专题 电磁感应规律的综合应用
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
根据电磁感应运动规律的公式总结与应用
根据电磁感应运动规律的公式总结与应用电磁感应是电磁场与导体相互作用所产生的一种物理现象。
根据电磁感应的基本原理和运动规律,可以得出一系列公式并应用于实际问题中。
1.法拉第电磁感应定律:当导体穿过磁场中的磁感线时,导体中就会产生感应电动势。
法拉第电磁感应定律的公式为ε=-dΦ/dt,其中,ε表示感应电动势,Φ表示穿过导体的磁通量,dt表示时间的微小变化量。
应用:根据法拉第电磁感应定律,可以解释电动机、发电机、变压器等设备的工作原理。
例如,发电机将机械能转化为电能,在发电机中通过转子中的导体与磁场相互作用产生感应电动势,从而输出电能。
2.楞次定律:根据楞次定律,当磁感线发生变化时,导体中将会产生电流,这个电流的方向与磁场变化的方式相互作用,使得导体产生的磁场的磁场力线的方向和磁场力线相对应。
公式为:ε=-dΦ/dt,其中ε表示感应电动势,dΦ/dt表示磁通量的变化率。
应用:楞次定律在电磁感应产生的电流方向问题上具有重要意义。
当导体穿过磁场时,感应电动势会产生电流,这个电流的方向为了抵消感应电动势改变磁场的方式。
例如,当我们拖着导体穿过一个恒定的磁场时,导体中会产生的感应电流将与磁场作用产生力,这个力称为洛伦兹力。
3.楞次-菲阿定律:根据楞次-菲阿定律,当一个线圈中的电流变化时,会在线圈附近产生霍尔电动势。
公式为ε=-L(dI/dt),其中ε表示感应电动势,L表示线圈的自感系数,dI/dt表示电流变化的速率。
应用:楞次-菲阿定律可以应用于电感器的设计和电路中的电感元件选择。
在电路中,当电流变化时,会产生感应电动势,这个感应电动势会影响电路的性能。
根据楞次-菲阿定律,可以计算感应电动势的大小,并针对电路设计进行调整。
4.反恢复力定律:根据反恢复力定律,当一个导体中有感应电流通过时,导体将受到一个恢复其原位的力。
公式为F=Il×B,其中F表示受力大小,I表示电流的大小,l表示导线长度,B表示磁场的大小。
电磁感应规律综合应用的常见题型
电磁感应规律综合应用的常见题型 一、 电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路2.电源电动势和路端电压(1)电动势:E Blv =或E n tϕ∆=∆. (2)电源正、负极:用右手定则或楞次定律确定.(内电路电流由低电势到高电势,外电路由高电势到底电势)。
(3)路端电压:U E Ir IR =-=3、电路问题分析方法(1)确定看做电源的导体(2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;(3)画等效电路图;(4)运用闭合电路欧姆定律、串并联电路性质、电功率等公 式联立求解.例1.如图9-3-1所示,在磁感应强度为0.2 T 的匀强磁场中,有一长为0.5 m 、电阻为1.0 Ω的导体AB 在金属框架上以10 m/s 的速度向右滑动,R 1=R 2=2.0 Ω,其他电阻不计,求流过导体AB 的电流I.例2、(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。
如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘幅条构成。
后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。
在支架上装有磁铁,形成了磁感应强度B=0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r 2、张角θ=π/6 。
后轮以角速度 ω=2πrad/s 相对于转轴转动。
若不计其它电阻,忽略磁场的边缘效应。
(1)当金属条ab 进入“扇形”磁场时,求感应电动势E ,并指出ab 上的电流方向;(2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差Uab 随时间t 变化的Uab -t 图象;(4)若选择的是“1.5V 、0.3A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价二、 电磁感应中的动力学问题(一)应用知识:1、安培力的大小:由感应电动势E=BLv ,感应电流I=E/R,和安培力公式F=BIL 得22B l v F R= 2、安培力方向判断:先用右手定则判定电流方向,在用左手定则确定安培力方向。
专题突破练 专题四 第18练 电磁感应中的动量问题 电磁感应规律的综合应用
第18练电磁感应中的动量问题电磁感应规律的综合应用1.(多选)(2019·全国卷Ⅲ·19)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上,选运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02项A、C正确,B、D错误.2.(多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q,合上开关S后()A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.3.(多选)(2022·湖南卷·10)如图,间距L =1 m 的U 形金属导轨,一端接有0.1 Ω的定值电阻R ,固定在高h =0.8 m 的绝缘水平桌面上.质量均为0.1 kg 的匀质导体棒a 和b 静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为0.1 Ω,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒a 距离导轨最右端1.74 m .整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为0.1 T .用F =0.5 N 沿导轨水平向右的恒力拉导体棒a ,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,撤去F ,导体棒a 离开导轨后落到水平地面上.重力加速度取10 m/s 2,不计空气阻力,不计其他电阻,下列说法正确的是( )A .导体棒a 离开导轨至落地过程中,水平位移为0.6 mB .导体棒a 离开导轨至落地前,其感应电动势不变C .导体棒a 在导轨上运动的过程中,导体棒b 有向右运动的趋势D .导体棒a 在导轨上运动的过程中,通过电阻R 的电荷量为0.58 C答案 BD解析 导体棒a 在导轨上向右运动,产生的感应电流方向向里,流过导体棒b 的电流方向向里,由左手定则可知安培力向左,则导体棒b 有向左运动的趋势,故C 错误;导体棒b 与电阻R 并联,有I =BL v 0.15 Ω,当导体棒a 运动到导轨最右端时,导体棒b 刚要滑动,有B ·I 2·L =μmg ,联立解得导体棒a 的速度为v =3 m/s ,导体棒a 离开导轨至落地前做平抛运动,有x=v t ,h =12gt 2,联立解得导体棒a 离开导轨至落地过程中水平位移为x =1.2 m ,故A 错误;导体棒a 离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B 正确;导体棒a 在导轨上运动的过程中,通过电路的电荷量为q =I ·Δt =BL ·Δx 0.15 Ω=0.1×1×1.740.15 C =1.16 C ,导体棒b 与电阻R 并联,则通过电阻R 的电荷量为q R =q 2=0.58 C ,故D 正确.4.