七年级数学下册第六章概率初步周周测5(6.3)(新版)北师大版
2022年最新北师大版七年级数学下册第六章概率初步章节测试试卷(含答案详解)
北师大版七年级数学下册第六章概率初步章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、标标抛掷一枚点数从1-6的正方体骰子12次,有7次6点朝上.当他抛第13次时, 6点朝上的概率为()A.113B.712C.512D.162、下列事件为必然事件的是()A.明天是晴天B.任意掷一枚均匀的硬币100次,正面朝上的次数是50次C.两个正数的和为正数D.一个三角形三个内角和小于1803、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A.25B.35C.45D.3104、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A.23B.12C.13D.15、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.16、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同7、下列事件中属于必然事件的是()A.随机买一张电影票,座位号是奇数号 B.打开电视机,正在播放新闻联播C.任意画一个三角形,其外角和是360 D.掷一枚质地均匀的硬币,正面朝上8、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为()A.427B.29C.827D.2279、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近10、下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.2、不透明的袋子里装有红球2个,绿球1个,除颜色外无其他差别,每次摸球前先将球摇匀,摸出一个后记下颜色再放回袋中,连续摸球两次为一红一绿的概率是 __.3、一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_________________.4、如果A表示事件“三角形的任意两边之和大于第三边”,则()P A ________.5、班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,现有一个均匀的转盘被平均分成六等份,分别标有2,3,4,5,6,7这六个数字,自由转动转盘,当转盘停止时,指针指向的数字即为转出的数字(若指针恰好指在分界线上,则重新转动转盘).(1)求转出的数字大于3的概率;(2)小明和小凡做游戏.自由转动转盘,转出的数字是偶数小明获胜,转出的数字是奇数小凡获胜,这个游戏对双方公平吗?请说明理由.2、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?3、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?4、在一个口袋中只装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋中随机摸出一个球是红球”发生的概率是多少?请直接写出结论;(2)现从口袋中取走若干个红球,并放入相同数量的白球,充分摇匀后,要使从口袋中随机摸出一个球是白球的概率是45,求取走了多少个红球?5、八月底,八年级(1)班学生小颖对全班同学这一个多月来去重庆大学图书馆的次数做了调查统计,将结果分为A、B、C、D、E五类,其中A表示“0次”、B类表示“1次”、C类表示“2次”、D 类表示“3次”、E类表示“4次及以上”.并制成了如下不完整的条形统计和扇形统计图(如图所示).请你根据统计图表中的信息,解答下列问题:(1)填空:=a________;(2)补全条形统计图,并求出扇形统计图中D类的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.-参考答案-一、单选题1、D【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:掷一颗均匀的骰子(正方体,各面标16-这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为16.故选:D.【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.2、C【详解】解:A、“明天是晴天”是随机事件,此项不符题意;B、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意;C、“两个正数的和为正数”是必然事件,此项符合题意;D、“一个三角形三个内角和小于180︒”是不可能事件,此项不符题意;故选:C.【点睛】本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键.3、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=25,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=13.故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.6、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么a b=±,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.7、C【分析】根据必然事件的定义:在一定条件下一定会发生的事件,进行逐一判断即可.【详解】解:A、随机买一张电影票,座位号可以是奇数也可以是偶数,不是必然事件,故此选项不符合题意;B、打开电视机,可以正在播放也可以不在播放新闻联播,不是必然事件,故此选项不符合题意;C、任意画一个三角形,其外角和是360°,是必然事件,故此选项符合题意;D、掷一枚质地均匀的硬币,可以正面朝上也可以反面朝上,不是必然事件,故此选项不符合题意;故选C.