2020版新高考二轮复习理科数学课件:3-1解三角形
高考数学一轮总复习教学课件第四章 三角函数、解三角形第3节 两角和与差的正弦、余弦和正切公式
D.tan(α+β)=-1
解析:(2)由题意得
sin αcos β+sin βcos α+cos α cos β-sin αsin β
= 2 × (cos α-sin α)·sin β,整理,
得sin αcos β-sin β cos α+cos αcos β+sin αsin β=
0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.故选C.
即 sin(α+β)= .故选 C.
(1)三角函数求值中变角的原则
①当“已知角”有两个时,“所求角”一般表示为两个“已知角”
的和或差的形式.
②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”
的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.
(2)常用的拆角、配角技巧
2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=
=cos(α+ )cos -sin(α+ )sin
= × - × =- .故选 C.
( 2 )(2024 ·山东日照模拟 ) 已知α∈ (
,
) , β∈( π,
cos(α- )=- ,sin(β- )= ,则 sin(α+β)的值为(
.
又因为β∈[π, ],所以β-α∈[ , ],故 cos(β-α)=
第3讲 大题专攻——三角函数与解三角形 2023高考数学二轮复习课件
22
∴ba=ssiinn BA=
3 3
=2 3
6.
3
目录
解三角形中的证明问题
【例3】 (2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,
已知sin Csin(A-B)=sin Bsin(C-A).
(1)证明:2a2=b2+c2;
解 证明:法一:由sin Csin(A-B)=sin Bsin(C-A)可得,sin Csin Acos
目录
2.(2021·新高考全国Ⅱ卷)(正、余弦定理,三角形面积公式)在△ABC中,角 A,B,C所对的边分别为a,b,c,b=a+1,c=a+2. (1)若2sin C=3sin A,求△ABC的面积; 解:由2sin C=3sin A及正弦定理可得2c=3a. 结合b=a+1,c=a+2,解得a=4,b=5,c=6. 在△ABC 中,由余弦定理得 cos C=a2+2ba2b-c2=16+2450-36=18,所以 sin
C= 1-cos2C=387, 所以 S△ABC=12absin C=12×4×5×387=154 7.
目录
(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;
若不存在,说明理由.
解:设存在正整数a满足条件,由已知c>b>a,所以C为钝角.
所以cos
C=
Байду номын сангаас
a2+b2-c2 2ab
<0⇒a2+b2<c2⇒a2+(a+1)2<(a+2)2⇒(a+1)(a
目录
三角形中基本量的求解
【例2】 (2022·新高考Ⅱ卷)记△ABC的内角A,B,C的对边分别为a,b,
c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3.已知S1
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
高考数学(理)二轮复习三级排查大提分课件:3-2解三角形
一级排查
二级排查
三级排查
走向考场
C=2c-b a.
(1)求ssiinn CA的值;
(2)若 cos B=14,△ABC 的周长为 5,求 b 的长.
一级排查
二级排查
三级排查
走向考场
[正解] (1)由正弦定理,可设sina A=sinb B=sinc C=k,
则2c-b a=2ksinkCsi-n Bksin
A=2sin
C-sin sin B
一级排查
二级排查
三级排查
走向考场
解三角形的实际应用问题
根据近三年的高考试题如2011上海6,2012上海21,2013江苏18等 预测2014年高考命题中解三角形的实际应用问题将会加大考查 力度,借以考查知识的运用,借助解三角形的知识考查应用问 题,是高考对应用性问题的考查方式之一,该类问题解决的关 键是建立三角形或三角函数模型,转化为数学问题.例3第(1)问 解决的关键是看懂图形,利用三角函数性质求解.第(2)问解决 的关键是恰当选择正、余弦定理及求最值的方法.
2013 山东,17;A∶sin B∶sin C.
()
2013 湖北,17;2.在△ABC 中,余弦定理:a2=b2+c2-2bccos
2012 浙江,18;A,b2=c2+a2-2cacos B,c2=a2+b2-2abcos
2011 天津,6. C.
()
3.在△ABC 中,S△ABC=12absin A=12bcsin B=12
《第3讲 三角函数的图像与性质》
【反思归纳】 (1)三角函数定义域的求法 ①应用正切函数 y=tan x 的定义域求函数 y=Atan(ωx+φ)的定义 域. ②转化为求解简单的三角不等式求复杂函数的定义域. (2)简单三角不等式的解法 ①利用三角函数的图象求解. ②利用三角函数线求解.
