某服装店销售一批进价分别为200元、170元的A、B两款T恤衫,下表中是近两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两款T恤衫的销售单价;(2)若该服装店老板准备用不多于5400元的金额再购进这两款T恤衫共30件,求A款T恤衫最多能采购多少件?(3)在(2)的条件下,在销售完这30件T恤衫能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A款T恤衫的销售单价为x元/件,B款T恤衫的销售单价为y元/件,根据总价=单价×销售数量结合表格中的数据,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A款T恤衫a件,则购进B款T恤衫(30﹣a)件,根据总进价=进价×进货数量结合总进价不多于5400元,即可得出关于a的一元一次不等式,解之取其内的最大值即可得出结论;(3)设购进A款T恤衫a件,则购进B款T恤衫(30﹣a)件,根据总利润=单件利润×销售数量,即可得出关于a的一元一次方程,解之再与(2)的结论进行比较即可得出结论.【解答】解:(1)设A款T恤衫的销售单价为x元/件,B款T恤衫的销售单价为y元/件,根据题意得:,解得:.答:A款T恤衫的销售单价为250元/件,B款T恤衫的销售单价为210元/件.(2)设购进A款T恤衫a件,则购进B款T恤衫(30﹣a)件,根据题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:A款T恤衫最多能采购10件.(3)设购进A款T恤衫a件,则购进B款T恤衫(30﹣a)件,根据题意得:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20.∵a≤10,∴在(2)的条件下不能实现利润为1400元的目标.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)找准等量关系,正确列出一元一次方程.。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2018-2019学年山东省青岛市市南区九年级(上)期中数学试卷 (含答案解析)
2018-2019学年山东省青岛市市南区九年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.一元二次方程x2−2x−3=0的两个根为()A. x=−3,x=1B. x=3,x=−1C. x=−3,x=−1D. x=3,x=12.下列命题是真命题的是()A. 菱形的对角线互相垂直且相等B. 两点之间,线段最短C. 任意多边形的内角和为360°D. 对角线相等的四边形是矩形3.在①正三角形,②正方形,③正五边形,④正六边形,⑤圆,这五种几何图形中,既是轴对称,又是中心对称图形的是()A. ①②④⑤B. ②③④⑤C. ②④⑤D. ①③⑤4.如图,在△ABC中,点D,E分别在AB,AC边上,DE//BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为()A. 2√3B. 3√2C. 2√6D. 55.我们将宽与长的比是黄金比的矩形称为黄金矩形.已知矩形ABCD是黄金矩形且长AB=10,则宽BC为()A. 2√5−2B. 5√5−5C. 15−5√5D. 0.6186.若方程x2+px+q=0的两个根是−2和3,则p、q的值分别为()A. p=1,q=6B. p=−1,q=6C. p=1,q=−6D. p=−1,q=−67.在数字1001000100010000中,0出现的频率是()A. 0.75B. 0.8C. 0.5D. 128.如图,在正方形ABCD中,边长为4的等边三角形AEF的顶点E、F分别在BC和CD上.则正方形ABCD的面积为()A. 6+4√3B. 8+4√3C. 6+4√5D. 6+4√5二、填空题(本大题共6小题,共18.0分)9.在一个不透明的袋子中,装有大小,形状,质地都相同,但颜色不同的红球3个,黄球2个,,则袋子中白色小球有______个;白球若干个,从袋子中随机摸出一个小球是黄球的概率是1410.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是______ .11.15.如图,为估算某河的宽度,在河边岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=________m.12.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为______.13.在矩形ABCD中,AB=2,BC=3,若点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF长为___________.14.在矩形ABCD中,AD=4,AB=3,点E为线段CD一个动点,把△ADE沿AE折叠,使点D落在点F处,当△CEF为直角三角形时,DE的长为________.三、解答题(本大题共10小题,共76.0分)15.用圆规、直尺作图,不写作法,但要保郎画图痕迹.已知:线段a,∠a求作:菱形ABCD,使BD=a,∠ABC=∠α.16.(1)x2−2x−1=0(2)3x(x−1)=2(x−1)17.在一个不透明的口袋中,装有3个红球和2个白球,这些球除颜色外完全相同,摇匀后,摸出一个球,记下颜色后放回口袋中,摇匀后再从口袋中摸出一球,两次颜色相同的概率是多少?(借助图表说明)18.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.19.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已.求配色条纹的宽度.知配色条纹的宽度相同,所占面积是整个地毯面积的178020.如图,某数学兴趣小组的同学利用标杆测量旗杆(AB)的高度:将一根5米高的标杆(CD)竖在某一位置,有一名同学站在一处与标杆、旗杆成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆3米,离旗杆30米.如果站立的同学的眼睛距地面(EF)1.6米,求旗杆的高度.21.如图,在四边形ABCD中,AB//DC,点E是CD的中点,AE=BE.求证:∠D=∠C.22.为了响应全民健身号召,某商场在健身器材销售活动中,对团体购买健身器材实行优惠,决定在原定单价基础上每套降价80元,这样按原定售价需花费6000元购买的健身器材套数,现在只花费了4800元.(1)求每套健身器材的原定价格;(2)根据实际情况,该商场决定对于个人购买健身器材也采取优惠政策,原定单价经过连续两次降价后降为324元,求平均每次降价的百分率.23.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ⊥CP,求t的值.24.如图1,四边形ABCD是菱形,CD=5,过点D作DH⊥AB,垂足为H,交对角线AC于M,且AH=3.(1)求DH的长;(2)如图2,连接BM,求DM的长;(3)如图2,动点P从点A出发,沿A→B→C方向以2个单位/秒的速度向终点C匀速运动.当点P在边AB上运动时,是否存在这样的t值,使∠MPB与∠BCD互为余角?若存在,求出t值;若不存在,请说明理由.-------- 答案与解析 --------1.答案:B解析:解:将原方程变形为(x+1)(x−3)=0,∴x+1=0或x−3=0,解得x=−1或x=3,故选:B.由一元二次方程−因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用解法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.答案:B解析:解:A、菱形的对角线互相垂直但不一定相等,原命题错误,是假命题;B、两点之间,线段最短,正确,是真命题;C、任意多边形的内角和为(n−2)×180°,故原命题错误,是假命题;D、对角线相等的平行四边形是矩形,故原命题错误,是假命题,故选:B.利用菱形的性质、多边形的内角和及矩形的判定分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解菱形的性质、多边形的内角和及矩形的判定,难度不大.3.答案:C解析:【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形、正六边形、圆既是轴对称,又是中心对称图形.故选C.4.答案:C解析:解:设AD=2x,BD=x,∴AB=3x,∵DE//BC,∴△ADE∽△ABC,∴DEBC =ADAB=AEAC,∴DE6=2x3x,∴DE=4,AEAC =23,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴ADAC =AEAD=DECD,设AE=2y,AC=3y,∴AD3y =2yAD,∴AD=√6y,∴√6y =4CD,∴CD=2√6,故选:C.设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及AEAC =23,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出ADAC=AEAD=DECD,从而可求出CD的长度.本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.答案:B解析:【分析】本题考查黄金分割的概念,根据黄金比值是√5−12列出算式,计算即可得到结果.【解答】解:由题意得BCAB =√5−12,又∵AB=10,∴BC=5√5−5.故选B.6.答案:D解析:【分析】本题考查了一元二次方程根与系数的关系,掌握和灵活运用一元二次方程根与系数的关系是解决此类题的关键.由题意可得−2+3=−p,(−2)×3=q,解即可求得.【解答】解:∵方程x2+px+q=0的两个根是−2和3,∴−2+3=−p,(−2)×3=q,解得p=−1,q=−6.故选D.7.答案:A解析:解:数字的总数是16,有12个0,=0.75,因而0出现的频率是:1216故选:A.计算数字的总数,以及0出现的频数,根据频率公式:频率=频数计算即可.总数本题考查的是频数与频率,掌握频率是指每个对象出现的次数与总次数的比值是解题的关键.8.答案:B解析:【分析】本题考查正方形的性质,全等三角形的判定与性质,等边三角形的性质.根据正方形可知AB=AD,由等边三角形可知AE=AF,于是可以证明出△ABE≌△ADF,即可得出CE=CF,由三角形AEF是等边三角形,三角形ECF是等腰直角三角形,CE=2√2,设BE=x,利用勾股定理求出x,即可求出BC的上,进而求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF.又BC=DC,∴BC−BE=DC−DF,即EC=FC∴CE=CF,∵EF=4,∴CE=CF=2√2,设BE=x,则AB=x+2√2,在Rt△ABE中,AB2+BE2=AE2,即(x+2√2)2+x2=16,解得x=√6−√2,∴AB=√6+√2,∴S正方形ABCD=AB2=8+4√3.故选B.9.答案:3解析:【解答】解:设白球x个,由题意可得,23+2+x =14,解得:x=3.故答案为:3.【分析】直接利用概率求法得出等式求出答案.此题主要考查了概率的意义,正确把握概率的意义是解题关键.10.答案:m≤1解析:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22−4m≥0,解得m≤1.故答案为:m≤1.先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.11.答案:40解析:【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【详解】∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴ABCD =BECE,∵BE=20m,CE=10m,CD=20m,∴AB20=2010,解得:AB=40,故答案为:40.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.12.答案:160(1+x)2=250解析:【分析】根据2月份的利润为160万元,4月份的利润250万元,每月的平均增加率相等,可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.【解答】解:由题意可得,160(1+x)2=250,故答案为:160(1+x)2=250.13.答案:35√10解析:【分析】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,先求出AE,再根据S△ABE=12S矩形ABCD=3=12⋅AE⋅BF,求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,∵点E为边CD的中点,∴DE=1,在Rt △ADE 中,AE =√AD 2+DE 2=√32+12=√10,∵S △ABE =12S 矩形ABCD =3=12⋅AE ⋅BF , ∴BF =35√10. 故答案为35√10.14.答案:43或16−4√73解析:【分析】本题考查翻折变换,矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.当△CEF 为直角三角形时,分∠CFE =90°和∠ECF =90°两种情况进行讨论,利用勾股定理可求出两种情况DE 的长即可.【解答】解:∵四边形ABCD 是矩形,∴∠D =∠B =90°,CD =AB =3,∴AC =√AD 2+CD 2=√42+32=5,AD >CD ,作图观察知,∠AED >45°,则∠DEF >90°,∴当△CEF 为直角三角形时,只有两种情况:∠CFE =90°或∠ECF =90°,①当∠CFE =90°时,F 落在AC 上,如下图所示.由折叠的性质得:EF =DE ,AF =AD =4,设DE =x ,则EF =x ,∴CE =3−x ,在Rt △CEF 中,由勾股定理得:∵EF 2+CF 2=CE 2,∴x 2+12=(3−x)2,解得x =43,∴DE =43; ②当∠ECF =90°时,点F 落在BC 边上,如下图所示,易知AD =AF =4,DE =EF在Rt △ABF 中,BF =√AF 2−AB 2=√7,∴CF =BC −BF =4−√7,设DE =x ,则EF =x ,CE =3−x ,∵EF 2=CE 2+CF 2,∴x 2=(3−x)2+(4−√7)2,解得x =16−4√73, ∴DE =16−4√73, 综上所述,DE 的长为43或16−4√73. 故答案为43或16−4√73. 15.答案:解:①作∠MBN =∠α②作∠MAN 的平分线BE ,在射线BE 上截取BD =a .③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD .菱形ABCD 即为所求.解析:①作∠MBN =∠α.②作∠MAN 的平分线BE ,在射线BE上截取BD =a.③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD ,菱形ABCD 即为所求.本题考查作图−复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:解:(1)原方程可变形为:x 2−2x =1,x 2−2x +1=1+1,(x −1)2=2.整理得:x −1=√2或x −1=−√2,∴x 1=√2+1,x 2=−√2+1;(2)移项得:3x(x −1)−(x −1)=0,提公因式得:(x −1)(3x −1)=0,x−1=0或3x−1=0,∴x1=1,x2=13.解析:(1)用配方法解方程即可,(2)用因式分解法−提公因式法进行解方程即可.本题考查了一元二次方程,正确掌握解一元二次方程的解法是解决问题的关键.17.答案:解:如下表,∵所有等可能情况一共有25种,其中两次摸出颜色相同的小球有13种,∴P(两次摸出颜色相同的小球)=1325.解析:本题考查了概率公式的应用,考查了运用列表法及树状图求概率,首先根据题意列出表格,然后由表格求得所有等可能的结果与两次摸出的小球恰好颜色不同的情况,再利用概率公式求解即可求得答案.18.答案:(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴△EBF∽△EAD,∴BFAD =EBEA=12,∴BF=12AD=12BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD//BC,∴△FGC∽△DGA,∴FGDG =FCAD,即FG4=12,解得,FG=2.解析:(1)根据平行四边形的性质得到AD//CD ,AD =BC ,得到△EBF∽△EAD ,根据相似三角形的性质证明即可;(2)根据相似三角形的性质列式计算即可.本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.19.答案:解:设条纹的宽度为x 米.依题意得2x ×5+2x ×4−4x 2=1780×5×4,解得:x 1=174(不符合,舍去),x 2=14答:配色条纹宽度为14米.解析:此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意判断所求的解是否符合题意,舍去不合题意的解,设条纹的宽度为x 米.根据所占面积是整个地毯面积的1780构建方程即可解决问题; 20.答案:解:过点E 作EH ⊥AB 于点H ,交CD 于点G .由题意可得四边形EFDG 、GDBH 都是矩形,AB//CD//EF .∴△ECG∽△EAH .∴AHCG =EHEG . 由题意可得EG =FD =3,EH =BF =30,CG =CD −GD =CD −EF =5−1.6=3.4.∴AH 3.4=303.∴AH =34米.∴AB =AH +HB =34+1.6=35.6米.答:旗杆高AB 为35.6米.解析:此题主要考查了相似三角形的应用,根据相似三角形判定得出△ECG∽△EAH 是解题关键. 过点E 作EH ⊥AH 于点H ,交CD 于点G 得出△EGC∽△EHA ,进而求出AH 的长,进而求出AB 的长.21.答案:证明:∵AE =BE ,∴∠EAB =∠EBA ,∵AB//DC ,∴∠DEA =∠EAB ,∠CEB =∠EBA ,∴∠DEA =∠CEB ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△BCE 中,{DE =CE ∠DEA =∠CEB AE =BE,∴△ADE≌△BCE(SAS),∴∠D=∠C.解析:本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.由等腰三角形的性质和平行线的性质证出∠DEA=∠CEB,由SAS证明△ADE≌△BCE,即可得出结论.22.答案:解:(1)设每套健身器材的原定价格为x元,则团购时每套为(x−80)元,根据题意得:6000 x =4800x−80,解得x=400,经检验,x=400是原方程的根.答:健身器材的原定价格为400元/套;(2)设平均每次降价的百分率为y,根据题意得:400(1−y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.解析:本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,注意分式方程一定要检验.(1)设每套健身器材的原定价格为x元,则团购时每套为(x−80)元,根据需花费6000元购买的健身器材套数,现在只花费了4800元,列出方程,求解即可;(2)设平均每次降价的百分率为y,根据原定单价经过连续两次降价后降为324元,列出方程,求解即可.23.答案:解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=√AC2+BC2=10cm;分两种情况讨论:①当△BPQ∽△BAC时,BPBA =BQBC,∵BP=5t,QC=4t,AB=10,BC=8,∴5t10=8−4t8,解得,t=1,②当△BPQ∽△BCA时,BPBC =BQBA,∴5t8=8−4t10,解得,t=3241;∴t=1或3241时,△BPQ∽△BCA;(2)分三种情况:①当PB=PQ时,如图1,过P作PH⊥BQ,则BH=12BQ=4−2t,PB=5t,∴PH//AC,∴PB AB =BH BC ,即5t 10=4−2t 8解得:t =23, ②当PB =BQ 时,即5t =8−4t , 解得:t =89,③当BQ =PQ 时,如图2,过Q 作QG ⊥AB 于G ,则BG =12PB =52t ,BQ =8−4t ,∵△BGQ∽△ACB ,∴BGBC =BQ AB 即52t 8=8−4t 10, 解得:t =6457.综上所述:△BPQ 是等腰三角形时t 的值为:23或89或6457.