【点睛】本题主要考查了必然事件,解题的关键在于能够熟练掌握必然事件的定义.8、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率.【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到3×3×3=27(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为62 279,故选:B.【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键.9、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为12”表示正面向上的可能性是12,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.10、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.二、填空题1、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.2、4 9【分析】根据概率公式计算概率即可【详解】解:列表如下:由表知,共有9种等可能结果,其中连续摸球两次为一红一绿的有4种结果,所以连续摸球两次为一红一绿的概率为49,故答案为:4 9【点睛】本题考查了概率的计算,正确画出表格是解题关键.3、3 10【分析】由题可知,第10次摸出的球的颜色与前9次的结果是无关的,求出球的总数和黄球的个数,利用概率的公式进行计算即可.【详解】∵共有23510++=个小球,3个黄球,∴第10次摸出黄球的概率是310.故答案为310.【点睛】本题是一道关于概率的题目,解答本题的关键是熟练掌握概率的计算公式.4、1【分析】根据必然事件的定义即可知,在一定条件下,一定会发生的事件称为必然事件,必然事件的概率为1.【详解】三角形的任意两边之和大于第三边,∴事件“三角形的任意两边之和大于第三边”是必然事件,∴()P A =1.【点睛】本题考查了必然事件的概率,掌握必然事件的定义是解题的关键.5、133【分析】根据题意,共有1+32=33个学生,由概率=所求情况数与总情况数之比即可得出答案.【详解】解:根据题意得:1113233=+; 答:正好抽到自己那一张的可能性为133; 故答案为:133. 【点睛】本题考查的是概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)23;(2)公平,理由见解析【分析】(1)转出的数字有6种结果,求转出的数字大于3的结果数,即可求解;(2)分别求出小明和小凡获胜的概率,即可判定.【详解】解:转出的数字有6种结果,并且每种结果出现的可能性相同(1)转出的数字大于3有4种结果,4、5、6、7所以,P(转出的数字大于3)42 63 ==(2)小明获胜有3种结果,小凡获胜有3种结果P(小明获胜)=12,P(小凡获胜)=12因为小明和小凡获胜的概率相同,所以这个游戏对双方公平【点睛】此题考查了概率的有关求解,熟练掌握概率的求解公式是解题的关键.2、(1)出现“5”的概率是13;(2)出现“6”的概率是0;(3)出现奇数的概率是23.【分析】(1)根据出现5的机会有两次,再利用概率公式计算即可;(2)根据出现6的机会没有,可得出现6是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现5的机会有两次,所以出现“5”的概率是:21 63 =,(2)因为出现6的机会没有,所以出现“6”的概率是:0,(3)因为出现奇数的机会有四次,所以出现奇数的概率是42. 63【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.3、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6.【分析】设这种动物有x只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率【详解】解:设这种动物有x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,活到30岁的只数为0.3x.(1)现年20岁的这种动物活到25岁的概率为0.50.8xx=0.625.(2)现年25岁的这种动物活到30岁的概率为0.30.5xx=0.6.【点睛】本题考查了概率的计算,正确理解概率的含义是解决本题的关键.概率等于所求情况数与总情况数之比.4、(1)35;(2)取走了4个红球【分析】(1)用红球的个数除以总球的个数即可;(2)设取走了x个红球,根据概率公式列出算式,求出x的值即可得出答案.【详解】解:(1)∵口袋中装有4个白球和6个红球,共有10个球,∴从口袋中随机摸出一个球是红球的概率是63=105;(2)设取走了x个红球,根据题意得:44 105x+=,解得:4x=,答:取走了4个红球.【点睛】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5、(1)20;(2)图见解析;72°;(3)2 21【分析】(1)先利用B类人数和它所占的百分比计算出调查的总人数,然后计算出D类人数所占的百分比即可得到a的值;(2)先计算出C类人数,再补全条形统计图,然后用D类人数所占百分比乘以360°得到扇形统计图中D类的扇形所占圆心角的度数;(3)利用E类人数除以总人数得到恰好抽中去过“4次及以上”的同学的概率.【详解】解:(1)调查的总人数为12÷24%=50(人),所以a%=1050=20%,即a=20;故答案为20;(2)C类人数为50−8−12−10−4=16(人),条形统计图为:扇形统计图中D类的扇形所占圆心角的度数为360°×20%=72°;(3)恰好抽中去过“4次及以上”的同学的概率=442 5084221==-.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)