(2022·辽宁卷·15)如图所示,两平行光滑长直金属导轨水平放置,间距为L .abcd 区域有匀强磁场,磁感应强度大小为B ,方向竖直向上.初始时刻,磁场外的细金属杆M 以初速度v 0向右运动,磁场内的细金属杆N 处于静止状态.两金属杆与导轨接触良好且运动过程中始终与导轨垂直.两杆的质量均为m ,在导轨间的电阻均为R ,感应电流产生的磁场及导轨的电阻忽略不计.(1)求M 刚进入磁场时受到的安培力F 的大小和方向;(2)若两杆在磁场内未相撞且N 出磁场时的速度为v 03,求:①N 在磁场内运动过程中通过回路的电荷量q ;②初始时刻N 到ab 的最小距离x ;(3)初始时刻,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),求M 出磁场后不与N 相撞条件下k 的取值范围.答案 (1)B 2L 2v 02R 方向水平向左 (2)①m v 03BL ②2m v 0R 3B 2L2 (3)2≤k <3 解析 (1)细金属杆M 以初速度v 0向右运动,刚进入磁场时,产生的电动势为E =BL v 0电流为I =E 2R则所受的安培力大小为F =BIL =B 2L 2v 02R由左手定则可知安培力的方向水平向左;(2)①金属杆N 在磁场内运动的过程中,取水平向右为正方向,由动量定理有B I L ·Δt =m ·v 03-0 且q =I ·Δt联立解得通过回路的电荷量q =m v 03BL②设杆M 在磁场中运动的位移大小为x 1,杆N 在磁场中运动的位移大小为x 2,则有Δx =x 1-x 2,有 I =E2R ,E =BL ·Δx Δt 整理可得q =BL ·Δx 2R联立可得Δx =2m v 0R 3B 2L 2 若两杆在磁场内刚好相撞,N 到ab 的最小距离为x =Δx =2m v 0R 3B 2L 2 (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N 到cd 的距离与第(2)问初始时刻的相同、到ab 的距离为kx (k >1),则N 到cd 边的速度大小恒为v 03,取水平向右为正方向,根据动量守恒定律可知m v 0=m v 1+m ·v 03解得N 出磁场时,M 的速度大小为v 1=23v 0 由题意可知,此时M 到cd 边的距离为s =(k -1)x若要保证M 出磁场后不与N 相撞,则有两种临界情况:①M 减速到v 03时出磁场,速度刚好等于N 的速度,一定不与N 相撞,对M 根据动量定理有 -B I 1L ·Δt 1=m ·v 03-m ·23v 0 q 1=I 1·Δt 1=BL ·(k -1)x 2R联立解得k =2②M 运动到cd 边时,恰好减速到零,则对M 由动量定理有-B I 2L ·Δt 2=0-m ·23v 0 同理解得k =3综上所述,M 出磁场后不与N 相撞条件下k 的取值范围为2≤k <3.1.(多选)足够长的平行光滑金属导轨ab 、cd 水平放置于竖直向上的匀强磁场中,ac 之间连接阻值为R 的电阻,导轨间距为L ,导体棒ef 垂直导轨放置且与导轨接触良好,导体棒质量为m 、电阻为r .t =0时刻对导体棒施加一个水平向右的力F (图中未画出),导体棒在F 的作用下开始做初速度为零的匀加速直线运动,当导体棒运动x 距离时撤去外力F ,此时导体棒的速度大小为v 0.若不计导轨电阻,则下列说法正确的是( )A .外力F 的大小与时间的关系式为F =ma +B 2L 2at R +rB .t =0时刻外力F 的大小为m v 022xC .从撤去外力F 到导体棒停止运动,电阻R 上产生的焦耳热为12m v 02 D .从撤去外力F 到导体棒停止运动,导体棒运动的位移大小为m v 0(R +r )B 2L 2答案 ABD 解析 由题知导体棒在F 的作用下开始做初速度为零的匀加速直线运动,根据牛顿第二定律有F -B 2L 2v R +r =ma ,v =at ,整理有F =B 2L 2at R +r+ma ,A 正确;由v 02=2ax ,解得在t =0时刻F =ma =m v 022x ,B 正确;从撤去外力F 到导体棒停止运动,根据动能定理有Q =12m v 02,则R 上产生的焦耳热为Q R =R R +r Q =Rm v 022(R +r ),C 错误;从撤去外力F 到导体棒停止运动,根据动量定理有-B I Lt =0-m v 0,I ·t =BL vR +r ·t =BLx R +r ,联立解得x =m v 0(R +r )B 2L 2,D 正确. 2.(多选)(2022·湖南衡阳市二模)如图,光滑平行导轨上端接一电阻R ,导轨弯曲部分与水平部分平滑连接,导轨间距为l ,导轨水平部分左端有一竖直向上的匀强磁场,磁感应强度大小为B ,现将金属棒PQ 从导轨弯曲部分的上端由静止释放,金属棒刚进入磁场时的速度大小为v 1,离开磁场时的速度大小为v 2,改变金属棒释放的高度,使其释放高度变为原来的12,金属棒仍然可以通过磁场区域,导轨和金属棒的电阻不计,则( ) A .金属棒通过磁场区域时金属棒中的电流方向为由P 到QB .金属棒第二次离开磁场时的速度大小为v 2-(1-22)v 1C .金属棒在两次通过磁场区域的过程中电阻R 上产生的热量相等D .金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等答案 BD解析 金属棒通过磁场区域时,由右手定则可知,金属棒中的电流方向为由Q 到P ,故A 错误;金属棒第二次释放的高度变为原来的12,由动能定理可知,进入匀强磁场时的速度大小为v 3=2v 12,金属棒通过磁场区域的过程中,根据动量定理有-B I lt =Δp ,又因为I =E R,E =ΔΦt ,所以-Bl ΔΦR=Δp ,则可知金属棒两次通过匀强磁场区域的过程中动量变化量相同,速度变化量也相同,则v 2-v 1=v 4-v 3,故金属棒第二次离开磁场时的速度大小为v 4=v 2-(1-22)v 1,故B 正确;金属棒第二次通过磁场区域的过程中所用时间长且减少的动能少,则电阻R 上产生的热量少,故C 错误;由电荷量q =ΔΦR,可知金属棒在两次通过磁场区域的过程中通过电阻R 的电荷量相等,故D 正确.3.(多选)如图所示,足够长的水平光滑金属导轨所在空间中,分布着垂直于导轨平面方向竖直向上的匀强磁场,磁感应强度大小为B .两导体棒a 、b 均垂直于导轨静止放置.已知导体棒a 质量为2m ,导体棒b 质量为m ,长度均为l ,接入电路的电阻均为r ,其余部分电阻不计.现使导体棒a 获得瞬时平行于导轨水平向右的初速度v 0.除磁场作用外,两棒沿导轨方向无其他外力作用,在两导体棒运动过程中,下列说法正确的是( )A .任何一段时间内,导体棒b 的动能增加量跟导体棒a 的动能减少量在数值上总是相等的B .任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反C .全过程中,通过导体棒b 的电荷量为2m v 03BlD .