(3)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,如图3所示:则PB =5t ,∵AC ⊥BC∴△PMB∽△ACB ,∴PB AB =PM AC =BM BC∴PM =3t ,MC =8−4t ,CQ =4t ,根据勾股定理得,CP 2=PM 2+MC 2=25t 2−64t +64,∵CP =CQ∴25t 2−64t +64=16t 2, ∴t =32+8√79(舍),或t =32−8√79∴CP =CQ 时,t =32−8√79. (4)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,如图3所示则PB =5t ,PM =3t ,MC =8−4t ,∵∠NAC +∠NCA =90°,∠PCM +∠NCA =90°,∴∠NAC =∠PCM ,∵∠ACQ =∠PMC ,∴△ACQ∽△CMP ,∴AC CM =CQMP ,∴68−4t =4t 3t ,解得t =78.解析:(1)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC 时,BP :BA =BQ :BC ;当△BPQ∽△BCA 时,BP :BC =BQ :BA ,再根据BP =5t ,QC =4t ,AB =10cm ,BC =8cm ,代入计算即可;(2)分三种情况:①当PB =PQ 时,如图1,过P 作PH ⊥BQ ,则BH =12BQ =4−2t ,PB =5t ,根据平行线分线段成比例定理得到PB AB =BH BC ,即:5t 10=4−2t 8解得t =23,②当PB =BQ 时,即5t =8−4t ,解得t =89,③当BQ =PQ 时,如图2,过Q 作QG ⊥AB 于G ,则BG =12PB =52t ,BQ =8−4t ,通过△BGQ∽△ACB ,得到比例式BG BC =BQ AB ,解得:t =6457.(3)先利用勾股定理表示出CP 2,建立方程求解即可求出时间t ;(4)过P 作PM ⊥BC 于点M ,AQ ,CP 交于点N ,则有PB =5t ,PM =3t ,MC =8−4t ,根据△ACQ∽△CMP ,得出AC :CM =CQ :MP ,代入计算即可.此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.24.答案:解:(1)∵DH ⊥AB ,∴∠AHD =90°,∵四边形ABCD 是菱形,∴AD =CD =AB =BC =5,在Rt △ADH 中,AD =5,AH =3,∴DH =√52−32=4,(2)∵四边形ABCD 是菱形,∴AB//DC ,∴∠BAC =∠DCA ,∵DH ⊥AB ,∴∠AHD =∠CDH ,∴△AMH∽△CDM ,∴HM DM =AH CD =35, ∴DH DM =85, ∵DH =4,∴DM =52;(3)存在,如图2中,∵∠ADM +∠BAD =90°,∠BCD =∠BAD ,∴∠ADM +∠BCD =90°,∵∠MPB +∠BCD =90°,∴∠MPB =∠ADM ,∵四边形ABCD 是菱形,∴∠DAM =∠BAM ,∵AM =AM ,∴△ADM≌△ABM ,∴∠ADM =∠ABM ,∴∠MPB =∠ABM ,∵MH ⊥AB ,∴PH =BH =2,∴BP=2BH=4,∵AB=5,∴AP=1,∴t=AP2=12.解析:(1)在Rt△ADH中,利用勾股定理即可解决问题.(2)证明△AMH∽△CDM,可得HMDM =AHCD=35,由此即可解决问题.(3)由菱形的性质判断出△ADM≌△ABM,再判断出△BMP是等腰三角形,即可.此题是四边形综合题,主要考查了菱形的性质,和三角形全等的判定和性质,勾股定理得应用,∠MPB=∠ABM的判断是解本题的关键.。
2017-2018学年山东省青岛市黄岛区八年级(下)期中数学试卷
2017-2018学年山东省青岛市黄岛区八年级(下)期中数学试卷(考试时间:100分满分:120分)一、选择题(本题满分24分,共有8道小、题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分,不选、选错或选出的标号超过一个的不得分.1.(3分)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c2.(3分)如图四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点4.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)5.(3分)如图,△ABC中,CD平分∠ACB,BE⊥CD,∠A=∠ABE.若AC=5cm,BC=3cm,则BD的长为()cm.A.1 B.1.5 C.2 D.46.(3分)在如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A B.B C.C D.D7.(3分)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米8.(3分)如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3,BC=9,则DF等于()A.B.C.4 D.二、填空题(本题满分24分,共有8道小题,每小题3分)请将9-16各小题的答案填写在答题纸规定的位置9.(3分)用不等式表示:x与5的差不大于x的2倍:.10.(3分)如图所示的图案,可以看成是由字母“Y”绕中心每次旋转度构成的.11.(3分)如图,直线y1=x+b与直线y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b ≤kx﹣l的解集是.12.(3分)等腰三角形的一个外角是110°,则它的顶角的度数是.13.(3分)若不等式组有解,则m的取值范围是.14.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.15.(3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是.16.(3分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为.三、作图题(本题满分4分)17.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD.请确定点P,使PA=PD,且点P到边BC、CD的距离相等.结论:.四.解答题(本大题满分68分)18.(12分)(1)解不等式组:,并将其解集表示在如图所示的数轴上.(2)某校组织七年级和和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个至少需要多少名八年级学生参加活动?19.(6分)已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.20.(8分)如图,在平面直角坐标系内,△ABC三个顶点的坐标分别为A(﹣3,0),B(﹣5,﹣4),C(﹣1,﹣4).(1)画图:将△ABC绕点(0,﹣3)旋转180°,画出旋转后对应点△A1B1C1;平移△ABC,使点A的对应点A2的坐标为(﹣1,6),画出平移后对应的△A2B2C2;(2)分析:①描述由△ABC到△A2B2C2的平移过程;②△A2B2C2可由△A1B1C1通过旋转得到,请直接写出旋转中心的坐标及旋转角的度数.21.(8分)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.求证:(1)∠DEF=∠DFE;(2)AD垂直平分EF.22.(10分)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?23.(12分)先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.|x|<3.x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;|x|>3x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为.不等式|x|>a(a>0)的解集为.(2)解不等式|x﹣5|<3.(3)解不等式|x﹣3|>5.(4)直接写出不等式|x﹣1|+|x+2|<5的解集:.24.(12分)数学课上,张老师出示了问题:如图1,AC、BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC =CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC =CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为∠ACB=∠ACD=∠ABD=∠ADB =45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=30°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,并给出证明.2017-2018学年山东省青岛市黄岛区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小、题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分,不选、选错或选出的标号超过一个的不得分.1.(3分)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c【分析】观察图形可知:b=2c;a>b.【解答】解:依题意得 b=2c;a>b.∴a>b>c.故选:A.【点评】此题考查不等式的性质,渗透了数形结合的思想,属基础题.2.(3分)如图四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,是中心对称图形,故此选此选项错误;B、不是轴对称图形,是中心对称图形,故此选此选项错误;C、不是轴对称图形,是中心对称图形,故此选此选项错误;D、是轴对称图形,是中心对称图形,故此选此选项正确;故选:D.【点评】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.3.(3分)到△ABC三个顶点距离相等的点是△ABC的()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条垂直平分线的交点【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).4.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.5.(3分)如图,△ABC中,CD平分∠ACB,BE⊥CD,∠A=∠ABE.若AC=5cm,BC=3cm,则BD的长为()cm.A.1 B.1.5 C.2 D.4【分析】由CD平分∠ACB,BE⊥CD,得点D是BE的中点,BC=CE,从而得到AE的长,.由∠A=∠ABE,得BE与AE的关系,得结论.【解答】解:∵CD平分∠ACB,BE⊥CD,在△BDC和△EDC中,∴△BDC≌△EDC∴BC=CE=3cm,BD=DE=BE∵AC=5cm∴AE=AC﹣CE=2cm∵∠A=∠ABE,∴AE=BE=2cm,∴BD=1cm.故选:A.【点评】本题考查了等腰三角形的判定和性质及线段的和差关系.解决本题的关键是利用角平分线和高线重合说明该三角形时等腰三角形.6.(3分)在如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A B.B C.C D.D【分析】根据旋转是绕某个点旋转一定角度得到新图形,平移是沿直线移动一定距离得到新图形,可得答案.【解答】解:A、图形是由△ABC经过平移得到,故A正确B、图形不能由△ABC经过旋转或平移得到,故B错误;C、图形由△ABC经过旋转得到,故C正确;D、图形由△ABC经过旋转或平移得到,故D正确;故选:B.【点评】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,观察时要紧扣图形变换特点,认真判断.7.(3分)爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米或70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索至少多长才能确保安全?()A.100厘米B.101厘米C.102厘米D.103厘米【分析】设这次爆破的导火索需要xcm才能确保安全,安全距离是70米(人员要撤到70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,可列不等式求解.【解答】解:设这次爆破的导火索需要xcm才能确保安全,•7≥70x≥103.这次爆破的导火索至少103cm才能确保安全.故选:D.【点评】本题考查一元一次不等式的应用,设出导火索的长度,关键是以7安全距离0米做为不等量关系,可列出不等式求解.8.(3分)如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3,BC=9,则DF等于()A.B.C.4 D.【分析】根据线段垂直平分线性质求出BD=AD,AF=CF,推出∠C=∠CAF=45°,求出∠AFC=∠AFD=90°,解直角三角形求出AF和CF,根据勾股定理求出DF即可.【解答】解:∵AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,AC=3,∴BD=AD,AF=CF,∵∠C=45°∴∠C=∠CAF=45°,∴∠AFC=∠AFD=90°,在Rt△AFC中,AF=CF=3×sin45°=3,∵BC=9,∴BF=9﹣3=6,设DF=x,则BD=AD=6﹣x,在Rt△ADF中,由勾股定理得:(6﹣x)2=x2+32,解得:x=,即DF=,故选:A.【点评】本题考查了勾股定理,线段垂直平分线性质的应用,能得出关于x的方程是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.二、填空题(本题满分24分,共有8道小题,每小题3分)请将9-16各小题的答案填写在答题纸规定的位置9.(3分)用不等式表示:x与5的差不大于x的2倍:x﹣5≤2x .【分析】x与5的差为x﹣5,不大于即小于等于,x的2倍为2x,据此列不等式.【解答】解:由题意得:x﹣5≤2x;故答案为:x﹣5≤2x【点评】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是把文字语言的不等关系转化为用数学符号表示的不等式,注意抓住关键词语,弄清不等关系.10.(3分)如图所示的图案,可以看成是由字母“Y”绕中心每次旋转36 度构成的.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.利用基本图形和旋转次数,即可得到旋转的角度.【解答】解:根据图形可得:这是一个由字母“Y”绕着中心连续旋转9次,每次旋转36度角形成的图案.故答案为:36.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.11.(3分)如图,直线y1=x+b与直线y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b ≤kx﹣l的解集是x≤﹣1 .【分析】观察函数图象得到当x≤﹣1时,函数y=x+b的图象都在y=kx﹣1的图象下方,所以不等式x+b ≤kx﹣l的解集为x≤﹣1.【解答】解:当x≤﹣1时,x+b≤kx﹣l,即不等式x+b≤kx﹣l的解集为x≤﹣1.故答案为:x≤﹣1【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.(3分)等腰三角形的一个外角是110°,则它的顶角的度数是70°或40°.【分析】根据外角与相邻的内角的和为180°求这个内角的度数,再分这个角是顶角与底角两种情况讨论求解.【解答】解:∵一个外角是110°,∴与这个外角相邻的内角是180°﹣110°=70°,①当70°角是顶角时,它的顶角度数是70°,②当70°角是底角时,它的顶角度数是180°﹣70°×2=40°,综上所述,它的顶角度数是70°或40°.故答案为:70°或40°.【点评】本题考查了等腰三角形的两底角相等的性质,要注意分两种情况讨论求解.13.(3分)若不等式组有解,则m的取值范围是m<2 .【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【解答】解:由不等式1<x≤2,要使x>m与1<x≤2有解,如下图只有m<2时,1<x≤2与x>m有公共部分,∴m<2.【点评】本题考查逆向思维,给出不等式来判断是否存在解得问题,是一道好题.14.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN的长是.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.15.(3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是6.【分析】连接CD′,BC′,如图,先利用性质得性质得到∠D′AB=45°,∠BAB′=45°,则根据正方形的性质可判断点A、D′、C共线,点A、B、C′共线,所以△CD′O和△C′OB都是等腰直角三角形,则CD′=C′B,OD′=OB,从而得到四边形ABOD′的周长=AC+AC′,然后求出正方形的对角线即可得到四边形ABOD′的周长.【解答】解:连接CD′,BC′,如图,∵边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,∴∠D′AB=45°,∠BAB′=45°,∴点A、D′、C共线,点A、B、C′共线,∴△CD′O和△C′OB都是等腰直角三角形,∴CD′=C′B,OD′=OB,而AC=AC′=3,∴四边形ABOD′的周长=AC+AC′=6.故答案为6.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.16.(3分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为10+2.【分析】先证明四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.【解答】解:∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD==2,∵D是BC的中点,∴BC=2CD=4,在△ABC中,∠ACB=90°,由勾股定理得AB==2,∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2,故答案为:10+2.【点评】本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB和EB的长的方法和途径.三、作图题(本题满分4分)17.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD.请确定点P,使PA=PD,且点P到边BC、CD的距离相等.结论:P点即为所求.【分析】直接利用线段垂直平分线的性质以及结合角平分线的作法得出答案.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了复杂作图,正确掌握角平分线的性质是解题关键.四.解答题(本大题满分68分)18.(12分)(1)解不等式组:,并将其解集表示在如图所示的数轴上.(2)某校组织七年级和和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个至少需要多少名八年级学生参加活动?【分析】(1)先求出每个不等式的解集,再将解集表示在数轴上,从中确定两不等式解集的公共部分即可得;(2)设至少需要x个八年级学生参加活动,则参加活动的七年级学生为(60﹣x)个,由收集塑料瓶总数不少于1000个建立不等式求出其解即可.【解答】解:(1)解不等式3(x﹣2)≤x﹣4,得:x≤1,解不等式>x﹣1,得:x<4,将不等式的解集表示在数轴上如下:则不等式组的解集为x≤1;(2)设八年级有x名学生参加活动,则七年级参加活动的人数为(60﹣x),根据题意,得:15(60﹣x)+20x≥1000,解得:x≥20,答:至少需要20名八年级学生参加活动.【点评】本题考查了列一元一次不等式解实际问题的运用和解一元一次不等式组,解答时由收集塑料瓶总数不少于1000个建立不等式是关键.19.(6分)已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】欲证明OB=OC,只要证明Rt△BAC≌Rt△CDB(HL),可得∠ACB=∠DBC即可解决问题.【解答】证明:∵∠A=∠D=90°,∴△BAC和△CDB为直角三角形,在 Rt△BAC和 Rt△CDB中,,∴Rt△BAC≌Rt△CDB(HL),∴∠ACB=∠DBC,∴∠OCB=∠OBC,∴OB=OC(等角对等边).