浙江省宁波市2016年中考数学试卷(解析版)

合集下载

浙江省宁波市 2016年中考数学真题试卷附解析

浙江省宁波市 2016年中考数学真题试卷附解析

2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 . (2016·浙江宁波)6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(2016·浙江宁波)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.(2016·浙江宁波)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2016·浙江宁波)使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.(2016·浙江宁波)如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.(2016·浙江宁波)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(2016·浙江宁波)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.(2016·浙江宁波)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.(2016·浙江宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.(2016·浙江宁波)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(2016·浙江宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.(2016·浙江宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.(2016·浙江宁波)实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.(2016·浙江宁波)分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.(2016·浙江宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.(2016·浙江宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m ).∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.(2016·浙江宁波)如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.(2016·浙江宁波)如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.(2016·浙江宁波)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.(2016·浙江宁波)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.(2016·浙江宁波)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.(2016·浙江宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.(2016·浙江宁波)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.(2016·浙江宁波)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()。

2016年浙江省宁波市中考数学试卷

2016年浙江省宁波市中考数学试卷

2016年浙江省宁波市中考数学试卷一、选择题(每小题4分,满分48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)6的相反数是()A.﹣6B.C.D.62.(4分)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3C.(a3)2=a5D.a•a2=a3 3.(4分)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.(4分)使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥15.(4分)如图所示的几何体的主视图为()A.B.C.D.6.(4分)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.(4分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm8.(4分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.(4分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2 10.(4分)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2B.a C.a=1D.a11.(4分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题(每小题4分,满分24分)13.(4分)实数﹣27的立方根是.14.(4分)分解因式:x2﹣xy=.15.(4分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.(4分)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.(4分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.(4分)如图,点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.(6分)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.(8分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.(8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.(10分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.23.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.(14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC 的顶点B,C都在第一象限,tan∠AOC,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形F ADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,满分48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)6的相反数是()A.﹣6B.C.D.6【解答】解:6的相反数是﹣6.故选:A.2.(4分)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3C.(a3)2=a5D.a•a2=a3【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选:D.3.(4分)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.4.(4分)使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥1【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.5.(4分)如图所示的几何体的主视图为()A.B.C.D.【解答】解:如图所示:几何体的主视图为:.故选:B.6.(4分)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6.故选:C.7.(4分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选:B.8.(4分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.9.(4分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.10.(4分)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2B.a C.a=1D.a【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选:A.11.(4分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选:D.12.(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2(a+c)(a﹣c)a2c2,∴S2=S1S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选:A.二、填空题(每小题4分,满分24分)13.(4分)实数﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.14.(4分)分解因式:x2﹣xy=x(x﹣y).【解答】解:x2﹣xy=x(x﹣y).15.(4分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.16.(4分)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为101m(结果保留根号).【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=101(m).∴旗杆高BC为101m.故答案为:101.17.(4分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD•π• π .故答案为:.18.(4分)如图,点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k,又∵点B(b,)在y上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,∴,∴,∴,∴S△ABC=6,故答案为:6.三、解答题(本大题有8小题,满分78分)19.(6分)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.20.(8分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.21.(8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600(人).即全校选择体育类的学生有560人.22.(10分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时P A+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当P A+PC的值最小时,点P的坐标为:(1,2).23.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴,设BD=x,∴()2=x(x+2),∵x>0,∴x1,∵△BCD∽△BAC,∴,∴CD2.26.(14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC 的顶点B,C都在第一象限,tan∠AOC,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形F ADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC,∴tan∠BAH.又∵在直角△BAH中,AB=5,∴BH AB=4,AH AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC,OA=5,∴AM OA=4,OM OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,∠∠°,∴△AOM≌△AFN(AAS),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA,∴∠OGA=∠ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴,∴GQ4.∵tan∠AOC,∴OQ,∴G(,).。

历年中考数学试题(含答案解析) (141)

历年中考数学试题(含答案解析) (141)

宁波市2016年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是A. -6B. 61C. 61- D. 6 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元 4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 5. 如图所示的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。

从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 327. 某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这10名学生校服尺寸的众数和中位数分别为A. 165cm ,165cmB. 165cm ,170cmC. 170cm ,165cmD. 170cm ,170cm 8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为A. 40°B. 50°C. 60°D. 70°9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 2 10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是A. 当1=a 时,函数图象过点(-1,1)B. 当2-=a 时,函数图象与x 轴没有交点C. 若0>a ,则当1≥x 时,y 随x 的增大而减小D. 若0<a ,则当1≤x 时,y 随x 的增大而增大12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3 二、填空题(每小题4分,共24分) 13. 实数 -27的立方根是 ▲ 14. 分解因式:xy x -2= ▲15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 ▲ 根火柴棒16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 ▲ m (结果保留根号)17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为 ▲ 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 ▲三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。

浙江省宁波市2016年中考数学试卷(解析版)

浙江省宁波市2016年中考数学试卷(解析版)

2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m ).∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 .【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。

宁波市2016年中考数学试卷含答案解析

宁波市2016年中考数学试卷含答案解析

2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 . 【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。

浙江省宁波市2016年中考数学试题(附解析)

浙江省宁波市2016年中考数学试题(附解析)

浙江省宁波市2016年中考数学试题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1-x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。

从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm,165cmB. 165cm,170cmC. 170cm,165cmD. 170cm,170cm【答案】B.【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B.考点:中位数;众数.8. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为A. 40°B. 50°C. 60°D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm2【答案】C.【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是 A. 2-=a B. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D.考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分) 13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOEBODS S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOC BOD ,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S.考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。

宁波市中考数学试卷含答案解析(word版)

宁波市中考数学试卷含答案解析(word版)

2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 .【考点】扇形面积的计算.【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。

浙江省宁波市北仑区2016届九年级中考一模试卷数学试题解析(解析版)

浙江省宁波市北仑区2016届九年级中考一模试卷数学试题解析(解析版)

