2016年浙江宁波镇海区七年级下学期浙教版数学期末考试试卷

合集下载

2016年浙江宁波鄞州区七年级下学期浙教版数学期末考试试卷

2016年浙江宁波鄞州区七年级下学期浙教版数学期末考试试卷

2016年浙江宁波鄞州区七年级下学期浙教版数学期末考试试卷一、选择题(共10小题;共50分)1. 若分式有意义,则应满足的条件是A. B. C. D.2. 下列问题绝对不适合用全面调查的是A. 旅客上飞机前的安检B. 学校招聘教师时对应聘人员的面试C. 了解全校学生的课外读书时间D. 了解一批灯泡的使用寿命3. 下列计算正确的是A. B. C. D.4. 已知是二元一次方程组的解,则的值是A. B. C. D.5. 下列分解因式正确的是A.B.C.D.6. 已知多项式分解因式为,则,的值为A. ,B. ,C. ,D. ,7. 某公司用铁皮做盒子,每张铁皮可生产个盒身或个盒盖,现用张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才能使生产的盒身与盒盖刚好配套?(一张铁皮只能生产一种产品,一个盒身配两个盒盖)若现设安排张铁皮生产盒身,张铁皮生产盒盖,则可列方程组为A. B.C. D.8. 利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图所示,则桌子的高度是A. B. C. D.9. 如图 1 所示为长方形纸带,,将纸带沿折叠成图 2,再沿折叠成图 3,则图 3中的的度数是A. B. C. D.10. 若,则可以取的值有A. 个B. 个C. 个D. 个二、填空题(共10小题;共50分)11. 计算 ______.12. 分解因式 ______.13. 是指大气中直径小于或等于的颗粒物,将用科学记数法表示为______.14. 如图所示,直线,被直线所截,若要使,需添加条件______.(填一个即可)15. 小亮对名同学进行节水方法的问卷调查(每人选择一项),人数统计如图所示.如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是______ 度.16. 如图所示,将周长为的沿方向平移个单位得到,则四边形的周长为______.17. 若关于的方程有增根,则的值为______.18. 当 ______ 时,方程组的解与的值相等.19. 用一张长方形的包装纸包一本长、宽、厚如图所示的书(单位:).如果将封面和封底每一边都包进去,那么需长方形的包装纸______ .(用含的代数式表示)20. 观察规律并填空:,,______.三、解答题(共7小题;共91分)21. 解方程(组):(1)(2).22. 化简:(1);(2).23. 2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为分)进行统计,请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率(1)这次抽取了______ 名学生的竞赛成绩进行统计,其中: ______, ______;(2)补全频数分布直方图;(3)若成绩在分以下(含分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24. 给出个代数式:①;②;③;④.从这些代数式中选择其中的个构造一个分式,然后进行化简,并求当,时该分式的值.25. 如图所示,直线,被直线所截,交于,两点,若,,,则等于多少度?26. 某服装商预测某种品牌的衬衫能畅销市场.于是就用元购进第一批衬衫,面市后果然供不应求,立马售罄,服装商又用元购进了第二批这种衬衫,所购数量恰好是第一批购进数量的倍,但进价每件贵了元.商家销售这种衬衫时每件定价都是元.最后剩下件按折销售.很快售完.在这两笔生意中,商家共盈利多少元?27. 选取二次三项式中的任意两项,配成完全平方式的过程叫配方.例如:对于二次三项式.①选取二次项和一次项配方:.②选取二次项和常数项配方:或.③选取一次项和常数项配方:.根据以上材料,解决下面问题:(1)填空:①;②是完全平方式,则 ______;(2)写出的其中三种配方过程;(3)已知,求的值.答案第一部分1. A2. D3. D4. D5. C6. B7. B8. C9. B 10. B第二部分11.12.13.14. (答案不唯一)15.16.17.18.19.20.第三部分21. (1)(2)方程的两边同乘,得去括号,得移项,合并同类项,得经检验是方程的根..原式22. (1)原式(2)23. (1);;(2)(3)抽取的学生中,分以下的学生所占的百分比为.该校安全意识不强的学生约有(人).24. 选择①②构成(答案不唯一).当,时,.25. ,,...(两直线平行,同位角相等).26. 设第一批衬衫的进价为元,则第二批衬衫的进价为元,根据题意列出方程,解得.第一批衬衫的件数为(件).第二批衬衫的件数为(件).第一批衬衫商家盈(元).第二批衬衫商家盈利(元).在两笔生意中,商家共盈利(元).27. (1)①;;②(2)选取二次项和一次项配方:.选取二次项和常数项配方:或.选取一次项和常数项配方:.(3),,,,,,,.。

最新浙教版七年级下数学期末经典测试卷含答案

最新浙教版七年级下数学期末经典测试卷含答案

2016学年度七下数学期末经典测试卷注意事项:本卷共26题,满分:120分,考试时间:100分钟.一、精心选一选(本题共10小题,每小题3分,共30分)1.计算(-0.25)2014×(-4)2015的结果是()A.-1B.1C.-4D.42.方程■x-2y=x+5是二元一次方程,■是被墨迹盖住的x的系数,请你推断■的值属于下列情况中的()A.不可能是-1B.不可能是-2C.不可能是1D.不可能是23.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10-5B.0.25×10-6C.2.5×10-5D.2.5×10-64.下列计算正确的是()A.2a-2=12aB. -2a2=4a2C.2a×3b=5abD.3a4÷2a4=325.如果把3xx y+中的x,y都扩大10倍,那么这个分式的值()A.不变B.扩大30倍C.扩大10倍D.缩小到原来的1 106.为了了解我校1200名学生的身高,从中抽取了200名学生对其身高进行统计分析,则下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.200名学生是抽取的一个样本D.每个学生的身高是个体7.化简:(13x--211xx+-)﹒(x-3)的结果是()A.2B.21x-C.23x-D.41xx--8.若方程76xx---6kx-=7有增根,则k的值为()A.-1B.0C.1D.69.若方程组45xax by=⎧⎨+=⎩的解与方程组32ybx ay=⎧⎨+=⎩的解相同,则a,b的值是()A.21ab=⎧⎨=⎩B.21ab=⎧⎨=-⎩C.21ab=-⎧⎨=⎩D.21ab=-⎧⎨=-⎩10.如图,AD平分∠BDF,∠3=∠4,若∠1=50°,∠2=130°,则∠CBD的度数为()A.45°B.50°C.60°D.65°二、细心填一填(本题共8小题,每小题3分,共24分)11.分解因式:3x3-6x2y+3xy2=______________________________.12.对于实数a,b,定义新运算如下:a※b=(0)(0)bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,且,且,例如2※3=2-3=18,计算[2※(-4)]×[(-4)※(-2)]=___________.13.计算:-22+(-2)2-(-12)-1=_____________________.14.若等式(6a3+3a2)÷6a=(a+1)(a+2)成立,则a的值为________________.15.如图是七年级(1)班学生参加课外活动人数的扇形统计图,如果参加艺术类的人数是16人,那么参加其它活动的人数是________人第15题图第16题图第17题图16.如图,将三角形纸板ABC沿直线AB平移,使点移到点B,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为___________.17.对某班的一次数学测验成绩(分数取正整数,满分为100分)进行统计分析,各分数段的人数如图所示(每一组含前一个边界值,不含后一个边界值),组界为70~79分这一组的频数是__________;频率是_____________.18.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶,乙桶水y桶,则所列方程组为:___________________________三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)19.(1)计算:(-2a2b2)2×12a2b×451()a b--2a(a-3)(2)先化简221aa+-÷(a+1)+22121aa a--+,然后a在-1,1,2三个数中任选一个合适的数代入求值.20.解下列方程(组) (1)1xx --1=3(2)(1)x x +- (2)359 23 6 x y x y -⎧⎨-+-⎩==①②21.张老师某月手机话费的各项费用统计情况,如下图表所示,请你根据图表信息解答下列(1)请将表格、条形统计图补充完整; (2)该月张老师手机话费共用多少元?(3)扇形统计图中,表示短信的扇形的圆心角是多少度?22.如图所示,根据图形填空: 已知:∠DAF =F ,∠B =∠D , 求证:AB ∥DC . 证明:∵∠DAF =F (__________),∴AD ∥BF (_________________________________________), ∴∠D =∠DCF (_____________________________________), ∵∠B =∠D (_________________),∴∠B =∠DCF (______________________________), ∴AB ∥DC (________________________________________). 23.先阅读下列材料,然后解题:阅读材料:因为(x -2)(x +3)=x 2+x -6,所以(x 2+x -6)÷(x -2)=x +3,即x2+x -6能被 x -2整除,所以x -2是x 2+x -6的一个因式,且当x =2时,x 2+x -6=0.(1)类比思考:(x +2)(x +3)=x 2+5x +6,所以(x 2+5x +6)÷(x +2)=x +3,即x 2+5x+6能被________整除,所以__________是x2+5x+6的一个因式,且当x=_____时,x2+5x+6=0. (2)拓展探究:根据以上材料,已知多项式x2+mx-14能被x+2整除,试求m的值.24.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD与CE是否平行?请你说明理由;(2)AC与BD的位置关系是怎样的?请说明判断理由.25.某电器超市销售每台进价为200元、170元的A、B两种型号的电风扇,如表所示是近2(1)求A、B两种型号的电风扇的销售单价;(2)若超市再采购这两种型号的电风扇共30台,并且全部销售完,该超市能否实现利润为14000元的利润目标?若能,请给出相应的采购方案;若不能,请说明理由.26.为了顺利通过“国家文明城市”验收,市政府拟对部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完成工程,又能使工程费用最少?。

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。

浙教版数学七年级下册期末考试(附答案)

浙教版数学七年级下册期末考试(附答案)