全过程中,导体棒b 共产生的焦耳热为m v 026答案 BCD解析 根据题意可知,两棒组成闭合回路,电流相同,故所受安培力的合力为零,动量守恒,故任何一段时间内,导体棒b 的动量改变量跟导体棒a 的动量改变量总是大小相等、方向相反,根据能量守恒定律可知,a 的动能减少量在数值上等于b 的动能增加量与产热之和,故A 错误,B 正确;两棒最终共速,根据动量守恒定律,有2m v 0=(2m +m )v ,对b 棒m v -0=B I l ·t =Blq ,联立解得q =2m v 03Bl,故C 正确;根据能量守恒定律,可知两棒共产生的焦耳热为Q =12×2m v 02-12()2m +m v 2=m v 023,而由于两棒的电阻大小相等,因此b 棒产生的焦耳热为Q b =12Q =m v 026,故D 正确. 4.(2022·山东烟台市、德州市一模)有一边长为L 、质量为m 、总电阻为R 的正方形导线框自磁场上方某处自由下落,如图所示.匀强磁场区域Ⅰ、Ⅱ的磁感应强度大小均为B ,二者宽度分别为L 、H ,且H >L .导线框恰好匀速进入区域Ⅰ,一段时间后又恰好匀速离开区域Ⅱ,重力加速度为g ,下列说法正确的是( )A .导线框离开区域Ⅱ的速度大于mgRB 2L2 B .导线框刚进入区域Ⅱ时的加速度大小为g ,方向竖直向上C .导线框进入区域Ⅱ的过程产生的焦耳热为mgHD .导线框自开始进入区域Ⅰ至刚完全离开区域Ⅱ的时间为6B 2L 3mgR答案 C解析 由题意知,导线框恰好匀速离开区域Ⅱ,则有mg =BIL =B 2L 2v R ,解得v =mgR B 2L2,A 错误;导线框进入区域Ⅰ到刚要进入区域Ⅱ过程一直做匀速运动,有v =mgR B 2L2,导线框下边刚进入磁场区域Ⅱ时,上、下边都切割磁感线,由法拉第电磁感应定律可知E 2=BL v +BL v =2BL v ,又I 2=E 2R ,联立解得I 2=2BL v R,导线框所受安培力F 2=2BI 2L ,由牛顿第二定律有F 2-mg =ma ,解得a =3g ,方向竖直向上,B 错误;开始进入区域Ⅱ时与开始离开区域Ⅱ时,速度大小相等,则导线框产生的焦耳热等于重力势能的减少量,有Q =mgH ,C 正确;导线框自开始进入区域Ⅰ至开始进入区域Ⅱ的过程中,t 1=L v =B 2L 3mgR,导线框自开始进入区域Ⅱ至开始离开区域Ⅱ过程中,由动量定理得mgt 2-F 安2Δt =m v -m v ,即mgt 2-BL 2BL 2R =0,解得t 2=2B 2L 3mgR ,导线框自开始离开区域Ⅱ至刚完全离开区域Ⅱ过程中,t 3=L v =B 2L 3mgR,故t =t 1+t 2+t 3=4B 2L 3mgR,D 错误. 5.(多选)(2022·河北省模拟)如图所示,两根相距L 且电阻不计的足够长光滑金属导轨,导轨左端为弧形,右端水平,且水平部分处于方向竖直向下、磁感应强度大小为B 的匀强磁场中.铜棒a 、b 电阻均为R 、质量均为m ,均与导轨垂直且与导轨接触良好,铜棒b 静止在导轨水平部分,铜棒a 在弧形导轨上从距离水平部分高度为h =0.5L 处由静止释放,重力加速度为g ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为gLBL RB .铜棒b 的最大加速度为gLB 2L 22mRC .铜棒b 获得的最大速度为gLD .回路中产生的总焦耳热为mgL 4答案 BD解析 铜棒a 沿弧形导轨下滑,刚进入磁场区域时,由机械能守恒定律有mgh =12m v 2,且h =0.5 L ,解得v =gL ,回路中的最大感应电动势E =BL v ,回路中的最大电流I =E 2R,联立解得I =BL gL 2R,故A 错误;铜棒b 受到的最大安培力F 安=BIL ,由牛顿第二定律有F 安=ma ,解得铜棒b 的最大加速度a =B 2L 2gL 2mR,故B 正确;铜棒a 、b 在匀强磁场中做切割磁感线运动的过程中,整体所受合外力为零,动量守恒,最终铜棒a 、b 速度相等,由动量守恒定律得m v =2m v ′,解得铜棒b 获得的最大速度为v ′=gL 2,故C 错误;由能量守恒定律得,回路中产生的总焦耳热为Q =12m v 2-12×2m v ′2=mgL 4,故D 正确. 6.(多选)(2022·广东韶关市二模)某高中科研兴趣小组利用课余时间进行研究电磁阻尼效果的研究性学习,实验示意图如图甲所示,虚线MN 右侧有垂直于水平面向下的匀强磁场,边长为1 m 、质量为0.1 kg 、电阻为0.2 Ω的正方形金属线框在光滑绝缘水平面上以大小v 0=2 m/s 的速度向右滑动并进入磁场,磁场边界MN 与线框的右边框平行.从线框刚进入磁场开始计时,线框的速度v 随滑行的距离x 变化的规律如图乙所示,下列说法正确的是( )A .图乙中x 0=1 mB .线框进入磁场的过程中,线框的加速度先不变再突然减为零C .线框进入磁场的过程中,线框中产生的焦耳热为0.1 JD .线框进入磁场的过程中,通过线框某横截面的电荷量为22C 答案 AD 解析 穿过线框的磁通量变化导致线框中产生感应电流,使线框受到安培力的作用,从而使速度改变;当线框完全进入磁场时,磁通量不变,速度不变,则由题图乙可知x 0=1 m ,A正确;线框进入磁场的过程中,安培力F =BIL ,其中I =E R =BL v R,由题图乙可知,速度减小,则安培力减小,由牛顿第二定律可知,线框的加速度减小,因此线框做变减速运动,B 错误;根据能量守恒定律可知,减少的动能全部转化为焦耳热,则有Q =ΔE k =12m v 02-12m v 2,代入数据可得Q =0.15 J ,C 错误; 线框进入磁场的过程中,取水平向右为正方向,根据动量定理可得-B 2L 2v R t =m v -m v 0,整理得v =v 0-B 2L 2x mR,结合题图乙可知,当x =1 m 时,v =1 m/s ,代入解得B =150 T ,通过线框某横截面的电荷量为q =I t =Bx 02R ,解得q =22 C ,D 正确. 7.(多选)(2022·宁夏吴忠中学三模)如图所示,两段均足够长、不等宽的光滑平行导轨固定在水平面上,较窄导轨的间距L 1=1 m ,较宽导轨的间距L 2=1.5 m .整个装置处于磁感应强度大小为B =0.5 T 、方向竖直向上的匀强磁场中,导体棒MN 、PQ 的质量分别为m 1=0.4 kg 、m 2=1.2 kg ,长度分别为1 m 、1.5 m ,电阻分别为R 1=0.3 Ω、R 2=0.9 Ω,两导体棒静止在水平导轨上.t =0时刻,导体棒MN 获得v 0=7 m/s 、水平向右的初速度.导轨电阻忽略不计,导体棒MN 、PQ 始终与导轨垂直且接触良好,导体棒MN 始终在较窄导轨上运动,取g =10 m/s 2则( )A .t =0时刻,回路中的电流为3512A B .导体棒MN 最终做匀速直线运动,速度大小为3 m/sC .通过导体棒MN 的电荷量最大值为3.4 CD .导体棒PQ 中产生的焦耳热最大值为4.2 J答案 ABD解析 t =0时刻,回路中的电流为I 0=E R =BL 1v 0R 1+R 2=3512A ,故A 正确;导体棒MN 与PQ 切割磁感线产生的电动势相互削弱,当两导体棒产生的电动势相等时,感应电流为零,所受安培力为零,故两导体棒最终做匀速直线运动,此时有BL 1v MN =BL 2v PQ ,设从导体棒MN 开始运动至导体棒MN 、PQ 做匀速运动所用的时间为Δt ,取水平向右为正方向,对导体棒MN 分析,由动量定理得-BL 1I ·Δt =m 1v MN -m 1v 0,对导体棒PQ 分析,由动量定理得BL 2I ·Δt =m 2v PQ ,又因为q =I ·Δt ,联立解得v MN =3 m/s ,v PQ =2 m/s ,q =3.2 C ,故B 正确,C 错误;由能量守恒定律得12m 1v 02=12m 1v MN 2+12m 2v PQ 2+Q 总,Q PQ =R 2R 1+R 2Q 总,代入数据联立解得Q PQ =4.2 J ,故D 正确.8.