一、选择题(每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2的相反数为()A.2 B.12C.﹣2 D.—12【答案】A【解析】试题分析:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选A.考点:相反数的意义2. 据初步统计,2015年北仑区实现地区生产总值(GDP)约为1134.6亿元.其中1134.6亿元用科学记数法表示为()A.1134.6×108元B.11.346×1010元C.1.1346×1011元 D.1.1346×1012元【答案】 C【解析】试题分析:1134.6亿用科学记数法表示应为:1.1346×1011考点:科学记数法的表示方法3. 3.下列运算正确的是()A.a2•a3=a6B.(3a)3=9a3C.a3﹣2a3=﹣1 D.(a2)3=a6【答案】D考点:同底数幂的乘法、积的乘方、合并同类项、幂的乘方4. 有意义的字母x的取值范围是()A.x≥34B.x≤34C.x<34D.x≠34【答案】B【解析】试题分析::由题意得,3﹣4x≥0,解得x≤34,故选:B.考点:二次根式有意义的条件5. 如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()【答案】A【解析】试题分析:解:从左边看,第一层是两个小正方形,第二层左边一个小正方形,故选:A.考点:简单组合体的三视图6. 在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.1【答案】D【解析】试题分析:卡片上的图形恰好是中心对称图形的有4个,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是1,故选D考点:概率问题7. 不等式组3012xx-⎧⎪⎨-⎪⎩<≥-1的解在数轴上表示正确的是()【答案】C 【解析】试题分析:3012xx-⎧⎪⎨-⎪⎩<①≥-1②,由①得,x<3,由②得x≥﹣1,故不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选C.考点:在数轴上表示不等式的解集8. 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°【答案】B【解析】试题分析:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故选:B.考点:平行线的性质9. 下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是4【答案】D考点:随机事件发生的可能性(概率)的计算方法10. 如图,已知▱ABCD中,AE⊥BC,AF⊥DC,BC:CD=3:2,AB=EC,则∠EAF=()A.50°B.60°C.70°D.80°【答案】B【解析】试题分析:设BC=3x,则CD=2x,∵四边形ABCD是平行四边形,∴AB=CD=2x,AB∥DC,∵AE⊥BC,AF⊥DC,∴∠AEB=90°,AF ⊥AB ,∴∠BAF=90°,∵AB=EC ,∴EC=2x ,∴BE=BC=EC=x=12AB , ∴∠BAE=30°,∴∠EAF=90°﹣30°=60°,故选B .考点:平行四边形的性质、含30°角的直角三角形的判定、平行线的性质11. 如图,在矩形ABCD 中,AB=4,AD=5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .【答案】A【解析】试题分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE ,FBGO 是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM 是⊙O 的切线,∴DN=DE=3,MN=MG ,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=43,∴DM=34+3=133,故选A.考点:切线的性质,勾股定理,正方形的性质12. 如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9【答案】C【解析】试题分析:设抛物线的解析式是y=ax2+bx+c,∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,∴0 16404a b ca b cc++=⎧⎪++=⎨⎪=-⎩解得154a b c =-⎧⎪=⎨⎪=-⎩∴y=﹣x2+5x ﹣4,设过点B (4,0),C (0,﹣4)的直线的解析式为y=kx+m404k m m +=⎧⎨=-⎩解得14k m =⎧⎨=-⎩即直线BC 的直线解析式为:y=x ﹣4,设点D 的坐标是(x ,﹣x2+5x ﹣4)∴S △ABC= =﹣2(x ﹣2)2+8,∴当x=2时,△BCD 的面积取得最大值,最大值是8.故选C .考点:二次函数的最值二、填空题(每小题4分,共24分)13. 因式分解:4a 3﹣16a= .【答案】4a (a+2)(a ﹣2)【解析】试题分析:原式=4a (a2﹣4)=4a (a+2)(a ﹣2),故答案为:4a (a+2)(a ﹣2)考点:提公因式法与公式法的综合运用14. 已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为 cm 2.(结果保留π)【答案】15π【解析】试题分析:底面圆的半径为3cm ,则底面周长=6πc ,侧面面积=12×6π×5=15πcm 2. 考点:圆的周长公式和扇形面积公式15. 已知a+b=ab ,则(a ﹣1)(b ﹣1)= .【答案】1【解析】试题分析:(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1,∵a+b=ab,∴原式=ab﹣ab+1=1.故答案是:1.考点:多项式的乘法法则16. 如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为cm.【答案】4或9 4【解析】试题分析:①当△ADE∽△ABC时,有AD:AB=AE:AC,∵AB=8,AC=6,AD=3,∴AE=94;②当△AED∽△ABC时,有AD:AE=AC:AB,∵AB=8,AC=4,AD=3,∴AE=4,所以AE等于4或94.故答案为:4或94.考点:似三角形的判定和性质17. 如图,已知A,B两点的坐标分别为(0),(0,10),M是△AOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为.【答案】(,4).【解析】试题分析:∵A ,B 两点的坐标分别为(,0),(0,10),∴OB=10,,∴∵∠AOB=90°,∴AB 是直径,,∴Rt△AOB 外接圆的圆心为AB 中点,∴C ,5),过点C 作CF∥OA,过点M 作ME⊥OA 于E 交CF 于F ,作CN⊥OE 于N ,如图所示:则ON=AN=12, 设ME=x ,∵∠AOM=30°,∴x∴∠CFM=90°,∴MF=5﹣x ,x ,在△CMF x 2+(5﹣x )2=()2,解得:x=4或x=0(舍去),∴故答案为:(,4).考点:圆周角定理、直角三角形的性质、勾股定理18. 如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数y=1x (x >0)的图象上,△P 1OA ,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数).若△P 1OA 1的内接正方形B 1C 1D 1E 1的周长记为l 1,△P 2A 1A 2的内接正方形的周长记为l 2,…,△P n A n ﹣1A n 的内接正方形B n C n D n E n 的周长记为l n ,则l 1+l 2+l 3+…+l n = (用含n 的式子表示).. 【解析】试题分析:过P 1作P 1M 1⊥x 轴于M 1,易知M 1(1,0)是OA 1的中点,∴A 1(2,0).可得P 1的坐标为(1,1),∴P 1O 的解析式为:y=x ,∵P 1O∥A 1P 2,∴A 1P 2的表达式一次项系数相等,将A 1(2,0)代入y=x+b ,∴b=﹣2,∴A 1P 2的表达式是y=x ﹣2,与y=1x (x >0)联立,解得P 2(,﹣).仿上,A 2(,0).P 3),A 3(,0).依此类推,点A n 的坐标为(0),∵l 1=43OA 1,l 2=43A 1A 2,l 3=43A 2A 3…l n =43A n ﹣1A n ,∴l 1+l 2+l 3+…+l n =43OA n =43..考点:反比例函数图象上点的坐标特征,等腰直角三角形的性质,正方形的性质三、解答题(本题有8小题,共78分)19. |﹣2|+(1)0﹣9tan30°.1.【解析】试题分析:原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.试题解析:原式2+1﹣9=﹣1.考点:实数的运算20. 如图,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,此时热气球C 处所在位置到地面上点A 的距离为400米.求地面上A ,B 两点间的距离.【答案】+200(米).【解析】试题分析:如图,过点C作CD⊥AB于点D,构建直角△ACD和直角△BCD,通过解这两个直角三角形求AD、BD的长度,则易求AB=AD+BD.试题解析:如图,过点C作CD⊥AB于点D,在直角△ACD中,∠A=30°,AC=400米,则AD=ACcos30°=400CD=12AC=200米.在直角△BCD中,∠B=45°,∠CDB=90°,则∠BCD=∠B=45°,所以BD=CD=200米,所以+200(米).考点:解直角三角形的应用﹣仰角俯角问题21. 某市为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数.(3)该市九年级共有8000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.【答案】(1)500人(2)72°,图见解析(3)4800(人)【解析】试题分析:(1)用B等级人数÷B等级人数所占百分比即可算出总人数;(2)用总人数减去A、B、D三等级人数可得C等级人数,将360°乘以A等级人数占被调查人数百分比可得;(3)用样本中良好(A、B两等级)等级人数占被调查人数百分比乘以总人数8000可得.试题解析:(1)此次共调查学生20040%=500(人),答:此次共调查了500名学生;(2)C等级人数为:500﹣100﹣200﹣60=140(人),A等级对应扇形圆心角度数为:100500×360°=72°,补全条形图如图:(3)估计测试成绩在良好以上(含良好)的人数为:8000×100200500=4800(人),答:估计测试成绩在良好以上(含良好)的约有4800人.考点:条形统计图和扇形统计图的综合运用22. 2016年宁波市北仑区体育中考的3个选测项目分别是50米跑,一分钟跳绳,篮球运球投篮.另规定:游泳满分的学生,只需从3个选测项目中选择一项进行测试;游泳未得满分或未参加的学生,需从3个选测项目中任选两项进行测试.(1)小明因游泳测试获得了满分,求他在3个选测项目中选择“一分钟跳绳”项目的概率.(2)若小红和小慧的游泳测试都未得满分,她们都必须从3个选测项目中选择两项进行体育中考测试,请用列表(或画树状图)的方法,求出小红和小慧选择的两个项目完全相同的概率.【答案】(1)他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)红和小慧选择的两个项目完全相同的概率为:13(图见解析)【解析】试题分析:(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小慧选择的两个项目完全相同的情况,再利用概率公式即可求得答案.试题解析:(1)∵小明因游泳测试获得了满分,∴他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)分别用A,B,C表示50米跑,一分钟跳绳,篮球运球投篮;画树状图得:∵共有9种等可能的结果,小红和小慧选择的两个项目完全相同的有3种情况,∴小红和小慧选择的两个项目完全相同的概率为:39=13.考点:列表法或树状图法求概率23. 如图,△ABC是等边三角形,点E,F分别在BC,AC上,且BE=CF,连结AE与BF相交于点G.将△ABC沿AB边折叠得到△ABD,连结DG.延长EA到点H,使得AH=BG,连结DH.(1)求证:四边形DBCA是菱形.(2)若菱形DBCA 的面积为,45DB DG =,求△DGH 的面积.【答案】(1)四边形DBCA 是菱形(证明过程见解析)(2)S △DGH. 【解析】 试题分析:(1)利用等边三角形的性质和折叠的定义,可知AC=AD=BC=BD ,利用菱形的判定定理可得结论;(2)首先证得△ABE≌△BCF(SAS ),再由菱形的性质和全等三角形的判定证得△DBG≌△DAH(SAS ),由全等三角形的性质和相似三角形的判定可证得△DBA∽△DGH,由相似三角形的性质面积比等于相似比的平方,可得结果.试题解析:证明:∵△ABC 是等边三角形,∴AC=BC 由折叠知AC=AD ,BC=BD ,∴AC=AD=BC=BD ,∴四边形DBCA 是菱形;(2)解:∵△ABC 是等边三角形,∴AB=BC ,∠ABC=∠C=60°,在△ABE 与△BCF 中,AB BC ABC C BE CF =⎧⎪=⎨⎪=⎩∠∠,∴△ABE≌△BCF(SAS ),∴∠AEB=∠BFC,∵四边形DBCA 是菱形,∴DA∥BC,DB∥AC,∠BDA=∠C=60°,∴∠HAD=∠AEB,∠DBG=∠BFC,∴∠HAD=∠DBG,在△DBG 与△DAH 中,DA DB AH BG =⎧⎪=⎨⎪=⎩∠HAD ∠DBG ,∴△DBG≌△DAH(SAS ),∴DG=DH ,∠BDG=∠ADH,∴∠HDG=∠ADH+∠GDA=∠BDG+∠GDA=∠BDA=60°,又∵DA=DB ,DG=DH ,∴△DBA∽△DGH, ∴221625S DBA DB S DGH DG ==△△, ∵S △DBA =12S 菱形DBCA=1×2∴S △DGH考点:全等三角形的判定及性质、折叠的定义、相似三角形的性质及判定24. 某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD ,线段CD 分别表示该产品每千克生产成本y 1(单位:元),销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的实际意义.(2)求线段CD 所表示的y 2与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元(2)y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140)(3)当该产品的质量为80kg 时,获得的利润最大,最大利润为2560元【解析】试题分析:(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先求出销售价y 2与产量x 之间的函数关系,利用:总利润=每千克利润×产量列出有关x 的二次函数,求得最值即可.试题解析:(1)点D 的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元.(2)设线段CD 所表示的y 2与x 之间的函数表达式为y 2=k 1x+b 1,∵点(0,124),(140,40)在函数y 2=k 1x+b 1的图象上∴11112414040b k b =⎧⎨+=⎩,解得:1135124k b ⎧=-⎪⎨⎪=⎩, ∴y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140);(3)设线段AB 所表示的y 1与x 之间的函数表达式为y 1=k 2x+b 2,∵点(0,60),(100,40)在函数y 1=k 2x+b 2的图象上 ∴2226010040b k b =⎧⎨+=⎩,解得:221560k b ⎧=-⎪⎨⎪=⎩, ∴y 1与x 之间的函数表达式为y 1=﹣15x+60(0≤x≤100) 设产量为x 千克时,获得的利润为W 元①当0≤x≤100时,W=[(﹣35x+124)﹣(﹣15x+60)]x=﹣25(x ﹣80)2+2560, ∴当x=80时,W 的值最大,最大值为2560元. ②当100≤x≤140时,W=[(﹣35x+124)﹣40]x=﹣35(x ﹣70)2+2940 由﹣35<0知,当x≥70时,W 随x 的增大而减小∴当x=100时,W的值最大,最大值为2400元.∵2560>2400,∴当该产品的质量为80kg时,获得的利润最大,最大利润为2560元.考点:待定系数法求函数解析式及二次函数的应用25. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)如图2,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.【答案】(1)AE是△ABC是一条特异线(2)符合条件的∠ABC的度数为135°或112.5°或140°.(3)若它的顶角度数不是整数,则顶角度数为(1807)°.【解析】试题分析:(1)只要证明△ABE,△AEC是等腰三角形即可.(2)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB=BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.(3)如图3中,当BD是特异线时,分两种情形讨论即可.当AD是特异线时,不合题意.试题解析:(1)证明:如图1中,∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(2)如图2中,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃).如图3中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°当CD为特异线时,不合题意.∴符合条件的∠ABC的度数为135°或112.5°或140°.(3)如图3中,当BD是特异线时,有两种情形,如果AD=BD=BC,设∠A=x,则x+2x+2x=180°,解得x=36°,设AD=BD=BC=a,由△BCD∽△ABC得到BC CD AB CB=,∴22a aa-=,∴a2+2a﹣4=0,∴a=﹣1如果AD=BC,BC=CD,设∠A=x,则2x+2x+3x=180°解得x=(1807)°.当AD是特异线时,如果DA=DB,CA=CD,设∠B=∠C=x,则x+2x+2x=180°,解得x=36°,∴∠BAC=108°,不符合题意.∴△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,其特异线的长度为﹣,若它的顶角度数不是整数,则顶角度数为(1807)°.考点:三角形综合题,等腰三角形的判定和性质、三角形内角和定理26. 如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.为线段AB上一个动点(点P不与A,B两点重合),过点P作x 轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(3)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.【答案】(1)m=3,抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3(2)①h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②点P的坐标为(3,6)(3)故存在点P,坐标为P(﹣,﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.【解析】试题分析:(1)根据点A在直线AB上,求出直线解析式,再根据点A,B求出抛物线的解析式;(2)①根据点P在直线AB上,表示出点P,求出h=PE;②由DC∥PE,只要DC=PE即可,求出点P的坐标;(3)由点P在直线AB上,确定出点P到x,y轴的距离,再由以BC为直径的圆与坐标轴相切,求出点P 坐标.试题解析:(1)A的坐标为(5,8)在直线y=x+m上,∴8=5+m,∴m=3,∴直线AB解析式为y=x+3,∴B(0,3),设抛物线解析式为y=a(x﹣2)2+k,∵点A,B在抛物线上,∴98a ka k+=⎧⎨+=⎩,∴11 ak=⎧⎨=-⎩,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3,顶点C(2,﹣1)(2)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊥x轴,交抛物线与E,P(x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,Ⅰ、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),Ⅱ、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(3)∴点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴=,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x|,∴x=﹣6﹣或x=﹣,∴P(﹣6﹣,﹣)或P(﹣6﹣,﹣3﹣).故存在点P,坐标为P(﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.考点:待定系数法求函数解析式的方法,平行四边形的性质,圆的特点。