北师大版七年级数学下册第六章 概率初步 单元测试卷(含答案)一、选择题(30分)1.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50 2.下列事件中,属于必然事件的是( )A .随意抛掷一枚骰子,掷得偶数点B .从一副扑克牌中抽出一张,抽得红桃牌C .任意选择电视的某一频道,正在播放动画片D .在同一年出生的367名学生中,至少有两个人同月同日生3.在相同条件下重复试验,若事件A 发生的概率是7100,则下列说法中正确的是( )A .事件A 发生的频率是7100 B .反复大量做这种试验,事件A 只发生了7次C .做100次这种试验,事件A 一定发生了7次D .做100次这种试验,事件A 可能发生了7次4.(2019·东营)从1,2,3,4中任取两个不同的数,分别记为a 和b ,则a 2+b 2>19的概率是( ) A .12 B .512 C .712 D .135.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A .16B .13C .12D .236.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .157.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是( )A .16B .13C .12D .238.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .15B .4115C .49D .139.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近10.某学习小组在做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )试验 次数 100 200 300 500 800 1000 2000 频率0.3650.3280.3300.3340.3360.3320.333B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率 二、填空题(16分)11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是______.12.从分别标有1,2,3,4的四张卡片中任意抽取1张,抽到奇数的概率是______. 13.一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球有________个.14.若将分别写有“生活”“城市”的2张卡片,随机放入“ 让 更美好”中的两个 内(每个 只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是________.15.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,朝上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)16.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向的数大于6的概率为________.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是________.三、简答题(54分)19.(9分)一个口袋中有10个红球和若干个白球,请通过以下试验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中.不断重复上述过程,试验中总共摸了200次,其中有50次摸到红球.20.(9分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)于45,求m的值.21.(12分)(2018·苏州期末)暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每买够200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.22.(12分)有一个质地均匀的小正方体,正方体的六个面上分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?23.(12分)一个小球分别在如图①②所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球停留在白色区域的概率分别是多少?参考答案1~10:ADDDB AACDB 11.1/2 12. 1/2 13. 15 14. 1/2 15. ①③ 16. 1/4 17. 2/3 18. 1/3 19.解:试验中总共摸了200次,其中50次摸到红球,则摸出一球是红球的概率估计值是50200=14,因为红球有10个,则袋中共有球10÷14=40(个),故口袋中白球的个数为40-10=30(个).20. (1)4 2,3(2)解:根据题意得6+m 10=45,解得m =2,所以m 的值为2.21.(1)解:因为转盘被均匀地分为20份,转动转盘获得购物券的有10种情况,所以他此时获得购物券的概率是1020=12.(2)解:他获得50元购物券的概率最大.理由:因为P (获得200元购物券)=120,P (获得100元购物券)=320,P (获得50元购物券)=620=310,所以他获得50元购物券的概率最大.22.解:这个游戏不公平.因为正方体的六个面上分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是说甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方胜利的机会不是均等的,所以说这个游戏不公平.可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则对甲、乙双方是公平的.(答案不唯一) 23.解:图①:P =34;图②:P =23.。
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)