(多选)如图所示,竖直放置的两根足够长的光滑金属导轨相距L ,导轨的两端分别与电源(串联一滑动变阻器R )、定值电阻R 0、电容器(电容为C ,原来不带电)和开关S 相连.整个空间充满了磁感应强度大小为B 、方向垂直于导轨平面向外的匀强磁场.一质量为m 、电阻不计的金属棒ab 横跨在导轨上.已知电源电动势为E 、内阻为r ,不计导轨的电阻.当S 接1,滑动变阻器R 接入电路一定阻值时,金属棒ab 在磁场中恰好保持静止.当S 接2后,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度.重力加速度为g ,则下列说法正确的是( )A .当S 接1时,滑动变阻器接入电路的阻值R =EBLmgB .若将ab 棒由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CBL vC .当S 接2时,金属棒ab 从静止开始到刚好达到稳定速度所经历的时间t =B 2L 2h +m 2gR 02mgR 0B 2L 2D .若将ab 棒由静止释放的同时,将S 接到3,则金属棒ab 将做匀加速直线运动,加速度大小a =mgm +CB 2L 2答案 BD解析 当S 接1时,有I =E R +r ,由平衡条件得mg =BIL ,联立解得R =EBLmg -r ,故A 错误;当S 接2,速度稳定时有mg =B 2L 2v R 0,解得v =mgR 0B 2L 2,金属棒ab 从静止开始下落,下落距离为h 时达到稳定速度,根据动量定理可得mgt -B I Lt =m v ,即mgt -B 2L 2vR 0·t =m v ,其中vt =h ,联立解得t =B 4L 4h +m 2gR 02mgR 0B 2L 2,故C 错误;若将棒ab 由静止释放的同时,将S 接到3,则电容器积累的电荷量随金属棒速度v 的变化关系为Q =CU =CBL v ,根据动量定理可得mg Δt -B I ′L Δt =m Δv ,即mg Δt -BL ·ΔQ =m Δv ,将ΔQ =CBL Δv 代入解得mg Δt -CB 2L 2Δv =m Δv ,所以a =Δv Δt =mgm +CB 2L 2,金属棒ab 将做匀加速直线运动,故B 、D 正确.9.如图所示,两电阻不计的光滑平行金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、长度为L 、电阻不计的金属杆,杆始终与导轨接触良好.整个装置处于磁感应强度大小为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现使杆从M 点以v 0的速度竖直向上运动,经历时间t ,到达最高点N ,重力加速度大小为g .求t 时间内:(1)流过电阻的电荷量q ; (2)电阻上产生的焦耳热Q . 答案 (1)m v 0-mgtBL(2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)杆竖直向上运动的过程中,取v 0方向为正方向,根据动量定理,有-mgt -F t =0-m v 0 F =BL I q =I t联立解得q =m v 0-mgt BL(2)设杆上升的高度为h ,取v 0方向为正方向,由动量定理得-mgt -B 2L 2vR t =0-m v 0又h =v t联立解得h =mR (v 0-gt )B 2L 2杆上升过程中由能量守恒定律可知,电阻上产生的焦耳热Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.10.(2022·天津市一模)如图,间距为L 的两平行金属导轨右端接有电阻R ,固定在离地高为H 的平面上,空间存在着方向竖直向下、磁感应强度大小为B 的匀强磁场.质量为m 的金属杆ab 垂直导轨放置,杆获得一个大小为v 0的水平初速度后向左运动并离开导轨,其落地点距导轨左端的水平距离为s .已知重力加速度为g ,忽略一切摩擦和阻力,杆和导轨电阻不计.求:(1)杆即将离开导轨时的加速度大小a ;(2)杆穿过匀强磁场的过程中,克服安培力做的功W ; (3)杆ab 在水平导轨上运动的位移大小x .答案 (1)B 2L 2s 2mRH 2gH (2)12m (v 02-gs 22H ) (3)mR B 2L 2(v 0-s 2H2gH ) 解析 (1)杆离开导轨后做平抛运动,则有H =12gt 2,s =v t ,联立解得杆离开导轨时的速度大小为v =sg 2H杆离开导轨时,产生的感应电动势为E =BL v 感应电流大小为I =ER杆受到的安培力大小为F =BIL 根据牛顿第二定律可得F =ma联立解得杆即将离开导轨时的加速度大小为a =B 2L 2s2mRH 2gH(2)根据动能定理,可得-W =12m v 2-12m v 02则杆穿过匀强磁场的过程中,克服安培力做的功为 W =12m (v 02-gs 22H)(3)根据动量定理,可得-B I Lt =m v -m v 0 q =I t =BLxR联立解得x =mR B 2L 2(v 0-s2H2gH ).11.两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处平滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 接入电路的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度大小为B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度-时间图像如图乙所示(以a 运动的方向为正方向),其中m a =2 kg ,m b =1 kg ,g 取10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 答案 (1)5 s (2)73 C (3)1156J解析 (1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b 0,对杆b 运用动量定理,有Bd I ·Δt =m b (v 0-v b 0) 由题图乙可知,v b 0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v a 2解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度大小为v ′,由动量守恒定律得m a v a -m b v b 0=(m a +m b )v ′ 代入数据解得v ′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v ′的运动时间为Δt ′,则由动量定理可得-Bd I ′·Δt ′=m a (v ′-v a ),而q =I ′·Δt ′ 代入数据解得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的总焦耳热为Q =m a gh +12m b v 02-12(m b +m a )v ′2=1616 J则b 杆中产生的焦耳热为Q ′=R b R a +R bQ =1156 J.