宁波中考数学试题及答案(完整版)2-中考 (2).doc

宁波中考数学试题及答案(完整版)2-中考 (2).doc

:2016年宁波中考数学试题及答案(完整版)第2页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

宁波中考数学试题及答案(完整版)-中考 (2).doc

宁波中考数学试题及答案(完整版)-中考 (2).doc

:2016年宁波中考数学试题及答案(完整版)-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

宁波中考数学试题及答案(完整版)2-中考.doc

宁波中考数学试题及答案(完整版)2-中考.doc

:2016年宁波中考数学试题及答案(完整版)第2页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

【2016中考真题】浙江省宁波市中考数学试卷(解析版)

【2016中考真题】浙江省宁波市中考数学试卷(解析版)

2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。

2016年浙江省宁波市中考数学试卷(解析版)

2016年浙江省宁波市中考数学试卷(解析版)

2016年浙江省宁波市中考数学试卷r 为6cm ,高h 为8cm ,则圆锥的侧面积为(2 2一、选择题1 . 6的相反数是(1A .2•下列计算正确的是( A . D . ) C . 3、2 5 (a ) =a3 3 6 a +a =a B . 3a - a=3 3.宁波栎社国际机场三期扩建工程建设总投资 10 2 3 D . a?a =a 84.5亿元,其中84.5亿元用科学记数法表示为( C . 8.45 >109元 D . 8.45X1010元4.使二次根式 •…有意义的x 的取值范围是(A . x 鬥B . x > 1C . x <1D . x 羽 5. 如图所D .3个红球,它们除颜色外均相同•从中任意摸出一个球, 尺寸(cm ) 160 165170 175 180 学生人数(人) 1 3 2 2 2A . 165cm , 165cmB .&如图,在△ ABC 中,/ 165cm , 170cm C . ACB=90 ° CD // AB , 170cm , 165cm D . 170cm , 170cm / ACD=40。

,则/ B 的度数为( )D . 709.如图,圆锥的底面半径60 n cm D . 80 冗cma, |a>- a”是假命题的一个反例可以是(丄VsA. a= — 2 B . a= -- C . a=1 D . a= 211.已知函数y=ax - 2ax - 1 (a 是常数,a^0),下列结论正确的是() A. 当a=1时,函数图象过点(-1, 1)B. 当a=- 2时,函数图象与x 轴没有交点C. 若a >0,则当X 》时,y 随x 的增大而减小D. 若a v 0,则当x €时,y 随x 的增大而增大12•如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角 二、填空题13 .实数-27的立方根是214.分解因式:x - xy= O OO OOO ® ②16. 如图,在一次数学课外实践活动中, 仪高AD 为1m ,则旗杆高BC 为BJ 八的Im ________S 1,另两张直角三角形纸片的面积都为 S 2,中间一张正方形纸片的面积为 S 3,则这个15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成, 按此规律,图案⑦需根火柴棒. 图案①需8根火柴棒,图案②需15根火柴棒,…,③小聪在距离旗杆 10m 的A 处测得旗杆顶端 B 的仰角为60°测角 m (结果保留根号).形纸片的面积都为D . 3S 1+4S 318. 如图,点A为函数甘(x > 0)图象上一点,连结OA,交函数y= ■: (x> 0)的图象于点B,点C是x轴上一点,且AO=AC,则△ ABC的面积为三、解答题(本大题有 8小题,满分78 分)19. 先化简,再求值:(x+1 )( x - 1) +x (3 - x ),其中 x=2 .20•下列3X 3网格图都是由9个相同的小正方形组成,每个网格图中有 3个小正方形已涂上阴影,请在余 下的6个空白小正方形中,按下列要求涂上阴影:21•为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个 类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程•为了了解学生选择拓展性课程的 情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):耒校左径花展理程器丿居it 圣坯蚤 某税远屋拓韻呈程为人欝扁気汀箋 根据统计图中的信息,解答下列问题: (1) 求本次被调查的学生人数.(2) 将条形统计图补充完整.(3) 若该校共有1600名学生,请估计全校选择体育类的学生人数.222.如图,已知抛物线 y= - x +mx+3与x 轴交于A , B 两点,与y 轴交于点C ,点B 的坐标为(3, 0)(1)选取1个4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图 1、图2、图3中,均只需画出符合条件的一种情形) A6C 三丸比旨至強 M 宇其性 :异-逼眉_ A 聿三’七 5)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴I上的一个动点,当PA+PC的值最小时,求点P的坐标.24.某商场销售 A , B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万兀/套) 1.5 1.2 售价(万兀/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需 66万元,全部销售后可获毛利润 9万元.(1) 该商场计划购进 A , B 两种品牌的教学设备各多少套?(2) 通过市场调研,该商场决定在原计划的基础上,减少 A 种设备的购进数量,增加 B 种设备的购进数 量,已知B 种设备增加的数量是 A 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超 过69万元,问A 种设备购进数量至多减少多少套?25•从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角 形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把 这条线段叫做这个三角形的完美分割线. (1)如图1,在厶ABC 中,CD 为角平分线,/ A=40 ° / B=60 °求证:CD ABC 的完美分割线. (2) 在厶ABC 中,/ A=48 ° CD 是厶ABC 的完美分割线,且 △ ACD 为等腰三角形,求/ ACB 的度数.(3) 如图2, △ ABC 中,AC=2 , BC= . CD 是厶ABC 的完美分割线,且 △ ACD 是以CD 为底边的等CD 的长.AB=10,弦AC=6,/ BAC 的平分线交O O 于点D ,过点D 作DE 丄AC 交AC的延长线于点E .(1) 求证:DE 是O O 的切线. (2) 求DE 的长.O为坐标原点,点A的坐标为(5, 0),菱形OABC的顶点B, C都在26.如图,在平面直角坐标系中,第一象限,tan/AOC=,将菱形绕点A按顺时针方向旋转角 a (0°<Z a<Z AOC)得到菱形FADE (点O的对应点为点F), EF与OC交于点G,连结AG .(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分/ OGE .(4)连结BD并延长交x轴于点P,当点P的坐标为(12, 0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()1 IA.- 6B.「C" D. 6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是-6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2. 下列计算正确的是()336 , 3、25 2 3A、a +a =a B . 3a - a=3 C . (a )=a D . a?a =a【考点】幕的乘方与积的乘方;合并同类项;同底数幕的乘法.【分析】根据同类项合并、幕的乘方和同底数幕的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a- a=2a,错误;C、(a3)2=a6,错误;D、a?a =a,正确;故选D.【点评】此题考查同类项合并、幕的乘方和同底数幕的乘法,关键是根据同类项合并、幕的乘方和同底数幕的乘法的定义解答.3. 宁波栋社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A . 0.845X1010元B. 84.5 >108元 C . 8.45 >109元 D . 8.45X1010元【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a>0n的形式,其中1哼a|v 10, n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10 - 1=9 .【解答】解:84.5亿元用科学记数法表示为8.45 >09元.故选:C .【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4. 使二次根式"-有意义的x的取值范围是()A . x 鬥B . x > 1C . x<1D . x 羽【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x - 1 S0,解得x昌,故选:D .【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5. 如图所示的几何体的主视图为()主枫方向【解答】解:如图所示:几何体的主视图为:故选:B .【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6. —个不透明布袋里装有 1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球, 则是红球的概率为( )A . ■B .C .D . 【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红1球的概率是3^6='. 故选:C .【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人) 1 3222则这10名学生校服尺寸的众数和中位数分别为()A . 165cm , 165cmB . 165cm , 170cmC . 170cm , 165cmD . 170cm , 170cm 【考点】众数;中位数. 【专题】统计与概率.【分析】根据表格可以直接得到这 10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列 即可得到中位数.【解答】解:由表格可知,这 10名学生校服尺寸的众数是 165cm ,这10名学生校服尺寸按从小到大排列是: 160、165、165、165、170、170、175、175、180、180,170+170=故这10名学生校服尺寸的中位数是: ^ cm , 故选B .【点评】本题考查众数和中位数, 解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.CD // AB ,/ ACD=40 ° 则/ B 的度数为(【分析】由CD // AB ,/ ACD=40 °根据两直线平行,内错角相等,即可求得/ A 度数,继而求得答案.【解答】解:••• CD // AB ,/ ACD=40 °•••/ A= / ACD=40 °•••在△ ABC 中,/ ACB=90 °【考点】简单几何体的三视图.【分析】禾U 用主视图的定义,即从几何体的正面观察得出视图即【考点】平行线的性质.•••/ B=90A=50 ° 故选B .【点评】此题考查了平行线的性质以及三角形内角和定理•注意两直线平行,内错角相等. 【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:••• h=8, r=6, 可设圆锥母线长为_ 由勾股定理,1= *' =10,1圆锥侧面展开图的面积为: S 侧=:疋>6 n 10=60 n 所以圆锥的侧面积为 60冗cm 2. 故选:C .【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可. 10.能说明命题 对于任何实数a , |a|>-_a”是假命题的一个反例可以是()I典A . a= - 2B . a=C . a=1D . a= 【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项. 【解答】解:说明命题 对于任何实数a , |a >- a”是假命题的一个反例可以是 a=- 2, 故选A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组 成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成 如果••那么…”形式. 有些命题 的正确性是用推理证实的,这样的真命题叫做定理. 任何一个命题非真即假.要说明一个命题的正确性, 一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 11.已知函数y=ax 2 - 2ax - 1 (a 是常数,a 老),下列结论正确的是( )A. 当a=1时,函数图象过点(-1, 1)B. 当a=- 2时,函数图象与x 轴没有交点C. 若a >0,则当X 》时,y 随x 的增大而减小D. 若a v 0,则当x €时,y 随x 的增大而增大【考点】二次函数的性质.【分析】把a=1, x= - 1代入y=ax 2- 2ax - 1,于是得到函数图象不经过点(-1, 1),根据△ =8>0,得 -2s到函数图象与x 轴有两个交点,根据抛物线的对称轴为直线x= -=1判断二次函数的增减性.【解答】解:A 、•••当a=1, x= - 1时,y=1+2 -仁2,二函数图象不经过点(- 1, 1),故错误; B 、 当a=- 2时,=42 - 4X (- 2) >( - 1) =8 > 0,二函数图象与 x 轴有两个交点,故错误;r 为6cm ,高h 为8cm ,则圆锥的侧面积为(A . 30 n cmB . 48 Ticm 【考点】圆锥的计算.2 2C . 