【点评】本题考查全等三角形的判定和性质、等腰三角形的判定等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.20.(8分)如图,在平面直角坐标系内,△ABC三个顶点的坐标分别为A(﹣3,0),B(﹣5,﹣4),C(﹣1,﹣4).(1)画图:将△ABC绕点(0,﹣3)旋转180°,画出旋转后对应点△A1B1C1;平移△ABC,使点A的对应点A2的坐标为(﹣1,6),画出平移后对应的△A2B2C2;(2)分析:①描述由△ABC到△A2B2C2的平移过程;②△A2B2C2可由△A1B1C1通过旋转得到,请直接写出旋转中心的坐标及旋转角的度数.【分析】(1)设P(0,﹣3),延长AP到A1使A1P=AP,则点A1为点A的对应点,同样作出点B的对应点B1、点C的对应点C1,从而得到△A1B1C1;利用点A的对应点A2的坐标为(﹣1,6),可得到三角形的平移规律,从而写出B2和C2点坐标,然后描点即可得到△A2B2C2;(2)①利用对应点A和A2的平移规律可确定△ABC到△A2B2C2的平移过程;②作C1C2和B1B2的垂直平分线即可得到旋转中心,同时可得到旋转角度.【解答】解:(1)如图,△A1B1C1和△A2B2C2为所作;(2)①△ABC先向右平移2个单位,再向上平移6个单位得到△A2B2C2;②△A2B2C2可由△A1B1C1通过旋转得到,旋转中心为Q(1,0),旋转的度数为180°.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21.(8分)如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.求证:(1)∠DEF=∠DFE;(2)AD垂直平分EF.【分析】(1)先利用角平分线的性质得DE=DF,则根据等腰三角形的性质得∠DEF=∠DFE;(2)先利用“HL”证明Rt△AED≌Rt△AFD得到AE=AF,然后根据线段垂直平分线的判定方法即可得到结论.【解答】证明:(1)∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴∠DEF=∠DFE;(2)在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD,∴AE=AF,而DE=DF,∴AD垂直平分EF.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了直角三角形全等的判定方法和线段垂直平分线的判定.22.(10分)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?【分析】(1)根据总费用=购买垃圾桶的费用+每月的垃圾处理费用×月份数,即可求出y1、y2与x的函数关系式;(2)根据一次函数的性质,运用两点法即可画出函数y1、y2的图象;(3)观察图象可知:当使用时间大于8个月时,方案1省钱;当使用时间小于8个月时,方案2省钱;当使用时间等于8个月时,方案1与方案2一样省钱.【解答】解:(1)由题意,得y1=250x+3000,y2=500x+1000;(2)如图所示:(3)由图象可知:①当使用时间大于8个月时,直线y1落在直线y2的下方,y1<y2,即方案1省钱;②当使用时间小于8个月时,直线y2落在直线y1的下方,y2<y1,即方案2省钱;③当使用时间等于8个月时,y1=y2,即方案1与方案2一样省钱;【点评】本题主要考查利用一次函数的模型解决实际问题的能力.解题的关键是根据题意列出函数关系式,再结合图象求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.23.(12分)先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.|x|<3.x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;|x|>3x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为﹣a<x<a .不等式|x|>a(a>0)的解集为x>a或x<﹣a .(2)解不等式|x﹣5|<3.(3)解不等式|x﹣3|>5.(4)直接写出不等式|x﹣1|+|x+2|<5的解集:﹣3<x<2 .【分析】(1)由于|x|<3的解集是﹣3<x<3,|x|>3的解集是x<﹣3或x>3,根据它们即可确定|x|<a (a>0)和|x|>a(a>0)的解集;(2)把x﹣5当做一个整体,首先利用(1)的结论可以求出x﹣5的取值范围,然后就可以求出x的取值范围;(3)利用和(2)同样方法即可求出不等式的解集;(4)先在数轴上找出|x﹣1|+|x+2|=5的解,即可得出不等式|x﹣1|+|x+2|<5的解集.【解答】解:(1)不等式|x|<a(a>0)的解集为﹣a<x<a;不等式|x|>a(a>0)的解集为x>a或x<﹣a.故答案为:﹣a<x<a,x>a或x<﹣a.(2)|x﹣5|<3,∴﹣3<x﹣5<3,∴2<x<8;(3)|x﹣3|>5,∴x﹣3>5或x﹣3<﹣5,∴x>8或x<﹣2;(4)在数轴上找出|x﹣1|+|x+2|=5的解.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.∵在数轴上1和﹣2对应的点的距离为3,∴满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,∴方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3,∴不等式|x﹣1|+|x+2|<5的解集为﹣3<x<2,故答案为﹣3<x<2.【点评】此题是一个阅读题目,首先通过阅读把握题目中解题规律和方法,然后利用这些方法解决所给出的题目,所以解题关键是正确理解阅读材料的解题方法,才能比较好的解决问题.此题是一个绝对值的问题,有点难以理解,要反复阅读,充分理解题意.24.(12分)数学课上,张老师出示了问题:如图1,AC、BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC =CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为∠ACB=∠ACD=∠ABD=∠ADB =45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=30°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,并给出证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;。
山东省青岛市2018年中考数学模拟试题1(含解析)
2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。
山东省青岛市2019-2020学年四区联考九年级(上)期中数学试卷(含答案)
2019-2020学年九年级上学期期中数学试卷一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<37.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个二、填空题(共6小题)9.已知,则=.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有个白球.11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用张正方形纸片(不得把每个正方形纸片剪开).13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣117.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有种不同的放置方法.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.参考答案一、选择题1.一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2 解:∵x2=2x,∴x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴一元二次方程x2=2x的根x1=0,x2=2.故选:C.2.下列说法中,错误的是()A.有一组邻边相等的平行四边形是菱形B.两条对角线互相垂直且平分的四边形是菱形C.对角线相等的平行四边形是矩形D.有一组邻边相等的菱形是正方形解:A、有一组邻边相等的平行四边形是菱形,故A选项不符合题意;B、两条对角线互相垂直且平分的四边形是菱形,故B选项不符合题意;C、对角线相等的平行四边形是矩形,故C选项不符合题意;D、有一组邻边线段的菱形不是正方形,故D选项符合题意;故选:D.3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.4.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.解:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率==.故选:A.5.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE =15°,则∠AOE的度数为()A.120°B.135°C.145°D.150°解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形中OA=OB,∴△ABO是等边三角形,∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE,=60°+75°,=135°.故选:B.6.根据表格中的数据,估计一元二次方程ax2+bx+c=6(a,b,c为常数,a≠0)一个解x 的范围为()x0.5 1 1.5 2 3 ax2+bx+c28 18 10 4 ﹣2 A.0.5<x<1 B.1<x<1.5 C.1.5<x<2 D.2<x<3解:由表格可知:当x=2时,ax2+bx+c=4,当x=3时,ax2+bx+c=﹣2,∴关于x的一元二次方程ax2+bx+c=0(a≠0)的一个解x的范围是2<x<3,故选:D.7.如图,在△ABC中,点E在BC边上,连接AE,点D在线段AE上,GD∥BA,且交BC于点G,DF∥BC,且交AC于点F,则下列结论一定正确的是()A.=B.=C.=D.=解:∵DG∥AB,∴=,故本选项不符合题意;B、∵DF∥CE,∴△ADF∽△AEC,∴=≠,故本选项不符合题意;C、∵DF∥CE,∴△ADF∽△AEC,∴=,∵DG∥AB,∴=,∴=,故本选项符合题意;D、∵DF∥CE,∴=,∵DG∥AB,∴△DGE∽△ABE,∴=,∴≠,故本选项不符合题意;故选:C.8.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H.则下列结论正确的有()①△ADF∽△ECF;②△AEH为等腰直角三角形;③点F是CD的中点;④FH=A.1个B.2个C.3个D.4个解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,∵将△ABE,△ADF分别沿折痕AE,AF向内折叠,∴AB=AG=AD,BE=EG=1,DF=GF,∠BAE=∠GAE,∠DAF=∠GAF,∵∠BAE+∠GAE+∠DAF+∠GAF=90°,∴∠EAG+∠GAF=45°,即∠EAF=45°,∵EH⊥AE,∴∠EAH=∠H=45°,∴AE=EH,且EH⊥AE,∴△AEH是等腰直角三角形,故②符合题意,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=,∴DF=,∴DF=CF=DC,∴点F是CD中点,故③符合题意,由勾股定理可得:AF===,AE===,∴EH=AE=,∴AH===2,∴FH=AH﹣AF=,故④符合题意,∵=2,,∴∴△ADF与△ECF不相似,故①不合题意,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.已知,则=.解:∵,∴y=x,∴===,故答案为:.10.一个不透明的口袋里装有除颜色外都相同的5个红球和若干个白球,再往该口袋中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则口袋中原来有10个白球.解:设盒子中原有的白球的个数为x个,根据题意得:,解得:x=10,经检验:x=10是原分式方程的解;∴盒子中原有的白球的个数为10个.故答案为:10;11.某校去年对实验器材的投资为20万元,预计今明两年的投资总额为75万元,若设该校今明两年在实验器材投资上的平均增长率是x,则根据题意可列方程为20(1+x)+20(1+x)2=75.解:设该校今明两年在实验器材投资上的平均增长率是x,依题意,得:20(1+x)+20(1+x)2=75.故答案为:20(1+x)+20(1+x)2=75.12.现有大小相同的正方形纸片20张,小亮用其中2张拼成一个如图所示的长方形,小芳也想拼一个与它形状相同但比它大的长方形,则她至少要用8张正方形纸片(不得把每个正方形纸片剪开).解:如图所示:根据图形的相似拼一个与它形状相同但比它大的长方形,相似比为1:2,所以至少要用8张正方形纸片.故答案为8.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,对角线AC,BD相交于点O,过点C 作CE∥BD交AB的延长线于点E,连接OE,则OE长为.解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,∵AB=2,∴OB=1,AO=OC=,∴DB=2,∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=2,∠ACE=90°,∴OE===,故答案为:.14.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即方程x2=﹣1的一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•﹣i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2019+i2020的值为0.解:∵i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1,∴i+i2+i3+i4+…+i2019+i2020=i+(﹣1)+(﹣i)+1+i+(﹣1)+(﹣i)+1+…+i+(﹣1)+(﹣i)+1=0.故答案为0.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹15.已知:∠MAN和线段a.求作:菱形ABCD,使顶点B,D分别在射线AM,AN上,且对角线AC=a.解:如图,四边形ABCD为所作.四、解答题(本大题共9小题,共74分)16.解方程(1)2x2﹣4x+1=0(配方法)(2)3(x﹣1)2=x2﹣1解:(1),则,∴.(2)3(x﹣1)2﹣(x2﹣1)=0,3(x﹣1)2﹣(x﹣1)(x+1)=0,(x﹣1)(3x﹣3﹣x﹣1)=0,(x﹣1)(2x﹣4)=0,∴x1=1,x2=2.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC.请判断四边形AECD的形状,并说明理由.解:四边形AECD是菱形,理由:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=BC=EC,∴平行四边形AECD是菱形.18.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.如图,某农场要建一个面积为140平方米的矩形仓库,仓库的一边靠墙(墙长18米),另三边用木板材料围成,为了方便进出,在与墙垂直的一边上要开一扇2米宽的门,已知围建仓库的现有木板材料总长为32米,那么这个仓库的两边长分别为多少米?解:设仓库的边AB为x米,由题意得:x(32﹣2x+2)=140,整理,得x2﹣17x+70=0,解,得x1=10,x2=7,当x=10时,BC=14<18;当x=7 时,BC=20>18,∴x=7不合题意,应舍去.答:仓库的边AB为10米,BC为14米.20.如图,在矩形ABCD中,点E是BC的中点,EF⊥AE交CD于点F (1)求证:△ABE∽△ECF;(2)若AB=3,BC=8,求EF的长.【解答】证明:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)解:∵E是BC的中点,BC=8,∴BE=EC=BC=4,∵∠B═90°,AB=3,∴AE===5,∵△ABE∽△ECF,∴,即∴EF=.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为40万元,若每台设备售价为45万元时,平均每月能售出300台;根据市场调研发现:这种设备的售价每提高0.5万元,其销售量就将减少5台.根据相关规定,此设备的销售单价不低于45万元,且获利不高于30%.如果该公司想实现每月2500万元的利润,则该设备的销售单价应是多少万元?解:设该设备的销售单价为x万元.由题意列方程,得,整理,得x2﹣115x+3250=0解这个方程,得x1=50,x2=65,∵获利不高于30%∴∴x≤52∴x=65不合题意,舍去.∴x=50答:该设备的销售单价为50万元.23.【问题提出】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有多少种不同的选择方法?【问题探究】为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论探究一:如果从1,2,3……m,m个连续的自然数中选择2个连续的自然数,会有多少种不同的选择方法?如图1,当m=3,n=2时,显然有2种不同的选择方法;如图2,当m=4,n=2时,有1,2;2,3;3,4这3种不同的选择方法;如图3,当m=5,n=2时,有4种不同的选择方法;……由上可知:从m个连续的自然数中选择2个连续的自然数,有m﹣1种不同的选择方法.探究二:如果从1,2,3……100,100个连续的自然数中选择3个,4个……n(n≤100)个连续的自然数,分别有多少种不同的选择方法?我们借助下面的框图继续探究,发现规律并应用规律完成填空1 2 3 …93 94 95 96 97 98 99 100从100个连续的自然数中选择3个连续的自然数,有98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.【问题解决】如果从1,2,3……m,m个连续的自然数中选择n个连续的自然数(n≤m),有(m ﹣n+1)种不同的选择方法.【实际应用】我们运用上面探究得到的结论,可以解决生活中的一些实际问题.(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有6种不同的选择.(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排3号到15号的电影票让他们选择,如果他们想拿三张连号票,则一共有11种不同的选择方法.【拓展延伸】如图4,将一个2×2的图案放置在8×6的方格纸中,使它恰好盖住其中的四个小正方形,共有35种不同的放置方法.解:探究1:当m=5,n=2时,由图可知有4种不同的选择方法,根据根据规律可知:从m个连续的自然数中选择2个连续的自然数,有(m﹣1)种不同的选择方法;故答案为:4、m﹣1.探究2:选择3个连续的自然数,选择方法的数量比数的个数少2,选择4个连续的自然数,选择方法的数量比数的个数少3,以此类推,选择8个连续的自然数,选择方法的数量比数的个数少7,选择n个连续自然数,选择方法的数量比数的个数少(n﹣1);故从100个连续的自然数中选择3个连续的自然数,有100﹣2=98种不同的选择方法;从100个连续的自然数中选择4个连续的自然数,有100﹣3=97种不同的选择方法;……从100个连续的自然数中选择8个连续的自然数,有100﹣7=93种不同的选择方法;……由上可知:如果从1,2,3……100,100个连续的自然数中选择n(n≤100)个连续的自然数,有(100﹣n+1)种不同的选择方法.故答案为:98、97、93、100﹣n+1.【问题解决】由规律可知:从m个连续的自然数中选择n个连续的自然数(n≤m),有(m﹣n+1)种不同的选择方法.故答案为:(m﹣n+1).【实际应用】(1)从连续7天选择连续2天,则m=7,n=2,总共有(7﹣2+1)=6种选择;(2)3号到15号总共13张电影票,选择3连号,则m=13,n=3,总共有(13﹣3+1)=11种不同的选择;故答案为:6、11.【拓展延伸】图案向右移动,每次一格,可看作8选2,可得7种放置方法,图案向下移动,每次一格,可看作,6选2,可得5种放置方法,故总共7×5=35种放置方法.故答案为:35.24.已知:如图,在等腰△ABC中,AB=10cm,BC=12cm,动点P从点A出发以1cm/s 的速度沿AB匀速运动,动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动,设运动时间为t(s)(0<t<10).过点P作PE∥BC交AC于点E,以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)设四边形BPFQ的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S四边形BPFQ:S△ABC=7:6?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由.解:(1)过点A作AD⊥BC于点D,如图1所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,若△BPQ为直角三角形,根据题意只能∠BPQ=90°,则∠ADB=90°=∠BPQ,∵∠B=∠B,∴△ABD∽△QBP,∴,即,解得,答:当t为s时,△BPQ为直角三角形.(2)在Rt△ABD中,,过点P作PM⊥BC于点M,如图2所示:∴∠PMB=90°,∵∠ADB=90°,∴∠PMB=∠ADB,∵∠C=∠C,∴△ABD∽△BPM,∴,即,∴,∵PE∥BC,∴∠C=∠AEP,∠B=∠APE,∴△ABC∽△APE,∴,即,∴,∵四边形CQFE是平行四边形,∴EF=t,∴y=S梯形BPFQ=,==答:y与t的函数关系式是y=.(3)存在,理由如下:若S四边形BPFQ:S△ABC=7:6,则y=S△ABC∵S△ABC=∴=解得t1=5,答:t的值为5s或s时,S四边形BPFQ:S△ABC=7:6;(4)存在,理由如下:连接BF,如图3所示:若点F在∠ABC的平分线上,∴BF平分∠ABC,∴∠ABF=∠FBQ,∵PF∥BC,∴∠PFB=∠FBQ,∴∠ABF=∠PFB,∴PB=PF,即:,∴,答:当s时,点F在∠ABC的平分线上.。