错题统计(题号)对应考点错因分析动量定理在电磁感应中的应用动量守恒定律在电磁感应中的应用电磁感应中的综合问题一、动量定理、动量守恒定律在电磁感应中的应用导体棒在磁场中做变速运动,所受安培力是变力,可用动量定理求速度、位移、电荷量、时间等.对于双杆问题,若双杆所受外力为零,可用动量守恒定律分析.1.单杆运动问题已知量(其中B、L、m已知)待求量关系式(以棒减速为例)v1、v2q -B I LΔt=m v2-m v1,q=IΔtv1、v2、R总x -B2L2vΔtR总=m v2-m v1,x=vΔtF其他为恒力,v1、v2、q Δt-B I LΔt+F其他Δt=m v2-m v1,q=IΔtF其他为恒力,v1、v2、R总、x(或Δt)Δt(或x)-B2L2vΔtR总+F其他·Δt=m v2-m v1,x =vΔt2.双杆运动问题(1)等间距轨道上的双杆问题①双杆所受外力的合力为零时,若只需求末速度,可用动量守恒定律分析.②若需求电荷量、位移、时间等,则需要利用动量定理分析.(2)不等距导轨上的双杆问题由于合外力不为零,不等距导轨上的双杆问题需用动量定理分析.常见的双杆模型:题型一(等距、初速度、光滑、平行)题型二(不等距、初速度、光滑、平行)题型三(等距、恒力、光滑、平行)示意图导体棒长度L1=L2导体棒长度L1=2L2,两棒只在各自的轨道上运动导体棒长度L1=L2图像观点力学观点棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒以相等的速度匀速运动棒1做加速度减小的减速运动,棒2做加速度减小的加速运动;稳定时,两棒的加速度均为零,速度之比为1∶2开始时,两棒做变加速运动;稳定时,两棒以相同的加速度做匀加速运动动量观点两棒组成的系统动量守恒两棒组成的系统动量不守恒对单棒可以用动量定理两棒组成的系统动量不守恒对单棒可以用动量定理能量观点系统动能的减少量等于产生的焦耳热系统动能的减少量等于产生的焦耳热拉力做的功一部分转化为双棒的动能,一部分转化为内能(焦耳热):W=Q+E k1+E k23.杆+电容器模型基本模型规律无外力,电容器充电(电阻阻值为R,导体棒电阻不计,电容器电容为C)无外力,电容器放电(电源电动势为E,内阻不计,导体棒电阻不计,电容器电容为C)电路特点导体棒相当于电源,电容器被充电电容器放电,相当于电源;导体棒受安培力而运动电流的特点安培力为阻力,棒减速,E减小,有I=BL v-U CR,电容器被充电,U C变大,当BL v=U C时,I=0,F安=0,棒做匀电容器放电时,导体棒在安培力作用下开始运动,同时阻碍放电,导致电流减小,直至电流为零,此时U C=BL v。
高中科学易考知识点电磁感应的规律
高中科学易考知识点电磁感应的规律电磁感应是高中科学中一个重要且易考的知识点。
本文将介绍电磁感应的规律,包括法拉第电磁感应定律和楞次定律,以及相关的应用。
一、法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中将会产生感应电动势。
1. 磁通量的概念磁通量是衡量磁场穿过给定面积的数量。
用符号Φ表示,单位是韦伯(Wb)。
磁通量可以通过磁通量的定义来计算:Φ= B∙A∙cosθ,其中B表示磁场强度,A表示磁场线垂直于给定面积的面积,θ表示磁场线与法线之间的夹角。
2. 法拉第电磁感应定律的表达式根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。
表达式可以表示为:ε = -N∙ΔΦ/Δt,其中ε表示感应电动势,N表示线圈的匝数,ΔΦ表示磁通量的变化量,Δt表示时间的变化量。
3. 磁感线切割导体产生感应电动势当导体在磁场中运动时,如果导体与磁感线垂直,并切割磁感线,就会产生感应电动势。
这是因为磁感线切割导体时,磁通量发生了变化,从而产生感应电动势。
二、楞次定律楞次定律是描述电磁感应中产生的感应电流及其方向的规律。
根据楞次定律,感应电流的方向总是阻碍原磁通量变化的方向。
1. 楞次定律的表述根据楞次定律,当磁通量发生变化时,感应电流的方向会使得产生的磁场与原磁场的作用相反,从而阻碍磁通量的变化。
这是一个自我保护的规律,符合能量守恒定律。
2. 楞次定律在电磁感应中的应用楞次定律在电磁感应中有广泛的应用。
例如,变压器的工作原理就依赖于楞次定律。
变压器中的主线圈和副线圈之间通过铁芯连接,当主线圈中通过交流电时,产生的交变磁场将切割副线圈,从而在副线圈中感应出电动势和电流。
三、电磁感应的规律应用电磁感应的规律在生活中有许多应用。
下面举几个例子进行说明。
1. 发电机的工作原理发电机利用电磁感应的规律将机械能转换为电能。
当发电机中的导体在磁场中旋转时,导体切割磁感线,产生感应电动势和电流。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习
4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
电磁感应规律的综合应用
电磁感应规律的综合应用(一) (电路)荥阳市第二高级中学1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于_____.(2)该部分导体的电阻或线圈的电阻相当于电源的_____,其余部分是_______.2.电源电动势和路端电压(1)电动势:E=____或E=___. (2)路端电压:U=IR=_____.电源的正、负极可用右手定则或楞次定律判定.【例证1】在同一水平面中的光滑平行导轨P、Q相距l=1 m,导轨左端接有如图所示的电路.其中水平放置的两平行板电容器两极板M、N间距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计,磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m=1×10-14 kg,电荷量q=-1×10-14 C的微粒恰好静止不动.已知g=10 m/s2,在整个运动过程中金属棒与导轨接触良好,且运动速度保持恒定.试求:(1)匀强磁场的方向;(2)ab两端的电压;(3)金属棒ab运动的速度.【例证2】、如图所示,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为L/2 .磁场的磁感应强度为B,方向垂直纸面向里.现有一段长度为L/2 ,电阻为R/2 的均匀导体棒MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触,当MN滑过的距离为L/3时,导线ac中的电流为多大?方向如何?针对练习:1、用均匀导线做成的正方形线圈边长为l ,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以 t B∆∆的变化率增强时,则( )A.线圈中感应电流方向为acbdaB.线圈中产生的电动势22∙∆∆=t Bl EC.线圈中a 点电势高于b 点电势D.线圈中a 、b 两点间的电势差为22∙∆∆t Bl2、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平, 且与导轨接触良好.已知某时刻后两灯泡保持正常发光,重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.3、如右图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40 m ,电阻不计,导轨所在平面与磁感应强度B 为0.50 T 的匀强磁场垂直.质量m 为6.0×10-3 kg ,电阻为1.0 Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R 1.当杆ab达到稳定状态时以速率为v 匀速下滑,整个电路消耗的电功率P 为0.27 W ,重力加速度取10 m/s2,试求速率v 和滑动变阻器接入电路部分的阻值R 2.4、两根光滑的长直金属导轨MN 、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M 、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C 。