浙教版七年级下册数学期末考试试题一、选择题1.如图,下列四个角中,与构成一对同位角的是A.B.C.D.2.如图,点在的延长线上,下列条件中,不能判断的是A. B.C. D.3.我国古代数学名著孙子算经中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?如果设木条长尺,绳子长尺,那么可列方程组为A. B. C. D.4.用加减法解方程组时,方程得A. B. C. D.5.已知某新型感冒病毒的直径约为米,将用科学记数法表示为A. B. C. D.6.下列计算正确的是A. B.C. D.7.下列各式从左到右的变形是因式分解的是A. B.C. D.8.将分解因式,结果正确的是A. B. C. D.9.已知分式,,其中,则与的关系是A. B. C. D.10.解分式方程时,去分母后得到的方程正确的是A. B.C. D.11.如图所示为某国产品牌手机专卖店去年月高清大屏手机销售额折线统计图.根据图中提供的信息,可以判断相邻两个月高清大屏手机销售额变化最大的是A. 月B. 月C. 月D. 月12.某市有个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是A. 测试该市某一所中学初中生的体重B. 测试该市某个区所有初中生的体重C. 测试全市所有初中生的体重D. 每区随机抽取所初中,测试所抽学校初中生的体重二、填空题13.如图,,直线分别交,于,两点,将一块含有角的直角三角尺按如图所示的方式摆放若,则.14.如图,块同样大小的长方形复合地板刚好拼成一个宽为的大长方形,则这个大长方形的长是______.15.设,,若,,则______.16.已知可因式分解为,其中,均为整数,则.17.对于实数,定义运算“”如下:,如,,若,则______.18.为了解小学生的体能情况,抽取了某小学同年级名学生进行分钟跳绳测试,将所得数据整理后,画出如图所示的频数直方图各组只含最小值,不含最大值已知图中从左到右各组的频率分别为,,,,设跳绳次数不低于次的学生有人,则,的值分别是___________.三、计算题19.如果关于、的二元一次方程组的解是,求关于,的方程组的解.20.计算:..21.分解因式:;;;.四、解答题22.阅读下面的解题过程:已知:,求的值.解:由知,所以,即.所以故的值为.该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知:,求的值.23.某校举办“迎亚运”学生书画展览,现要在长方形展厅中划出个形状、大小完全一样的小长方形图中阴影部分区域摆放作品.如图,若大长方形的长和宽分别为和,求小长方形的长和宽;如图,若大长方形的长和宽分别为和.直接写出个小长方形周长与大长方形周长之比;若作品展览区域阴影部分面积占展厅面积的,试求的值.24.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯转动的速度是每秒度,灯转动的速度是每秒度.假定主道路是平行的,即,且::.填空:____;若灯射线先转动秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?如图,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.答案和解析1.【答案】【解析】解:由图可得,与构成同位角的是,故选:.两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线截线的同旁,则这样一对角叫做同位角.本题主要考查了同位角的概念,同位角的边构成““形,内错角的边构成““形,同旁内角的边构成“”形.2.【答案】【解析】【分析】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.A、利用内错角相等两直线平行即可得到与平行;B、利用内错角相等两直线平行即可得到与平行;C、利用内错角相等两直线平行即可得到与平行;D、利用同旁内角互补两直线平行即可得到与平行,【解答】解:、,,故A选项不合题意;B、,,不能得到,故B选项符合题意;C、,,故C选项不合题意;D、,,故D选项不符合题意.故选:.3.【答案】【解析】解:设木条长尺,绳子长尺,那么可列方程组为:.故选:.直接利用“绳长木条长;绳长木条长”分别得出等式求出答案.此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.4.【答案】【解析】【分析】此题考查了解二元一次方程组加减消元法,方程组两方程相加消去得到结果,即可作出判断.【解答】解:用加减法解方程组时,方程得:.5.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.据此解答即可.【解答】解:.故选B.6.【答案】【解析】解:、,原计算错误,故此选项不合题意;B、,原计算错误,故此选项不合题意;C、,原计算正确,故此选项合题意;D、,原计算错误,故此选项不合题意.故选:.根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.本题主要考查了同底数幂的乘法和除法,幂的乘方与积的乘方的法则以及完全平方公式,熟记运算法则和公式是解答本题的关键.7.【答案】【解析】解:、,因式分解错误,故本选项不符合题意;B、,因式分解错误,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是正确的因式分解,故本选项符合题意;故选:.根据因式分解的定义:把一个多项式写成几个整式的积的形式,即可作出判断.本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解与整式的乘法互为逆运算,是中考中的常见题型.8.【答案】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:利用平方差公式进行分解即可.【解得】解:,故选:.9.【答案】【解析】解:,和互为相反数,即.故选:.先把式进行化简,再判断出和的关系即可.本题考查的是分式的加减法,先根据题意判断出和互为相反数是解答此题的关键.10.【答案】【解析】解:分式方程,去分母得:,即,故选:.11.【答案】【解析】【分析】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的高清大屏手机销售额变化量是解题的关键.根据折线图的数据,分别求出相邻两个月的高清大屏手机销售额的变化值,比较即可得解.【解答】解:月,万元,月,万元,月,万元,月,万元,所以,相邻两个月中,高清大屏手机销售额变化最大的是月.故选C.12.【答案】【解析】解:某市有个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取所初中,测试所抽学校初中生的体重,利用抽样调查中的样本的代表性即可作出判断.此题考查了抽样调查的可靠性,抽样调查抽取的样本要具有代表性,即全体被调查对象都有相等的机会被抽到.13.【答案】【解析】【分析】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.根据平行线的性质得到,由等腰直角三角形的性质得到,再由进行求解即可.【解答】解:,,,,故答案为.14.【答案】【解析】解:设每个小长方形的长为,宽为,依题意,得:,解得:,.故答案为:.设每个小长方形的长为,宽为,根据长方形的对边相等已经宽为,即可得出关于,的二元一次方程组,解之即可得出,的值,再将其代入中即可求出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.【答案】【解析】解:,,两式相减得,解得,则.故答案为:.根据完全平方公式得到,,两式相减即可求解.本题考查了完全平方公式,完全平方公式:.16.【答案】【解析】解:,,,则,,故,故答案为:.首先提取公因式,再合并同类项即可得到、的值,进而可算出的值.此题主要考查了提公因式法分解因式,关键是找准公因式.17.【答案】【解析】解:根据题意得,方程两边同乘,得:,解这个方程,得:.故答案为:.利用新定义得到,再解这个分式方程即可.本题考查了解分式方程,熟练掌握解分式方程的步骤是解答本题的关键.18.【答案】;【解析】略19.【答案】解:由题意得,,.解得,,代入第二个方程组得,整理得:,得,,解得,把代入得,,方程组的解为.【解析】由第一个方程组的解可求出,的值,代入第二个方程组,解方程组即可.本题考查了解二元一次方程组的解和解二元一次方程组,能求出、的值是解此题的关键.20.【答案】解..【解析】见答案21.【答案】解:原式.原式...【解析】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.先提取公因式,再用平方差公式进行因式分解;先提取公因式,再用完全平方公式进行因式分解;先提取公因式,再用完全平方公式进行因式分解;先提公因式,然后利用平方差公式进行因式分解.22.【答案】解:,且,,,.,.【解析】本题考查分式的运算,完全平方式,解题的关键正确理解题目给出的解答思路,本题属于基础题型.根据题意给出的解题思路即可求出答案.23.【答案】解:设小长方形的长和宽分别为米、米,,得,答:小长方形的长和宽分别为米、米;:;作品展览区域阴影部分面积占展厅面积的,,,,化简,得,,,.【解析】根据题意和图形可以列出相应的方程组,从而可以求得小长方形的长和宽;根据图形可以列出相应的方程组,然后两个方程相加变形即可求得个小长方形周长与大长方形周长之比;,,得,,个小长方形周长与大长方形周长之比是:,即个小长方形周长与大长方形周长之比是根据题意和图形可知,,,从而可以求得的值.本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.24.【答案】解:;设灯转动秒,两灯的光束互相平行,当时,如图,,,,,,解得;当时,如图,,,,,解得,综上所述,当秒或秒时,两灯的光束互相平行;和关系不会变化.理由:设灯射线转动时间为秒,,,又,,而,,::,即,和关系不会变化.【解析】【分析】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.根据,::,即可得到的度数;设灯转动秒,两灯的光束互相平行,分两种情况进行讨论:当时,根据,可得;当时,根据,可得;设灯射线转动时间为秒,根据,,即可得出::,据此可得和关系不会变化.【解答】解:,::,,故答案为:;。

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.2.(3分)下列计算正确的是()A.a4﹣a2=a2B.a4÷a2=a2C.a4+a2=a6D.a4•a2=a8 3.(3分)为了解本校学生课外使用网络情况,学校采用抽样问卷调查,下面的抽样方法最恰当的是()A.随机抽取七年级5位同学B.随机抽取七年级每班各5位同学C.随机抽取全校5位同学D.随机抽取全校每班各5位同学4.(3分)已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为()A.2×10﹣9B.﹣2×109C.2×10﹣8D.﹣2×108 6.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(3分)下列等式不正确的是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)(﹣a﹣b)=﹣(a+b)2C.(a﹣b)(﹣a+b)=﹣(a﹣b)2D.(a﹣b)(﹣a﹣b)=﹣a2﹣b28.(3分)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c9.(3分)分式有意义时,x的取值范围是()A.x≠0 B.x≠1 C.x≠0或x≠1 D.x≠0且x≠1 10.(3分)若(x+2y)2=(x﹣2y)2+A,则A等于()A.8xy B.﹣8xy C.8y2D.4xy11.(3分)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种12.(3分)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣2)0﹣2﹣1=.14.(3分)分式与的最简公分母为.15.(3分)如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=°.16.(3分)因式分解:3a3﹣12a=.17.(3分)已知关于x,y的方程组的解是,则a2﹣b2的值为.18.(3分)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.(6分)计算:(1)(2a2)3÷a3(2)(2m+1)(m﹣2)﹣2m(m﹣2)20.(8分)解方程(组):(1)(2)21.(6分)先化简,再求值:,其中x=.22.(8分)如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB 交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.23.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的样本中男生和女生的人数相同,利用所得数绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)求样本中男生的人数;(2)求样本中女生身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170之间的学生总人数.24.(8分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板.问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?(2)该工厂原计划用若干天加工纸箱2400个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,问原计划每天加工纸箱多少个?25.(10分)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.26.(12分)阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式,从而因式分解6x2﹣x﹣5=;(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:①2x2+5x+3;②x3﹣7x+6;(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3有因式,,,所以分解因式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=.参考答案一、选择题(本题有12小题,每小题3分,共36分)1.B 2.B 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.A 11.B 12.C 二、填空题(共6小题,每小题3分,满分18分)13.14.2xy215.75°16.3a(a+2)(a﹣2).17.﹣15 18.45°,75°,165°.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.解:(1)原式=8a6÷a3=8a3;(2)原式=2m2﹣4m+m﹣2﹣2m2+4m=m﹣2.20.解:(1)去分母得:2﹣x=﹣1﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2),①×3+②×2得:13x=65,解得:x=5,把x=5代入①得:y=2,则方程组的解为.21.解:原式=•﹣•=﹣1﹣=﹣﹣=﹣,当x=时,原式=﹣=﹣3.22.解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.23.解:(1)(1)抽取的总人数是:10÷25%=40(人),样本中男生的人数40×=20(人)答:样本中男生的人数为20人;(2)40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2(人),答:样本中女生身高在E组的人数为2人;(3)=299(人),答:全校身高在160≤x<170之间的学生总人数299人.24.解:(1)设加工竖式纸箱x个,横式纸箱y个,依题意,得:,解得:.答:加工竖式纸箱200个,横式纸箱400个.(2)设原计划每天加工纸箱a个,则实际每天加工纸箱1.5a个,依题意,得:﹣=2,解得:a=400,经检验,a=400是所列分式方程的解,且符合题意.答:原计划每天加工纸箱400个.25.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.26.解:(1)当x=1时,6x2﹣x﹣5=0,设6x2﹣x﹣5=(x﹣1)(mx+n),解得m=6,n=5,∴因式分解6x2﹣x﹣5=(x﹣1)(6x+5),故答案为1,x﹣1,(x﹣1)(6x+5);(2)①当x=﹣1时,2x2+5x+3=0,∴2x2+5x+3=(x+1)(2x+3);②当x=1时,x3﹣7x+6=0,∴x3﹣7x+6=(x﹣1)(x﹣2)(x+3);(3)当x=y=2时,(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=0,∴(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=3(x﹣2)(y﹣2)(x﹣y),故答案为(x﹣2),(y﹣2),(x﹣y),3(x﹣2)(y﹣2)(x﹣y).。

【浙教版】七年级数学下期末试卷(及答案)(1)

【浙教版】七年级数学下期末试卷(及答案)(1)