七年级数学下册《第六章 概率初步》测试卷-附答案(北师大版)一、选择题(共10小题,每小题3分,共30分) 1. 下列事件中,是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为415,买10 000张该种彩票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2. 在一个布袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2个、红球6个、黑球4个.将布袋中的球搅匀,闭上眼睛随机从布袋中取出1个球,则取出黑球的概率是( ) A .12 B .14 C .13 D .163. 一个布袋中有10个球,其中6个红球、4个黑球,每个球除颜色不同外其余均相同.现在甲、乙进行摸球游戏,从中随机摸出一球,摸到红球,乙胜;摸到黑球,甲胜,则下列说法你认为正确的是( ) A .甲获胜的可能性大B .乙获胜的可能性大C .甲、乙获胜的可能性相等D .以上说法都不对4. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,当转盘停止时,指针落在有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a ,b 大小的判断正确的是( )A .a >bB .a =bC .a <bD .不能判断5. 有4张正面分别写有1、3、4、6的卡片,除数字外其他完全相同.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率为( ) A.14B.12C.34D .16. 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .掷一个质地均匀的正方体骰子,落地时面朝上的点数是6C .一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上D .用2,3,4三个数字随机排成一个三位数,排成的数是偶数7. 在下列四个转盘中,若让转盘自由转动一次,转盘停止后,指针落在阴影区域内的概率最大的转盘是( )8. 一个不透明的口袋中有红球和黑球若干个,这些球除颜色外都相同,每次摸出1个球,记下颜色后放回,进行大量的摸球试验后,发现摸到黑球的频率在0.4附近摆动,据此估计摸到红球的概率约为( ) A .0.4 B .0.5 C .0.6 D .0.79. 在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为( )A.316B.38C.14D.51610. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数分布表:试验种子数n(粒) 5 50 100 200 500 1000 2000 3000 发芽频数m 4 45 92 188 476 951 1900 2850 发芽频率mn0.800.900.920.940.9520.9510.950.95A .2700B .2800C .3000D .4000二.填空题(共8小题,每小题3分,共24分)11. “一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是_____________.(填“必然事件”、“不可能事件”或“随机事件”)12. 将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为______.13. 某足球运动员在同一条件下进行射门,结果如下表所示:射门次数n2050100200500800踢进球门频数m133558104255400踢进球门频率0.650.70.580.520.520.514. 如图,质地均匀的小立方体的一个面上标有数字1,两个面上标有数字2,三个面上标有数字3,抛掷这个小立方体一次,则向上一面的数字是________的可能性最大.15. 一个袋子中装有5个白球和3个红球,甲摸到白球胜,乙摸到红球胜,为使甲、乙两人获胜的可能性一样大,那么必须往袋中再放入________个________球(只能再放入同一颜色的球).16. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片约有________张.17. 小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木框中,那么投中阴影部分的概率为________.18. 若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________ .三.解答题(共7小题,66分)19.(8分) 下列事件中,哪个是必然事件?哪个是不可能事件?哪个是随机事件?(1)打开电视机,正在播放新闻;(2)种瓜得瓜;(3)三角形三边之长为4 cm,5 cm,10 cm.20.(8分) 手机微信抢红包有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以随机生成不等金额的红包.现有一用户设定“拼手气红包”的红包个数为4,且随机被甲、乙、丙、丁四人抢到.(1)以下说法正确是__________. A .甲抢到的红包金额一定最多 B .乙抢到的红包金额一定最多 C .丙抢到的红包金额一定最多 D .丁不一定抢到金额最少的红包(2)若这四个红包的金额分别为35元、33元、20元、12元,则甲抢到红包的金额超过30元的概率是多少?21.(8分) 如图,在一个大的圆形区域内包含一个小的圆形区域,大圆的半径为2,小圆的半径为1.一只在天空自由飞翔的小鸟要落在它的上面,那么小鸟落在小圆区域外大圆区域内(阴影部分)的概率是多少?22.(8分) 在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.试验种子n(粒) 1 5 50 100 200 500 1 000 2 000 3 000 发芽频数m 1 4 45 92 188 476 951 1 900 2 850 发芽频率mn10.800.900.920.940.9520.951ab(1)(2)估计该小麦种子的发芽概率;(3)如果该小麦种子发芽后,只有87%的麦芽可以成活,现有100 kg 小麦种子,则有多少千克的小麦种子可以成活为秧苗?23.