人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)
2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。
1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。
2019-2020学年山东省青岛市崂山区九年级(上)期中数学试卷(PDF版 含解析)
D.14
6.(3 分)某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,
则符合这一结果的实验可能是 ( )
A.抛一枚硬币,出现正面朝上 B.从标有 1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数 C.从一个装有 6 个红球和 3 个黑球的袋子中任取一球,取到的是黑球 D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 7.(3 分)如图,在平行四边形 ABCD 中, M 、 N 是 BD 上两点, BM DN ,连接 AM 、 MC 、 CN 、 NA ,添加一个条件,使四边形 AMCN 是矩形,这个条件是 ( )
ABC 与 DEF 的周长比为 ( )
A.1: 2
B.1: 2
C.1: 3
【解答】解:如图,设正方形网格的边长为 1,
D.1: 4
由勾股定理得: DE2 22 22 , EF 2 22 42 , DE 2 2 , EF 2 5 ;
同理可求: AC 2 , BC 10 ,
B. 1 9
C. a 1, a 1 D. a 1 , a 1
9
9
【解答】解:一元二次方程 x2 (3a 1)x a 0 有两个相等实根,
△ [(3a 1)]2 4 1 (a) 0 , 解得: a 1或 1 ,
9 故选: C . 5.(3 分)如图,在 ABCD 中, BF 平分 ABC ,交 AD 于点 F , CE 平分 BCD ,交 AD
DF 2 , AB 2 , BC AB AC 1 ,
EF DE DF 2 BAC∽EDF ,
CABC : CDEF 1: 2 , 故选: A .
4.(3 分)一元二次方程 x2 (3a 1)x a 0 有两个相等实根,则 a 为 ( )
2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷(解析版)
2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣12.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.34.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A.B.C.D.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3567.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣28.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为张.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为度.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是,此时PA+PB=.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是.24.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF.(1)当t为何值,DF=DA?(2)当t为何值时,△ADE为直角三角形?请说明理由.(3)是否存在某一时刻t,使点F在线段AC的中垂线上,若存在,请求出t值,若不存在,请说明理由.(4)请用含有t式子表示△DEF的面积,并判断是否存在某一时刻t,使△DEF的面积是△ABC面积的,若存在,请求出t值,若不存在,请说明理由.2018-2019学年山东省青岛市李沧区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.一元二次方程x2﹣x=0的根为()A.x=1B.x=0C.x1=0,x2=1D.x1=1,x2=﹣1【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【解答】解:原方程可化为:x(x﹣1)=0,x=0或x﹣1=0;解得x1=0,x2=1;故选C.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.3.已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5B.5C.﹣3D.3【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:将x=2代入x2﹣mx﹣10=0,∴4﹣2m﹣10=0∴m=﹣3故选:C.【点评】本题考查一元二次方程的解定义,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选:B.【点评】本题考查的是相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了数形转化思想的应用.5.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是()A .B .C .D .【分析】根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.【解答】解:用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.上面等可能出现的12种结果中,有5种情况可以得到紫色,所以可配成紫色的概率是,故选:B .【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x=7644B .(100﹣x )(80﹣x )+x 2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=356【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.7.如图,在菱形ABCD中,AE⊥BC与E,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为()A.2B.2﹣C.4﹣2D.2﹣2【分析】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,可求得AE的长,求得△ABF、△AEF、△CGF的面积,计算即可.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠的性质可知,△ABF为等腰直角三角形,=AB•AF=2,S△ABE=1,∴S△ABF∴CF=BF﹣BC=2﹣2,∵AB∥CD,∴∠GCF=∠B=45°,又由折叠的性质知,∠F=∠B=45°,∴CG=GF=2﹣.=GC•GF=3﹣2,∴S△CGF∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2,故选:D.【点评】本题考查的是翻转变换的性质、菱形的性质以及等腰直角三角形的性质,掌握翻转变换的性质、灵活运用数形结合思想是解题的关键.8.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.【解答】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是菱形,正确;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.综上所述,①②③共3个正确.故选:C.【点评】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.二、填空题(本题满分21分,共有7道小题,每小题3分)9.已知3x=5y,则=.【分析】根据两外项的积等于两内项的积,可得答案.【解答】解:∵3x=5y,∴=,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质:外项的积等于内项的积.10.已知一个菱形的周长是20,两条对角线的长的比是4:3,则这个菱形的面积是24.【分析】由菱形ABCD的周长是20,AC:BD=4:3,即可得AD=5,AC⊥BD,AC=2OA,BD=2OD,则可得OA:OD=4:3,然后设OA=4x,OD=3x,由勾股定理即可求得AD 的长,继而求得两条对角线的长,由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:如图,菱形ABCD的周长是20,AC:BD=4:3,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,AC⊥BD,AC=2OA,BD=2OD,∴OA:OD=4:3,设OA=4x,OD=3x,在Rt△AOD中,AD==5x=5,∴x=1,∴OA=4,OD=3,∴AC=8,BD=6,=AC•BD=×8×6=24.∴∴S菱形ABCD故答案为:24.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.11.现有50张大小、质地及背面图案均相同的《三国演义》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后,原样放回,洗匀后再抽,通过多次试验后,发现抽到绘有“诸葛亮”这个人物卡片的频率约为0.3,估计这些卡片中绘有“诸葛亮”这个人物的卡片张数约为15张.【分析】利用频率估计概率得到抽到绘有诸葛亮这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有诸葛亮这个人物的卡片张数,于是可估计出这些卡片中绘有诸葛亮这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有诸葛亮这个人物卡片的频率约为0.3,所以估计抽到绘有诸葛亮这个人物卡片的概率为0.3,则这些卡片中绘有诸葛亮这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有诸葛亮这个人物的卡片张数约为15张.故答案为:15.【点评】本题考查了用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.12.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.如图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角为45度.【分析】根据翻折变换的性质及正方形的判定进行分析从而得到最后答案.【解答】解:一张长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故答案为:45.【点评】本题考查了剪纸的问题,同时考查了菱形和正方形的判定及性质,以及学生的动手操作能力.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.15.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【分析】根据一次函数图象上点的坐标特征结合正方形的性质即可得出点B1、B2、B3、…的坐标,根据点坐标的变化找出点B n的坐标,依此即可得出结论.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.【点评】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据点坐标的变化找出变化规律“点B n的坐标为(2n﹣1,2n﹣1)”是解题的关键.三、作图题(本题满分4分用圆规、直尺作图、不写作法、但要保留作图痕迹)16.(4分)已知:线段a,b,求作一菱形,使其两对角线长分别等于a,b.【分析】根据菱形的对角线相互垂直平分,先画两条垂直平分的线段,得到菱形的4个顶点,再顺次连接即可.【解答】解:如图,(1)先画线段AC=a,(2)作AC的中垂线,与AC的交点为O,以交点O为圆心,b为半径画弧交B、D 的两点.(3)顺次连接ABCD,就是所求作的菱形.【点评】本题主要考查作图﹣复杂作图,解题的关键是利用菱形的对角线相互垂直平分进行尺规作图.四、解答题(本题满分71分,共有8道小题)17.(16分)(1)x2﹣2x﹣2=0(用配方法解)(2)3x2+1=4x(3)2(x﹣3)2=x2﹣9(4)关于x的一元二次方程2x2+3x﹣m=0有实数根,求m的取值范围.【分析】(1)运用配方法,首先移常数项,再方程两边加一次项系数一半的平方,配方即可,再开平方求出方程的解.(2)移项后利用十字相乘法求解可得;(3)利用因式分解法求解可得;(4)根据方程有实数根,得到根的判别式大于或等于0,求出m的范围即可.【解答】解:(1)∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,则x﹣1=±,∴x=1±,即x1=1+,x2=1﹣;(2)∵3x2+1=4x,∴3x2﹣4x+1=0,则(3x﹣1)(x﹣1)=0,∴3x﹣1=0或x﹣1=0,解得:x1=,x2=1;(3)∵2(x﹣3)2=(x+3)(x﹣3),∴2(x﹣3)2﹣(x+3)(x﹣3)=0,则(x﹣3)(x﹣9)=0,∴x﹣3=0或x﹣9=0,解得:x1=3,x2=9;(4)∵关于x的一元二次方程2x2+3x﹣m=0有实数根,∴△=9﹣4×2×(﹣m)≥0,解得:m≥﹣.【点评】此题主要考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法熟练掌握一元二次方程的几种解法是解决问题的关键.18.(5分)振华贸易公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是324万元,假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本是多少?【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=324,解得:x1=0.01=1%,x2=1.90(不合题意,舍去).答:每个月生产成本的下降率为1%.(2)324×(1﹣1%)=320.76(万元).答:预测4月份该公司的生产成本为320.76万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.19.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.【分析】(1)直接利用概率公式求出即可;(2)利用树状图表示出所有可能,进而利用概率公式求出即可.【解答】解:(1)∵共20名志愿者,女生12人,∴选到女生的概率是:=;(2)不公平,根据题意画图如下:∵共有12种情况,和为偶数的情况有4种,∴牌面数字之和为偶数的概率是=,∴甲参加的概率是,乙参加的概率是,∴这个游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=6,求BC的长.【分析】根据等边三角形性质求出OA=OB=AB=6,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=12,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.【解答】解:∵△ABO是等边三角形,∴OA=OB=AB=6,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=OC=OB=OD,∴AC=BD=12,∴四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:BC=.【点评】本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.21.(8分)利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价毎降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为32件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)若降价6元,则平均每天销售数量为20+4×3=32件.故答案为:32;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形CDBE是正方形?请说明你的理由.【分析】(1)证出AC∥DE,得出四边形ADEC是平行四边形,即可得出结论;(2)先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;(3)当△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=AB=BD,∴四边形BECD是菱形;(3)当△ABC是等腰直角三角形时,四边形BECD是正方形;理由如下:∵∠ACB=90°,当△ABC是等腰直角三角形,∵D为AB的中点,∴CD⊥AB,∴∠CDB=90°,∴四边形BECD是正方形;【点评】本题考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.23.(10分)几何模型:条件:如图1,A、B是直线l同旁的两个顶点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小时,点P的横坐标是1,此时PA+PB=2.(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称,则PB+PE的最小值是.(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为2.(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是4.【分析】(1)取点A关于x轴对称的点A′,连接A′B,交x轴于P,作BH⊥x轴于H,求出OP,得到点P的横坐标,根据勾股定理求出A′B,得到答案;(2)根据正方形的性质求出AE,根据勾股定理计算即可;(3)由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.(4)作DH⊥AC垂足为H与AG交于点E,根据菱形的性质、勾股定理计算.。
2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)
= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是
.