一、选择题1.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上2.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B.12C.213D.23.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.“随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件C.一组数据的中位数可能有两个D.一组数据的波动越大,方差越小4.下列图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个5.如图,弹性小球从点P出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P点出发第1次碰到长方形边上的点记为A点,第2次碰到长方形边上的点记为B点,……第2020次碰到长方形边上的点为图中的( )A.A点B.B点C.C点D.D点6.下列说法正确的是()A.若两个三角形全等,则它们必关于某条直线成轴对称B.直角三角形是关于斜边上的中线成轴对称C.如果两个三角形关于某条直线成轴对称的图形,那么它们是全等三角形D.线段是关于经过该线段中点的直线成轴对称的图形7.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A .带①去B .带②去C .带③去D .带①②去 8.在数学课上,老师让每个同学拿一张三角形纸片ABC ,AB AC =,设B C x ∠=∠=︒,要求同学们利用所学的三角形全等的判定方法,剪下两个全等的三角形.下面是四位同学的裁剪方法,如图,剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有( )A .1种B .2种C .3种D .4种 9.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S 10.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( ) A .y=x(15-x) B .y=x(30-x) C .y=x(30-2x) D .y=x(15+x) 11.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45° 12.下列各式计算正确的是( ) A .5210a a a = B .()428=a a C .()236a b a b = D .358a a a +=二、填空题13.在不透明的口袋里装有4个黑色棋子和若干白色棋子,每个棋子除颜色外完全相同.从口袋里随机摸出一个棋子,摸到黑球的概率是25,则白色棋子个数为________________________.14.一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是________.15.将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=_____°.16.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有_____种17.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为_____.18.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)19.如图,若a//b,则图中x的度数是______________度.20.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.三、解答题21.盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24. (1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?(2)求盒子里蓝色卡片的个数.22.同学们,我们己学习了角平分线的概念和性质,那么你会用它们解决有关问题吗? (1)如图(1),己知AOB ∠,请你画出它的角平分线OC ,并填空:因为OC 是AOB ∠的平分线,所以∠______=∠______12AOB =∠ (2)如图(2),己知AOC ∠,若将AOC ∠沿着射线OC 翻折,射线OA 落在OB 处,请你画出射线OB ,射线OC 一定平分AOB ∠.理由如下:因为BOC ∠是由AOC ∠翻折而成,而翻折不改变图形的形状和大小,所以BOC ∠=∠_______,所以射线_________是∠_________的角平分线.拓展应用(3)如图(3),将长方形紙片的一角折叠,使顶点A 落在C 处,折痕为OE ,再将它的另一个角也折叠,顶点B 落在OC 上的D 处并且使OD 过点C ,折痕为OF .直接利用(2)的结论;①若30AOE ∠=︒,求EOF ∠的度数.(写出计算说理过程)②若AOE m ∠=︒,求EOF ∠的度数,从计算中你发现了EOF ∠的度数有什么规律?(写出计算说理过程)23.作图题(1)如图,已知线段m ,n .求作△ABC ,请在右面的空白处作△ABC ,作∠ACB =90°,AC=m,AB=n(尺规作图,不写作法,保留作图痕迹).(2)婷婷将(1)中自己画的△ABC剪下来,放在同桌悦悦所画的△ABC上,发现两三角形完全重合,这一过程验证了三角形全等的哪一种判定定理:(直接写出答案,不写过程).24.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少?(2)一天中小明体温T(单位:℃)的范围是多少.(3)哪段时间小明的体温在上升,哪段时间体温在下降.(4)请你说一说小明一天中体温的变化情况.25.如图,东西方向上有一条高速公路连接A,B两城市,在高速公路的一侧有一座水电站P,现测得水电站在城市A的东北方向上,在城市B北偏西60°方向上.(1)求∠APB的度数;(2)若一辆轿车以每小时90公里的速度沿AB方向从A城市开往B城市,行驶1.5小时轿车正好在水电站P的正南方向上,请用方向和距离描述轿车相对于水电站P的位置.26.计算:4a2·(-b)-8ab·(b-12 a).【参考答案】***试卷处理标记,请不要删除一、选择题1.C【分析】根据概率的意义逐一判断即可得.【详解】A. 大量反复抛掷每100次出现正面朝上接近50次,此选项错误;B. 连续抛掷10次可能都正面朝上,但可能性较小,此选项错误;C. 通过抛掷硬币确定两人谁先发球的比赛规则是公平的,此选项正确;D. 连续抛掷2次可能有1次正面朝上,此选项错误.故选C【点睛】本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.2.C解析:C【分析】直接利用频率的定义分析得出答案.【详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,∴字母“n”出现的频率是:213故选C.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.3.B解析:B【解析】【分析】利用必然事件的定义,中数的定义,方差的定义即可作出判断.【详解】解:A. “打开电视机,正在播放《新闻联播》”是随机事件,错误.B. “随机抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,正确.C. 一组数据的中位数有1个,错误.D. 一组数据的波动越大,方差越大,错误.故选B.【点睛】本题考查了必然事件的定义,中位数的定义,方差的性质,难度适中.4.B解析:B根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.D解析:D【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第337个循环组的第4次反弹,∴第2020次碰到矩形的边时的点为图中的点D;故选:D.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.6.C解析:C【分析】A、因为关于某条直线成轴对称的三角形对折后能重合,所以两个三角形全等不能达到这一要求,所以此选项不正确;B、等腰直角三角形有一条对称轴,斜边上的中线是它的对称轴,故错误;C、这是成轴对称图形的性质:如果两个三角形关于某条直线成轴对称,那么它们是全等三D、线段是成轴对称的图形,它的对称轴是这条线段的中垂线.【详解】A、如果两个三角形全等,则它们不一定是关于某条直线成轴对称的图形,所以选项A不正确;B、三角形的中线是线段,而对称轴是直线,应该说等腰直角三角形是关于斜边上的中线所在直线成轴对称的图形,所以选项B不正确;C、如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,所以选项C正确;D、一条线段是关于经过该线段中垂线成轴对称的图形,所以选项D不正确;故选:C.【点睛】此题考查轴对称和轴对称图形的性质,解题关键在于熟练掌握:①如果两个图形成轴对称,那么这两个图形全等;②如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;③线段、等腰三角形、等边三角形等都是轴对称图形.7.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.8.C解析:C【分析】利用全等三角形的判定定理一一排查即可.【详解】如图1中,∵AB=AC,∴∠B=∠C,,BE=FC=2,∠B=∠C,BF=CG=3,△EBF≌△FCG(SAS),剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片的有,,如图2,∵AB=AC,∴∠B=∠C,BE=CG=3,∠B=∠C,BF=CF=2.5,△BEF≌△CGF(SAS),剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片,,如图 3,∵AB=AC,∴∠B=∠C,∵∠EFG=B C x∠=∠=︒,∴∠BEF+∠EFB=180º-xº=∠EFB+∠GFC,∴∠BEF=∠GFC,BE的对应边是FC,相等情况不确定,△BEF与△CGF全等不确定,如图4,∵AB=AC,∴∠B=∠C,∵∠EFG=B C x∠=∠=︒,∴∠BEF+∠EFB=180º-xº=∠EFB+∠GFC,∴∠BEF=∠GFC ,EB=FC=2,∠B=∠C ,△BEF ≌△CFG (ASA ),剪刀沿着箭头方向剪开,能得到两个全等三角形小纸片.故选择:C .【点睛】本题考查全等三角形的判定,关键是熟练掌握全等三角形的判定方法,从图形中找到三角形全等的条件是否充足,够条件可以断定,条件不够或不确定就不断定.9.A解析:A【分析】利用SSS 可证得△OCD ≌△O′C′D′,那么∠A′O′B′=∠AOB .【详解】解:易得OC=O 'C',OD=O′D',CD=C′D',∴△OCD ≌△O′C′D′,∴∠A′O′B′=∠AOB ,所以利用的条件为SSS ,故选:A .【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.10.A解析:A【详解】∵长方形的周长为30,其中一边长为x ,∴该长方形的另一边长为:15x -,∴该长方形的面积:(15)y x x =-.故选A.11.B解析:B【分析】过C 作CM ∥直线l 1,求出CM ∥直线l 1∥直线l 2,根据平行线的性质得出∠1=∠MCB =25°,∠2=∠ACM ,即可求出答案.过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,故选:B.【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.12.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A、a5•a2=a7,此选项计算错误,故不符合题意;B、(a2)4=a8,此选项计算正确,符合题意;C、(a3b)2=a6b2,此选项计算错误,故不符合题意;D、a3与a5不能合并,此选项计算错误,故不符合题意.故选:B.【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.二、填空题13.【分析】设白色棋子的个数为x利用概率公式得到然后求出x即可【详解】解:设白色棋子的个数为x根据题意得解得x=6即白色棋子的个数为6故答案为6【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件解析:6【分析】设白色棋子的个数为x,利用概率公式得到4245x,然后求出x即可.解:设白色棋子的个数为x,根据题意得4245x,解得x=6,即白色棋子的个数为6.故答案为6.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.m+n=10【分析】直接利用概率相同的频数相同进而得出答案【详解】∵一个袋中装有m个红球10个黄球n个白球摸到黄球的概率与不是黄球的概率相同∴m与n的关系是:m+n=10故答案为m+n=10【点睛】解析:m+n=10.【分析】直接利用概率相同的频数相同进而得出答案.【详解】∵一个袋中装有m个红球,10个黄球,n个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是:m+n=10.故答案为m+n=10.【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.15.【分析】利用AD∥BC求出∠1=180°﹣∠GEF﹣∠DEF=76°∠2=180°﹣∠1=104°即可求出答案【详解】∵AD∥BC∠EFG=52°∴∠DEF=∠FEG=52°∠1+∠2=180°由折解析:【分析】利用AD∥BC求出∠1=180°﹣∠GEF﹣∠DEF=76°,∠2=180°﹣∠1=104°,即可求出答案.【详解】∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°故答案为:28.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,以及折叠的性质:折叠前后的对应角相等.16.【分析】根据轴对称的概念求解可得【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色使得黑色小方格组成的图形为轴对称图形的涂法有3种故答案为:3【点睛】本题主要考查利用轴对称设计图案利解析:【分析】根据轴对称的概念求解可得.【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有3种,故答案为:3.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.17.40或75【分析】设BE=2t则BF=3t使△AEG与△BEF全等由∠A=∠B=90°可知分两种情况:情况一:当BE=AGBF=AE时列方程解得t可得AG;情况二:当BE=AEBF=AG时列方程解得解析:40或75.【分析】设BE=2t,则BF=3t,,使△AEG 与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当 BE = AG ,BF = AE 时,列方程解得t ,可得 AG;情况二:当 BE = AE ,BF = AG时,列方程解得 t ,可得AG.【详解】设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=100,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=100,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.18.y=-x2+15x【分析】由AB边长为x米根据已知可以推出BC=(30-x)然后根据矩形的面积公式即可求出函数关系式【详解】∵AB边长为x米而菜园ABCD是矩形菜园∴BC=(30-x)菜园的面积=A解析:y=-12x2+15x【分析】由AB边长为x米,根据已知可以推出BC=12(30-x),然后根据矩形的面积公式即可求出函数关系式.【详解】∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=12(30-x),菜园的面积=AB×BC= 12(30-x)•x,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-12x2+15x,故答案为y=-12x2+15x.【点睛】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.19.72【分析】根据平角的定义可求再根据平行线的性质即可求解【详解】解:如图过两平行线中间角的顶点作的平行线由平行线的性质可得解得故答案为:72【点睛】考查了平行线的性质关键是熟悉两直线平行内错角相等的解析:72【分析】根据平角的定义可求160∠=︒,再根据平行线的性质即可求解.【详解】解:如图,过两平行线中间角的顶点作a的平行线,118012060∠=︒-︒=︒,由平行线的性质可得48603030x +︒=︒+︒+︒,解得72x =︒.故答案为:72.【点睛】考查了平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.20.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.三、解答题21.(1)摸到黑色卡片的概率是0.08;(2)盒子里蓝色卡片的个数是18.【解析】【分析】(1)根据概率的定义和任意抽出一张是红色卡片的概率为0.24求出卡片的总张数,再根据概率公式求出摸到黑色卡片的概率;(2)用卡片的总张数分别减去红色卡片,黄色卡片,黑色卡片的张数,即可得出蓝色卡片张数.【详解】(1)由题意得卡片的总张数为120.24=50, 则任意摸出一张卡片,摸到黑色卡片的概率是450=0.08; (2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.【点睛】 本题考查了概率公式:概率=所求情况数与总情况数之比.22.(1)∠AOC ,∠BOC ;(2)∠AOC ,OC ,∠AOB ;(3)①90︒,过程见解析,②90°,EOF ∠始终是90°,过程见解析.【分析】(1)根据角的平分线的定义解答即可;(2)根据折叠的意义解答即可;(3)①根据折叠的意义,平角的定义,角平分线的定义解答即可;②根据计算探究规律.【详解】解:(1)如图(1),根据角的平分线的定义,知∠AOC =∠BOC ,故答案为:∠AOC ,∠BOC ;(2)如图(2),BOC ∠=∠AOC ,所以射线OC_是∠AOB 的角平分线,故答案为:∠AOC ,OC ,∠AOB ;(1) (2) (3)(3)①由(2)“翻折”结论得30EOC AOE ︒∠=∠=,12DOF BOF BOD ∠=∠=∠, 而180180()BOD AOC AOE EOC ∠=︒-∠=︒-∠+∠180230120︒︒︒=-⨯=,所以111206022DOF BOF BOD ︒︒∠=∠=∠=⨯=, 所以306090EOF EOC DOF ∠=∠+=︒+︒=︒;②当AOE m ∠=︒时,同理可得,EOC AOE m ∠=∠=︒,()1118029022DOF BOF BOD m m ︒︒︒︒∠=∠=∠=-=-, 所以()9090EOF EOC DOF m m ∠︒=︒︒︒=∠++-=,综上所述,发现EOF ∠始终是90°.【点睛】本题考查了角的平分线,角的平分线的基本作图,折叠的意义,折叠的应用,熟练掌握角的平分线的意义和折叠的意义是解题的关键.23.(1)见解析;(2)HL【分析】(1)①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)根据两个直角三角形对应的斜边和一条直角边相等即可得到结论【详解】(1)如图,步骤①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)90ACB ∠=︒,在Rt ACB 中,直角边AC m =,斜边AB n =∴在两个直角三角形中,斜边和一条直角边对应相等∴可用HL 证明两个三角形全等【点睛】本题考查了复杂作图,以及全等三角形的判定,解题关键是掌握垂线的画法,以及全等三角形的判定定理.24.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可.【详解】(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.25.(1)105°;(2)小轿车在水电站P正南方向,135km的公路上.【分析】(1)过点P作PE//BC交AB于点E.根据平行线的判定与性质即可求∠APB的度数;(2)根据每小时90公里的速度行驶1.5小时轿车正好在水电站P的正南方向上,即可用方向和距离描述轿车相对于水电站P的位置.【详解】解:(1)如图,过点P作PE//BC交AB于点E.由题意知:∠DAP=45°,∠CBP=60°AD//BC,∴∠CBP=∠BPE=60°(两直线平行,内错角相等),又∵PE//BC,AD//BC,∴PE//DA(平行于同一直线的两条直线互相平行),∴∠DAP=∠APE=45°(两直线平行,内错角相等),∴∠APB=∠APE+∠BPE=45°+60°=105°(2)由(1)知PE//DA,又∵∠DAE=90°,∴∠DAE=∠PEB=90°,∴PE⊥AB,∴∠AEP=90°,∴在△AEP中,∠AEP=90°,∠APE=45°,∴EA=EP,又∵EA=90×1.5=135 (km)∴EP=135(km).答:小轿车在水电站P正南方向,135km的公路上.【点睛】本题考查了平行线的判定与性质、方向角,解决本题的关键是掌握平行线的判定与性质.26.28ab-【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a2·(-b)-8ab·(b-12 a)=222484--+a b ab a b=28ab-.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。