60 n cmD . 80 冗cm 9.如图,圆锥的底面半径C、•抛物线的对称轴为直线x= - 2& =1 ,.•.若a>0,则当x羽时,y随x的增大而增大,故错误;D、T抛物线的对称轴为直线x= -2a =1••若a v 0,则当x W时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S i,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( )A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2 (用a、c表示),得出S1, S2, S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,1 I I则S2= ' (a+c)( a- c) = a2- 'c2,I... S2=S1 -童S3,••• S3=2S1 - 2S2,•••平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1 - 2S2=4S1.故选A .【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1, S2, S3之间的关系,属于中考常考题型.二、填空题13 .实数-27的立方根是-3 .【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:•••(- 3) 3= - 27,•实数-27的立方根是-3 .故答案为:-3 .【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.214 .分解因式:x - xy= x ( x- y) .【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2- xy=x (x - y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.图案①需8根火柴棒,图案②需15根火柴棒,…, 15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,按此规律,图案⑦需50根火柴棒.O CO QOO① ② ③【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7 (n- 1) =7n+1根,令n=7可得答案.【解答】解:•••图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;•••图案n需火柴棒:8+7 ( n - 1) =7n+1根;当n=7 时,7n+1=7 X7+1=50,•图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16•如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°测角BC为10讥+1 m (结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.Rt △ BAE 中,【分析】首先过点A作AE // DC,交BC于点E,则AE=CD=10m , CE=AD=1m,然后在/ BAE=60 °然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE // DC,交BC于点E,则AE=CD=10m , CE=AD=1m , •••在Rt△ BAE 中,/ BAE=60 °• BE=AE?tan60°=10 _ ( m),• BC=CE+BE=10 +1 ( m).•旗杆高BC为」0 _+1m .故答案为:10 「+1.B【点评】本题考查仰角的定义•注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.7T17. 如图,半圆O的直径AB=2,弦CD // AB,/ COD=90 °则图中阴影部分的面积为°AOR【考点】扇形面积的计算.【分析】由CD // AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出 S A ACD =S A OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论•【解答】解:•••弦 CD // AB , 二 SA ACD =S A OCD ,二s 阴影=S 扇形COD= 360° ?n? 2=3&0” Xnd 2*= 4._K故答案为::•【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出 s 阴影=s 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18. 如图,点A 为函数沪'' (x > 0)图象上一点,连结 OA ,交函数y= ■: (x > 0)的图象于点B ,点C 是 x 轴上一点,且 AO=AC ,则△ ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质. 【专题】推理填空题.【分析】根据题意可以分别设出点 A 、点B 的坐标,根据点 0、A 、B 在同一条直线上可以得到 A 、B 的 坐标之间的关系,由 AO=AC 可知点C 的横坐标是点 A 的横坐标的2倍,从而可以得到 △ ABC 的面积. 【解答】解:设点 A 的坐标为(a ,),点B 的坐标为(b , •••点C 是x 轴上一点,且 AO=AC , •••点C 的坐标是(2a , 0),_9_解得,k=「ZCOD (马 2(£)2■),设过点0( 0, 0), A (a ,-)的直线的解析式为:y=kx ,)在y 「上,又•••,解得, (舍去),n 9 n 1 18z 2a*— 2a'v — “ =9 _ 3=6ah 2 2二 SA ABC =S ^AOC — OBC = 乙2 =,故答案为:6. 【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有 8小题,满分78分)19. 先化简,再求值:(x+1 )( x - 1) +x (3 - x ),其中 x=2 . 【考点】整式的混合运算 一化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开, 再合并同类项即可化简, 把x 的值代入计算即可.【解答】解:原式=x 2 - 1+3x - x 2 =3x - 1,当x=2时,原式=3々-1=5 .【点评】本题考查了整式的混合运算和求值的应用, 能正确运用整式的运算法则进行化简是解此题的关键. 20•下列3X 3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:【考点】作图一应用与设计作图;轴对称的性质;中心对称. 【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2) 根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3) 在最上一行、中间一列,中间一行、最右一列涂上阴影即可.3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21•为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个 类别的拓展选取 选取 选取 1个涂上阴影,使 1个涂上阴影,使 2个涂上阴影,使 (1) (2) (3) (请将三个小题依次作答在图 4个阴影小正方形组成一个轴对称图形,但不是中心对称图形. 4个阴影小正方形组成一个中心对称图形,但不是轴对称图形. 5个阴影小正方形组成一个轴对称图形.1、图2、图3中,均只需画出符合条件的一种情形) (2)如图2所示;性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):荒咲疋捧拓壽理柱艺人曲京二二箋根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1) 60七0%=200 (人),即本次被调查的学生有200人;(2)选择文学的学生有:200沁5%=30 (人),选择体育的学生有:200 - 24 - 60 - 30 - 16=70 (人),补全的条形统计图如下图所示,【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.222. 如图,已知抛物线y= - x +mx+3与x轴交于A , B两点,与y轴交于点C,点B的坐标为(3, 0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴I上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1 )首先把点B的坐标为(3, 0)代入抛物线y= - x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴I于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3, 0)代入抛物线y= - x2+mx+3得:0= - 32+3m+3 ,解得:m=2,2 2••• y= - x +2x+3= -( x - 1) +4,顶点坐标为:(1, 4).(2)连接BC交抛物线对称轴I于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b ,•••点 C (0, 3),点 B (3, 0),r0=3k+b• 3=b ,I二 - 1*解得:〔23 ,•直线BC的解析式为:y= - x+3 ,当x=1 时,y= - 1+3=2 ,•••当PA+PC的值最小时,求点P的坐标为:(1 , 2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题•注意找到点P的位置是解此题的关键.23. 如图,已知O O的直径AB=10 ,弦AC=6 , / BAC的平分线交O O于点D,过点D作DE丄AC交AC 的延长线于点E.(1)求证:DE是O O的切线.(2)求DE 的长.【考点】切线的判定.【分析】(1)连接0D,欲证明DE是O O的切线,只要证明0D丄DE即可.(2)过点0作OF丄AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△ AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD ,•/ AD 平分/ BAC ,•••/ DAE= / DAB ,•/ OA=OD,•/ ODA= / DAO ,•••/ ODA= / DAE ,• OD// AE,•/ DE 丄AC ,• OD 丄DE,• DE是O O切线.(2)过点O作OF丄AC于点F,• AF=CF=3 ,OF=1 十"厂=:=4.•••/ OFE= / DEF= / ODE=90 °•四边形OFED是矩形,【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.A B进价(万兀/套) 1.5 1.2售价(万兀/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进 A , B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A 种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进 A , B两种品牌的教学设备分别为x套,y套,根据题意即可列方程fl. 5x+1.2y=66组!2",解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加 1.5a套,根据题意即可列不等式 1.5 (20- a) +1.2 (30+1.5a)詬9,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进 A , B两种品牌的教学设备分别为x套,y套,1宓+1 •戈尸6640.15x+0. 2y=9,*20解得:^30,答:该商场计划购进 A , B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加 1.5a套,1.5 (20 - a) +1.2 (30+1.5a)詬9,解得:a <10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用•注意根据题意找到等量关系是关键.25•从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在厶ABC中,CD为角平分线,/ A=40 ° / B=60 °求证:CD ABC的完美分割线.(2)在厶ABC中,/ A=48 ° CD是厶ABC的完美分割线,且△ ACD为等腰三角形,求/ ACB的度数.(3)如图2, △ ABC中,AC=2 , BC= :, CD是厶ABC的完美分割线,且△ ACD是以CD为底边的等【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ ABC不是等腰三角形,②△ ACD是等腰三角形,③△ BDC BCA 即可.(2)分三种情形讨论即可① 如图2,当AD=CD时,② 如图3中,当AD=AC时,③ 如图4中,当AC=CD 时,分别求出/ ACB即可.BC BE(3)设BD=x,利用△ BCD BAC,得 =1 ,列出方程即可解决问题.【解答】解:(1)如图1中,•••/ A=40 ° / B=60 °•••/ ACB=80 °,•••△ABC不是等腰三角形,•/ CD 平分/ ACB ,I•••/ ACD= / BCD= 'Z ACB=40 °•••/ ACD= Z A=40 °•△ ACD为等腰三角形,vZ DCB= Z A=40 ° ° Z CBD= Z ABC ,•••△BCD BAC ,• CD是厶ABC的完美分割线.(2)① 当AD=CD 时,如图2, Z ACD= Z A=45 ° °•/△ BDC BCA ,•Z BCD= Z A=48 ° °•Z ACB= Z ACD+ Z BCD=96 °.② 当AD=AC 时,如图 3 中,Z ACD= Z ADC= =66° ,•/△ BDC BCA ,•Z BCD= Z A=48 ° ,•Z ACB= Z ACD+ Z BCD=114 °③ 当AC=CD 时,如图 4 中,/ ADC= / A=48 ° •/△ BDC s\ BCA , •••/ BCD= / A=48 °•••/ ADC >Z BCD,矛盾,舍弃.•••/ ACB=96。