版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
2020-2021学年山东省青岛市九年级(上)期中数学试卷(附答案详解)
2020-2021学年山东省青岛市九年级(上)期中数学试卷1.下列方程是一元二次方程的是()A. 2x2+y=1B. 9y=3y−1C. 2x2=1D. 3x−2x2=82.如图所示的4个三角形中,相似三角形有()A. 1对B. 2对C. 3对D. 4对3.根据表格中的信息,估计一元二次方程ax2+bx+c=10(a、b、c为常数,a≠0)的一个解x的范围为()x00.51 1.52 ax2+bx+c−15−8.75−2 5.2513A. 0<x<0.5B. 0.5<x<1C. 1<x<1.5D. 1.5<x<24.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作BD的垂线,垂足为E,已知∠EAB:∠EAD=1:3,则∠EOA的度数为()A. 30°B. 35°C. 40°D. 45°5.青岛第四届海上马拉松比赛将在2020年11月举行,小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A. 13B. 23C. 19D. 296.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是()A. 3cmB. 4cmC. 4.8cmD. 5cm7.下列结论正确的是()A. 如果一个四边形是轴对称图形,而且有两条互相垂直的对称轴,那么这个四边形一定是菱形.B. 如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形一定是正方形.C. 如果一个菱形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个菱形是正方形.D. 一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四边形一定是正方形.8.如图,在Rt△ABC中,∠C=90°,∠ABC的角平分线交AC于点D,过点D分别作BC和AB的平行线,交AB于点E,交BC于点H,连接EH交BD于点G,在AE上截取EF=BE,连接DF.下列说法中正确的有()(1)GH:FD=1:2;(2)BD2=BF⋅BC;(3)四边形EBHD是菱形;(4)S△ADF=29S△ABC.A. 1个B. 2个C. 3个D. 4个9.已知x2=y4≠0,则3x+y2y=______ .10.在一个不透明的口袋里装有黑、白两种颜色的球30个,这些球除颜色外都相同.某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再把它放回袋中,不断重复上述过程,试验数据如下表:摸球的次数10020050080010001200摸到白球的次数4281201324402481根据上表数据,估算口袋中黑球有______ 个.11.如图,直线a//b//c,直线AC与DF交于点O,且与直线a、b、c分别交于点A、B、D、E、F,如果DE=2,EF=5,AC=6,那么AB的长为______ .12.书香相伴,香满校园,某校9月份借阅图书500本,11月份借阅图书845本,该校这两个月借阅图书的月均增长率是______ .13.如图,四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,图中阴影部分的面积是______ cm2.14.现有30张相同的菱形纸片(如图1,有一个内角为60°),小亮用其中3张密铺成一个如图2所示的正六边形;若小芳想密铺出一个与图②相似但面积比它大的正六边形,则她至少要用______ 张菱形纸片(不得将菱形纸片剪开).15.已知:如图,四边形ABCD是平行四边形.求作:一个菱形,使它的四个顶点分别在平行四边形ABCD的四条边上.16.解方程:x2+2x+2=8x+4(配方法).17.解方程:8x2−2x−3=0.18.已知:关于x的一元二次方程(k−1)x2+2x−1=0有两个不相等的实数根.求:k的最小整数解.19.用如图所示的两个可以自由转动的转盘进行“配紫色“游戏:游戏者同时转动两个转盘,若其中一个转盘转出了红色,另一个转盘转出了蓝色,那么他就赢了.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果;(2)求游戏者获胜的概率.20.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,ADAB =25,求BC的长.21.有一个面积为54cm2的长方形,将它的一边剪短5cm,另一边剪短2cm,恰好变成一个正方形,求这个正方形的边长.22.已知:在△ABC中,CB=CA,点D、E分别是AB、AC的中点,连接DE并延长交外角∠ACM的平分线CN与点F.(1)求证:AD=CF;(2)连接CD,AF,当△ABC满足什么条件时,四边形ADCF为正方形?请证明你的结论.23.尊老爱幼是中华民族的传统美德,九九重阳节前夕,某商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.(1)若每件商品降价5元,则商店每天的平均销量是______ 件(直接填写结果);(2)不考虑其他因素的影响,若商店销售这款商品的利润要平均每天达到1280元,每件商品的定价应为多少元?(3)在(2)的前提下,若商店平均每天至少要销售200件该商品,求商品的销售单价.24.古希腊数学家欧多克索斯曾提出:能否将一条线段分成不相等的两部分,使较短线段与较长线段的比等于较长线段与原线段的比?这就是黄金分割问题,这个相等的比又被称为黄金比,其比值是√5−12.古希腊很多矩形建筑中,宽与长之比都等于黄金比,在艺术领域,许多优美的曲线也与黄金比有关,黄金比在我们的生活中彰显着丰富的美学价值.【探索发现】:如图1,若点P1是线段AB靠近点B的黄金分割点,则AP1=√5−12AB,所以BP1=(1−√5−12)AB=3−√52AB.若P2是线段BP1靠近点B的黄金分割点,则BP2=3−√52BP1,所以BP2=______ AB.若P3是线段BP2靠近点B的黄金分割点,则BP3=3−√52BP2,所以BP3=______ AB.……【归纳提炼】若P n是线段BP n−1靠近点B的黄金分割点,则BP n=______ AB.【解释应用】:如图2,矩形ABCD中,宽BC与长AB的比为黄金比,则称矩形ABCD为“黄金矩形”.在课本“想一想”中我们已经知道,该矩形有如下特点:作正方形①,剩下的矩形仍是“黄金矩形”,且点P1为线段AB的黄金分割点;以此类推:作正方形②,剩下的矩形仍是“黄金矩形”,且点Q1为线段BC的黄金分割点;作正方形③,剩下的矩形仍是“黄金矩形”,且点P2为线段______ 的黄金分割点;作正方形④,剩下的矩形仍是“黄金矩形”,且点Q2为线段______ 的黄金分割点;……显然,这样变换可以无限的进行下去.借助对“BP2与AB,BQ2与BC的比例关系”的探究,写出当“黄金矩形”ABCD 的周长为a时,以BP2,BQ2为领边的“黄金矩形”的周长y与a的关系式:______ .【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a1,a2,a3,a4,请直接写出a1+a2+a3+a4=______ .(用含有a的代数式表示)(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”.请直接写出这条曲线的长度:______ .(用含有a的代数式表示)25.已知:如图1,在矩形ABCD中,AC是对角线,AB=6cm,BC=8cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CA方向匀速运动,速度为2cm/s.过点Q作QE⊥AC,QE与BC相交于点E,连接PQ.设),解答下列问题:运动时间为t(s)(0<t≤165(1)连接BQ,当t为何值时,点E在线段BQ的垂直平分线上?(2)设四边形BPQC的面积为y(cm2),求y与t之间的函数关系式;(3)如图2,取点E关于AC的对称点F,是否存在某一时刻t,使△CDF为等腰三角形?若存在,直接写出t的值(不需提供解答过程);若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是一元二次方程,故本选项不符合题意;故选:C.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式方程,叫一元二次方程.2.【答案】A【解析】解:观察图象可知,图中有3个直角三角形,一个锐角三角形,其中左边的两个直角三角形的直角边的比都是1:2,所以这两个直角三角形相似.故选:A.根据相似三角形的判定方法判断即可.本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.3.【答案】D【解析】解:由表格可知:当x=1.5时,ax2+bx+c=5.25,则ax2+bx+c−10=−4.75,当x=2时,ax2+bx+c=13,则ax2+bx+c−10=3,∴关于x的一元二次方程ax2+bx+c=10(a≠0)的一个解x的范围是1.5<x<2,故选:D.根据ax2+bx+c的符号即可估算ax2+bx+c=10的解.本题考查一元二次方程,解题的关键是正确理解一元二次方程的近似解,本题属于基础题型.4.【答案】D【解析】解:∵四边形ABCD是矩形,∴OA=OB,∠BAD=90°,∴∠OAB=∠OBA,∵∠EAB:∠EAD=1:3,∴∠EAB=22.5°,∵AE⊥BD于点E,∴∠AEB=90°,∴∠ABE=67.5°,∴∠OBA=∠OAB=67.5°,∴∠AOB=45°,即∠EOA的度数为45°,故选:D.根据∠EAB:∠EAD=1:3,∠BAD=90°,可以求得∠BAE的度数,再根据矩形的性质和三角形内角和,即可得到∠EOA的度数.本题考查矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】A【解析】解:画树状图得:∵共有9种等可能的结果,小明和小刚恰好选择同一组的有3种情况,∴两人恰好选择同一组的概率为39=13;故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及小明和小刚选到同一组的情况,再利用概率公式求解即可求得答案.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:∵四边形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD ═12AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4cm,故选:B.由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线性质即可得出结果.本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.7.【答案】C【解析】解:A.若一个四边形是轴对称图形,且有两条互相垂直的对称轴,则这个四边形是菱形或矩形,故本选项不合题意;B.如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形可以是菱形,故本选项不合题意;C.若一个菱形绕对角线的交点旋转90°后所得图形与原图形重合,则这个菱形是正方形,本选项符合题意;D.一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四辺形一定是矩形,故本选项不合题意;故选:C.依据菱形、矩形以及正方形的判定方法,即可得出结论.本题考查了菱形、矩形、正方形的判定与性质;熟练掌握特殊平行四边形的判定和性质,并能进行推理论证是解答本题的关键.8.【答案】C【解析】解:∵DE//BC,DH//AB,∴四边形DEBH是平行四边形,∴GH=EG,BG=DG,又∵EF=BE,∴EG//DF,GE=12DF,∴GH=12DF,∴GH:DF=1:2,故①正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE//BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=DE,∴BE=DE=EF,∴∠BDF=90°=∠C,又∵∠ABD=∠DBC,∴△BDF∽△BCD,∴BDBC =BFBD,∴BD2=BC⋅BF,故②正确;∵BE=DE,四边形DEBH是平行四边形,∴四边形DEBH是菱形,故③正确;条件不足,无法证明S△ADF=29S△ABC.故④错误,故选:C.①由题意可证四边形DEBH是平行四边形,可得GH=EG,BG=DG,由三角形中位线定理可得EG//DF,GE=12DF,可得GH=12DF;②通过证明△BDF∽△BCD,可得BDBC =BFBD,可证BD2=BC⋅BF;③由菱形的判定可证四边形EBHD 是菱形;④条件不足,无法证明.本题是三角形综合题,考查了直角三角形的性质,菱形的判定和性质,三角形中位线定理,相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.9.【答案】54【解析】解:∵x 2=y 4≠0, ∴y =2x ,则3x+y 2y =3x+2x 4x=54. 故答案为:54.直接利用已知得出y =2x ,即可代入化简得出答案.此题主要考查了比例的性质,得出y 与x 之间的关系是解题关键.10.【答案】18【解析】解:根据图表给出的数据可得,摸到白球的频率将会接近0.4,所以可估计口袋中白种颜色的球的个数是:30×0.4=12(个),则口袋中黑球有30−12=18(个).故答案为:18.根据图表给出的数据得出白球的频率,再用总球的个数乘以白球的频率,求出白球的个数,再用总个数减去白球的个数即可得出黑球的个数.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】127【解析】解:∵直线a//b//c,∴DEEF =ABBC=25,∴ABAC =DEDF=22+5,∴AB6=27,解得:AB=127,故答案为:127.平行线分线段成比例定理的内容是:一组平行线截两条直线,所截的线段对应成比例,根据平行线分线段成比例解答即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.12.【答案】30%【解析】解:该校这两个月借阅图书的月均增长率是x,依题意,得:500(1+x)2=845,解得:x1=0.3=30%,x2=−2.3(不合题意,舍去).故答案为:30%.该校这两个月借阅图书的月均增长率是x,根据该校9月份及11月份借阅图书数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.【答案】(3√3−3)【解析】解:如图,连接BE,交AC于O,∵△ACE是等边三角形,四边形ABCD是正方形,∴EA=EC,BA=BC,∴BE垂直平分AC,∵四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,∴AB=BC=√6(cm),∴AC=√2AB=2√3(cm),∴AE=2√3(cm),AO=12AC=√3(cm),∴Rt△AOE中,EO=√AE2−AO2=3(cm),∴阴影部分面积=S△ACE−S△ACD=12×AC×EO−12×6=12×2√3×3−3=(3√3−3)cm2,故答案为:(3√3−3).连接BE,交AC于O,依据等边三角形和正方形的性质,即可得到AO的长,依据勾股定理即可得到EO的长,最后根据阴影部分面积=S△ACE−S△ACD进行计算.本题主要考查了正方形的性质、等边三角形的性质以及勾股定理的运用,正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.14.【答案】12【解析】解:观察图象可知,至少要用12张菱形纸片.故答案为:12.利用图象法,画出图形判断即可.本题考查相似多边形的性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题.15.【答案】解:如图,四边形EFGH即为所求.【解析】过平行四边形的对角线的交点,画两条互相垂直直线EG ,FH ,J 交平行四边形ABCD 的边于E ,G ,F ,H ,连接EF ,FG ,GH ,HE ,四边形EFGH 即为所求. 本题考查作图−复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:x 2+2x +2=8x +4,x 2+2x −8x =−2+4,x 2−6x =2,配方得:x 2−6x +9=2+9,(x −3)2=11,开方得:x −3=±√11,解得:x 1=3+√11,x 2=3−√11.【解析】移项,合并同类项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能够正确配方是解此题的关键.17.【答案】解:8x 2−2x −3=0,b 2−4ac =(−2)2−4×8×(−3)=100,x =−b±√b 2−4ac 2a=2±√1002×8, x 1=34,x 2=−12.【解析】先求出b 2−4ac 的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.18.