浙教版数学七年级下册数学期末考试数学试卷(解析卷)

浙教版数学七年级下册数学期末考试数学试卷(解析卷)

浙教版七年级下册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4解:根据题意得:50﹣(12+10+15+8)=50﹣45=5,则第5组的频率为5÷50=0.1,故选:A.2.下列计算正确的是()A.x2•x3=x6B.2a+3b=5ab C.(2a2)3=6a6D.a4+2a4=3a4解:A、x2•x3=x5,故此选项错误;B、2a+3b,无法计算,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a4+2a4=3a4,正确;故选:D.3.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,必有∠4=∠C;正确的有()A.①②④B.①③④C.②③④D.①②③④解:∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正确;即∠BAE+∠CAD=∠1+∠2+∠2+∠3=90°+90°=180°,故②正确;∵BC∥AD,∴∠1+∠2+∠3+∠C=180°,又∵∠C=45°,∠1+∠2=90°,∴∠3=45°,∴∠2=90°﹣45°=45°,故③错误;∵∠D=30°,∠CAD=150°,∴∠CAD+∠D=180°,∴AC∥DE,∴∠4=∠C,故④正确.故选:A.4.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=500解:设衣服一件标价为x元,裤子一条标价为y元,由题意得,0.6x+0.4y+100=500.故选:A.5.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2018)0,则a,b,c大小关系是()A.b<a<c B.b<c<a C.c<b<a D.a<c<b解:a=()﹣3=8,b=(﹣2)2=4,c=(π﹣2018)0=1,则c<b<a.6.下列变形不正确的是()A.=B.=C.D.解:(C)原式==,故C错误;故选:C.7.若mn=3,a+b=4,a﹣b=5,则mna2﹣nmb2的值是()A.60 B.50 C.40 D.30解:当mn=3,a+b=4,a﹣b=5时,原式=mn(a2﹣b2)=mn(a+b)(a﹣b)=3×4×5=60,故选:A.8.一项工程,甲单独做ah完成,乙单独做bh完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h解:设甲、乙两人一起完成这项工程所需的时间为xh,则有,解得x=,∴甲、乙两人一起完成这项工程所需的时间为h.故选:D.9.关于x的方程=2+有增根,则k的值为()A.±3 B.3 C.﹣3 D.2解:∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,方程两边都乘(x﹣3),得:x﹣1=2(x﹣3)+k,当x=3时,k=2,符合题意,10.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.若x2﹣16x+m2是一个完全平方式,则m=±8 ;若m﹣=9,则m2+=83 .解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.12.如图,∠1=83°,∠2=97°,∠3=100°,则∠4=100°.解:∵∠2=97°,∴∠5=∠2=97°,∵∠1=83°,∴∠1+∠5=180°,∴a∥b,∴∠4=∠3,∵∠3=100°,∴∠4=100°,故答案为:100°.13.已知方程组与有相同的解,则m=,n=12 .解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.14.张明随机抽查了学校七年级63名学生的身高(单位:cm),他准备绘制频数分布直方图,这些数据中最大值是185,最小值是147,若以4为组距(每组两个端点之间的距离叫做组距),则这些数据可分成10 组.解:∵这组数据的极差为185﹣147=38,∴这些数据可分的组数为38÷4=9.5≈10(组),故答案为:10.15.已知x2+x+1=0,则x3﹣x2﹣x+7=9解:x3﹣x2﹣x+7=x3+x2+x﹣2x2﹣2x﹣2+9=x(x2+x+1)﹣2(x2+x+1)+9=0﹣0+9=9.16.某班组每天需生产50个零件才能在规定时间内完成原计划的一批零件的生产任务,实际上该班组每天比原计划多生产10个零件,结果比规定的时间提前3天并比原计划超额生产120个零件,则该班组原计划要完成的零件任务为1500 个.解:设该班组要完成的零件任务为x个,根据题意得:﹣=3,解得:x=1500,答:该班组原计划要完成的零件任务为1500个;故答案为:1500.三.解答题(共8小题,满分38分)17.(6分)计算:;解:原式=1+﹣1﹣=.18.(6分)解方程组:解:由①得﹣x+7y=6 ③,由②得2x+y=3 ④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.19.(8分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.20.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.21.(8分)某农场去年大豆和小麦的总产量为200吨,今年大豆和小麦的总产量为225吨,其中大豆比去年增产5%,小麦比去年增产15%,求该农场今年大豆和小麦的产量各是多少吨?解:设农场去年大豆产量为x吨,小麦产量为y吨,据题意可得:,解方程组,得,即去年大豆产量为50吨,实际产量为50×(1+5%)=52.5吨;去年小麦产量为150吨,实际产量为150×(1+15%)=172.5吨;答:农场今年大豆产量为52.5吨,小麦产量为172.5吨.22.(10分)11月21日,“中国流动科技馆”榆林市第二轮巡展启动仪式在榆阳区青少年校外活动中心盛大举行,此次巡展以“体验科学”为主题.榆林市某中学举行了“科普知识”竞赛,为了解此次“科普知识”竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 6B组70≤x<80 aC组80≤x<90 12D组90≤x<100 14(1)表中a=8 ;一共抽取了40 个参赛学生的成绩;(2)补全频数分布直方图;(3)计算扇形统计图中“B”与“C”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比是多少?解:(1)由题意:a=8,总人数=6+8+12+14=40(人),故答案为8,40.(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°,“C”对应的圆心角度数=360°×=108°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.23.(10分)我们在学习因式分解时,用到了公式a2+2ab+b2=(a+b)2,用图形面积可解释为图1.请你参考上述方法,完成下面的问题:(1)填空:x2+4x+ 2 2=(x+2)2,并补全图2.(2)填空:9x2+6xy+ y2=(3x+y)2,并在图3中画出图形.(3)在上学期的学习中我们曾遇到过这样一个问题:解方程(x+1)2=9.当时我们的思路是根据32=9,(﹣3)2=9,得到:x+1=3,x+1=﹣3.从而解出x=2或x=﹣4.下面请你根据(1)(2)问的启示,利用等式性质,在图4中构造出几何图形,并求出方程x2+6x =7的解.解:(1)∵x2+4x+22=(x+2)2,故答案为2,x+2.图形如图2所示;(2)∵9x2+6xy+y2=(3x+y)2,故答案为y2,(3x+y)2.图形如图3所示;(3)∵x2+6x=7所以得x2+6x+9=(x+3)2又因为x2+6x=7,所以x2+6x+9=7+9,所以(x+3)2=7+9=16(x+3)2=16所以x+3=4 或x+3=﹣4解得x1=1或x2=﹣7.图形如图4所示:24.(10分)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE 平分∠CBF.(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出∠ADB;若不存在,请说明理由.解:(1)直线AD与BC互相平行,理由:∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.。

浙教版2016年第二学期七年级下册初一第二学期数学期末测试卷有答案

浙教版2016年第二学期七年级下册初一第二学期数学期末测试卷有答案
2016 年七年级 ( 下 ) 期末数学试题
班级 _____________ 姓名 ____________ 学号 ______________得分 _____________ 一、选择题(每小题 3 分,共 30 分)
x1
1.若
,是二元一次方程 2x y 3 的一个解,则 k 的值是
yk
()
[来源 :]
A、
B、
C、
2x y 5
y 2x 5
xy1
x 2y
D、
x 3y 1
4.因式分解( x- 1) 2- 9 的结果是( )
A. ( x+ 8)( x+ 1)
B. ( x+ 2)( x- 4)
C. ( x- 2)( x+ 4)
D. ( x-10)( x+ 8)
5.下面是小马虎同学在一次数学测验中的计算摘录,其中正确的是(
x 21,
x
经检验,
21 是原方程组的解,且符合题意.
y 28.
y 28
设甲公司单独完成装修工程需装修费
a 万元,乙公司单独完成装修工程需装修费
b万
元.则
ab
12(
) 1.04,
21 28
9 a 16 b 1.06.
21
28
解之,得
a 0.98, b 1.12.
∴ 甲公司完成装修工程需 21 天,装修费 0.98 万元;乙公司完成装修工程需
∴∠ CAB +∠ AMD =180°,∠ AMD =80°
同理可得∠ EMB =50°
∴∠ DME =∠ AMB -∠ AMD -∠ EMB =180°- 80°-50°=50°.
26.设甲公司单独做 x 天完成,乙公司单独做 y 天完成.