【即时训练】 (1)函数 y=lg(2sin x-1)+ 1-2cos x的定义域为 ________.
2020届高考第一轮复习理科数学
第三章 三角函数、解三角形
第3讲 三角函数的图像与性质
(第三课时)
三角函数的周期性、奇偶性、对称性(多维探究)
角度一 三角函数的周期性
例 3. (1)(2018 潍坊模拟)下列函数中,最小正周期为 π,且图象关于直线
x=π3对称的是( B )
(A)y=sin2x-π3
故 y=f(t)=12(t+1)2-1(- 2≤t≤ 2),从而知: f(-1)≤y≤f( 2),即-1≤y≤ 2+12. 即函数的值域为[-1, 2+12].
(2)y=2cos(π3+x)+2cos x
=
π 3cos
x-2sin
π 3sin
x+2cos
x
=3cos x- 3sin x
=2
【答案】 (1)[-32,3] (2) 1 (3)[-12- 2,1]
1.(2018·高考全国卷Ⅰ)已知函数 f(x)=2cos2x-sin2x+2,则 () A.f(x)的最小正周期为 π,最大值为 3 B.f(x)的最小正周期为 π,最大值为 4 C.f(x)的最小正周期为 2π,最大值为 3 D.f(x)的最小正周期为 2π,最大值为 4 2.求下列函数的值域: (1)y=sin x+cos x+sin xcos x;(2)y=2cos(π3+x)+2cos x. (《金榜题名》第 54 页 典例 2 【即时训练】)
2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积
为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8
为
.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与
2020版高考数学复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式课件理新人教A版
2 2 2 2
sin(α+φ)其中tan
b φ=a
· cos(α-φ)其中tan
a φ=b.
[微点提醒] 1.tan α±tan β=tan(α±β)(1∓tan αtan β).
2.二倍角的正弦、余弦、正切公式
2sin αcos α sin 2α=_____________. 1-2sin2α cos2α-sin2α =_____________ 2cos2α-1 =_____________. cos 2α=_____________
2tan α 2 1 - tan α tan 2α=________________ .
多维探究
cos 10° - 3cos(-100° ) 【例 2-1】 (1)计算: =________. 1-sin 10°
解析
cos 10° - 3cos(-100° ) cos 10° + 3cos 80° cos 10° + 3sin 10° = = = 2· sin 40° 1-sin 10° 1-cos 80°
1 A. 2 3 B. 2 1 C.- 2 3 D.- 2
)
解析 由三角函数定义,sin α=cos 47°,cos α=sin 47°, 则sin(α-13°)=sin αcos 13°-cos αsin 13°
=cos 47°cos 13°-sin 47°sin 13° 1 =cos(47° +13° )=cos 60° = . 2 答案 A
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.
2020年新高考数学复习实际问题中的解三角形问题专题解析
无解
一解
两解
一解
一解
无解
7.三角形常用的面积公式
1
1
1
1
abc
(1)S=2a·ha(ha 表示 a 边上的高).(2)S=2absinC=2acsinB=2bcsinA= 4R .
1 (3)S=2r(a+b+c)(r 为内切圆半径).
应用举例: 类型一、测量高度问题
【例 1】如图,一山顶有一信号塔 CD ( CD 所在的直线与地平面垂直),在山脚 A 处测得塔尖 C 的仰角为 ,沿倾斜角为 的山坡向上前进 l 米后到达 B 处,测得 C 的仰角为 .
3 海里.
(1)求 两点间的距离;(精确到 0.01)
(2)某一时刻,我国一渔船在 点处因故障抛锚发出求教信号.一艘 国舰艇正从点 正东 10 海里的点 处以
18 海里/小时的速度接近渔船,其航线为
(直线行进),而我东海某渔政船正位于点 南偏西 方向
20 海里的点 处,收到信号后赶往救助,其航线为先向正北航行 8 海里至点 处,再折向点 直线航行,航
实战演练:
1.如图,一条巡逻船由南向北行驶,在 A 处测得山顶 P 在北偏东150 BAC 150 方向上,匀速向北航
行 20 分钟到达 B 处,测得山顶 P 位于北偏东 600 方向上,此时测得山顶 P 的仰角 600 ,若山高为 2 3 千米,
新高考新教材数学二轮复习六大核心专题1三角函数与解三角形解答题专项1三角函数与解三角形pptx课件
π
φ=-6.