【答案】解:根据题意,得:△=22−4×(k −1)×(−1)>0且k −1≠0, 解得k >0且k ≠1,所以k 的最小整数解为2.【解析】根据一元二次方程有两个不相等的实数根得出△=22−4×(k −1)×(−1)>0,结合一元二次方程的定义知k −1≠0,从而得出答案.本题主要考查根的判别式和一元二次方程的定义,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.19.【答案】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)∵共有6种等可能的结果数,其中一个转盘转出了红色,另一个转盘转出了蓝色的有3种,∴游戏者获胜的概率是36=12.【解析】(1)根据题意画出树状图得出所有等可能的情况数即可;(2)找出一个转盘转出了红色,另一个转盘转出了蓝色的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴ADAB =DEBC,∵ADAB =25,BC=3,∴25=3BC,∴BC=152.【解析】(1)由直角三角形的性质得出∠B=∠ADG,可证明△ABC∽△ADE;(2)由相似三角形的性质可得出答案.本题考查了相似三角形的判定与性质,直角三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.21.【答案】解:设这个正方形的边长为x cm,则原长方形的长为(x+5)cm,宽为(x+ 2)cm,依题意,得:(x+5)(x+2)=54,整理,得:x2+7x−44=0,解得:x1=4,x2=−11(不合题意,舍去).答:这个正方形的边长为4cm.【解析】设这个正方形的边长为xcm,则原长方形的长为(x+5)cm,宽为(x+2)cm,根据原长方形的面积为54cm2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵CB=CA,∴∠A=∠B,∵∠ACM=∠A+∠B,∴∠A=12∠ACM,∵CN平分∠ACM,∴∠ACF=12∠ACM,∴∠A=∠ACF,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,{∠A=∠ECFAE=CE∠AED=∠CEF,∴△ADE≌△CFE(ASA),∴AD=CF;(2)解:当∠ACB=90°,四边形ADCF是正方形,理由:∵AC=BC,∠ACB=90°,∴△ACB是等腰直角三角形,∴∠BAC=45°,∵CN平分∠ACM,∴∠ACF=12∠ACM=45°,∴∠DAC=∠ACF,∴AD//CF,由(1)知AD=CF,∴四边形ADCF是平行四边形,∵点D是AB的中点,∴AD=CD,∴∠ACD=∠CAD=45°,∴∠DCF=90°,∴矩形ADCF是正方形.【解析】(1)根据等腰三角形的性质得到∠A=∠B,根据外角的性质定理得到∠A=1 2∠ACM,由角平分线的定义得到∠ACF=12∠ACM,求得∠A=∠ACF,根据全等三角形的判定和性质定理即可得到结论;(2)由已知条件得到△ACB是等腰直角三角形,求得∠BAC=45°,推出AD//CF,由(1)知AD=CF,得到四边形ADCF是平行四边形,根据直角三角形的性质得到AD=CD,求得∠ACD=∠CAD=45°,根据正方形的判定定理得到结论.本题考差了正方形的判定,全等三角形的判定和性质,三角形的中位线的性质,熟练掌握全等三角形的判定和性质是解题的关键.23.【答案】280【解析】解:(1)80+5÷0.5×20=280(件). 故答案为:280.(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x0.5×20=(40x +80)件,依题意,得:(25−15−x)(40x +80)=1280, 整理,得:x 2−8x +12=0, 解得:x 1=2,x 2=6, ∴25−x =23或19.答:每件商品的定价应为23元或19元.(3)当x =2时,40x +80=160<200,不合题意,舍去; 当x =6时,40x +80=320>200,符合题意, ∴25−x =19.答:商品的销售单价为19元.(1)根据每天的平均销售量=80+降低的价格÷0.5×20,即可求出结论;(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x 0.5×20=(40x +80)件,根据每天的总利润=销售每件商品的利润×平均每天的销售量,即可得出关于x 的一元二次方程,解之即可得出结论;(3)由(2)的结论结合平均每天至少要销售200件该商品,可确定x 的值,再将其代入(40x +80)中即可求出结论.本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元二次方程;(3)将x 的值代入(40x +80)中,求出平均每天的销售量.24.【答案】(3−√52)2(3−√52)3 (3−√52)n BP 1 BQ 1 y =(√5−12)4a (√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]【解析】解:【探索发现】:由题意可知:BP 2=(3−√52)2AB ,BP 3=(3−√52)3AB , 故答案为:(3−√52)2,(3−√52)3.【归纳提炼】:由规律可知:BP n =(3−√52)nAB . 故答案为:(3−√52)n.【解释应用】:且点P 2为线段P 1B 的黄金分割点,点Q 2为线段BQ 1的黄金分割点, ∵BC =√5−12AB ,BP 1=√5−12BC ,BQ 1=√5−12BP 1,BP 2=√5−12BQ 1,所有矩形相似, ∴BP 2,BQ 2为领边的“黄金矩形”的周长y 与a 的关系式:y =(√5−12)4a. 故答案为:BP 1,BQ 2,y =(√5−12)4a.【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a 1,a 2,a 3,a 4, 设AB =x ,BC =y ,则2x +2y =a , ∴2x +2⋅√5−12x =a , ∴x =√5−14a ,y =(√5−1)223a , ∴a 1+a 2+a 3+a 4=(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a.(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”. 请直接写出这条曲线的长度:14⋅π(a 1+a 2+a 3+a 4)=14π⋅[(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a]=πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 故答案为:πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 【探索发现】:根据黄金分割的定义计算即可; 【归纳提炼】:探究规律,利用规律解决问题即可;【解释应用】:根据相似多边形的性质相似比等于周长比,解决问题即可; 【拓展延伸】:(1)分别求出a 1,a 2,a 3,a 4即可解决问题; (2)利用弧长公式计算即可.本题属于四边形综合题,考查了矩形的性质,黄金分割,解直角三角形,相似多边形的性质等知识,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.25.【答案】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=6cm,BC=9cm,∴AC=√AB2+BC2=√62+82=10,∵EQ⊥AC,∴∠EQC=∠B=90°,∵∠ECQ=∠ACB,∴△ECQ∽△ACB,∴EQAB =CQCB=ECAC,∴EQ6=2t8=EC10,∴EQ=32t,EC=52t,∵点E在BQ的垂直平分线上,∴EB=EQ,∴8−52t=32t,∴t=2.(2)如图2中,过点Q作QH⊥AB于H,则AQ=10−2t,QH=45AQ=45(10−2t),∵AP=t,∴S△APQ=12⋅AP⋅QH=12⋅t⋅45(10−2t)=−45t2+4t,∴y=S△ABC−S△APQ=12×6×8−(−45t2+4t)=45t2−4t+24(0<t≤165).(3)①如图2−1中,当DC=DF时,连接DF,取AC的中点J,连接BJ,和点B作BH⊥AC于H,过点F作FK⊥CD于K.∵∠ABC=90°,AJ=JC,∴BJ=AJ=JC=12AC=5,∴∠JBC=∠JCB,∴∠BJH=∠BCJ+∠JCB=2∠JCB,∵E,F关于AC对称,∴∠ACE=∠ACF,CF=CE=52t ∴∠FCE=2∠ACB=∠BJH,∵FK⊥CD,CB⊥CD,∴FK//CB,∴∠CFK=∠FCE=∠BJH,∵BH⊥AC,∴S△ACB=12⋅AB⋅CB=12⋅AC⋅BH,∴BH=AB⋅BCAC =245,∵FD=FC,FK⊥CD,∴CK=KD=3,∵∠BJH=∠CFK,∴sin∠BJH=sin∠CFK,∴BHBJ =CKCF,∴2455=352t,∴t=54,②当CF=CD时,52t=6,∴t=125,综上所述,满足条件的t 的值为54或125.【解析】(1)证明△ECQ∽△ACB ,可得EQAB =CQCB =ECAC ,可得EQ6=2t 8=EC10,推出EQ =32t ,EC =52t ,由题意点E 在BQ 的垂直平分线上,推出EB =EQ ,由此构建方程,求解即可.(2)如图2中,过点Q 作QH ⊥AB 于H ,则AQ =10−2t ,QH =45AQ =45(10−2t),根据y =S △ABC −S △APQ ,求解即可.(3)分两种情形:①如图2−1中,当DC =DF 时,连接DF ,取AC 的中点J ,连接BJ ,和点B 作BH ⊥AC 于H ,过点F 作FK ⊥CD 于K.证明∠BJH =∠CFK ,可得sin∠BJH =sin∠CFK ,由此构建方程求解.②当CF =CD 时,构建方程,求解即可.本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2022-2023学年山东省青岛市市北区九年级(上)期末数学试卷+答案解析(附后)
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.2.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是2023-2024学年山东省青岛市市北区九年级(上)期末数学试卷( )A. B. C. D.3.若关于x 的方程有实数根,则实数m 的取值范围是( )A.B.C.D.4.已知反比例函数的图象经过点,那么该反比例函数图象也一定经过点( )A. B. C.D.5.如图,在中,,,若,则( )A. B. C.D.6.如图,一条河的两岸互相平行,为了测量河的宽度与河岸PQ垂直,测量得P,Q两点间距离为m米,,则河宽PT的长为( )A.B.C.D.7.如图,在中,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线直线MN与AB相交于点D,连接CD,若,则CD的长是( )A. 6B. 3C.D. 18.抛物线上有两点,,若,则下列结论正确的是( )A. B.C. 或D. 以上都不对9.在同一平面直角坐标系中,函数与其中a,b是常数,的大致图象是( )A. B.C. D.10.如图1,在菱形ABCD中,,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为,则图象最低点E的坐标为( )A. B. C. D.二、填空题:本题共7小题,每小题3分,共21分。
11.质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n1001502002503005001000合格产品数m89134179226271451904合格率在这批产品中任取一件,恰好是合格产品的概率约是结果保留一位小数______.12.如图,点在双曲线的图象上,轴,垂足为A,若,则该反比例函数的解析式为______.13.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程______ .14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作于点E,连接BE,若,,则矩形ABCD的面积为______ .15.如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为,反射角为反射角等于入射角,于点C,于点D,且,,,则的值为______.16.图1是装了液体的高脚杯示意图数据如图,用去一部分液体后如图2所示,此时液面______.17.当时,二次函数有最大值m,则______.三、解答题:本题共8小题,共64分。
2022-2023学年山东省青岛市市南区九年级(上)期中数学试题及答案解析
2022-2023学年山东省青岛市市南区九年级(上)期中数学试卷1. 已知xy =32,那么下列等式中,不一定正确的是( ) A. x+2y+2=32B. 2x =3yC.x+y y=52D. x x+y =352. 关于x 的一元二次方程x 2+3x +m =0有两个不相等的实数根,则m 的取值范围为( ) A. m ≤94B. m <94C. m ≤49D. m <493. 用配方法解下列方程时,配方正确的是( ) A. x 2−2x −99=0化为(x −1)2=98 B. x 2+8x +9=0化为(x +4)2=25 C. 2t 2−7t −4=0化为(t −72)2=8116 D. 3y 2−4y −2=0化为(y −23)2=1094. 由两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )A. 两个转盘转出蓝色的概率一样大B. 如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D. 游戏者配成紫色的概率为165. 在四边形ABCD 中,AB =BC =CD =DA ,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. AC ⊥BDB. AB//CDC. ∠A =90°D. ∠A =∠C6. “一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设平均每年的出口增长率为x,可列方程为( )A. 1000(1+x%)2=3000B. 1000(1−x%)2=3000C. 1000(1+x)2=3000D. 1000(1−x)2=30007. 如图,点P是菱形ABCD对角线BD上一点,PE⊥AB于点E,且PE=2.连接PC,若菱形的周长为24,则△BCP的面积为( )A. 4B. 6C. 8D. 128. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG//CF;④S△FGC=3.其中正确结论的个数是( )A. 1B. 2C. 3D. 49. 已知关于x的方程x2+x−a=0一个根为2,则另一个根是______ .10. 一个不透明纸袋中装有黑白两种颜色的小球400个,为了估计两种颜色的球各有多少个,现将纸袋中的球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,多次重复上述过程后,发现摸到黑球的频率稳定在0.65,据此可以估计黑球的个数约是______.11. 如图,l1//l2//l3,已知AB=6cm,BC=3cm,A1B1=4cm,则线段B1C1的长为______cm.12. 如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是______.13. 如图,四边形ABCD是矩形,BE⊥EF,DF⊥EF,BC=5cm,CD=2.5cm,BE=3cm,那么EF的长为______cm.14. 如图,在△ABC中,中线BE、CD相交于点O,连接DE,下列结论:①DEBC =12;②S△DOES△COB=12;③ADAB =OEOB;④S△DOES△ADC=16;其中正确的个数有______(写序号).15. 用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:矩形ABCD,求作:菱形AECF,使点E,F分别在边BC,AD上.16. 如图,△ABC三个顶点坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)(2)△A′B′C′的面积是:______.17. 解方程:(1)4x2−8x+1=0;(2)(x+1)(x+2)=2x+4.18. 在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4,随机地一次摸取两张纸牌,请用列表或画树状图的方法解决下列问题.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19. 如图,某小区要建一个长方形的花园,花园的一边靠墙(墙长18m),另三边用木栏围成,并留出一个1m宽的入口,木栏长35m.花园的面积能达到154m2吗?如果能,请你给出设计方案;如果不能,请说明理由.20. 如图所示,点O是菱形ABCD对角线的交点,DE//AC,CE//BD,连接OE.