(10分) 将一副扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中任意抽取1张,给出下列事件:(1)抽出的牌的点数是8; (2)抽出的牌的点数是0; (3)抽出的牌是“人像”; (4)抽出的牌的点数小于6; (5)抽出的牌是“红色的”.上述事件发生的可能性哪个最大?哪个最小?将这些事件的序号按发生的可能性从大到小的顺序排列.24.(10分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,由于该十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在该十字路口向右转的频率为25,向左转和直行的频率都为310.(1)假设平均每天通过路口的汽车为5000辆,求汽车在此左转、右转、直行的车辆是多少辆;(2)目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你利用概率的知识对此路口三个方向的路灯亮的时间做出合理的调整.25.(14分) 综合与探究: 问题再现:(1)图①是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少? 类比设计:(2)请在图②中设计一个转盘:自由转动这个转盘,当它停止转动时,三等奖:指针落在红色区域的概率为38,二等奖:指针落在白色区域的概率为38,一等奖:指针落在黄色区域的概率为14.拓展运用:(3)某书城为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:顾客每购买100元的图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域(若指针恰好指在分割线上,则重转一次,直到指针指向某一扇形区域为止),那么顾客就可以分别获得50元、30元、20元的购书券,凭购书券可以在书城继续购书.若甲顾客购书130元,转动一次转盘,求他获得购书券的概率.参考答案1-5DCBBB 6-10BACDA 11. 不可能事件 12. 2713. 0.52 14. 3 15. 2;红 16. 15 17. 518 18.71119. 解:(2)是必然事件,(3)是不可能事件,(1)是随机事件.20.解:(1)D(2)一共有4种可能出现的结果,其中红包的金额超过30元的有2种,所以甲抢到红包的金额超过30元的概率是24=12.21. 解:小圆的面积为π,大圆的面积为4π,所以阴影部分的面积为3π.所以小鸟落在小圆区域外大圆区域内的概率为3π4π=34.22. 解:(1)a =1 900÷2 000=0.95,b =2 850÷3 000=0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该小麦种子的发芽概率约为0.95. (3)100×0.95×87%=82.65(kg),所以约有82.65千克的小麦种子可以成活为秧苗. 23. 解:(1)抽出的牌的点数是8;发生的概率为113(2)抽出的牌的点数是0;发生的概率为0 (3)抽出的牌是“人像”;发生的概率为313(4)抽出的牌的点数小于6;发生的概率是513(5)抽出的牌是“红色的”,发生的概率为100%.由此可知:事件(5)可能性最大,事件(2)可能性最小;发生的可能性从大到小的顺序为(5)(4)(3)(1)(2) 24. 解:(1)汽车在此左转的车辆数为5000×310=1500(辆),在此右转的车辆数为5000×25=2000(辆),在此直行的车辆数为5000×310=1500(辆).(2)根据频率估计概率的知识,得P(汽车向左转绿灯时间)=30×310=9秒,P(汽车向右转绿灯时间)=30×25=12秒,P(汽车直行绿灯时间)=30×310=9秒.25. 解:(1)P(红色)=120360=13;P(白色)=240360=23.(2)(答案不唯一)如图.(3)因为转盘被平均分成12份,共有12种等可能的情况,其中红色占1份,黄色占2份,绿色占3份,所以任意转动一次转盘获得购书券的概率是1+2+312=12.。
北师大版七年级下册数学第六章-概率初步-测试题(含详解)
七年级下册数学第六章 概率初步 测试题(时间60分钟 满分100分)一、选择题(每小题3分,共24分)1、成语“瓮中捉鳖”所描述的事件是( )A.不可能事件B.不确定事件C.必然事件D. 随机事件 2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A.21 B.31 C.32 D.61 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)= ( )A.21 B. 32 C.51 D.101 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( ) A.21P P > B. 21P P < C. 21P P = D.以上都有可能5、天气台预报明天下雨的概率为70%,则下列理解正确的是( )A .明天30%的地区会下雨B .明天30%的时间会下雨C .明天出行不带雨伞一定会被淋湿D .明天出行不带雨伞被淋湿的可能性很大 6、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A.201 B. 10019 C.51 D.以上都不对 7、下列事件是必然事件的是( )A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球是红球D.农历十五的晚上一定能看到圆月 8 、如图,一圆盘上画有三个同心圆,由里向外半径依次是5cm ,10cm ,15cm ,将圆盘分成三部分,飞镖可落在任何一部分内,则飞镖落在最里面的圆内的概率是( )A.13 B.19 C.16 D.14二、填空题(每小题4分,共32分) 9、一副扑克牌去掉大王、小王后随意抽取一张,P(抽到方块)=_____; P(抽到3)=_____. 