2016年宁波市中考数学试卷及答案

2016年宁波市中考数学试卷及答案

2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B.C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1) B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2 C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题ADCDBCBBCADA二、填空题13.﹣3.14.x(x﹣y).15.50.16.10+1.17..18.6.三、解答题(本大题有8小题,满分78分)19.5.20.21.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.22.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).23.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.24.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.25.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.26.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,11∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).12。

2016浙江数学中考真题解析统稿

2016浙江数学中考真题解析统稿

1.2016年浙江杭州数学试题解析1. B 【解析】因为32=9 ,所以9的算术平方根为3,即9=3 ,故选B .2. B 【解析】根据平行线分线段成比例定理可求.∵直线a ∥b ∥c ,∴DE EF =AB BC =12, 故选B .3. A 【解析】由三视图的画法规则:画三视图,注意主视、俯视长对正;主视、左视高平齐,左视、俯视 宽相等,作三视图时要注意其虚线与实线的使用,看得见的线用实线,看不见的线用虚线.如图,左视图应该是圆,主视图、俯视图应该是长方形,故选A .4. A 【解析】从统计图分析,12℃的天数为5,13℃的天数为2,14℃的天数为12,15℃的天数为3,16℃的天数为4,17℃的天数为2,18℃的天数为2,30天的温度值按从小到大的顺序排列,第15、16天的温度均为14℃,所以中位数为14℃,14℃的天数为12,天数最多,所以众数为14 ℃,故选A .5. B 【解析】× × ×6. C 【解析】设从甲煤场运x 吨煤到乙煤场,则现在甲煤场有煤(518-x)吨,现在已煤场有煤(106+x)吨,根据相等关系“甲煤场存煤数是乙煤场的2倍”建立一元一次方程518-x =2(106+x),故选C .7. D 【解析】函数y =k x (k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x =xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D .第8题解图8. D 【解析】如解图,连接OE ,则∠OBE =∠OEB ,∵∠AOB =∠OBE +∠ADB, ∠AOB =3∠ADB ,∴∠OBE = 2∠ADB ,∴∠OEB =2∠ADB ,∵∠OEB =∠D +∠DOE ,∴∠D =∠DOE ,∴DE =OE =OB ,D 选项正确;若EB =OE =OB ,即△OBE 是等边三角形时,DE =OE =OB ,∴A 选项错误;若∠BOE =90°,即△OBE 是等腰直角三角形时,BE =2OE ,则2DE =EB ,所以B 选项错误;若3DE =DO ,则OD =3OE =3OB ,题中条件不满足,∴C 选项错误,故选D .9. C 【解析】根据题意,画图如解图:则AC =m ,BC =n ,AC =CD =m ,AD =BD =n -m ,第9题解图根据勾股定理,得AC 2+CD 2=AD 2,即m 2+m 2=(n -m)2,2m 2=n 2+m 2-2mn ,整理得:m 2+2mn -n 2=0.故选C . 10. C 【解析】∵a@b =(a +b)2-(a -b)2,若a@b =0,则(a +b)2-(a -b)2=0,∴(a +b)2=(a -b)2, ∴a +b =±(a -b),∴a =0或b =0,∴①正确;根据公式a@b =(a +b)2-(a -b)2,∴a@(b +c)=[a +(b +c)]2-[a -(b +c)]2=[a +(b +c)+a -(b +c)][a +(b +c)-(a -b -c)]=4ab +4ac ,∵a@b +a@c =(a +b)2-(a -b)2+(a +c)2-(a -c)2=a 2+2ab +b 2-a 2+2ab - b 2+ a 2+2ac +c 2- a 2+2ac - c 2=4ab +4ac ,∴②正确;∵a@b =(a +b)2-(a -b)2= a 2+2ab +b 2-a 2+2ab - b 2=4ab ,假设a@b =a 2+5b 2,那么4ab = a 2+5b 2,即: a 2-4ab +5b 2=0,∵Δ=(-4b)2-4×1×5b 2=16b 2-20b 2=-4b 2<0,∴此方程没有实数解,即不存在实数a ,b ,满足方程a 2-4ab +5b 2=0,也就是不存在实数a ,b ,满足a@b =a 2+5b 2,∴③是错误的;∵设a ,b 是矩形的长和宽,若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a@b =(a +b)2-(a -b)2=4ab =4a(c -a)=-4(a -12c)2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a@b 的值最大值;∴选项④正确;综上所述,此题正确答案选C .11. 3 12. 12 【解析】棕色糖果占总数的百分比为1-(20%+15%+30%+15%)=20%.绿色糖果或棕色糖果占总数的百分比为30%+20%=50%,∴取出的糖果的颜色为绿色或棕色的概率=50%,即12.13. 答案不唯一,如:-4 【解析】根据平方差公式确定k 的值.当k =-a 2(a 为非零的有理数)时,原式=x 2-a 2y 2=(x -ay)(x +ay).第14题解图14. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°.顶角为120°的等腰三角形的底角是30°.(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°.(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.第15题解图15. (-5,-3) 【解析】如解图,∵线段AC ,BD 互相平分,∴四边形ABCD 是平行四边形.∴AD ∥BC ,AD =BC.∵BC ∥x 轴,BC =3,∴将点A(2,3)水平向右平移3个单位即得点D.∴点D 的坐标为(5,3).∴点D(5,3)关于坐标原点的对称点的坐标为(-5,-3).16. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2,y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23,当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.17. 解:方方同学的计算过程错误.(2分) 正确的计算过程如下:原式=6÷(-36+26)=6÷(-16)=6×(-6)=-36.(6分)18. 解:(1)2100÷0.7=3000(辆);所以第一季度的产量为3000辆.(3分) (2)圆圆的说法不对.(5分)因为百分比仅能够表示所要考察的数据在总量中所占的比例,并不能反映总量的大小.(8分) 19. (1)证明:因为∠AED =∠B ,∠DAE =∠DAE ,所以∠ADF =∠C , 又因为AD AC =DF CG ,所以△ADF ∽△ACG.(4分) (2)解:因为△ADF ∽△ACG , 所以AD AC =AF AG,又因为AD AC =12,所以AF AG =12,所以AFFG=1.(8分)20. 解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15(米), 所以,此时足球离地面的高度为15米.(2分) (2)因为h =10,所以20t -5t 2=10,即t 2-4t +2=0,解得t =2+2或t =2-2,所以,经过2+2或2-2秒时,足球距离地面的高度为10米.(5分) (3)因为m ≥0,由题意得t 1和t 2是方程20t -5t 2=m 的两个不相等的实数根, 所以b 2-4ac =(-20)2-20m >0, 所以m <20,所以m 的取值范围是0≤m <20.(10分) 21.第21解题图解:(1)由题意知EC =2,AE =10, 如解图,过点E 作EM ⊥AC 于点M , 所以∠EMC =90°,易知∠ACD =45°, 所以△EMC 是等腰直角三角形, 所以EM =2,所以sin ∠EAC =EM AE =55.(4分)(2)在△GDC 与△EDA 中, ⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, 所以△GDC ≌△EDA ,所以∠GCD =∠EAD , 又因为∠HEC =∠DEA , 所以∠EHC =∠EDA =90°, 所以AH ⊥GC ,因为S △AGC =12×AG ×DC =12×GC ×AH ,所以12×4×3=12×10×AH ,所以AH =6510.(6分)22. 解:(1)由题意,得⎩⎪⎨⎪⎧a -b =0a +b =2,解得⎩⎪⎨⎪⎧a =1b =1, 所以a =1,b =1.(3分)(2)①因为函数y 1的图象的顶点坐标为(-b 2a ,-b 24a ),所以a(-b2a )+b =-b 24a ,即b =-b 22a ,因为ab ≠0,所以-b =2a , 即证2a +b =0.(7分)②因为b =-2a ,所以y 1=ax(x -2),y 2=a(x -2),所以y 1-y 2=a(x -2)(x -1), 因为1<x <32,所以x -2<0,x -1>0,所以(x -2)(x -1)<0, 所以当a >0时,a(x -2)(x -1)<0,即y 1<y 2. 当a <0时,a(x -2)(x -1)>0,即y 1>y 2.(12分) 23.第23题解图①解:(1)原结论不成立,新结论为:∠APB =90°;AF +BE =2AB(或AF =BE =AB 等). 理由如下:因为AM ∥BN ,所以∠MAB +∠NBA =180°, 因为AE ,BF 分别平分∠MAB ,∠NBA , 所以∠EAB =12∠MAB ,∠FBA =12∠NBA ,∠EAB +∠FBA =12(∠MAB +∠NBA)=90°,所以∠APB =90°,如解图①,因为AE平分∠MAB,所以∠MAE=∠BAE,因为AM∥BN,所以∠MAE=∠BEA,所以∠BAE=∠BEA,所以AB=BE,同理AF=AB,所以AF=BE=AB(或AF+BE=2AB),(6分)第23题解图②(2)如解图②,过点F作FG⊥AB于点G,因为AF=BE,AF∥BE,所以四边形ABEF为平行四边形,又AF+BE=16,所以AB=AF=BE=8,由323=8×FG,得FG=43,又因为AF=8,得∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA的延长线上时,∠FAB=120°,第23题解图③①当∠FAB=60°时,∠PAB=30°,如解图②,所以PB=4,PA=43,因为BQ=5,∠BPA=90°,所以PQ=3,所以AQ=43-3或AQ=43+3,(9分)②当∠FAB=120°时,∠PAB=60°,∠FBG=30°,如解图③,所以PB=43,因为PB=43>5,则线段AE上不存在符合条件的点Q,所以当∠FAB=60°时,AQ=43-3或43+3.(12分)2. 2016年浙江省初中毕业学业考试(台州卷)解析超详解答案1. A 【解析】∵-3<-2<-1<0<2,∴比-2小的数是-3.故选A .2. D 【解析】俯视图是从上往看得到的图形,按照这个方法得出俯视图一行三列,故答案为D.3. C 【解析】将77 643 000 000用科学记数法表示为:7.7643×1010.故选C.4. B 【解析】本题考查了幂的运算性质中的同底数幂相乘、同底数幂相除和积的乘方和合并同类项法则,正确掌握幂的运算性质是解题的关键.根据同底数幂的运算法则、幂的乘方、积的乘方、合并同类项、同底数幂相除的法则进行计算即可.5. C . 