考点二
利用正弦、余弦定理解三角形
考向1 求三角形中的边或角
例 2(2023 北京海淀一模)在△ABC 中,bsin2A= 3asinB.
(1)求 A;
(2)若△ABC 的面积为 3 3,再从条件①、条件②、条件③这三个条件中选择
一个作为已知,使△ABC 存在且唯一确定,求 a 的值.
1
∵0<B<π,∴sinB≠0,则 cosA=-2.
2π
∵0<A<π,∴A= . ........................................................................................ 10
3
1
1
2π
1
3
3
由(1)知 bc=1,故 S△ABC=2bcsinA=2×1×sin 3 = 2×1× 2 = 4 . ................... 12
4
2
3
4
π
3
π
π
π
2π
整理得 sin(2x+3)= 2 ,即 2x+3=2kπ+3或 2x+3=2kπ+ 3 (k∈Z),
π
π
2π
π
当 k=0 时,2x+ = 或 ,即 x=0 或 ;
3
3
3
6
7π
当 k=1 时,x=π 或 6 .
π
7π
7π
故所有零点之和为 0+ +π+ = .
6
6
3
增分技巧1.三角恒等变换在三角函数图象与性质中应用的基本思路:通过
新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则
=
α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=
3π
(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=
2024届高考数学二轮复习专题1三角函数与解三角形课件
即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量
2023新教材高考数学二轮专题复习:三角函数与解三角形课件
技法领悟
1.若涉及已知条件中含边长之间的关系,且与面积有关的最值问题, 一般利用S=12ab sinC型面积公式及基本不等式求解.
2.若求与三角形边长有关的表达式的最值或取值范围时,一般把边
用三角形的一个角表示,利用角的范围求解.
巩固训练1 1.[2022·河北沧州二模]在△ABC中;内角A,B,C的对边分别为a, b,c,已知b(2sin A- 3cos A)=a sin B. (1)求A;
2,则sin B= 22且π>B>0,可得B=π4或B=34π,
(2)若a=2,求△ABC的面积.
解析:由题设,a=2,则b= 3,又B=π4,
所以cos B=a2+c2−b2=1+c2= 2,整理得c2-2 2c+1=0,解得c= 2±1,满足
2ac
4c 2
题设.
由S△ABC=12ac sin B= 22c, 所以,当c= 2+1时S△ABC=1+ 22;当c= 2-1时S△ABC=1- 22.
(2)将函数f(x)的图象向右平移π6个单位长度,再把各点的横坐标缩小 为原来的12(纵坐标不变),得到函数y=g(x)的图象,当x∈[-1π2,π6]时, 求函数g(x)的值域.
解析:将函数f(x)的图象向右平移π6个单位长度,可得y=2sin (2x-π3)的图象. 再把横坐标缩小为原来的12,得到函数y=g(x)=2sin (4x-π3)的图象. 当当当x44∈xx--[-ππ33==1π2-π3,时π2时,π6]时,函,函数4数gx(-xg)(取π3x∈)取得[-得最2最大3π 小值,值,π3],最,最 大小值值为为3-,2, 故函数g(x)的值域为[-2, 3].
1.已知函数f(x)= 称轴间的距离为π2.
2020版高考数学大二轮培优理科通用版课件:专题二 第2讲 解三角形
������
14
在△ABC 中,∠B 是钝角,所以∠C 为锐角.
所以 cos C= 1-sin2������ = 1114. 所以 sin(B-C)=sin Bcos C-cos Bsin C=473.
6.(2019天津,理15)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知
b+c=2a,3csin B=4asin C. (1)求cos B的值; (2)求 sin 2B+π6 的值.
1.(2019 全国Ⅱ,理 15)△ABC 的内角 A,B,C 的对边分别为 a,b,c.若
b=6,a=2c,B=π3,则△ABC 的面积为
.
解析:∵b2=a2+c2-2accos B,
∴(2c)2+c2-2×2c×c×12=62,
即 3c2=36,
解得 c=2 3或 c=-2 3(舍去).
∴a=2c=4 3.
解:(1)由题设及正弦定理得 sin Asin������+������=sin Bsin A.
2
因为 sin A≠0,所以 sin������+2������=sin B. 由 A+B+C=180°,可得 sin������+2������=cos���2���, 故 cos���2���=2sin���2���cos���2���.
因为 PB⊥AB,
所以 cos∠PBD=sin∠ABE=180 = 45.
所以
PB= ������������
cos∠ ������������������
=
12
4
=15.
5
因此道路 PB 的长为 15(百米).
(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O