2016-2017学年度浙教版数学七年级下册期末试卷含答案

2016-2017学年度浙教版数学七年级下册期末试卷含答案

2016-2017学年度七下数学期测试卷注意事项:本卷共26题,满分:120分,考试时间:100分钟. 一、精心选一选(本题共10小题,每小题3分,共30分) 1.下列现象不属于平移的是( )A .小明坐电梯人一楼到到楼B .吊车将地面的上货物吊起C .小朋友坐滑梯下滑D .电风扇扇中的转动 2.计算(-2x 2)3+(3-π)0的结果正确是( )A .-2x 5+1B .-8x 6+1C .-2x 6+1D .-8x 6+3-π 3.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .2x 2+4xyC .x 2-14xy +49y 2D .x 2+y 2 4.一种新型病毒的直径约为0.000043毫米,用科学记数法表示为( )米A .0.43×10-4B .0.43×10-5C .4.3×10-5D .4.3×10-8 5.计算:1a a -÷(1-1a),结果正确的是( ) A .-1 B .1 C .1a D .-1a6.现将一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28分成五组,其中第五组28.5~30.5的频数和频率分别是( ) A .2,0.1 B .3,0.15 C .6,0.2 D .8,0.4 7.下列所给的三个分式212x ,14(3)x x +-,5x的最简公分母是( ) A .4x 2(x -3) B .2x 2(x -3) C .4x (x -3) D .214(3)x x -8.方程3x +2y =4与下列方程构成的方程组的解为21x y =⎧⎨=-⎩的是( )A .x +2y =1B .2x -3y =-7C .2x -3y =7D .3x -2y =109.如图,直线a ∥b ,点C 、D 分别在直线b 、a 上,AC ⊥BC , CD 平分∠ACB ,若∠1=70°,则∠2的度数为( ) A .60° B .65°C .70°D .85°10.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别是多少元?如果设钢笔的单价为x 元/支,那么下面所列方程正确的是( )A .1500x +30=18001.5x B . 1500x -18001.5x =30 C .18001.5x -1500x =30 D .1800x -15001.5x=30二、细心填一填(本题共8小题,每小题3分,共24分)11.如果x2+nx+m是一个完全平方式,那么可用一个等式来表示m与n之间的关系,这个等式是________________.12.观察所给的一列单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第n个单项式为____________________.13.定义新运算a⊕b=a2-b2,下面给出四个结论:①2⊕(-2)=0;②a⊕b=b⊕a;③若a⊕b=0,则a=b;④(a+b)⊕(a-b)=4ab,其中正确的结论是_________.(只填正确结论的序号)14.当x=-2时,代数式11x--221x-的值是____________.15.若2m=5,2n=2,则4m+2n=___________________.16.如图,将一个长方形的纸条按如图所示方法折叠一次,则∠1=________.第16题图第17题图第18题图17.如图,已知线段DE是由线段AB平移得到的,AB=DC=4cm,EC=6cm,则三角形DCE的周长是____________cm.18.某校八(1)班的全体同学喜欢的球类运动用如图所示的扇形统计图表示,其中喜欢“足球”所在扇形的圆心角是_______度.三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)19.计算下列各题.(1)(a2)3 (-a2)4÷(a2)5×(a3)-1(2)(211xx-+-x+1)÷2221xx x-++20.(1)解分式方程:1x x ++1=21x x+.(2)甲、乙两位同学共同解方程组515 4 2 ax y x by +=⎧⎨-=-⎩①②,由于甲同学看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙同学看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩,现请你根据甲、乙两位同学的解,求出原方程组中a ,b 正确的值是多少?21.张老师购买了一套商品房,其内部结构如图所示(单位:m ),他打算除卧室外其余部分铺起地砖,请你帮张老师计算:(1)至少需要多少平方米的地砖?(用含a ,b 的代数式表式)(2)当a =2.4,b =3时,张老师想购买价格为80元/平方米的地砖,则张老师至少需要花多少元钱?22.如图,CE 平分∠ACD ,且∠ACD =2∠A =2∠3,判断EF 与BD 是否平行,并说明理由.23.有一道题“先化简,再求值:(22xx-++244xx-)÷214x-,其中x=-5.”小丽抄题时将x=-5错写成“x=5”,但她的计算结果也是正确的,请你解释这是怎么回事?24.某县为了解本县16000名初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数统计表和频数直方图:根据图表信息解答下列问题:(1)本次抽测的样本容量是________,总体是__________________________________,第3组的频率是___________;(2)补全频数直方图;(3)若将90分(含90分)定为“优秀”等级,则该县初中生中获“优秀”等级的学生约有多少名?25.某商家分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果的1.2倍,所以进回的甲糖果的质量比乙糖果少10kg.(1)如果商家将这两种糖果的销售利润定为10%,则两种糖果每千克售价应定为多少元?(2)如果将这两种糖果混合在一起出售,总盈利的利润仍为10%,那么混合后的糖果单价应定为多少元?26.李老师为学校开展的“我的中国梦”演讲比赛购买奖品,回到学校向总务处王主任交账时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领取了1500元,现还剩余418元,”王主任算了算觉得不对,就说:李老师你是不是搞错了.(1)王主任为什么说李老师搞错了?请你替王主任说出理由;(2)李老师连忙拿出发票,发现原来还买了一本笔记本,但笔记本的单价写得模糊不清,只能辩认出应为小于6元的正整数,则笔记本的单价应为多少元?参考答案二、细心填一填(本题共8小题,每小题3分,共24分) 11. m =(12n )2; 12. (-2)n -1a n ; 13. ①④; 14. -1; 15. 400; 16. 40°; 17. 14; 18. 108. 三、解答题(本题共8小题,第19、20每小题各8分;第21、22每小题各6分;第23、24每小题各8分;第25题10分,第26小题12分,共66分)19. 解:(1)(a 2)3 (-a 2)4÷(a 2)5×(a 3)-1 =a 6 a 8÷a 10×31a =a 14÷a 10×31a =a 4×31a=a .(2)(211x x -+-x +1)÷2221x x x -++ =(211x x -+-211x x -+)÷2221x x x -++=(2)1x x x --+×2(1)2x x +-=-x (x +1)=-x 2-x20.(1)解:把方程两边都乘以x(x+1),得: x2+ x(x+1)=(2x+1)(x+1), 去括号,合并同类项得:-2x =1,解得:x =-12, 检验:把x =-12代入最简公分母x(x+1)=-14≠0,∴x =-12是原分式方程的解,故原方程的解为x=-12.(2)解:∵甲同学看错了方程①中的a,但方程②没错,∴可把31xy=-⎧⎨=-⎩代入方程②得:4×(-3)-b×(-1)=-2,解得:b=10,∵乙同学看错了方程②中的b,但方程①没错,∴可把54xy=⎧⎨=⎩代入方程①得:5a+5×4=15,解得:a=-1,故原方程组中a,b正确的值分别为-1,10.21.解:(1)由图形,得:3a×2b+(2a+0.5a)×b+2.5a×3b=6ab+2.5ab+176ab=343ab(平方米).答:至少需要343ab平方米的地砖;(2)当a=2.4,b=3时,343ab=81.6(平方米)80×81.6=6528(元),答:张老师至少需要花6528元钱.22. 解:EF∥BD,理由如下:∵CE平分∠ACD(已知),∴∠1=∠2=12∠ACD(角平分线定义),∵∠ACD=2∠A=2∠3,即∠A=∠3=12∠ACD(已知),∴∠1=∠A,∠2=∠3(等式性质),∴CE∥AB(内错角相等,两直线平行),∴∠2=∠B(两直线平行,同位角相等),∴∠3=∠B(等量代换),∴EF∥BD(同位角相等,两直线平行).23.解:(22xx-++244xx-)÷214x-=[2(2)(2)(2)xx x-+-+4(2)(2)xx x+-]÷214x-=24(2)(2)xx x++-×(x+2)(x-2)=x2+4,∵(±5)2=25,∴当x=5或-5时,x2+4=25+4=29,即原代数的值均为29,∴小丽的计算结果也是正确的.24.解:(1)50,某县16000名初中生的安全知识测试成绩,0.24;(2)频数直方图如下;(3)16000×1050=3200(名),答:该县初中生中获“优秀”等级的学生约有3200名.25.解:(1)设乙糖果的进价为x元/千克,则甲糖果的进价为1.2x元/千克,由题意,得:600600101.2x x-=,解得:x=10,经检验:x=10是原方程的解,∴1.2x=12(元),∴10×(1+10%)=11(元),12×(1+10%)=13.2(元),答:甲种糖果的售价应定为13.2元,乙糖果的售价应定为11元;(2)要想保持这两种糖果销售利润为10%,则这两种糖果的总盈利为:(600+600)×10%=120(元),则这两种糖果混合后的售价应该为:(600+600+120)÷(60010+60012)=12(元/千克),答:混合后的糖果单价应定为12元.26.解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本, 由题意,得:1058121500418x y x y +=⎧⎨+=-⎩,解得:44.560.5x y =⎧⎨=⎩,因为书的本数应为整数,不可能为小数, 所以李老师应该是搞错了;(2)设笔记本的单价为a 元,则:105 8121500418 x y x y a +=⎧⎨++=-⎩①②, 由①得:x =105-y ③,把③代入②得:y =2424a-, 要使y 为整数,则242-a 必须能被4整除, 又a 是小于6的正整数, 故a 只能取2,答:笔记本的单价应为2元.。