电磁感应现象在生活中的应用
电磁感应现象在生活中的应用
电磁感应现象是指电磁场作用于导体时,导体内的电流会发生变化的现象。
电磁感应现象在生活中有很多应用。
电磁炉:电磁炉是利用电磁感应现象加热的一种厨具。
电磁炉的炉膛内装有电磁线圈,通过电流流动使线圈发热,从而加热食物。
感应加热器:感应加热器是利用电磁感应现象加热的一种设备。
它由电磁线圈和铁芯组成,电流流动时会产生磁场,使铁芯发热,从而加热周围的物体。
电动机:电动机是利用电磁感应现象产生旋转力的一种机械。
电动机的转子由带有电流的导体组成,电流流动时会产生磁场,使转子旋转。
电动机可以用来驱动很多机械设备,如电视机、空调、冰箱、汽车等。
电视机:电视机是利用电磁感应现象传送图像信息的一种电子设备。
电视机的电视屏幕内部装有电磁线圈,通过电流流动使线圈产生磁场,从而产生图像。
电话:电话是利用电磁感应现象传送声音信息的一种通信设备。
电话的话筒内部装有电磁线圈,通过电流流动使线圈产生磁场,从而产生声音。
电磁铁:电磁铁是利用电磁感应现象吸附金属物体的一种工具。
电磁铁内部装有
电磁线圈,通过电流流动使线圈产生磁场,从而吸附金属物体。
电磁感应现象在生活中的应用非常广泛,它不仅方便了我们的生活,还为科学技术的发展做出了巨大的贡献。
电磁感应规律的综合应用
例20、如图所示,两根平行金属导轨固定在水平桌面上, 每根导轨每米的电阻r0=0.1Ω,导轨的端点P、Q用电阻可 忽略的导线相连,两导轨间的距离L=0.20m。有随时间变 化的匀强磁场垂直于桌面,已知磁感应强度B与时间的t的 关系为B=kt,比例系数k=0.020T/s,一电阻不计的金属杆可 在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直, 在t=0时刻,金属杆靠在P、Q端,在外力作用下,杆以恒 定的加速度从静止开始向导轨的另一端滑动,求在t=0.6s 时金属杆所受的安培力。
例15、θ=30º ,L=1m,B=1T,导轨光滑电阻不计,F功率
恒定且为6W,m=0.2kg、R=1Ω,ab由由静止开始运动, 当s=2.8m时,获得稳定速度,在此过程中ab产生的热量
Q=5.8J,g=10m/s2,求:
(1)ab棒的稳定速度 (2)ab棒从静止开始达
B
a
F
b θ
到稳定速度所需时间。
②具有感应电流的导体在磁场中受安培力作用或通过电 阻发热,又可使电能转化为机械能或电阻的内能,因 此电磁感应过程总是伴随着能量的转化。
R R F F
2、解题基本方法:
①用法拉第电磁感应定律和楞次定律确定感应动势的大
小和方向。
②画出等效电路,求回路中电阻消耗电功率的表达式。 ③分析导体机械能的变化,用能量守恒关系得到机械功 率的改变与回路中电功率的改变所满足的方程。
例16、导体棒ab质量为100g,用绝缘细线悬挂后,恰好 与宽度为50cm的光滑水平导轨接触良好,水平导轨处在 方向竖直向上、B=0.2T的匀强磁场中,水平导轨上有一 质量为200g的导体棒cd,现将ab棒拉起0.8m高后无初速 释放,当ab第一次摆到最低点与导轨瞬间接触后还能向 左摆到0.45m高,试求: (1)cd棒获得的速度大小。 (2)此瞬间通过ab棒的电量。 (3)此过程回路产生的焦耳热。 c a
电磁感应的规律与应用
电磁感应的规律与应用在我们的日常生活和现代科技中,电磁感应现象扮演着至关重要的角色。
从发电机为我们提供源源不断的电能,到变压器实现电压的升降转换,电磁感应的规律与应用无处不在。
那么,究竟什么是电磁感应?它又有着怎样的规律和广泛的应用呢?电磁感应指的是当穿过闭合导体回路的磁通量发生变化时,回路中就会产生感应电动势。
如果回路是闭合的,就会产生感应电流。
这个现象是由英国科学家法拉第在 1831 年首次发现的。
电磁感应的规律可以用楞次定律和法拉第电磁感应定律来描述。
楞次定律指出,感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
简单来说,就是当磁通量增加时,感应电流产生的磁场方向与原磁场方向相反;当磁通量减少时,感应电流产生的磁场方向与原磁场方向相同。
这个定律反映了电磁感应中的能量守恒。
法拉第电磁感应定律则表明,感应电动势的大小与穿过回路的磁通量的变化率成正比。
数学表达式为:$E = n\frac{\Delta\Phi}{\Delta t}$,其中$E$表示感应电动势,$n$为线圈匝数,$\Delta\Phi$是磁通量的变化量,$\Delta t$是时间的变化量。
接下来,让我们看看电磁感应在实际生活中的一些应用。
首先,发电机是电磁感应最常见和重要的应用之一。
发电机的基本原理就是利用电磁感应将机械能转化为电能。
在一个旋转的磁场中,放置一个闭合的导体线圈,当磁场旋转时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电动势。
通过连接外部电路,就可以形成电流输出。
无论是火力发电、水力发电还是风力发电,其核心原理都是基于电磁感应来实现能量的转换。
变压器也是基于电磁感应原理工作的。
变压器由两个或多个相互绝缘的线圈绕在同一个铁芯上组成。
当原线圈中通有交流电时,由于电流的变化,产生变化的磁场,从而在副线圈中引起磁通量的变化,产生感应电动势。
通过改变原、副线圈的匝数比,可以实现电压的升高或降低。
这使得电能能够在长距离传输中减少损耗,并且能够适应不同的用电需求。
专题十 第3讲 电磁感应定律的综合应用
ab 杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当 ab 杆的速度大小为 v 时,求此 时 ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.
甲 图 10-3-3
乙
解:(1)如图 71,重力 mg,竖直向下; 支持力 N,垂直斜面向上;安培力 F,沿斜面向上. (2)当 ab 杆速度为 v 时,感应电动势 E=BLv, E BLv 此时电路电流 I=R= R B2L2v ab 杆受到安培力 F=BIL= R B2L2v 根据牛顿运动定律,有 ma=mgsinθ-F=mgsinθ- R B2L2v 得 ab 杆的加速度 a=gsinθ- mR . B2L2v (3)当 R =mgsinθ 时, mgRsinθ ab 杆达到最大速度 vm,所以 vm= B2L2 . 图71
定则判断它们的方向,分析出相关物理量之间的函数关系,确
定其大小和方向及在坐标中的范围.