【解析】质地均匀的骰子六个面分)别有1到6的点数,掷两次骰子,得到向上一面的两个点数,共有以下36种等可能情况:其中点数都是偶数的情况有18种,点数的和为奇数的情况有18种,点数的和小于13的情形有36种,点数的和小于2的有0种,所以点数的和小于13的可能性最大.故选C.6. D 【解析】x 2-y 2(y -x )2=(x +y )(x -y )(x -y )2=x +yx -y,故选D.7. B 【解析】根据题意得:OB =2,BC =1,根据勾股定理得:AC =OB 2+BC 2=22+12=5,∴OM =5,∴点M对应的数是 5.故选B.8. A 【解析】根据题意:每两队之间都比赛一场,每队参加x -1场比赛,共比赛12x (x -1)场比赛,根据题意列出一元二次方程12x (x -1)=45.故选A.9. C 【解析】本题只需先说明这个四边形方巾是菱形再说明有一个角是直角,从而得出是正方形.先沿对角线折叠再折叠,若重合,得是菱形,再展开沿对边中点折叠,若重合得到一个角是90°,从而可判断四边形丝巾是否是正方形.故选C.10. C 【解析】本题的解答关键在于求出PQ 的最大值与最小值,第10题解图①当如解图①时PQ长最大,最大值=AB-AQ=AB-(OA-OQ)=10-(5-3)=8;第10题解图②当如解图②时PQ长最小,最小值=OP-OQ=4-3=1.∴PQ长的最大值与最小值的和是8+1=9.故选C.11. (x-3)2【解析】本题直接套用完全平方公式即可得到答案. 即a2-ab+b2=(a-b)2所以x2-6x+9=(x-3)2.12. 5【解析】本题主要考查了图形的平移,注意在图形平移前后对应线段互相平行且相等.如解图所示,连接CC′,因为AC与A′C′为对应线段,则AC∥A′C′,且AC=A′C′,所以四边形AA′CC′为平行四边形,所以CC′=AA′,又A从刻度5移到刻度10,平移了5个单位,即AA′=5,∴CC′=5.第12题解图13.8x9【解析】本题主要考查了圆周角和圆心角之间的转换关系,并嵌入考查了圆弧的计算.由题可知:∠C =40°,∴∠AOB =80°,∴AB ︵所对的圆心角为80°,所以lAB ︵=80°180°x -2=8x9.14. 49 【解析】本题主要考查了古典概型中的概率问题.做此类型题目注意放回和不放回的区别,列表和画树状图都可解决此类问题.本题列表如下:由上表可知:在两次摸取过程中一共有9种等可能性,其中两次都是黄球的可能性有4种,所以两次摸出球都是黄球的概率为49.15. 43+4 【解析】本题主要考查了图形的旋转对称,并结合面积的计算.如解图所示,记旋转中心为O ,对图形进行如下分)割,得到8个全等的小三角形则S 阴=8S △OAB .现对其中一个小三角形进行解析计算,由题知:菱形内角为60°,∴∠ABO =30°,又∠ACO =60°,∴∠BAC =30°,△ABC 为等腰三角形由对称知,∠AOD =45°,过点A 作AD ⊥OB 于点D ,∴△ADO 为等腰直角三角形,∵菱形边长为2,∴AB =2,∴AD =OD =1,BC =3,∴OB =3+1,∴S △AOE =12OB·AD=12(3+1)×1=3+12,∴S 阴=8S △AOE =8×3+12=43+4. 16. 1.6 s 【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1 s 时到达相同最大离地高度,即二次函数的顶点处,故此二次函数的对称轴为t =1.1;由于两次抛小球的时间间隔为1 s ,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分)居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5 s, 所以此时第一个小球抛出后t =1.1+0.5=1.6 s 时与第二个小球的离地高度相同.17. 解:原式=2-12+12(4分)=2.(8分)18. 解:去分)母得:x+1=2(x-7);(2分)去括号,移项得:x=15.(6分)以检验x=15是原分)式方程的根.(7分)所以原方程的根为x=15.(8分)19. 解:(1)∵四边形ABCD是矩形,∴DC∥AB,AD∥BC,∠DCB=90°.(1分) ∵EF∥AB,GH∥BC,∴四边形PFCH是矩形.(2分)∴∠PHC=∠PFC=90°,PH=CF,HC=PF,(3分)∴△PHC≌△CFP;(4分)(2)证明:同理证得△ACD≌△CAB,△APE≌△PAG.且△PHC≌△CFP,∴S△ACD-S△AEP-S△PCH=S△CAB-S△PGA-S△CFP,S四边形PEDH=S四边形PFBH.(8分) 20. 解:他的这种姿势不符合保护视力的要求.(2分)理由如下:第20题解图过点B作BD⊥AC于点D,由题意可得,BC=30,∠ACB=53°.(3分)在Rt△BCD中,BD=BC sin53°≈30×0.8=24.(4分)DC=BC cos53°≈30×0.6=18.(5分)∴AD=AC-CD=22-18=4.(6分)利用勾股定理可得AB=BD2+AD2=242+42≈24.3.(7分)∵24.3<30,∴他的这种姿势不符合保护视力的要求.(8分)21. 解:(1)(6分)画函数图象如解图:第21题解图 (8分)(2)①由图象可得当k>0时,在x>0时,y 随x 的增大而减小; 在x<0时,y 随x 的增大而增大; ②当k<0时,在x>0时,y 随x 的增大而增大, 在x<0时,y 随x 的增大而减小.(10分)22. 解:(1)由题意可得所抽取的学生人数为3+6+7+9+10+5=40(人). 答:所抽取的学生人数为40人;(3分)(2)由题意可得活动前该校学生的视力达标率为1540×100%=37.5%.(6分)(3)答案不唯一,如活动前达标的学生人数为15人,活动后达标人数为22人, 说明活动效果还是很明显,如从整体来看,大部分)学生的视力通过活动后有所提升,可见活动的效果是比较明显的.(10分) 23. (1)由题意可得∠D =360°-3∠A ,∵∠D 是四边形中的一个内角,∴0°<D<180°,即0°<360°-3∠A<180°,(2分) 解得60°<∠A<120°;(4分)(2)∵四边形DEBF 是平行四边形,∴∠E =∠F ,∠E +∠B =180°, 由折叠的性质可得:∠EAD =∠E ,∠DCF =∠F ,(5分) 又∵∠DAB +∠DAE =180°,∠DCF +∠DCB =180°. ∴∠DAB =∠DCB =∠B.(7分)∴四边形ABCD 是三等角四边形;(8分)(3)利用(2)的结论可画图如解图,四边形DEBF 是平行四边形,∴DE =BF ,DF =BE.第23题解图由题意可得∠AED =∠DFC ,AD =DE ,DC =DF. ∴△ADE ∽△DCF ,∴DA DC =AE CF. ∵AE =AB -4,CF =4-AD.∴DA 4=AB -44-AD ,即整理得:AB =-AD 2+4AD +164 ∴当AD =2时,AB 最大为5.(10分)过C 作CH ⊥AB 于H ,∴DM ∥CH ,∴△DME ∽△CHB , ∴DE CB =ME BH ,∴DE ME =CB BH. ∵AE =5-4=1.∴ME =12,即212=4BH,∴BH =1.在Rt △AHC 中,AH =AB -BH =5-1=4,CH =CB 2-BH 2=42-12=15,∴AC =AH 2+CH 2=42+(15)2=31.(12分) 24. (1)当k =2, b =-4时,x 1=3时,x 2=2×3-4=2,x 3=2×2-4=0,x 4=2×0-4=4,x 5=2×(-4)-4==12(1分) x 1=4时,x 2=2×4-4=4,x 3=2×4-4=4,x 42×4-4=4,x 5=2×4-4=4(2分) x 1=5时,x 2=2×5-4=6,x 3=2×6-4=8,x 4=2×8-4=12,x 5=2×12-4=20(3分) 由上面的特殊值可得,y =2x -4与y =x 的交点的横坐标为4, 所以当输入的值x>4时,x n 的值会随着运算次数的增大而增大;当输入的值x =4时,x n 的值不变;当输入的值x<4时,x n 的值会随着运算次数的增大而减小;(6分)(2)当K>1时,y=kx+b与y=x的交点坐标横坐标为x=-bk-1,(9分)所以当输入的值x>-bk-1时,x n的值会随着运算次数的增大而增大;当输入的值x=-bk-1]时,x n的值不变;当输入的值x<-bk-1时,x n的值会随着运算次数的增大而减小;(10分)(3)①如解图,第24题解图(12分) 结论:通过画图可得,x n的值越来越靠近两个函数图象的交点的横坐标;②|k|<1,且k≠0时,m=-bk-1.【解法提示】两个函数图象的交点的横坐标为kx+b=x,解得x=-bk-1,且k≠-1.3.2016浙江省金华卷数学试题解析1. B 【解析】根据负实数的绝对值是它的相反数,可得答案.-2的绝对值是|-2|=2,故选B.2. D 【解析】由图可知a <0<b ,∴ab <0,a <b ,故选项A 、B 、C 正确,用排除法可知,选项D 错误;故本题选D.3. B 【解析】加工要求,Φ45-0.03-0.03意思是合格产品的直径最大不超过45+0.03,最小不低于45-0.03,从而确定合格产品的范围,进而得出结果.由题意得:合格尺寸的范围为44.97≤Φ≤45.03,∴可判断出B 选项的尺寸不合格.故选B.4. C 【解析】左视图是从物体左面看,所得到的图形.从左面看可得:右上角有一个边长为1 cm 小长方形,由于是挖掉的,所以用虚线画小正方形,A 选项中是实线,错误;D 选项中的边长大于1 cm ,故选C.5. C 【解析】先将A ,B 选项中的值代入x 2-3x -2=0中,不成立,排除A ,B ,再根据一元二次方程根与系数的关系,得x 1+x 2=3,x 1x 2=-2,排除D 选项,故选C.6. A 【解析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS)判断即可.A 、AC =BD ,∠ABC =∠BAD ,AB =AB ,不能推出△ABC ≌△BAD ,故本选项错误;B 、∵∠ABC =∠BAD ,AB =AB ,∠CAB =∠DBA ,∴根据ASA 能推出△ABC ≌△BAD ,故本选项正确;C 、根据AD =BC 和已知能推出△ABC ≌△BAD ,故本选项正确;D 、∵∠C =∠D ,∠ABC =∠BAD ,AB =AB ,∴根据AAS 能推出△ABC ≌△BAD ,故本选项正确;故选A.7. A 【解析】列树状图如解图:∵共有4种等可能的结果,两人同时选择“参加社会调查”的有1种,∴P (两人同时选择“参加社会调查”)=14.8. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4(米),∴BC =CA ·tan θ=4×tan θ.地毯长为4+4tan θ(米),宽为1米,其面积为(4+4tan θ)×1(米)2=4+4tan θ米2.9. C 【解析】第9题解图如解图,作圆过点A 、B 、E 三点,∵∠EAB 为直角,∴BE 为直径.设网格小正方形的边长为1,根据勾股定理,得DE 2=2,BE 2=20,BD 2=18,∴DE 2+BD 2=BE 2,∴△EDB 为直角三角形,∠EDB =90°,∴点D 在以BE 为直径的圆上,由圆周角定理,知:∠AFB =∠ADB =∠AEB ,∵∠AFB >∠ACB ,∴∠ADB >∠ACB ;∠AEB >∠ACB ,球员带球沿CD 方向进攻,设线段CD (异于端点)上一点为M ,显然有∠ADB >∠AMB ,设线段DE (异于端点) 上一点为点P , 始终满足∠APB >∠ADB ,因此球员的射门角度更大,故最好的射点在线段DE (异于端点) 上一点上.故答案选C.10. D 【解析】∵DH 垂直平分AC ,AC =4,∴AH =CH =12AC =12×4=2,CD =AD =y .在Rt △ADH 中,DH =AD 2-AH 2=y 2-22,在Rt △ABC 中,BC =AC 2-AB 2=42-x 2,∵S 四边形ABCD =S △ACD +S △ABC ,∴12(y +x )·42-x 2=12×4y 2-22+12x 42-x 2,即:y ·42-x 2=4×y 2-22,两边平方,得:y 2(42-x 2)=16(y 2-22),16y 2-x 2y 2=16y 2-64x 2y 2=64,∴x >0,y>0,∴xy =8,∴y 与x 的函数关系式为:y =8x(x <4)故选D.11. x<-1 【解析】原不等式移项得,3x <-3,系数化1得,x <-1,故本题的解集为x <-1.12. -1(只要填一个负数即可) 【解析】当x <0时,x 2=|x|=-x ,如-1等(只要填一个负数即可)值时,x 2=x 不成..立...13. 1 【解析】设第3次检测得到的氨氮含量是x mg /L .根据计算平均数的公式,得1.5=16(1.6+2+x +1.5+1.4+1.5),x =1,故答案填1.14. 