浙教版数学七年级下册期末测试卷及答案

浙教版数学七年级下册期末测试卷及答案

浙教版数学七年级下册期末测试题一、选择题(共10小题,每小题3分,共30分)(共10题;共30分)1.(3分)图中的同位角是( )A .∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠32.(3分)计算(−54)3×(−45)2所得结果为( ) A .1 B .-1 C .−54 D .−453.(3分)下列图形中,能将其中一个图形平移得到另一个图形的是( )A .B .C .D .4.(3分)二元一次方程组 {x +y =3x −y =−1的解是( ) A .{x =2y =1 B .{x =1y =−2 C .{x =2y =−1 D .{x =1y =25.(3分)下列各式,能用平方差公式计算的是( )A .(a ﹣1)(﹣a ﹣1)B .(a ﹣3)(﹣a+3)C .(a+2b )(2a ﹣b )D .(﹣a ﹣3)26.(3分)为了直观地表示世界七大洲的面积各占全球陆地面积的百分比,最适合使用的统计图是( )A .扇形图B .条形图C .折线图D .直方图 7.(3分)已知方程组{2a +b =7①a −b =2②,下列消元过程错误的是( ) A .代入法消去a ,由②得a =b +2代入①B .代入法消去b ,由①得b =7−2a 代入②C .加减法消去a ,①+②×2D .加减法消去b ,①+②8.(3分)解方程组{3x −y +2z =32x +y −4z =117x +y −5z =1,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对9.(3分)如图,三角形ABC 沿AB 方向向右平移后到达三角形A 1B 1C 1的位置,BC 与A 1C 1相交于点O ,若∠C 的度数为x ,则∠A 1OC 的度数为( )A .xB .90°﹣xC .180°﹣xD .90°+x10.(3分)一张方桌由一个桌面和四条桌腿组成.已知1m 3的木料可做50个桌面或300条桌腿,现用5m 3木料恰好做成若干张方桌.对于这个问题,若设用xm 3的木料做桌面,用ym 3的木料做桌腿,则所列方程组正确的是( )A .{x +y =550x =300yB .{x +y =5200x =300yC .{x +y =54x =yD .{x +y =5300x =200y 二、填空题(共6题,每题4分,共24分)(共6题;共24分)11.(4分)分解因式: (1)(2分)a ﹣ab= .(2)(2分)4﹣a 2= .12.(4分)若 1x −1y =1 ,则分式 2xy x−y 的值是 .13.(4分)某市为治理污水,需要铺设一段全长为 300 m 的污水排放管道.铺设 120 m 后,为了尽量减少施工对城市交 通所造成的影响,后来每天铺设管道的长度比原计划增加 20%,结果共用 30 天完成这一任务.求原计划每天铺 设管道的长度.如果设原计划每天铺设 x m 管道,那么根据题意,可得方程14.(4分)某公司要购买办公桌,A 型办公桌每张500元,B 型办公桌每张300元,购买10张办公桌共花费4200元.设购买A 型办公桌x 张,购买B 型办公桌y 张,则根据题意可列方程组为 .15.(4分)如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a+2b ),宽为(a+b )的大长方形,则需要C 类卡片 张.16.(4分)如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形统计图,其中步行人数为 .三、解答题(第17题4分,第18题4分,第19题5分,第20题8分,第21题5分,第22题5分,第23题5分,第24题10分,共8题,共46分)(共8题;共46分)17.(10分)解方程组:(1)(5分){3x +2y =13x −2y =9(2)(5分){3(x +y)=x −y x+y 2+x−y 6=1 18.(5分)先化简:(3m m+2+m m−2)⋅m 2−4m,并从1,2,3,4中选取一个合适的数作为m 的值代入求值.19.(5分)如图,在三角形 ABC 中, EF ⊥AB , CD ⊥AB ,垂足分别为 F,D ,且 ∠CDG =∠BEF ,求证: ∠AGD =∠ACB .20.(5分)甲、乙二人解关于x ,y 的方程组 {ax +by =2cx −7y =8, 甲正确地解出 {x =3y =−2, 而乙因把c 抄错了,结果解得 {x =−2y =2, 求出a ,b ,c 的值,并求乙将c 抄成了何值?21.(5分)设二元一次方程2x+y-4=0,x-y+3=0,x+2y-k=0有公共解.求k 的值.22.(5分)将多项式(x ﹣2)(x 2+ax ﹣b )展开后不含x 2项和x 项.试求:2a 2﹣b 的值.23.(5分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?24.(6分)[学习材料]——拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法.如:例1:分解因式:x2+2x-3解:原式=x2+2x+1-1-3=(x+1)2-4=(x+1-2)(x+1+2)=(x-1)(x+3)例2:分解因式:x3+5x-6解:原式=x3-x+6x-6=x(x2-1)+6(x-1)=(x-1)(x2+x+6)[知识应用]请根据以上材料中的方法,解决下列问题:(1)(1分)分解因式:x2+14x-51=.(2)(5分)化简:x 3+3x2−4 x+2答案1.【答案】C2.【答案】C3.【答案】A4.【答案】D5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】C10.【答案】B11.【答案】(1)a(1−b)(2)(2−a)(2+a)12.【答案】−213.【答案】120/x +( 300 − 120)/ ( 1 + 20 % ) x =3014.【答案】{x +y =10500x +300y =420015.【答案】316.【答案】817.【答案】(1)解:{3x +2y =1①3x −2y =9②①+②得:6x=10解得:x=53将x=53代入①解得:y=−2,方程组的解为:{x =53y =−2(2)解:原方程组整理为:{x =−2y①2x +y =3②将①代入②得:-4y+y=3,解得:y=-1,将y=-1代入①得x=2,方程组的解为:{x =2y =−1.18.【答案】解:原式=3m m+2⋅(m+2)(m−2)m +m m−2⋅(m+2)(m−2)m=3m −6+m +2=4m −4当m =1时,原式=0.(取m=3或m=4代入求值,计算正确同样给分). 19.【答案】证明:∵EF ⊥AB , CD ⊥AB∴∠BFE =∠BDC =90°∴EF∠CD∴∠BEF =∠BCD∵∠CDG =∠BEF∴∠CDG =∠BCD∴DG∠BC∴∠AGD =∠ACB20.【答案】解:把 {x =3y =−2 代入方程组 {ax +by =2cx −7y =8可得: {3a −2b =23c +14=8解得:c=−2把 {x =−2y =2 代入 ax +by =2 中,可得: −2a +2b =2可得新的方程组: {3a −2b =2−2a +2b =2解得: {a =4b =5把 {x =−2y =2 代入cx−7y=8中,可得:c=-11答:乙把c 抄成了-11,a 的值是4,b 的值是5,c 的值是−2. 21.【答案】解:它们的公共解是方程组 {2x +y −4=0x −y +3=0 的解解这个方程组,得 {x =13y =103代入x+2y-k=0得: 13+2×103−k =0 从而k=722.【答案】解:原式=x 3+ax 2﹣bx ﹣2x 2﹣2ax+2b=x 3+(a ﹣2)x 2﹣(2a+b )x+2b令a ﹣2=0,﹣(2a+b )=0∴a=2,b=﹣4∴2a 2﹣b=2×22+4=1223.【答案】【解答】解:(1)a=50﹣4﹣6﹣14﹣10=16(2)如图所示:(3)本次测试的优秀率是:16+1050×100%=52%24.【答案】(1)(x-3)(x+17)(2)解:∵x 3-x 2-4=x 3-2x 2+x 2-4=x 2(x-2)+(x+2)(x-2)=(x-2)(x 2+x+2),∴原式=(x−2)(x 2+x+2)x−2=x 2+x+2.。

浙教版七年级(下)期末数学试卷及答案(共9份)

浙教版七年级(下)期末数学试卷及答案(共9份)

浙教版七年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.4x=B.3x﹣2y=4z C.6xy+9=0 D.+4y=62.(3分)某校为了解七年级12个班级学生(每班4名)吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取6男6女,了解他们吃零食情况3.(3分)下列各式中,能用平方差公式计算的是()A.(3x+5y)(5y﹣3x)B.(m﹣n)(n﹣m)C.(p+q)(﹣p﹣q)D.(2a+3b)(3a﹣2b)4.(3分)下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.=2a+1 D.5.(3分)如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.缩小3倍B.不变C.扩大3倍D.扩大9倍7.(3分)如图,有正方形A类、B类和长方形C类卡片各若干张,如果要拼一个宽为(a+2b)、长为(2a+b)的大长方形,则需要C类卡片()A.6张B.5张C.4张D.3张8.(3分)把线段AB沿水平方向平移5cm,平移后的像为线段CD,则线段AB与线段CD之间的距离是()A.等于5cm B.小于5cmC.小于或等于5cm D.大于或等于5cm9.(3分)下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.在同一平面内,三条直线只有两个交点,则三条直线中必有两条直线互相平行10.(3分)若方程组的解是,则方程组的解是()A.B.C.D.二.填空题(本题有6小题,每小题4分,共24分)11.(4分)使分式有意义的x的取值范围是.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为.13.(4分)设a=192×616,b=6462﹣302,c=10542﹣7462,将数a,b,c按从小到大的顺序排列,结果是.14.(4分)已知∠A与∠B的两边分别平行,其中∠A的度数为(3x+15)°,∠B的度数为(115﹣2x)°,则∠B=度.15.(4分)若a﹣b=﹣4,(a+b)2=9,则ab=.16.(4分)某商店经销一种旅游纪念品,4月的营业额为2000元.为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.若4月份销售这种纪念品获利1000元,5月份销售这种纪念品获利元.三.解答题(本题有7小题,共66分)17.(8分)解下列方程(组):(1)(2)18.(8分)计算:(1)(2a+5b)(2a﹣5b)﹣(4a+b)2;(2)(4c3d2﹣6c2d2)÷(﹣3c3d).19.(12分)因式分解:(1)x3﹣4x(2)(2x+y)2﹣6(2x+y)+9(3)4xy2﹣4x2y﹣y320.(10分)农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某区食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉棕(以下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的市民有多少人,请补全条形统计图;(2)扇形统计图中大肉粽对应的圆心角是度;(3)若该区有居民约40万人,估计其中喜爱大肉粽的有多少人?21.(8分)(1)计算:(﹣)•,并求当x=﹣3时原式的值;(2)已知+=2,求代数式的值.22.(10分)如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)找出图中与∠BAC相等的角,并说明理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.23.(10分)为节约用水,某市居民生活用水按阶梯式计算,水价分为三个阶梯,价格表如下表所示:(注:居民生活用水水价=供水价格+污水处理费)某市自来水销售价格表(1)当居民月用水量在18立方米及以下时,水价是元/立方米;(2)小明家2月份用水量为20立方米,付水费59.90元.4月份用水量为33立方米,付水费132.75元.求a,b的值;(3)小明家5月份交水费112.65元,试求小明家该月的用水量.参考答案一.选择题(本题有10小题,每小题3分,共30分)1.A2.D 3.A4.D5.B6.C7.B8.C9.D10.D 二.填空题(本题有6小题,每小题4分,共24分)11.x≠3 12.80 13.a<b<c14.75或15 15.16.1200三.解答题(本题有7小题,共66分)17.解:(1),①×3+②得:10a=14,解得:a=1.4,把a=1.4代入①得:b=0.2,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=4a2﹣25b2﹣16a2﹣8ab﹣b2=﹣12a2﹣8ab﹣26b2;(2)原式=﹣d+.19.解:(1)原式=x(x2﹣4)=x(x+2)(x﹣2);(2)原式=(2x+y﹣3)2;(3)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.20.解:(1)本次被调查的市民:50÷25%=200(人),B的人数:200﹣40﹣10﹣50﹣70=30(人),补图如下:答:本次被调查的市民有200人.(2)扇形统计图中大肉粽对应的圆心角,故答案为126;(3)估计其中喜爱大肉粽的人数:(万人)答:估计其中喜爱大肉粽的有14万人.21.解:(1)原式=•==2x+8,当x=﹣3时,原式=2×(﹣3)+8=2(2)由已知+=2得x+y=2xy,原式====.22.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∠BAC相等的角有:∠BFD,∠DEC,∠FDE,∵DE∥AB,∴∠BAC=∠DEC,∠BFD=∠FDE,∵DF∥AC,∴∠BAC=∠BFD,∴∠BAC=∠DEC=∠BFD=∠FDE.(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.23.解:(1)1.90+1.00=2.90(元).故答案为:2.90.(2)18×2.90+2(a+1)=59.9,所以a=2.85,18×2.90+7(a+1)+8(b+1)=132.75,解得:b=5.7,(3)设小明家该月的用水量为x立方米,可得:18×2.90+7×3.85+6.7(x﹣25)=112.65,解得:x=30,答:小明家该月的用水量为30立方米.浙教版七年级(下)期末数学试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)如图,直线m,n被直线l所截,则∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.(3分)可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过0.000085kg.则0.000085这个数字可用科学记数法表示为()A.8.5×10﹣5B.85×10﹣6C.8.5×10﹣6D.0.85×10﹣43.(3分)要使分式有意义,则x的取值应满足()A.x=﹣1 B.x=1 C.x≠1 D.x≠﹣14.(3分)下列选项中,运算正确的是()A.a2•a4=a8B.(a2)3=a5C.a6÷a3=a2D.(ab)3=a3b35.(3分)分式与的最简公分母是()A.ab B.2a2b2C.a2b2D.2a3b36.(3分)陈老师对56名同学的跳绳成绩进行了统计,跳绳个数140个以上的有28名同学,则跳绳个数140个以上的频率为()A.0.4 B.0.2 C.0.5 D.27.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.a2+6a+10=(a+3)2+18.(3分)小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%9.(3分)若x+y=2z,且x≠y≠z,则的值为()A.1 B.2 C.0 D.不能确定10.(3分)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2 C.25 D.30°二、精心填一填(本题有6小题,每小題3分,共18分)11.(3分)在二元一次方程y=6﹣2x中,当x=2时,y的值是.12.(3分)计算:(21a3﹣7a2)÷7a=.13.(3分)如果整式x2+10x+m恰好是一个整式的平方,则m的值是.14.(3分)如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2=°.15.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重,问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为.16.(3分)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=,b=.三、专心练一练(本题有4小题,共28分)17.(8分)计算下列各题:(1)(3.14﹣π)0+(﹣1)2019+3﹣2(2)(m+1)2﹣m(m+3)﹣318.(8分)解下列方程(组):(1)(2)19.(6分)如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.20.(6分)小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?四、耐心做做(本题有3小题,共24分)21.(7分)某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?22.(8分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=21米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.23.(9分)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)参考答案一、细心选一选(本题有10小题,每小题3分,共30分)1.B 2.A 3.C 4.D 5.B 6.C 7.C 8.B 9.A 10.D二、精心填一填(本题有6小题,每小題3分,共18分)11.2 12.3a2﹣a 13.25 14.55 15.16.225,75.三、专心练一练(本题有4小题,共28分)17.(1)原式=1+(﹣1)+=.(2)原式=m2+2m+1﹣m2﹣3m﹣3=﹣m﹣2.18.解:(1),把②代入①得:2y﹣3y+3=1,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)去分母得:x﹣1﹣2(x+1)=7,去括号得:x﹣1﹣2x﹣2=7,解得:x=﹣10,经检验x=﹣10是分式方程的解.19.解:BC∥AD,理由:∵∠E=∠F,∴BE∥FD,∴∠B=∠BCF,又∵∠B=∠D,∴∠BCF=∠D,∴BC∥AD.20.解:(1)总人数是:4÷10%=40(人),∵健步走占30%,∴健步走的人数是:40×30%=12(人),∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为×360°=144°,故答案为:144;(3)根据题意得:3600×=720(人),答:这3600人中最喜欢的运动项目是“跑步“的约有720人.四、耐心做做(本题有3小题,共24分)21.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件.22.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=21,∴x=7,2x2+5xy=2×49+5×7×21=833(平方米)20×833=16660(元)答:草坪的造价为16660元.23.解:(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.浙教版七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0 C.x+=1 D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()A.0.2 B.0.3 C.0.4 D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A .(b +c )2=b 2+2bc +c 2B .a (b +c )=ab +acC .(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD .a 2+2ab =a (a +2b )8.已知x +y =3,xy =2,则下列结论中①(x ﹣y )2=1,②x 2+y 2=5,③x 2﹣y 2=3,④,正确的个数是( ) A .1B .2C .3D .49.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min {, }=﹣1的解为( ) A .1B .﹣1C .1或﹣1D .﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?( )A .5个B .6个C .7个D .8个二、填空题(本题有6小题,每小题3分,共18分) 11.分解因式:9x 2﹣4y 2= .12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为13.如图△ABC 中,AB =BC =AC =5,将△ABC 沿边BC 向右平移4个单位得到△A 'B 'C ′,则四边形AA ′C 'B 的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n 的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O交﹣1于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或1 16.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F 组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20 B.21 C.22 D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.5 18.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).浙教版七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001243.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y4.(3分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.5.(3分)下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.(3分)下列分式中不管x取何值,一定有意义的是()A.B.C.D.7.(3分)能使分式值为整数的整数x有()个.A..1 B.2 C.3 D..48.(3分)22018﹣22019的值是()A.B.﹣C.﹣22018D.﹣29.(3分)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。