(2)图象的初始条件,方向与正、负的对应,物理量的变化
趋势,物理量的增、减或方向正、负的转折点都是判断图象的 关键. 4.解题时要注意的事项 (1)电磁感应中的图象定性或定量地表示出所研究问题的 函数关系. (2)在图象中 E、I、B 等物理量的方向通过物理量的正负来 反映. (3)画图象要注意纵、横坐标的单位长度定义或表达.
(1)通过棒 cd 的电流 I 是多少,方向如何?
(2)棒 ab 受到的力 F 多大? (3)棒 cd 每产生 Q=0.1 J 的热量,力 F 做的功 W 是多少?
图 10-3-6
解:(1)棒cd 受到的安培力Fcd=BIl
①
棒cd 在共点力作用下平衡,则Fcd=mgsin30°
②
由①②式代入数据解得I=1 A,方向由右手定则可知由d 到c.
物理第一轮总复习精讲课件:93电磁感应规律的综合应用
9.如图所示,有一用铝板 制成的U型框,将一质量为 m的带电小球用绝缘细线悬 挂在框中,使整体在匀强磁 场中沿垂直于磁场方向向左以速度v匀速运动,悬挂拉力为FT,则( ) A.悬线竖直,FT=mg B.悬线竖直,FT>mg C.悬线竖直,FT<mg D.无法确定FT的大小和方向
【方法与知识感悟】对电磁感应电路问题的理解 对电源的理解 电源是将其它形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其它形式的能转化为电能. 对电路的理解 内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.
题型二:由给定的有关图象(B-t图、Ф-t图)分析电磁感应过程问题
C
01
02
电容器所带的电荷量为6×10-5 C
通过R的电流是2 A,方向从a到b
2
通过R的电流是2.5 A,方向从b到a
R消耗的电功率是0.16 W
6.如图所示,一有界区域内,存在 着磁感应强度大小均为B,方向分别 垂直于光滑水平桌面向下和向上的匀 强磁场,磁场宽度均为L,边长为L的 正方形导线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是( )
*2.如图甲所示,光滑导体框架abcd水平放置,质量为m的导体棒PQ平行于bc放在ab、cd上,且正好卡在垂直于轨道平面的四枚光滑小钉之间.回路总电阻为R,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感强度B随时间t的变化情况如图乙所示(规定磁感强度方向向上为正),则在0~t时间内,关于回路内的感应电流I及小钉对PQ的弹力FN,的说法正确的是( ) A.I的大小是恒定的 B.I的方向是变化的 C.FN的大小是恒定的 D.FN的方向是变化的
高中物理一轮复习课件:9.3电磁感应规律的综合应用(一)(电路和图象)
均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁
场的影响(取g=10 m/s2).
(1)通过计算分析4 s内导体棒的运动情况; (2)计算4 s内回路中电流的大小,并判断电流方向; (3)计算4 s内回路产生的焦耳热.
【规范解答】(1)导体棒先在无磁场区域做匀减速运动, 有-μmg=ma,vt=v0+at,x=v10t+ at2
t t t
圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面 垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化 的规律如图所示.若规定顺时针方向为感应电流i的正方向,下列 各图中正确的是( )
【解析】选C.据法拉第电磁感应定律:E= n n由S BB-t,图
t
t
象知,1~3 s,B的变化率相同,0~1 s、3~4 s,B的变化率相同,
第3讲 电磁感应规律的综合应用(一)(电路和 图象)
考点1 电磁感应中的电路问题
1.内电路和外电路 (1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于 _电__源__. (2)该部分导体的电阻或线圈的电阻相当于电源的_内__阻__,其余 部分是_外__电__路__.
2.电源电动势和路端电压
此时回路的总长度为5 m,因此回路的总电阻为
R=5λ=0.5 Ω 电流为I= E=0.2 A
R
根据楞次定律,在回路中的电流方向是顺时针方向.
(3)前2 s电流为零,后2 s有恒定电流,焦耳热为 Q=I2Rt=0.04 J 答案:(1)前1 s:匀减速直线运动;后3 s:静止在离左端 0.5 m的位置 (2)前2 s:I=0;后2 s:I=0.2 A 电流方向是顺时针方向 (3) 0.04 J
线框保持良好接触,当MN滑过的距离为 L 时,导线ac中的电流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲专题电磁感应规律的综合应用1.闭合回路由电阻R与导线组成,其内部磁场大小按Bt图变化,方向如图1所示,则回路中().图1A.电流方向为顺时针方向B.电流强度越来越大C.磁通量的变化率恒定不变D.产生的感应电动势越来越大解析由楞次定律可以判断电流方向为顺时针方向,A项正确;由法拉第电磁感应定律E=N ΔΦΔt可得,E=NΔBΔt S,由图可知ΔBΔt是恒量,所以电动势恒定,D项错误;根据欧姆定律,电路中电流是不变的,B项错误;由于磁场均匀增加,线圈面积不变所以磁通量的变化率恒定不变,C项正确.答案AC2.水平放置的金属框架cdef处于如图2所示的匀强磁场中,金属棒ab处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则().图2A.ab中电流增大,ab棒所受摩擦力增大B.ab中电流不变,ab棒所受摩擦力不变C.ab中电流不变,ab棒所受摩擦力增大D.ab中电流增大,ab棒所受摩擦力不变解析 由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt S 知,磁感应强度均匀增大,则ab中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确.答案 C3.如图3所示,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平.在竖直面内有一矩形金属线圈,线圈上下边的距离很短,下边水平.线圈从水平面a 开始下落.已知磁场上下边界之间的距离大于水平面a 、b 之间的距离.若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为F b 、F c 和F d ,则( ).图3A .F d >F c >F bB .F c <F d <F bC .F c >F b >F dD .F c <F b <F d解析 从a 到b 线圈做自由落体运动,线圈全部进入磁场后,穿过线圈的磁通量不变,线圈中无感应电流,因而也不受磁场力,即F c =0,从b 到d 线圈继续加速,v d >v b ,当线圈在进入和离开磁场时,穿过线圈的磁通量变化,线圈中产生感应电流,受磁场力作用,其大小为:F =BIl =B Bl v R l =B 2l 2v R ,因v d >v b ,所以F d >F b >F c ,选项D 正确.答案 D4.如图4所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B ,方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R 2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( ).图4A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BL vC.a端电势比b端高D.