10、下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为 ; 必然事件为 .(只填序号)11、随机掷一枚均匀的硬币,前三次中一次正面朝上,两次反面朝上,那么第四次正面朝上的概率是____ . 12、给出以下结论:①试验的次数越多,频率越接近概率;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中不正确的结论是_______________.13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s . 小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________. 14、口袋里有红、绿、黄三种颜色的球,其中有红球4个,绿球5个,任意摸出1 个绿球的概率是,摸出一个黄球的概率是______. 15、如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16.一箱灯泡为24个, 灯泡的合格率是92.5%, 则从中抽取一个是次品的概率是________. 三、解答题17、(8分)右图是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.(1) (2)1318. (9分)一个不透明的袋子里有60个除颜色外都相同的红色、蓝色和白色的球.随机摸出一个球,拿出红色球的概率是35%,拿出蓝色球的概率是25%.袋子里每种颜色的球各有多少个?19.(9分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共80只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。
北师大版七年级数学下册单元测试卷第六章 概率初步附答案
第六章概率初步一、选择题(共18小题;共54分)1. 一条信息可以通过如图的网络线由上(点)往下向各站点传送,例如:信息到点可由经的站点送达,也可由经的站点送达,共有两条途径传送,则信息由点到达的不同途径共有A. 条B. 条C. 条D. 条2. 从件不同款式的衬衣和条不同款式的裙子中分别取一件衬衣和一条裙子搭配,可能的情况有A. 种B. 种C. 种D. 种3. 从标号分别为,,,,的张卡片中,随机抽取张.下列事件中,必然事件是A. 标号小于B. 标号大于C. 标号是奇数D. 标号是4. 一个暗箱里装有个黑球,个白球,个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是C. D.5. 盒子中装有个红球和个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是A. B. C. D.6. 太阳绕地球转,这是的.A. 可能B. 不可能C. 一定7. 下列事件中,是必然事件的是A. 打开电视机,正在播放新闻B. 父亲年龄比儿子年龄大C. 通过长期努力学习,你会成为数学家D. 下雨天,每个人都打着雨伞8. 某篮球运动员在同一条件下,进行投篮训练,共投次,其中投中次,据此估计,这名球员投篮一次投中的概率约是A. B. C. D.9. 下列成语所描述的事件概率为的是A. 水中捞月B. 守株待兔C. 瓮中捉鳖D. 十拿九稳10. 下列说法正确的是A. 某种彩票的中奖率为千分之一,一次买一千张彩票一定中奖B. 一批零件的合格率为百分之九十九,任意抽查一个一定合格C. 下雨天走在路上不太可能被雷电击倒D. 抛掷两枚一元的硬币,出现一正一反的可能性比出现两个正面的可能性小11. 小明训练上楼梯赛跑,他每步可上阶或者阶(不上阶),那么小明上阶楼梯的不同方法共有(注:两种上楼梯的方法只要一步所踏楼梯的阶数不同,便认为是不同的方法)A. 种B. 种C. 种D. 种12. 在投掷一枚硬币的游戏过程中,已知“正面朝上”的概率为,那么下列说法正确的是A. 投掷次必有次“正面朝上”B. 投掷很多次的时候,极有可能出现“正面朝上”C. 投掷次可能有次“正面朝上”D. 投掷很多次的时候,极少出现“正面朝上”13. 下列事件中最有可能发生的是A. 刚买回来的新手机不能打电话B. 足球比赛比分为C. 北方的冬天下雪D. 买彩票中了一等奖14. 下列事件中,属于随机事件的是A. 在十进制中B. 从长度分别为厘米,厘米,厘米,厘米的根小木棒中,取根为边拼成一个三角形C. 方程在实数范围内有解D. 在装有个红球的口袋内,摸出一个白球15. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是A. B. C. D.16. 某班学生中随机选取一名学生是男生的概率是,那么该班男女生的人数比是17. 现有,,,,共五个数,从中取若干个数分给A,B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有分配方法A. 种B. 种C. 种D. 种18. 小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是D.二、填空题(共7小题;共31分)19. 现有张扑克牌,牌面分别是方块,,和草花,,,小红从草花和方块里各摸张牌,摸到张牌上的数之和是的概率是.20. 三条任意长的线段可以组成一个三角形,这一事件是事件.21. 某班要选名同学代表参加班级间的交流活动.现在按下面的办法选取:把全班同学的姓名分别写在没有明显差别的纸片上,把纸片混放在一个盒子里,充分搅拌后,随机抽取张,按照纸片上所写的名字选取名同学.你觉得上面的选取过程是简单随机抽样吗? (填“是”或“不是”).22. 甲、乙、丙、丁、戊五位同学参加一次活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙,丙,丁,戊依次取得第到第件礼物,当然取法各种各样,那么他们共有种不同的取法.23. 一道选择题有A,B,C,D 个选项,只有个选项是正确的.若两位同学随意任选个答案,则同时选对的概率为.24. 