浙教版七年级(下)期末数学试卷(2)

浙教版七年级(下)期末数学试卷(2)

浙教版七年级(下)期末数学试卷(2)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选错选,均不得分)1.(3分)若分式有意义,则x的取值范围是()A.x≠3B.x<3C.x>3D.x≠3且x≠0 2.(3分)新冠肺炎病毒颗粒呈圆形或椭圆形,其直径在大约是0.00000013米.数据0.00000013用科学记数法可以表示为()A.0.13×10﹣6B.1.3×10﹣7C.1.3×10﹣8D.13×10﹣83.(3分)下列调查中,适合采用抽样调查方式的是()A.了解普陀山附近的水质情况B.了解定海区某学校师生进行新冠肺炎核酸检测情况C.检测神舟十四号飞船的零部件质量D.了解定海区某校九年级的中考数学成绩4.(3分)下面的多项式中,能因式分解的是()A.m2+1B.m2+n2C.m2﹣1D.m+n25.(3分)下列计算正确的是()A.a3+a4=a7B.a3•a2=a6C.(a3)2=a6D.(ab)4=ab4 6.(3分)若是关于x、y的方程x﹣ay=﹣1的一个解,则a的值为()A.3B.﹣3C.1D.﹣17.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠CBD=()A.10°B.15°C.20°D.25°8.(3分)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱,某特许零售店准备购进一批吉祥物销售.已知用300元购进“冰墩墩”的数量与用250元购进“雪容融”数量相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“雪容融”的单价为x元,则列出方程正确的是()A.B.C.D.9.(3分)如图,直线l1,l2表示一条河的两岸,且l1∥l2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄P经桥过河到村庄Q的路程最短,应该选择路线()A.路线:PF→FQ B.路线:PE→EQC.路线:PE→EF→FQ D.路线:PE→EF→FQ10.(3分)根据舟山市政府疫情防控要求,所有进入舟山车辆要在金塘服务区下高速,接受防疫检查.已知金塘收费站出口有编号为①,②,③,④,⑤的五个收费出口,假定各收费出口每小时通过的车流量是不变的,同时开放其中两个收费出口,统计这两个出口1小时一共通过的汽车的数量记录如下收费出口编号①,②②,③③,④④,⑤⑤,①通过汽车数量(辆)8010070130120则下列说法错误的是()A.①出口1小时通过汽车的数量最少B.⑤出口1小时通过汽车的数量最多C.②出口1小时通过汽车的数量是④出口的两倍D.①和④出口1小时通过汽车的数量之和等于③出口1小时通过的汽车数量二、填空题(本题有10小题,每小题2分,共20分)11.(2分)若分式值为0,则a的值为.12.(2分)因式分解:b2﹣2b=.13.(2分)已知某组数据的频数为63,样本容量为90,则频率为.14.(2分)方程2x+y=8中,用含x的代数式表示y,则y=.15.(2分)计算:(3a2b3+ab)÷ab=.16.(2分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为.17.(2分)如图,三种不同类型的长方形砖长宽如图所示,现有A类1块,B类6块,C 类9块,小明用这16块地砖拼成一个正方形(不重叠无缝隙),那么小明拼成的正方形边长是.18.(2分)若关于x的方程有增根,则m的值是.19.(2分)公元前240年前后,在希腊的亚历山大城图书馆当馆长的埃拉托色尼通过测得有关数据,求得了地球圆周的长度,他是如何测量的呢?如图所示,由于太阳距离地球很远,太阳射来的光线可以看作平行线,在同时刻,光线与A城和地心的连线OP所夹的锐角记为∠1,光线与B城和地心的连线OQ重合,通过测量A,B两城间的路程(即弧AB)和∠1的度数,利用圆的有关知识,地球圆周的长度就可以大致算出来了.已知弧AB的长度约为800km,若∠1≈7.2°,则地球的周长约为km.20.(2分)已知a1=x+1(x≠0,且x≠﹣1),a2=,a3=,…,a n=.若a2022的值为2022,则x的值为.三、解答题(本题有8小题,共50分)21.(6分)计算下列各式的值:(1)3﹣1+20220+(﹣1)2;(2)(x+2)(x﹣2)﹣(x﹣1)2.22.(8分)解方程(组)(1);(2).23.(6分)化简:.言言同学的解答如下:.言言同学的解答正确吗?如果不正确,请写出正确的解答过程.24.(6分)希腊著名哲学家泰勒斯最早从拼图实践中发现了“三角形内角和等于180°”,之后古希腊数学家欧几里得利用辅助平行线和延长线,通过一组同位角和内错角证明了该定理.请同学们帮助欧几里得将证明过程补充完整.已知:如图,在△ABC中,求证:∠A+∠B+∠BCA=180°证明:延长线段BC至点F,并过点C作CE∥AB.∵CE∥AB(已作),∴=∠1(两直线平行,内错角相等),=∠2(两直线平行,同位角相等).∵(平角的定义),∴∠A+∠B+∠BCA=180°(等量代换).25.(8分)某校组织了一次环保知识竞赛,九年级每班选相同数量同学参加比赛,成绩记为A、B、C、D四个等级.小明帮助学校老师将901班和902班同学的成绩进行整理并绘制成如下的统计图表,但忘记绘制901班C等级同学成绩,只记得901班B等级人数是902班D等级人数的3倍.(1)求出902班D等级的人数为多少人?(2)请你算出901班的总人数,并补全条形统计图;(3)若记A、B等级为优秀,请你计算说明哪个班级的成绩更优秀?26.(8分)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,八年级有6个班,每班n人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?27.(8分)我国著名数学家曾说:数无形时少直觉,形少数时难入微,数形结合思想是解决问题的有效途径.请阅读材料完成:(1)算法赏析:若x满足(1﹣x)(x﹣5)=2,求(1﹣x)2+(x﹣5)2的值.解:设(1﹣x)=a,(x﹣5)=b,则(1﹣x)(x﹣5)=ab=2,a+b=(1﹣x)+(x﹣5)=﹣4.∴(1﹣x)2+(x﹣5)2=a2+b2….请继续完成计算.(2)算法体验:若x满足(30﹣x)(x﹣20)=﹣580,求(30﹣x)2+(x﹣20)2的值;(3)算法应用:如图,已知数轴上A、B、C表示的数分别是m、10、13.以AB为边作正方形ABDE,以AC为边作正方形ACFG,延长ED交FC于P.若正方形ACFG与正方形ABDE面积的和为117,求长方形AEPC的面积.。

浙江省宁波市七年级下学期数学期末考试试卷

浙江省宁波市七年级下学期数学期末考试试卷

浙江省宁波市七年级下学期数学期末考试试卷姓名:________班级:________成绩:________一、 选择题 (共 10 题;共 20 分)1. (2 分) (2017 七上·深圳期中) 一个数的平方等于 16,则这个数是( ).A. 4B . -4C . 4 或-4D. 82. (2 分) (2020 七下·西华期末) 点位于平面直角坐标系的( )A . 第二象限 B . 第三象限 C . 轴上 D . 轴上 3. (2 分) (2011·南京) 为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生 的方法最合适的是( ) A . 随机抽取该校一个班级的学生 B . 随机抽取该校一个年级的学生 C . 随机抽取该校一部分男生 D . 分别从该校初一、初二、初三年级中各随机抽取 10%的学生 4. (2 分) (2019 七下·黄石期中) 如图,下列说法正确的是( )A . 如果∠1 和∠2 互补,那么 l1∥l2 B . 如果∠2=∠3,那么 l1∥l2 C . 如果∠1=∠2,那么 l1∥l2 D . 如果∠1=∠3,那么 l1∥l25. (2 分) (2017·江西模拟) 如图,在数轴上有 M、N、P、Q 四点,其中某一点表示无理数 (),这个点是第 1 页 共 15 页A.M B.N C.P D.Q6. (2 分) 方程组 A . 5,2的解为, 则“△”、“□”代表的两个数分别为( )B . 1,3C . 4,2D . 2,37. (2 分) (2019 七下·芷江期末) 一个图形无论经过平移还是旋转,有以下说法: 对应线段相等; 对应角相等; 对应线段平行; 图形的形状一定没有变化;⑤图形的位置一定没有变化; 图形的大小一定没有变化,其中正确的说法有( )个.A.B.C.D.8. (2 分) (2019 七下·天河期末) 若,则下列各式中一定成立的是( )A.B.C.D.9. (2 分) (2020 七下·定州期末) 已知 方根为( )A . ±2是二元一次方程组的解,则的算术平B. C.2 D.4 10. (2 分) (2017 七下·抚宁期末) 《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排, •如图 1,图 2 所示,图中各行从左到右列出的算筹数分别表示未知数 x,y 的系数与相应的常数项.把图 1 表示的算筹图用我们现在所熟悉的方程组形式表述出来,•就是第 2 页 共 15 页类似地,图 2 所示的算筹图我们可以表述为( )图1图2A.B.C.D.二、 填空题 (共 6 题;共 8 分)11. (2 分) (2019 八上·杭州期中) 下列命题中,逆命题是真命题的是 ________(只填写序号)。