80° 【解析】如解图,延长DE ,交AB 于点F ,∵AB ∥CD ,BC ∥DE.∴四边形FBCD 是平行四边形,∴∠BFC =∠C =120°,∴∠AFE =180°-∠C =180°-120°=60°,∴∠AED =∠AFE +∠A =60°+20°=80°.15. 2或5 【解析】△DEB′为直角三角形,存在两种情况,当∠B′DE =90°时,如解图①,∠B′DE =∠C =90°,∴AC ∥B′D ,设B′D =BD =x ,则CD =CB -BD =8-x ,∴DE CE =B′D AC ,即DE 8-DE -x =x 6,DE =-x 2+8x x +6,∵S △ADE +S △B′DE =S △ADB′=S △ADB ,∴12DE·AC +12DE·B ′D =12BD·AC ,即DE(AC +B ′D)=BD·AC ,DE(6+x)=6×6,DE =6x x +6,因此,6x x +6=-x 2+8x x +6,∵x >0,∴x =2,当∠B′ED =90°,点C 与点E 重合,在Rt △ABC 中,AB =AC 2+BC 2=62+82=10,∵AB′=AB =10,∴B′C =AB′-AC =10-6=4,设BD =x ,则CD =BC +B′D =8-x ,B′D =BD =x ,在Rt △B′CD 中,CD 2+B′C 2=B′D 2,即:(8-x)2+42=x 2,x =5,综上所述,BD 的长为2或5.16. (1)83;(2)37【解析】(1)如解图①,连接AE ,∵AF AB =EF DE =21=2,∴AF BF =EF DF ,又∵∠AFE =∠BFD ,∴△AFE ∽△BFD ,∴AEBD=AF BF ,即:AE 2+2=22+1,AE =83(米). (2)由题知,欲使该钢架不能活动,则添加的钢条能够与原钢条构成三角形,∵∠A =∠B =∠C =∠D =120°,如解图②所示,构造△PQR ,易知△PQR 为等边三角形;∴PQ =PR =QR =5,又PF =ER =3,∴QF =QE =2,∴△QEF 为等边三角形,则AB ∥QR ,CD ∥PQ ,EF ∥PR ,在ABCDEF 中,最短对角线长为BF 、DF 、CE ,如解图③所示,CD =2,DH =1,过点E 作EH ⊥CD 于点H ,则DH =12,EH =32,勾股定理可求CE =7,则最短长度图形如解图④所示:此时多边形固定,所以最短长度和为37.第16题解图① 第16解解图②17. 解:原式 =33-1-3×3+1 (4分) =0.(6分)18. 解:由 ①-②,得y =3.(2分)把y =3代入②,得x +3=2,解得x =-1.(4分)∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =3.(6分)19. 解:(1)∵抽取的人数为21+7+2=30, ∴训练后“A”等次的人数为30-2-8=20.(2分) 如图:(4分)(2)该校600名学生,训练后成绩为“A”等次的人数为600×2030= 400.答:估计该校九年级训练后成绩为“A”等次的人数是400.(6分)20. 解:(1)从图①看出,同一时刻,首尔时间比北京时间多1小时,所以,3关于x 的函数表达式是y =x +1.(2分)北京时间 7:30 11:15 2:50 首尔时间8:3012:153:50(5分)(2)从图②看出,设伦敦(夏时制)时间为t 时,则北京时间为(t +7)时,由第(1)题,韩国首尔时间为(t +8)时, 所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.(8分) 21. 解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0).(2分) (2)①过点C 作CF ⊥x 轴于点F.设AE =AC =t, 点E 的坐标是(3,t). 在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°.在Rt△ACF中,∠CAF=30°,∴CF=12t,AF=AC cos30°=32t,∴点C的坐标是(3+32t,12t).∴(3+32t)×12t=3t,解得t1=0(舍去),t2=2 3.所以,k=3t=6 3.(5分) ②点E的坐标为(3,23),设点D的坐标是(x,33x-3),∴x(33x-3)=63,解得x1=6,x2=-3,∴点D的坐标是(-3,-23),所以,点E与点D关于原点O成中心对称.(8分)22. 解:(1)∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.而四边形ABCD是平行四边形,∴四边形ABCD是菱形. (4分)第22题解图(2)①如解图,连接OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF.∵FC∥AB,∴OF即为△ABD的AB边上的高.S △ABD =12AB ×OF =12×8×4=16.∵点O ,E 分别是AB ,BD 的中点, ∴S △ABE =12S △ABD =8,所以,S △OBE =12S △ABE =4.(7分)②如解图,过点D 作DH ⊥AB 于点H. ∵AB ∥CD ,OF ⊥CF , ∴FO ⊥AB ,∴∠F =∠FOB =∠DHO =90°. ∴四边形OHDF 为矩形,即DH =OF =4.(8分) 在Rt △DAH 中,sin ∠DAB =DH AD =12,∴∠DAH =30°.∵点O ,E 分别为AB ,BD 中点, ∴OE ∥AD ,∴∠EOB =∠DAH =30°, ∴∠AOE =180°-∠EOB =150°, ∴弧AE 的长=150π×4180=10π3.(10分)23. 解:(1)①对于二次函数y =x 2,当y =2时,2=x 2,解得x 1=2,x 2=-2,∴AB =2 2.第23题解图①∵平移得到的抛物线L 1经过点B ,∴BC =AB =22, ∴AC =4 2.(2分)② 记抛物线L 2的对称轴与AD 相交于点N , 根据抛物线的轴对称性,得BN =12DB =22,∴OM =322.设抛物线L 2的函数表达式为y =a(x -322)2.由①得,B 点的坐标为(2,2), ∴2=a(2-322)2,解得a =4.抛物线L 2的函数表达式为y =4(x -322)2.(6分)第23题解图②(2)如图,抛物线L 3与x 轴交于点G ,其对称轴与x 轴交于点Q , 过点B 作BK ⊥x 轴于点K. (7分)设OK =t ,则AB =BD =2t, 点B 的坐标为(t ,at 2), 根据抛物线的轴对称性,得OQ =2t ,OG =2OQ =4t. 设抛物线L 3的函数表达式为y =a 3x(x -4t), ∵该抛物线过点B(t ,at 2),∴at 2=a 3t(t -4t),因t ≠0,得a 3a =-13.AB EF =32.10分第24题解图①24. 解:(1)如解图①,过点E 作EH ⊥OA 于点H ,EF 与y 轴的交点为M. ∵OE =OA ,α=60°,∴△AEO 为正三角形,∴OH =3,EH =62-32=3 3.∴E(-3,33). ∵∠AOM =90°,∴∠EOM =30°. 在Rt △EOM 中,∵cos ∠EOM =OE OM ,即32=6OM ,∴OM =4 3.∴M(0,43).(2分)设直线EF 的函数表达式为y =kx +43,∵该直线过点E(-3,33), ∴-3k +43=33,解得k =33, 所以,直线EF 的函数表达式为y =33x +4 3.(4分)(2)如解图②,射线OQ 与OA 的夹角为α( α为锐角,tan α=12).无论正方形边长为多少,绕点O 旋转角α后得到正方形OEFG 的顶点E 在射线OQ 上, ∴当AE ⊥OQ 时,线段AE 的长最小. 在Rt △AOE 中,设AE =a ,则OE =2a ,∴a 2+(2a)2=62,解得a 1=655,a 2=-655(舍去),∴OE =2a =1255, ∴S 正方形OEFG =OE 2=1445.(6分)第24题解图③(3)设正方形边长为m.当点F 落在y 轴正半轴时.如解图③,当P 与F 重合时,△PEO 是等腰直角三角形,有OP PE =2或OPOE = 2.在Rt △AOP 中,∠APO =45°,OP =OA =6,∴点P 1的坐标为(0,6).在解图③的基础上,当减小正方形边长时,点P 在边FG 上,△OEP 的其中两边之比不可能为2∶1;当增加正方形边长时,存在PE OE =2(解图④)和OPPE=2(解图⑤)两种情况.(7分)第24题解图④如解图④,△EFP 是等腰直角三角形,有PE EF =2,即PEOE =2,此时有AP ∥OF.在Rt △AOE 中,∠AOE =45°,∴OE =3OA =62,∴PE =2OE =12,PA =PE +AE =18, ∴点P 2的坐标为(-6,18). (8分)如解图⑤,过P 作PR ⊥x 轴于点R ,延长PG 交x 轴于点H.设PF =n. 在Rt △POG 中,PO 2=PG 2+OG 2=m 2+(m +n)2=2m 2+2mn +n 2, 在Rt △PEF 中,PE 2=PF 2+EF 2=m 2+n 2, 当POPE=2时,∴PO 2=2PE 2.∴2m 2+2mn +n 2=2(m 2+n 2), 得n =2m. ∵EO ∥PH ,∴△AOE ∽△AHP ,∴OA AH =OE PH =m 4m =14,∴AH =4OA =24,即OH =18,∴m =9 2. 在等腰Rt △PRH 中,PR =HR =22PH =22×4m =36, ∴OR =RH -OH =18,∴点P 3的坐标为(-18,36).(9分) 当点F 落在y 轴负半轴时,第24题解图⑥如解图⑥,P 与A 重合时,在Rt △POG 中,OP =2OG , 又∵正方形OGFE 中,OG =OE , ∴OP =2OE.∴点P 4的坐标为(-6,0).10分在解图⑥的基础上,当正方形边长减小时,△OEP 的其中两边之比不可能为2∶1;当正方形边长增加时,存在PEPO =2(解图⑦)这一种情况.如解图⑦,过P 作PR ⊥x 轴于点R ,设PG =n , 在Rt △OPG 中,PO 2=PG 2+OG 2=n 2+m 2,在Rt △PEF 中,PE 2=PF 2+FE 2=(m +n )2+m 2=2m 2+2mn +n 2. 当PEPO=2时,∴PE 2=2PO 2. ∴2m 2+2mn +n 2=2n 2+2m 2,∴n =2m , 由于NG =OG =m ,则PN =NG =m ,∵OE ∥PN ,∴△AOE ∽△ANP, ∴AN AO =PN OE =mm =1,即AN =OA =6.在等腰Rt △ONG 中,ON =2m ,∴12=2m, ∴m =62, 在等腰Rt △PRN 中,RN =PR =22m =6, ∴点P 5的坐标为(-18,6).(11分)所以,△OEP 的其中两边的比能为2∶1,点P 的坐标是:P 1(0,6),P 2(-6,18),P 3(-18,36),P 4(-6,0),P 5(-18,6).(12分)4. 2016温州中考数学试题解析1. C 【解析】根据有理数的加法法则求出即可.注意:异号两数相加,取绝对值较大的加数的符号,并用绝对值大的减去绝对值小的.(+5)+(-2)=5-2=3,故选C.2. B 【解析】从频数直方图可以看出,4~6小时这一组人数最多,有22人,故选B.3. B 【解析】主视图是从物体正面看所得到的图形.观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是三个叠在一起的长方形,如选项B 所示.注意所有看的到的棱都应用实线表示在三视图中.4. A 【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y ,故选A.5. D 【解析】根据分式的值为0即分母不为0,分子为0得,x -2=0且x +3≠0,求出x 即可.∵分式x -2x +3的值为0,∴x -2=0,且x +3≠0,∴x =2.故选D.6. A 【解析】∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是510=12,故选A.7. B 【解析】根据多边形内角和定理:n 边形的内角和等于(n -2)×180°(n ≥3,且n 为整数),计算可得.(6-2)×180°=720°,故选B.8. C 【解析】由直线与两坐标轴的正半轴相交,得该直线函数解析式的一次项系数小于0,排除B; 若所求的解析式为y =-x +5,设该直线上的点P 的横坐标为x ,则纵坐标为-x +5,矩形的周长为2[x +(-x +5)]=10,符合题意,因此C 选项正确;若所求的解析式为y =-x +10,设该直线上的点P 的横坐标为x ,则纵坐标为-x +10,矩形的周长为2[x +(-x +10)]=20,因此D 选项错误,故选C.第9题解图9. D 【解析】根据题意画图如解图,连接BG .