若一事件发生的概率是,则它发生(填“必然”、“可能”或“不可能”).25. 从学校任选一位同学,事件:该同学是八年级的,事件:该同学是九年级()班的,事件:该同学是男的,用,,分别表示事件,,发生的可能性大小,按从小到大的顺序排列是.三、解答题(共5小题;共65分)26. 如图,圆盘分成大小相等的扇形,分别写有数字,任意转动圆盘,比较下列事件的可能性大小,并按照从大到小的顺序排列(当指针落在扇形边界时,统计在逆时针方向相邻的扇形区域内).()指针落在数字区域内,可能性记为;()指针落在奇数区域内,可能性记为;()指针落在的倍数区域内,可能性记为.27. 请你设计一个游戏,其中包括“不太可能”发生的事件、“很有可能”发生的事件、“不可能发生”的事件.28. 有一个质地均匀的正方体,一面涂上红色,两面涂上黄色,三面涂上绿色.用依次表示抛掷出“红”“黄”“绿”“红或黄或绿”“蓝”的可能性大小,请你将它们的可能性大小按照从小到大的顺序排列.29. 小明有双黑袜子和双白袜子,假设袜子不分左右,那么从中随机抽取只恰好配成一双的概率是多少?如果袜子分左右呢?30. 在袋中装有大小、形状、质量完全相同的个白球和个红球,甲、乙两人从中进行摸球游戏,在游戏之前两人就各有分,然后从中轮番摸球,每次摸三个球,然后放回袋中搅匀,再由另一个人摸球,得分规则如下:最后以得分高者为胜者,请问这个游戏对甲、乙双方公平吗?如果不公平,谁更有利;如果公平,请说明理由.答案第一部分1. C 【解析】经的只有条,经的有条,经的只有条,经的有条,所以总共有条.2. D3. A4. C5. C6. B7. B8. B9. A10. C11. C 【解析】根据题意可知,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,上阶楼梯的方法数为,,上阶楼梯的方法数为.12. B13. C14. B15. C【解析】在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有种等可能的结果,与图中阴影部分构成轴对称图形的有②④⑤,共种情况,所以与图中阴影部分构成轴对称图形的概率是.16. A17. B18. B 【解析】如图,基本事件是,颜色都对号了的事件是,所以答案是第二部分【解析】摸到张牌上的数之和是的情况有:,;,;,.故摸到张牌上的数之和是的概率是.20. 随机21. 是22.【解析】甲、乙、丙、丁、戊取礼物的顺序有种,为:①A,B,C,D,E;②A,C,D,E,B;③A,C,D,B,E;④A,C,B,D,E;⑤C,D,E,A,B;⑥C,D,A,B,E;⑦C,D,A,E,B;⑧C,A,B,D,E;⑨C,A,D,B,E;⑩C,A,D,E,B.23.【解析】一个同学任取一个的概率为个答案同时选对的概率为.24. 可能25.第三部分26. .27. 略28. .29. 共有种等可能的结果数,若袜子不分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子不分左右,那么从中随机抽取只恰好配成一双的概率;若袜子分左右,从中随机抽取只恰好配成一双的结果数为,所以袜子分左右,那么从中随机抽取只恰好配成一双的概率.30. 这个游戏对双方公平.理由:在三红三白六个球中,任意摸出三个球,是三红的概率为,同理三个球都为白球的概率也为,若摸出的球是二红一白,则有三种情况:红,红,白;红,白,红;白,红,红,摸出球为二红一白概率为,同理二白一红的概率也为,所以(分),(分),所以,所以摸一次球甲、乙两人所得的平均分相等,因此这个游戏公平.。
北师大版七年级数学下册 第6章《概率初步》单元检测卷 含答案
北师大版第6章《概率初步》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰2.下列事件中,满足随机事件且该事件每个结果发生的可能性都相等的是()A.一个密封的纸箱里有7个颜色不同的球,从里面随意摸出一个球,摸出每个球的可能性相同B.在80个相同的零件中,检验员从中取出一个零件进行检验,取出每件产品的可能性相同C.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同D.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同3.下列事件中,概率P=0的事件是()A.如果a是有理数,则|a|≥0B.某地5月1日是晴天C.手电筒的电池没电,灯泡发光D.某大桥在10分钟内通过了80辆车4.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A.点数为3的倍数B.点数为奇数C.点数不小于3D.点数不大于35.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是()A.3B.4C.6D.86.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个7.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A .B .C .D.18.如图是一个4×4的方格,若在这个方格内投掷飞镖,则飞镖恰好落在阴影部分的概率是()A .B .C .D .9.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.某学习小组做抛掷一枚纪念币的试验,整理同学们获得的试验数据,如下表.5010020050010002000300040005000抛掷次数“正面193868168349707106914001747向上”的次数0.38000.38000.34000.33600.34900.35350.35630.35000.3494“正面向上”的频率下面有三个推断:①通过上述试验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的;②如果再次做此试验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③在用频率估计概率时,用试验5000次时的频率0.3494一定比用试验4000次时的频率0.3500更准确.