浙教七年级下册数学期末试题。附详细答案

浙教七年级下册数学期末试题。附详细答案

浙教版七年级下册数学期末考试试题和答案一 选择1 .下列计算正确的是( D )A .2a+3b=5abB .(x+2)2=x 2+4 C .(ab 3)2=ab 6D .(﹣1)0=1 2.已知一组数据:12,5,9,5,14,下列说法不正确的是( D ) A .平均数是9 B .中位数是9 C .众数是5 D .极差是53.函数12y x =- 中,自变量x 的取值围是( C ) A .2x > B .2x <C .2x ≠ D .2x ≠-4.如图,直线AB,CD 交于点O ,射线OM 平分∠AOC,若∠BOD= 76°,则∠BOM 等于( c )A、38° B、104° C、142° D、144°5.分式方程3121x x =- 的解为( C ) A .1x = B .2x =C . 3x = D .4x =6.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( B )A . 35°B . 40°C . 45°D . 50°7、某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(度) 120 140 160 180 200 户数23672A、180,160 B、160,180 C、160,160 D、180,1808.若3×9m×27m=311,则m 的值为( A )A. 2 B. 3 C. 4 D. 59.下列计算正确的是( D )A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2ab C.3m2÷(3m﹣1)=m﹣3m2 D.(x2﹣4x)x﹣1=x﹣410 如图是市区人口的统计图.则根据统计图得出的下列判断,正确的是( D )A.其中有3个区的人口数都低于40万B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.市区的人口数已超过600万二填空1、分式因解mm2+6mn+9m=_m(m+3) ²____.2. 化简得;当m=﹣1时,原式的值为 1 .3.若a=2,a+b=3,则a2+ab= 6 .4.已知太阳的半径约为696000000m,696000000这个数用科学记数法表示为 6.96×108.5.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有216 人.6.化简222x1x12+xx2x+1x+x--⋅-的结果是3x.7.商店某天销售了ll件衬衫,其领口尺寸统计如下表:则这ll件衬衫领口尺寸的众数是___39_____cm,中位数是___40_____cm.8.如图,AD∥BC,AB∥CD延长BC至E,若∠A=110°,则∠1=_____70°___.1AB CD9.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2.10.已知当1x=时,22ax bx+的值为3,则当2x=时,2ax bx+的值为____6.____.解答:解:将x=1代入2ax2+bx=3得2a+b=3,将x=2代入ax2+bx得4a+2b=2(2a+b)=2×3=6.故答案为6.三解答1化简或化简求值(1)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)],=2(m2﹣m+m2+m)(m2﹣m﹣m2﹣m),=﹣8m3,原式=(﹣2m )3,表示3个﹣2m 相乘.(2)化简:22(1)b a a b a b-÷+-解答:解:原式=•=•=a ﹣b .(3).先化简,再求值.(2x +3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x =﹣3.【答案】解:原式=4x 2﹣9﹣4x 2+4x +x 2﹣4x +4 =x 2﹣5。

浙江省宁波市七年级下学期数学期末考试试卷

浙江省宁波市七年级下学期数学期末考试试卷

浙江省宁波市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列式子正确的是()A . =±2B . =﹣2C . =﹣2D . =﹣22. (2分) (2017七下·河北期末) 不等式2x﹣3≤1的解集在数轴上表示正确的是()A .B .C .D .3. (2分)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A . 1B . 5C . 7D . 94. (2分)全等三角形是()A . 三个角对应相等的三角形B . 周长相等的两个三角形C . 面积相等的两个三角形D . 三边对应相等的两个三角形5. (2分)(2019·莘县模拟) 如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AD的长是().A . 3B . 6C . 4D . 56. (2分)(2012·深圳) 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A . 120°B . 180°C . 240°D . 300°7. (2分)(2019·辽阳) 下列调查适合采用抽样调查的是()A . 某公司招聘人员,对应聘人员进行面试B . 调查一批节能灯泡的使用寿命C . 为保证火箭的成功发射,对其零部件进行检查D . 对乘坐某次航班的乘客进行安全检查8. (2分)如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A . a2-b2=a2-2ab+b2B . (a+b)2=a2+2ab+b2C . a2-b2=(a+b)(a-b)D . a2+ab=a(a+b)9. (2分) 2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点的位置的是()A . 北纬31°B . 东经103.5°C . 浙江省金华市的西北方向上D . 北纬31° ,东经103.5°10. (2分) (2016七下·沂源开学考) 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程中正确的是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2012·辽阳) 函数中,自变量x的取值范围是________.12. (1分) (2016七下·建瓯期末) 若实数a,b满足|a+2|+ =0,则a+b=________.13. (1分) (2015七上·广饶期末) 已知点O(0,0),B(1,2),点A在坐标轴上,且S△OAB=2,则满足条件的点A的坐标为________.14. (1分) (2019七上·灌南月考) 绝对值不大于3的所有整数分别是________。

七年级下数学期末试卷浙教

七年级下数学期末试卷浙教

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √-4D. √252. 已知 a = -2,b = 3,则 a + b 的值是()A. 1B. -1C. 5D. -53. 下列各式中,正确的是()A. 2x + 3 = 3x + 2B. 2x + 3 = 3x - 2C. 2x + 3 = 2x + 2D. 2x + 3 = 2x + 14. 下列图形中,属于轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形5. 已知一个等边三角形的边长为 a,则它的面积 S 等于()A. a^2B. 2a^2C. √3a^2D. 3a^26. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 3/xD. y = 2x^37. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列事件中,一定发生的是()A. 抛掷一枚公平的硬币,得到正面B. 从一副52张的扑克牌中随机抽取一张,抽到红桃C. 任意两个正整数的乘积一定是正整数D. 一个正方形的对角线相等9. 下列各式中,正确的是()A. √16 = ±4B. √-16 = 4C. √-16 = -4D. √16 = 410. 下列各式中,正确的是()A. 3^2 = 9B. 3^2 = 6C. 3^2 = 18D. 3^2 = 27二、填空题(每题3分,共30分)11. 有理数 a 的相反数是 _______。

12. 已知 a = -3,b = 4,则 a - b 的值是 _______。

13. 下列各数中,正数是 _______。

14. 下列图形中,属于等腰三角形的是 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江宁波镇海区七年级下学期浙教版数学期末考试试卷
一、选择题(共10小题;共50分)
1.观察下图,在A,B,C,D四幅图案中,能迪过图案(1)平移得到的是
A. B.
C.
2.在,,
A.个

D.
,,中分式的个数有
B.个
C.个
D.个
3.如图所示,能判断直线的条件是
A. B. C. D.
4.已知某种植物花粉的直径约为,用科学记数法表示是
A.
5.下列因式分解正确的是
A.
C.
B. C.
B.
D.
D.
6.下列调查适合作普查的是
A.了解在校大学生的主要娱乐方式
B.了解阳泉市居民对废电池的处理情况
C.日光灯管厂要检测一批灯管的使用寿命
D.对甲型H1N1流感患者的同一车厢乘客进行医学检
7.一个三角形的两边长分别是和,第三边的长是一个奇数,则第三边长为
A. B. C. D.
8.如图所示,在中,于点,点在的延长线上,则是
A.边上的高
B.边上的高
C.边上的高
D.以上都不对
9.设为某一自然数,代入代数式计算其值时,四个学生算出了下列四个结果.其中正确的
结果是
A. B. C. D.
10.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为,第
二次提价的百分率为;乙商场:两次提价的百分率都是;丙商场第一次提价的百分率为,第二次提价的百分率为.其中,提价最多的商场是
A.甲
B.乙
C.丙
D.不能确定
二、填空题(共10小题;共50分)
11.计算:______.
12.若是方程的一个解.则的值是______.
13.已知某组数据的频数为,频率为,则样本容量为______.
14.将方程变形成用含的代数式表示,得到______.
15.因式分解:______.
16.若方程有增根,则的值为______.
17.如图所示,长方形的周长为,以长方形的四条边分别为边向外作四个正方形,且这四
个正方形的面积和为,则长方形的面积是______.
18.已知,,满足,,则______.
19.已知,则______.
20.如果,,那么______.
三、解答题(共7小题;共91分)
21.计算:
(1).
(2).
(3)已知关于,的方程组的解,互为相反数,求的值.
(4)先化简,再求值:,其中,.
22.解方程:.
23.已知:如图所示,,,,四点在同一直线上,,且.求证:

24.某市把中学生学习情绪的自我控制能力分为四个等级.A级:自我控制能力很强;B级:自我控
制能力较好;C级:自我控制能力一般;D级:自我控制能力较差.通过对该市农村中学的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅不完整的统计图.请根据图中的信息解决下面的问题.
(1)在这次随机抽样调查中,共抽查了多少名学生?
(2)求自我控制能力为C级的学生人数.
(3)求扇形统计图中D级所占的圆心角的度数.
(4)请你估计该市农村中学名初中学生中,学习情绪自我控制能力达B级及以上等级的人数是多少.
25.阅读材料:
对于任意两个数,的大小比较,有下面的方法:
当时,一定有;
当时,一定有;
当时,一定有.
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
解决问题:
(1)图1长方形的周长______;图2长方形的周长______.
用“求差法”比较,的大小().
(2)如图3所示,把边长为的大正方形分割成两个边长分别是,的小正方形及两个长方形,试比较两个小正方形面积之和与两个长方形面积之和的大小.
26.某市4月18日肉鸡销售价格大幅度下调,下跌了,原来用元买到的肉鸡下调后可多买
千克.问4月18日该市肉鸡销售的价格是每千克多少元?
27.如图所示,已知射线,,点,在上,且满足,
平分.
(1)求的值.
(2)求的度数.
(3)在向右平行移动的过程中,是否存在某种情况,使?若存在,请求出的度数;若不存在,请说明理由.
答案第一部分
1.C 6.D
2.B
7.C
3.D
8.D
4.B
9.A
5.A
10.B
第二部分
11.
12.
13.
14.
15.
16.
17.
18.
19.或
20.
第三部分
21.(1).
(2).
(3)因为,互为相反数,
所以.
因为,
所以解得
把代入到中,得.
(4)化简得
原式
将,代入得.
22.方程两边同乘以,得解方程得当时,,所以,原方程的根为.
23.,

又.即.且,,,,四点共线,可看作由沿方向平移得到,
根据平移性质得.
24.(1)(名),
在这次随机抽样调查中,共抽查名学生.
(2)C级所占百分比为,

自我控制能力为C级的学生人数为人.
(3)D级所占的百分比为:,
D级所占的圆心角的度数为:.
(4)样本中自我控制能力达B级及以上等级的所占百分比为:,

该市农村中学名初中学生中,学习情绪控制能力达B级及以上等级的人数是人.25.(1);;
因为,
所以.
(2)因为,
所以.
26.设原来元能买到千克肉鸡.由题意得解得经检验为原方程的解,4月18日肉鸡销售的价格为(元/千克).
27.(1),




(2),

,平分,

(3)当平行移动至时,.设.


,,.

.。

相关文档
最新文档