∵点D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线;∴DE =12BC =12×3=32 ,a =32 ,同理b =2,根据勾股定理,得AB =AC 2+BC 2=42+32=5,∵D 是AB 的中点,∴AD =52,由第三次折叠可知GD 垂直平分AB ,∴GB =GA .设GB =GA =x ,则GC =AC -AG =4-x .根据勾股定理,得BC 2+CG 2=BG 2,即32+(4-x )2=x 2 ,解得x =258 ,在Rt △ADG 中,DG =AG 2-AD 2=(258)2-(52)2= 158 ,即c =158,因此b >c >a ,故选D.第10题解图10. C 【解析】如解图,过点D 作DN ⊥AB 于点N ,过点C 作CM ⊥AB 于点M .在△ABC 中,∠ACB =90°,AC =4,BC =2,根据勾股定理,得AB =AC 2+BC 2=42+22=2 5 ,利用等面积法,可求CM =AC ·BC AB =45 5.设AP =x ,易证△ADP ∽△ACB ,∴S 1S △ACB =(AP AB )2 ,∴S 1=(x 25)2×12×4×2=15x 2 ,S 2=12×(25-x -1)×455=-255x +4-255,∴S 1+S 2=15x 2-255x +4-255,此函数为二次函数,图象开口向上,故先减小,后变大,故选C.11. a (a -3) 【解析】直接把公因式a 提出来即可.a 2-3a =a (a -3).12. 37 【解析】直接利用中位数的定义分析得出答案.把数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.13. ⎩⎪⎨⎪⎧x =3y =1 【解析】本题考查二元一次方程组的解法.由于y 的系数互为相反数,用加减消元法先消y ,相加得4x =12,解得x =3,把x =3代入x +2y =5中,得3+2y =5,解得y =1,因此该方程组的解为⎩⎪⎨⎪⎧x =3y =1.14. 46 【解析】根据旋转的性质 ,得△ABC ≌△A ′B ′C ,则∠A ′=∠A =27°,∠B ′=∠B =40°,∴∠BCB ′=∠A ′+∠B ′=27°+40°=67°,∵∠ACB =180°-∠B -∠A =180°-40°-27°=113°,∴∠ACB ′=∠ACB -∠BCB ′=113°-67°=46°,故答案为46.15. 32 2 +16 【解析】在正方形ABCD 中,∠BAD =90°,∴BD =162+162=162,∴OB =OD =8 2 ,∴BG =OG =OP =PD =42,BF =(42)2+(42)2=8, CF =8.将图1和图2对比,可知每一条线段的长,∴该凸六边形的周长为:82+82+8+42×4+8=322+16(cm).第15题解图16.327 【解析】∵E 是AB 的中点,∴S △ABD =2S △ADE ,S △BAC =2S △BCE ,又∵△BCE 的面积是△ADE 的面积的2倍,∴2S △ABD =S △BAC .设点A 的坐标为(m ,k m ),点B 的坐标为(n ,kn),则有⎩⎨⎧m -n =kk m =2kn (m -n )2+(k m -k n )2=2·km,解得:⎩⎨⎧k =372m =72n =7或⎩⎨⎧k =-372m =-72n =7(舍去). 17. 解:(1)原式=25+9-1 =25+8.(5分) (2)原式=4-m 2+m 2-m =4-m .(10分)18. 解:(1)由题意,得72360×100%=20%,答:“非常了解”的人数的百分比是20%.(4分) (2)由题意,得1200×72+108360=600(人).答:估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.(8分)第19题解图19. (1)证明:∵AD∥BC,即AD∥BF,∴∠1=∠F,∠D=∠2,∵DE=CE,∴△ADE≌△FCE.(4分)(2)解:∵△ADE≌△FCE,∴AE=EF=3.∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE=AD2-AE2=4,∴CD=2DE=8.(8分)20. 解:(1)画法不唯一,如解图①②③等.(4分)第20题解图①第20题解图②第20题解图③(2)画法不唯一,如解图④,⑤,⑥等.(8分)第20题解图④ 第20题解图⑤ 第20题解图⑥21. (1)证明:如解图,连接DE . ∵BD 是⊙O 的直径, ∴∠DEB =90°. ∵E 是AB 的中点, ∴DA =DB , ∴∠1=∠B . ∵∠B =∠F , ∴∠1=∠F .(4分)第21题解图(2)解:∵∠1=∠F , ∴AE =EF =25, ∴AB =2AE =4 5.(6分)在Rt △ABC 中,AC =AB ·sin B =4, ∴BC =AB 2-AC 2=8.设CD =x ,则AD =BD =8-x .由勾股定理,得AC 2+CD 2=AD 2, 即42+x 2=(8-x )2, 解得x =3, ∴CD =3.(10分)22. 解:(1)由题意得15×40+25×40+30×20100=22(元/千克).答:该什锦糖每千克22元.(4分)(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x )千克,由题意,得30x +15(100-x )+22×100200≤20,解得x ≤20.答:最多可加入丙种糖果20千克.(10分) 23. 解:(1)∵抛物线的对称轴是x =m2,∴AC =m ,∴BE =2AC =2m .(3分)(2)当m =3时,点D 落在抛物线上,理由如下: ∵m =3,∴AC =3,BE =23,把x =23代入y =x 2-3x -3,得 y =(23)2-3×23-3=3, ∴OE =3=OC ,∵∠DEO =∠ACO =90°,∠DOE =∠AOC ; ∴△OED ≌△OCA ,∴DE =AC =3, ∴D (-3,3),∴把x =-3代入y =x 2-3x -3,得y =(-3)2-3×(-3)-3=3, ∴点D 落在抛物线上.(7分)第23题解图① 第23题解图②(3)①如解图②,当x =2m 时,y =2m 2-3,OE =2m 2-3. ∵AG ∥y 轴, ∴EG =AC =12BE ,∴FG =12OE ,∴S △DOE =S △BGF ,即12DE ·OE =12BG ·FG ,∴DE =12BG =12AC .∵∠DOE =∠AOC ,∴tan ∠DOE =tan ∠AOC ,∵∠DEO =∠ACO =90°,∴DE OE =AC OC, ∴OE =12OC =32,∴2m 2-3=32,∴m =32.(10分)②m 的值是322.(12分)【解法提示】由①知B (2m ,2m 2-3),E (0,2m 2-3),A (m ,-3),G 是BE 的中点,∴GF =m 2-32,则AF =m 2+32.易得直线BO 的解析式为y =2m 2-32m x ,设直线AE 的解析式为y =k 1x +b ,则⎩⎪⎨⎪⎧k 1m +b 1=-3b 1=2m 2-3,解得⎩⎪⎨⎪⎧k 1=-2m b 1=2m 2-3,∴直线AE 的解析式为y =-2mx +2m 2-3.联立得⎩⎨⎧y =-2mx +2m 2-3y =2m 2-32m x,解得x =(2m 2-3)·2m6m 2-3,过M 作MN ⊥AG 于N ,则MN =m -(2m 2-3)·2m 6m 2-3=2m 2+3m6m 2-3,由S △BGF =S △AMF 得2m 2+3m 6m 2-3·(m 2+32)=m ·(m 2-32). 解得m =322,或m =0(舍),或m =-322(舍).24. (1)证明:如解图①,设⊙O 切AB 于点P ,连接OP ,则∠OPB =90°.∵四边形ABCD 是菱形, ∴∠ABD =12∠ABC =30°,∴BD =2OP =2OM .第24题解图①第24题解图②(2)解:如解图②,设GH交BD于点N,连接AC,交BD于点Q,∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB·cos∠ABQ=3AB=18.设⊙O的半径为r,则OB=2r,BM=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.(4分)(Ⅰ)如解图②,当点E在边AB上时,在Rt△BEM中,EM=BM·tan∠EBM=3r.由对称性,得EF=2EM=23r,DN=BM=3r,∴MN=18-6r,∴S矩形EFGH=EF·MN=23r(18-6r)=243,解得r1=1,r2=2.当r=1时,EF<HE,∴r=1不合题意,舍去,当r=2时,EF>HE,∴r=2,此时BM=3r=6.(6分)(Ⅱ)如解图③,当点E在边AD上时,由对称性,得BM=3r=18-6=12,∴r=4.综上所述,⊙O的半径是2或4.(8分)第24题解图③ 第24题解图④(3)解:设GH 交BD 于点N ,⊙O 的半径为r ,则BO =2r . 当点E 在边BA 上时,显然不存在HE 或HG 与⊙O 相切. (Ⅰ)当点E 在边AD 上时,(ⅰ)如解图④,当HE 与⊙O 相切时, 则EM =r ,DM =3r , ∴3r +3r =18, ∴r =9-33,∴BO =2r =18-6 3.(ⅱ)如解图⑤,当HG 与⊙O 相切时, 由对称性,得ON =OM ,BN =DM , ∴BO =12BD =9.(11分)第24题解图⑤ 第24题(Ⅱ)当点E 在边AD 的延长线上时.(ⅰ)如解图⑥,当HG 与⊙O 相切时,MN =2r . ∵BN +MN =BM =3r , ∴BN =r ,∴DM =3FM =3GN =BN =r ,∴D与O重合,∴BO=BD=18.第24题解图⑦(ⅱ)如解图⑦,当HE与⊙O相切时,则EM=r,DM=3r,∴3r-3r=18,∴r=9+33,∴BO=2r=18+6 3.综上所述,当HE或HG与⊙O相切时,BO的长为18-63或9或18或18+6 3.(14分)5.2016年义乌中考数学解析1.A2.A 【解析】科学记数法将一个较大的数表示为:a ×10n (1≤a <10,n 为正整数).所以此题在记数时,a =3.386,n 为原数的整数位数减去1,故选A .3.B 【解析】在确定某个图形是否为轴对称图形时,就看其能否沿某条直线对折之后两边能够完全重合,若能完全重合则该直线即为该图形的一条对称轴.因此题图中在水平方向上和竖直方向上各有一条对称轴,即共有2条,故选B .4.B 【解析】本题主要考查了正方体的表面展开图情形,共11种情形,如下:结合选项知选B .5.C 【解析】易知每次出现1、2、3、4、5、6的机会均等,则出现偶数的可能性为2、4、6,故投掷一次,朝上一面的数字是偶数的概率为36=12.6.D 【解析】本题主要考查了圆中弧、圆心角与圆周角的相互转换关系. 由AB ︵=BC ︵,∠AOB =60°,可得∠BDC =12∠AOB=12×60°=30°. 7.D 【解析】本题在解答时,可对选项逐一排除得到结果.确定方法即为将四个选项表示的玻璃碎片拼在一起,延长各边,判断构成的四边形是否为平行四边形和是否唯一,如果选项中的两碎片玻璃拼在一起能构成唯一的一个平行四边形,则即为答案,根据实际操作可知选D .第8题解图8.B 【解析】 根据题意作图如解图:不妨设BC =2a ,∵∠ABC =90°,∠BAC =30°,则AB =23a.由作图知,AB =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江省宁波市中考数学试卷友情提示:一、认真对待每一次复习及考试。

.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。

三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A 作AE ∥DC ,交BC 于点E ,则AE=CD=10m ,CE=AD=1m ,然后在Rt △BAE 中,∠BAE=60°,然后由三角形函数的知识求得BE 的长,继而求得答案.【解答】解:如图,过点A 作AE ∥DC ,交BC 于点E ,则AE=CD=10m ,CE=AD=1m , ∵在Rt △BAE 中,∠BAE=60°, ∴BE=AE •tan60°=10(m ), ∴BC=CE+BE=10+1(m ). ∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论. 【解答】解:∵弦CD ∥AB , ∴S △ACD =S △OCD , ∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC 的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM 求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,。

相关文档
最新文档