(1)证明:四边形BCEO是平行四边形;(2)判断四边形OCED的形状,并说明理由.21. 如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,求小方行走的路程.22. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+ 30x,P=170−2x.(1)当日产量为40只时,每日获利多少元?(2)当日产量为多少时每日获得的利润为1750元?23. 已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______ ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,AH=6,求NH的长.(可利用(2)得到的结论)24. 如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB方向以每秒2cm速度向终点B运动,同时动点Q从点B出发,沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P’.设点Q运动的时间为t秒.(1)若△ACP的面积为y,请用t表示y;(2)t为何值时,△BPQ与△ABC相似?(3)t为何值时,四边形QPCP’为菱形?答案和解析1.【答案】A【解析】解:∵xy =32, ∴2x =3y ,x+y y =3+22=52,y x=23,∴xx+y =22+3=35, 无法得到x+2y+2=32. 故选:A .利用比例的性质可判断B 、C 、D 的变形正确.本题考查了比例的性质:灵活运用比例的性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)进行计算.2.【答案】B【解析】 【分析】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与判别式Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.根据题意得到Δ=32−4m >0,然后解不等式即可. 【解答】解:根据题意得Δ=32−4m >0, 解得m <94.故选B .3.【答案】D【解析】解:A.错误,应为x 2−2x −99=0化为(x −1)2=100,不符合题意; B .错误,x 2+8x +9=0化为(x +4)2=7,不符合题意; C .错误,2t 2−7t −4=0化为(t −74)2=8116,不符合题意; D .3y 2−4y −2=0化为(y −23)2=109,正确,符合题意.故选:D .配方法的步骤:①将常数项移到方程的右侧.②将二次项系数化为1.③结合直接开方法进行解答即可.根据配方法的步骤,对每个方程都做这样的变形,由此便可以解答本题.本题考查解一元二次方程−配方法,解题的关键是熟练掌握配方法的步骤,属于中考常考题型.4.【答案】D【解析】解:A 、A 盘转出蓝色的概率为12,B 盘转出蓝色的概率为13,此选项错误; B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误;C 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, 故选:D .根据概率的定义和列树状图求概率分别对每个选项逐一判断可得.此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:∵在四边形ABCD 中,AB =BC =CD =DA , ∴四边形ABCD 是菱形, 当∠A =90°时,菱形ABCD是正方形.故选:C.利用菱形的判定方法结合正方形的判定进而得出答案.此题主要考查了正方形的判定以及菱形的判定,正确掌握正方形的判定方法是解题关键.6.【答案】C【解析】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b(a<b);平均降低率问题,在理解的基础上,可归结为a(1−x)2=b(a>b).7.【答案】B【解析】解:∵四边形ABCD是菱形,∴BD平分∠ABC,∵PE⊥AB,PE=2,∴点P到BC的距离等于2,∵菱形的周长为24,∴BC=6,∴△BCP的面积=12×BC×2=12×6×2=6,故选:B.利用菱形的性质求出点P到BC的距离等于2,由三角形面积公式可得出答案.本题主要考查了菱形的性质和角平分线的性质,运用角的平分线上的点到角的两边的距离相等是解答此题的关键.8.【答案】C【解析】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=13CD=2,设BG=FG=x,则CG=6−x.在直角△ECG中,根据勾股定理,得(6−x)2+42=(x+2)2,解得x=3.∴BG=3=6−3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°−∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG//CF;④错误.理由:∵S△GCE=12GC⋅CE=12×3×4=6∵GF=3,EF=2,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=35×6=185≠3.故④不正确.∴正确的个数有3个.故选:C.根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG//CF;由于S△FGC=S△GCE−S△FEC,求得面积比较即可.本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.9.【答案】−3【解析】解:设方程的另一个根为t,根据题意得2+t=−1,解得t=−3,即方程的另一个根是−3.故答案为−3.设方程的另一个根为t,利用根与系数的关系得到2+t=−1,然后解一元一次方程即可.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+ x2=−ba,x1x2=c a.10.【答案】260个【解析】解:根据题意估计黑球的个数约是400×0.65=260(个),故答案为:260个.用球的总个数乘以黑球的频率的稳定值即可.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】2【解析】解:∵l1//l2//l3,∴AB BC =A1B1B1C1,∴AB=6cm,BC=3cm,A1B1=4cm,∴6 3=4B1C1,解得B1C1=2.故答案为:2.根据三条平行线截两条直线,所得的对应线段成比例列出比例式解答即可.本题考查了平行线分线段成比例,解题的关键是掌握定理及其推论并灵活运用.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.12.【答案】4.8【解析】【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB⋅BC=48,OA=OC,OB=OD,AC=BD=√AB2+BC2=10,∴OA=OD=5,∴S△ACD=12S矩形ABCD=24,∴S△AOD=12S△ACD=12,∵S△AOD=S△AOP+S△DOP=12OA⋅PE+12OD⋅PF=12×5×PE+12×5×PF=52(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.【分析】此题考查了矩形的性质,勾股定理以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=12OA⋅PE+12OD⋅PF求得答案.13.【答案】5.5【解析】解:∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠DCF=90°,∵BE⊥EF,DF⊥EF,∴∠BEC=∠CFD=90°,∴∠BCE+∠DCF=∠DCF+∠CDF=90°,∴∠BCE=∠CDF,∴△BCE∽△CDF,∴BC:BE=CD:CF=5:3=2.5:CF,∴CF=1.5,∵△BCE是直角三角形,∴EC=√52−32=4,∴EF=EC+CF=4+1.5=5.5(cm),故答案为:5.5.根据矩形的性质可得∠BCE=∠CDF,由相似三角形的判定与性质可得CF=1.5,再根据勾股定理可得答案.此题考查的是矩形的性质、相似三角形的判定与性质、勾股定理,掌握其性质定理是解决此题的关键.14.【答案】①③④【解析】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE//BC,DE=12BC即DEBC=12,∴△DOE∽△COB,ADAB =DEBC=OEOB=ODOC=12,∴S△DOE S△COB =(DECB)2=14,故①正确,②错误,③正确;设S△DOE=x,∵OD OC =12,∴S△EOC=2x,∴S△DEC=S△DOE+S△EOC=3x,∵E是AC的中点,∴S△ADE=S△DEC=3x,∴S△ADC=S△ADE+S△DEC=6x,∴S△DOE S△ADC =x6x=16,故④正确.故答案为:①③④.BE、CD是△ABC的中线,即D、E是AB和AC的中点,DE是△ABC的中位线,则DE//BC,DE=12BC,△ODE∽△OCB,根据平行线分线段成比例定理及相似三角形的性质即可判断.本题考查了平行线分线段成比例定理,三角形中位线定理,相似三角形的判定与性质,利用三角形的面积公式和等高三角形面积的关系是解题的关键.15.【答案】解:如图,菱形AECF为所作.【解析】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.连结AC,作AC的垂直平分线交BC于E、交AD于F,利用矩形的性质可得AC垂直平分EF,则四边形AECF为菱形.16.【答案】6【解析】解:(1);(2)△A′B′C′的面积=4×4−12×2×2−12×2×4−12×2×4=6,故答案为6.(1)延长OA 到A′,使OA′=2OA ,同法得到其余点的对应点,顺次连接即可; (2)把所求三角形的面积分割为矩形的面积减去若干直角三角形的面积即可.考查位似图形的画法及相关计算;得到关键点的位置是解决本题的关键;网格中三角形面积的求法通常整理为规则图形的面积的和或者差.17.【答案】解:(1)4x 2−8x +1=0,x 2−2x =−14, x 2−2x +1=34, (x −1)2=34, x −1=±√32,所以x 1=1+√32,x 2=1−√32;(2)(x +1)(x +2)=2x +4, (x +1)(x +2)−2(x +2)=0, (x +2)(x +1−2)=0, x +2=0或x +1−2=0, 所以x 1=−2,x 2=1.【解析】(1)利用配方法得到(x −1)2=34,然后利用直接开平方法解方程;(2)先把方程变形为(x +1)(x +2)−2(x +2)=0,再利用因式分解法把方程转化为x +2=0或x−1=0,然后解一次方程即可.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.18.【答案】解:根据题意,列表如下:由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)=416=14;(2)这个游戏公平,理由如下:∵两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=816=12,两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)=816=12,∴两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.【解析】(1)先列表展示所有可能的结果数为16,再找出两次摸取纸牌上数字之和为5的结果数,然后根据概率的概念计算即可;(2)从表中找出两次摸出纸牌上数字之和为奇数的结果数和两次摸出纸牌上数字之和为偶数的结果数,分别计算这两个事件的概率,然后判断游戏的公平性.本题考查了关于游戏公平性的问题:先利用图表或树形图展示所有可能的结果数,然后计算出两个事件的概率,若它们的概率相等,则游戏公平;若它们的概率不相等,则游戏不公平.19.【答案】解:花园的面积能达到154m2,理由如下:设垂直于墙的边长为x m,则平行于墙的边长为(35−2x+1)m,由题意得:x(35−2x+1)=154,解得:x1=7,x2=11.当x=7时,35−2x+1=22>18,不合题意,舍去.当x=11时,35−2x+1=14,符合题意.即花园的面积能达到154m2,设计方案为:垂直于墙的边长为11m,平行于墙的边长为14米.【解析】设垂直于墙的边长为xm,则平行于墙的边长为(35−2x+1)m,由题意:花园的面积为154m2,列出一元二次方程,解方程,即可解决问题.此题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解答此题的关键.20.【答案】(1)证明:∵DE//AC,CE//BD,∴四边形OCED是平行四边形,∴CE=OD,∵四边形ABCD是菱形,∴OB=OD,∴CE=OB,四边形BCEO是平行四边形;(2)解:四边形OCED是矩形,理由如下:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形OCED是矩形.【解析】(1)先证四边形OCED是平行四边形,再由菱形的性质得OB=OD,即可得出结论;(2)由菱形的性质得AC⊥BD,则∠COD=90°,即可得出结论,本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质等知识,熟练掌握矩形的判定与性质是解题的关键.21.【答案】解:∵AE⊥OD,GO⊥OD,∴EA//GO,∴△AEB∽△OGB,∴AE GO =ABBO,∴1.6 5.6=ABAB+5,解得AB=2(m);∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=5(m),同理可得△DFC∽△DGO,∴FC GO =CDDO,即1.65.6=55+5+AC,解得AC=7.5(m).答:小方行走的路程AC为7.5m.【解析】利用身高与影长成正比可以求得AB的长,然后在利用相似三角形求得AC的长即可.本题考查的是相似三角形在实际生活中的中心投影应用,根据题意得出相似三角形,再利用相似三角形的对应边成比例求解是解答此题的关键.22.【答案】解:(1)当x=40时,(170−2x)x−(500+30x)=(170−2×40)×40−(500+30×40)=1900(元),答:当日产量为40只时,每日获利1900元;(2)由题意得:(170−2x)x−(500+30x)=1750,解得:x1=25,x2=45(不符合题意舍去).答:当日产量为25只时每日获得的利润为1750元.【解析】(1)由题意列式计算即可;(2)由题意:每日获得的利润为1750元,列出一元二次方程,解方程即可.此题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解答此题的关键.23.【答案】AB=AH;【解析】解:(1)∵正方形ABCD,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABM和Rt△ADN中,{AB=AD∠B=∠D BM=DN,∴Rt△ABM≌Rt△ADN(SAS),∴∠BAM=∠DAN,AM=AN,∵∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAM=∠DAN=22.5°,∵∠MAN=45°,AM=AN,AH⊥MN ∴∠MAH=∠NAH=22.5°,∴∠BAM=∠MAH,在Rt△ABM和Rt△AHM中,{∠BAM=∠MAH ∠B=∠AHMAM=AM,∴Rt△ABM≌Rt△AHM(AAS),∴AB=AH,故答案为:AB=AH;(2)AB=AH成立,理由如下:延长CB至E,使BE=DN,如图:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,∴Rt△AEB≌Rt△AND(SAS),∴AE=AN,∠EAB=∠NAD,∵∠DAN+∠BAM=45°,∴∠EAB+∠BAM=45°,∴∠EAM=45°,∴∠EAM=∠NAM=45°,又AM=AM,∴△AEM≌△ANM(SAS),∵AB,AH是△AEM和△ANM对应边上的高,∴AB=AH.(3)分别沿AM,AN翻折△AMH和△ANH,得到△ABM和△AND,分别延长BM和DN交于点C,如图:∵沿AM,AN翻折△AMH和△ANH,得到△ABM和△AND,∴AB=AH=AD=6,∠BAD=2∠MAN=90°,∠B=∠AHM=90°=∠AHN=∠D,∴四边形ABCD是正方形,∴AH=AB=BC=CD=AD=6.由(2)可知,设NH=x,则MC=BC−BM=BC−HM=4,NC=CD−DN=CD−NH=6−x,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2,∴(2+x)2=42+(6−x)2,解得x=3,∴NH=3.(1)由BM=DN可得Rt△ABM≌Rt△ADN,从而可证∠BAM=∠MAH=22.5,Rt△ABM≌Rt△AHM,即可得AB=AH;(2)延长CB至E,使BE=DN,由Rt△AEB≌Rt△AND得AE=AN,∠EAB=∠NAD,从而可证△AEM≌△ANM,根据全等三角形对应边上的高相等即可得AB=AH;(3)分别沿AM,AN翻折△AMH和△ANH,得到△ABM和△AND,分别延长BM和DN交于点C,可证四边形ABCD是正方形,设NH=x,在Rt△MCN中,由勾股定理列方程即可得答案.