外力F做的功等于电阻R上发出的焦耳热解析由右手定则可知通过金属导线的电流由b到a,即通过电阻R的电流方向为M→R→P,A错误;金属导线产生的电动势为BL v,而a、b两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a、b两点间电压为23BL v,B错误;金属导线可等效为电源,在电源内部,电流从低电势流向高电势,所以a端电势高于b端电势,C正确;根据能量守恒定律可知,外力做功等于电阻R和金属导线产生的焦耳热之和,D错误.答案 C5.一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图5所示,磁感应强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是().图5A.ab受到的拉力大小为2 NB.ab向上运动的速度为2 m/sC.在2 s内,拉力做功,有0.4 J的机械能转化为电能D.在2 s内,拉力做功为0.6 J解析对导体棒cd分析:mg=BIl=B2l2vR总,得v=2 m/s,故B选项正确;对导体棒ab分析:F=mg+BIl=0.2 N,选项A错误;在2 s内拉力做功转化的电能等于克服安培力做的功,即W=F安v t=0.4 J,选项C正确;在2 s内拉力做的功为F v t=0.8 J,选项D错误.答案BC6.粗细均匀的电阻丝围成的正方形线框原先整个置于有界匀强磁场内,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框沿四个不同方向以相同速率v匀速平移出磁场,如图6所示,线框移出磁场的整个过程()图6A.四种情况下ab两端的电势差都相同B.①图中流过线框的电荷量与v的大小无关C.②图中线框的电功率与v的大小成正比D.③图中磁场力对线框做的功与v2成正比解析由法拉第电磁感应定律E=ΔΦ/Δt,闭合电路欧姆定律I=E/R,电流定义式I=q/Δt可得q=ΔΦ/R,线框沿四个不同方向移出磁场,流过线框的电荷量与v 的大小无关,选项B正确.四种情况下ab两端的电势差不相同,选项A错误.②图中线框的电功率P=E2/R,E=BL v,P与v的二次方大小成正比,选项C错误;③图中磁场力F=BIL,I=E/R,E=BL v,磁场力对线框做功W=FL,磁场力对线框做的功与v成正比,选项D错误.答案B7.如图7甲所示,在竖直方向上有四条间距相等的水平虚线L1、L2、L3、L4,在L1L2之间、L3L4之间存在匀强磁场,大小均为1 T,方向垂直于虚线所在平面.现有一矩形线圈abcd ,宽度cd =L =0.5 m ,质量为0.1 kg ,电阻为2 Ω,将其从图示位置静止释放(cd 边与L 1重合),速度随时间的变化关系如图乙所示,t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向.(重力加速度g 取10 m/s 2)则 ( ).图7A .在0~t 1时间内,通过线圈的电荷量为0.25 CB .线圈匀速运动的速度大小为8 m/sC .线圈的长度为1 mD .0~t 3时间内,线圈产生的热量为4.2 J解析 t 2~t 3时间ab 在L 3L 4内匀速直线运动,而E =BL v 2,F =B E R L ,F =mg解得:v 2=mgR B 2L 2=8 m/s ,选项B 正确.从cd 边出L 2到ab 边刚进入L 3一直是匀加速,因而ab 刚进磁场时,cd 也应刚进磁场,设磁场宽度是d ,有:3d=v 2t -12gt 2,得:d =1 m ,有:ad =2d =2 m ,选项C 错误,在0~t 3时间内由能量守恒得:Q =mg ·5d -12m v 22=1.8 J ,选项D 错误.0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R =0.25 C ,选项A 正确.答案 AB8.如图8甲所示,水平面上固定一个间距L =1 m 的光滑平行金属导轨,整个导轨处在竖直方向的磁感应强度B =1 T 的匀强磁场中,导轨一端接阻值R =9 Ω的电阻.导轨上有质量m =1 kg 、电阻r =1 Ω、长度也为1 m 的导体棒,在外力的作用下从t =0开始沿平行导轨方向运动,其速度随时间的变化规律是v =2t ,不计导轨电阻.求:(1)t =4 s 时导体棒受到的安培力的大小;(2)请在如图乙所示的坐标系中画出电流平方与时间的关系(I 2t )图象.图8解析 (1)4 s 时导体棒的速度v =2t =4 m/s感应电动势E =BL v感应电流I =E R +r此时导体棒受到的安培力F 安=BIL =0.4 N(2)由(1)可得I 2=⎝ ⎛⎭⎪⎫E R +r 2=4⎝ ⎛⎭⎪⎫BL R +r 2t =0.04t 作出图象如图所示.答案 (1)0.4 N (2)见解析图9.如图9所示,宽度为L 的金属框架竖直固定在绝缘地面上,框架的上端接有一个电子元件,其阻值与其两端所加的电压成正比,即R =kU ,式中k 为已知常数.框架上有一质量为m ,离地高为h 的金属棒,金属棒与框架始终接触良好无摩擦,且保持水平.磁感应强度为B 的匀强磁场方向垂直于框架平面向里.将金属棒由静止释放,棒沿框架向下运动,不计金属棒及导轨的电阻.重力加速度为g .求:图9(1)金属棒运动过程中,流过棒的电流的大小和方向;(2)金属棒落到地面时的速度大小;(3)金属棒从释放到落地过程中通过电子元件的电荷量.解析 (1)流过电子元件的电流大小为I =U R =1k ,由串联电路特点知流过棒的电流大小也为1k ,由右手定则判定流过棒的电流方向为水平向右(或从a →b )(2)在运动过程中金属棒受到的安培力为F 安=BIL =BL k对金属棒运用牛顿第二定律有mg -F 安=ma得a =g -BL mk 恒定,故金属棒做匀加速直线运动 根据v 2=2ax ,得v = 2h ⎝ ⎛⎭⎪⎫g -BL mk (3)设金属棒经过时间t 落地,有h =12at 2解得t = 2ha = 2hkm mgk -BL故有q =I ·t =1k 2hkm mgk -BL答案 (1)1k 水平向右(或从a →b ) (2) 2h ⎝ ⎛⎭⎪⎫g -BL mk (3)1k 2hkm mgk -BL10.如图10所示,电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上.阻值r =0.5 Ω,质量m =0.2 kg的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求:图10(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a .(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W 重-W 安=12m v 2m ,…….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.解析 (1)下滑过程中安培力的功即为在电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J故W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L 2R +rv 由牛顿第二定律mg sin 30°-B 2L 2R +rv =ma 所以a =g sin 30°-B 2L 2m (R +r )v =⎣⎢⎡⎦⎥⎤10×12-0.82×0.752×20.2×(1.5+0.5)m/s 2 =3.2 m/s 2(3)此解法正确.金属棒下滑时受重力和安培力作用,其运动满足mg sin 30°-B 2L 2R +rv =ma 上式表明,加速度随速度增加而减小,棒做加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的末速度,因此上述解法正确.mgs sin 30°-Q=12m v2m得v m=2gs sin 30°-2Q m=2×10×1.15×12-2×0.40.2m/s=2.74 m/s答案(1)0.4 J(2)3.2 m/s2(3)见解析。