本题考查正方形性质及应用,涉及全等三角形判定与性质、勾股定理等知识,解题的关键是作辅助线,构造全等三角形.24.【答案】解:(1)如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=10(cm),过P 作PH ⊥AC 于H ,∵∠C =90°,∴PH//BC ,∴△APH∽△ABC ,∴PH BC=AP AB , ∴PH 8=2t 10,∴PH =8t 5, ∴y =12AC ⋅PH =12×6×8t 5=24t 5;(2)当△BPQ 与△ABC 相似,则PB AB =BQ BC 或PB BC =BQ AB , ∴10−2t 10=t 8或10−2t 8=t 10, 解得t =4013或t =257, 当t 为4013或257时,△BPQ 与△ABC 相似;(3)如图,过点P 作PE ⊥AC 于点E ,连接PP′.由题意知,点P、P′关于BC对称,∴BC垂直平分PP′.∴QP=QP′,PD=P′D.∴根据菱形的性质,若四边形QPCP′是菱形,则CD=QD,∵∠ACB=90°,由(1)知PH=8t5,∵∠PEC=∠ACB=∠PDC=90°,∴四边形PECD是矩形,∴CD=PE=85tcm,即CD=QD=85t cm.又BQ=t cm,BC=8cm,∴2×85t+t=8,解得,t=4021.∴若四边形QPCP′为菱形,则t的值为4021.【解析】(1)如图,根据勾股定理得到AB=√AC2+BC2=10(cm),过P作PH⊥AC于H,根据相似三角形的性质即可得到结论;(2)根据相似三角形的性质列比例式即可得到结论;(3)如图,过点P作PE⊥AC于点E,连接PP′.由题意知,点P、P′关于BC对称,根据线段垂直平分线的性质得到QP=QP′,PD=P′D.根据矩形的性质得到CD=PE=85tcm,即CD=QD=85t cm.于是得到结论.本题是考查的是菱形的性质、二次函数的解析式的确定依据二次函数的性质,掌握菱形的性质定理、矩形的判定定理依据二次函数的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省青岛市九年级(下)期中数学试卷含答案一、选择题(每小题3分,共30分)1.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=35.为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,下列说法:①该班B等及B等以上占全班60%;②D等有4人,没有得满分的(按120分制);③成绩分数(按120分制)的中位数在第三组;④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①②B.③④C.①③D.①③④6.下列方程中,没有实数根的是()A.3x+2=0B.2x+3y=5C.x2+x﹣1=0D.x2+x+1=07.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是()A.P0B.P1C.P2D.P39.在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,观察图中每正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点的个数共有()A.35个B.40个C.45个D.50个10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.正数的平方为,1的算术平方根为.12.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有(写出所有正确结论的序号).13.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B 的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.14.如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是(填序号)15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)(2x+3)(2x﹣3)﹣4x(x﹣3)+(x﹣2)2,其中x2+8x﹣2020=0.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)21.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.22.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD’,连接CD’(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题(1)请结合小聪研究问题的过程和思路,在这种特殊情况下,①证明△D’BC是等边三角形;②求出∠ADB的度数;(2)结合小聪研究特殊问题的启发,直接写出这道题答案.23.(11分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.2017-2018学年河南省驻马店市泌阳县九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.对于两个数,M=2008×20 092 009,N=2009×20 082 008.则()A.M=N B.M>N C.M<N D.无法确定【分析】根据有理数大小比较的方法,以及乘法分配律可解.【解答】解:根据数的分成和乘法分配律,可得M=2008×(20 090 000+2009)=2008×20 090 000+2008×2009=2008×2009×10000+2008×2009=2009×20 080 000+2008×2009,N=2009×(20 080 000+2008)=2009×20 080 000+2009×2008,所以M=N.故选:A.【点评】熟练运用乘法分配律进行数的计算,然后比较各部分即可.2.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥【分析】根据三视图确定该几何体是圆柱体.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:C.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3B.1﹣2(x﹣1)=3C.1﹣2x﹣2=﹣3D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选:A.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,下列说法:①该班B等及B等以上占全班60%;②D等有4人,没有得满分的(按120分制);③成绩分数(按120分制)的中位数在第三组;④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①②B.③④C.①③D.①③④【分析】根据百分比、中位数、众数的定义对每个问题分别解答,即可确定选项.【解答】解:①,正确;②D等有4人,但看不出其具体分数,错误;③该班共60人,在D等、C等的一共24人,所以中位数在第三组,正确;④虽然第三组的人数多,但成绩分数不确定,所以众数不确定.故正确的有①③.故选:C.【点评】本题为统计题,考查众数与中位数的意义.特别是确定众数属于哪个组,是经常出现的问题,也易错问题.6.下列方程中,没有实数根的是()A.3x+2=0B.2x+3y=5C.x2+x﹣1=0D.x2+x+1=0【分析】A是一元一次方程,故有解;B是二元一次方程,是不定方程,一定有解;C与D是一元二次方程,计算两个方程的△的值的符号后,根据一元二次方程的根的判别式与根的关系判断根的情况.【解答】解;A、3x+2=0,解得x=﹣,B、2x+3y=5是不定方程,有无穷组解,C、∵△=b2﹣4ac=5>0∴方程x2+x﹣1=0有实数根,D、∵△=b2﹣4ac=12﹣4×1×1=﹣3<0∴方程x2+x+1=0没有实数根.故选:D.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是()A.P0B.P1C.P2D.P3【分析】掷两次骰子,可理解为一次掷两枚骰子,故用列表法求出两个面朝上的所有情况,再求出它们的数字之和,然后除以4,得到余数为0,1,2,3的各种情况,然后分别计算其概率.【解答】解:根据题意画出树状图如下:一共有36种情况,两个数字之和除以4:和为4、8、12时余数是0,共有9种情况,和是5、9时余数是1,共有8种情况,和是2、6、10时余数是2,共有9种情况,和是3、7、11时余数是3,共有10种情况,所以,余数为0的有9个,P0==;余数为1的有8个,P1==;余数为2的有9个,P2==;余数为3的有10个,P3==.可见,>>;∴P1<P0=P2<P3.故选:D.【点评】本题考查了列表法与树状图法,此题由于是一枚骰子投两次,故可理解为两枚骰子投一次,用列表法最直观.9.在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,观察图中每正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点的个数共有()A.35个B.40个C.45个D.50个【分析】根据图形找规律可知:10个正方形(实线)四条边上的整点的个数=10×4=40.【解答】解:由图中可知:第一个图形中有4×1=4个整数点;第一个图形中有4×2=8个整数点.那么第10个正方形(实线)四条边上的整点的个数共有4×10=40个整数点.故选:B.【点评】解决本题的关键是观察图形得到一般的规律.10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O ′中⊙O 上, ∵∠AOB =120°, ∴∠O ′OB =60°, ∴△OO ′B 是等边三角形, ∴∠AO ′B =120°, ∵∠AO ′B ′=120°, ∴∠B ′O ′B =120°,∴∠O ′B ′B =∠O ′BB ′=30°,∴图中阴影部分的面积=S △B ′O ′B ﹣(S 扇形O ′OB ﹣S △OO ′B )=×1×2﹣(﹣×2×)=2﹣.故选:C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.正数的平方为,1的算术平方根为.【分析】根据算术平方根的定义求解即可.【解答】解:∵=,∴正数的平方为;∵(±)2=1,∴1的算术平方根是,故答案为:,.【点评】此题主要考查了算术平方根的定义,熟记一个非负数的正的平方根叫做这个数的算术平方根是解答此题的关键.12.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有②③(写出所有正确结论的序号).【分析】①举出反例即可求解;②根据[x]表示不超过x的最大整数的定义即可求解;③分两种情况:﹣1<x<0;x=0;0<x<1;进行讨论即可求解;④首先确定x﹣[x]的范围为0~1,依此可得﹣7≤2x<﹣3.5,即﹣3.5≤x<﹣2.5,再找到满足条件的x值即为所求.【解答】解:①当x=﹣3.5时,[﹣3.5]=﹣4,﹣[x]=﹣3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1;当x=0时,[1+x]+[1﹣x]=1+1=2;当0<x<1时,[1+x]+[1﹣x]=1+0=1;故当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2是正确的;④x﹣[x]的范围为0~1,4x﹣2[x]+5=0,﹣7≤2x<﹣5,即﹣3.5≤x<﹣2.5,x=﹣2.75或x=﹣3.25都是方程4x﹣2[x]+5=0的解,故原来的说法错误.故答案为:②③.【点评】本题考查了不等式的应用,正确理解[x]表示不超过x的最大整数是关键.13.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN,OM=AN,即可得到求出B的坐标,代入反比例函数即可得出一元二次方程,解方程即可得到k的值.【解答】解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;解决问题的关键是作辅助线构造全等三角形.14.如图所示,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是①(填序号)【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,在判断出函数图象.【解答】解法一:设BE=x,FC=y,则AE2=x2+42,EF2=(4﹣x)2+y2,AF2=(4﹣y)2+42.又∵△AEF为直角三角形,∴根据勾股定理得到AE2+EF2=AF2.即x2+42+(4﹣x)2+y2=(4﹣y)2+42化简得:y=﹣x2+x=﹣(x﹣2)2+1,即y=(x﹣2)2+1,此时,该函数图象是以(2,1)为顶点的抛物线.很明显,y关于x的函数图象是①.解法二:易证△ABE∽△ECF,则BE:CF=AB:EC,即x:y=4:(4﹣x)y,整理,得y=﹣(x﹣2)2+1,此时,该函数图象是以(2,1)为顶点的抛物线.很明显,y关于x的函数图象是①.故填:①.【点评】本题考查了动点问题的函数图象,解题的关键是列出动点的函数关系式,根据函数关系式来判定其函数图象.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2x+3)(2x﹣3)﹣4x(x﹣3)+(x﹣2)2,其中x2+8x﹣2020=0.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:(2x+3)(2x﹣3)﹣4x(x﹣3)+(x﹣2)2=4x2﹣9﹣4x2+12x+x2﹣4x+4=x2+8x﹣5,∵x2+8x﹣2020=0,即x2+8x=2020,∴原式=2020﹣5=2015.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【分析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y =mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.【解答】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【点评】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是掌握待定系数法求函数解析式.解题时可以从动态的角度看待点P的位置.21.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.22.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD’,连接CD’(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题(1)请结合小聪研究问题的过程和思路,在这种特殊情况下,①证明△D’BC是等边三角形;②求出∠ADB的度数;(2)结合小聪研究特殊问题的启发,直接写出这道题答案.【分析】(1)①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.(2)第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1).【解答】解:(1)①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(2)解:第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC =(180°﹣α)=90°﹣α,∴∠ABD =∠DBC ﹣∠ABC =β﹣(90°﹣α),同(1)①可证△ABD ≌△ABD ′,∴∠ABD =∠ABD ′=β﹣(90°﹣α),BD =BD ′,∠ADB =∠AD ′B ,∴∠D ′BC =∠ABC ﹣∠ABD ′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β), ∴D ′B =D ′C ,∠BD ′C =60°.同(1)②可证△AD ′B ≌△AD ′C ,∴∠AD ′B =∠AD ′C ,∵∠AD ′B +∠AD ′C +∠BD ′C =360°,∴∠ADB =∠AD ′B =150°.【点评】此题是几何变换综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(11分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C 的坐标为(0,﹣),点M 是抛物线C 2:y =mx 2﹣2mx ﹣3m (m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.。