其中正确的是()A.①③B.①②C.②③D.①②③二.填空题(共6小题,满分18分,每小题3分)11.一个不透明的袋子中有1个白球、1个红球和4个黄球,这些球除颜色不同外其它都相同,搅均匀后从中任意摸出1个球,摸出白球的可能性摸出黄球的可能性(填“等于”或“小于”或“大于”).12.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为.13.如图,转盘中6个扇形的面积都相等,任意转动转盘一次.当转盘停止转动时(当指针停在分隔线上时再重转一次),指针指向偶数区域的概率是.14.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).15.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频率0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是(结果精确到0.01).16.在正方形ABCD中,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.三.解答题(共7小题)17.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?18.在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求n的值.19.一次抽奖活动设置如下的翻奖牌,翻奖牌的正面、背面如下,如果你只能在9个数字中选择一个数字翻牌,请解决下面的问题:(1)直接写出翻牌得到“手机”奖品的可能性的大小;(2)请你根据题意设计翻.奖.牌.反.面.的奖品,包含(手机、微波炉、球拍、电影票,谢谢参与)使得最后抽到“球拍”的可能性大小是.20.乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?21.盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.22.由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A、B、C三家快餐店,对每家快餐店随机选择1000条网络评价统计如表:五星四星三星及三星以下合计等级评价条数快餐店A412388x1000B4203901901000C4053752201000(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A、B、C 中推荐一家快餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.23.“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选:D.2.解:A、一个密封的纸箱里有7个颜色不同的球,从里面随意摸出一个球,因为只是颜色相同,没有什么其他性质相同,所以摸出每个球的可能性不一定相同,不符合题意.B、在80个相同的零件中,只是种类相同,没有什么其他性质相同,所以取出每件产品的可能性不一定相同.不符合题意.C、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等,符合题意D、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不一定相同,因为每种灯的时间可能不同,不符合题意.故选:C.3.解:“手电筒的电池没电,灯泡发亮”是不可能事件,故概率P=0,故选:C.4.解:掷一枚普通的正六面体骰子,出现的点数中,点数为3的倍数的概率为=,点数为奇数的概率为=,点数不小于3的概率为=,点数不大于3的概率为=,故选:C.5.解:设白球的个数为x个,根据题意得:=,解得:x=4,∴白球的个数为44.故选:B.6.解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.7.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到红灯的概率是P==.故选:C.8.解:如图:正方形的面积为4×4=16,阴影部分占5份,飞镖落在阴影区域的概率是;故选:C.9.解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则=0.4,解得:x=2,故选:B.10.解:①通过上述试验的结果,因为正面向上的概率小于0.5可以推断这枚纪念币有很大的可能性不是质地均匀的,正确,②如果再次做此试验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动,正确;③在用频率估计概率时,用试验5000次时的频率0.3494一定比用试验4000次时的频率0.3500更准确,错误;正确的有①②故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵摸出白球的可能性为,摸出黄球的可能性为=,∴摸出白球的可能性小于摸出黄球的可能性,故答案为:小于.12.解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;∵<<,∴按从小到大的顺序排列为:①③②;故答案为:①③②.13.解:图中共有6个面积相等的区域,含偶数的有2,2,共2个,则当转盘停止转动时(当指针停在分隔线上时再重转一次),指针指向偶数区域的概率是=.故答案为:.14.解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.15.解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.9516.解:如图,连接P A、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故答案为:.三.解答题(共7小题)17..解:因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.18.解:根据题意,得,解得n=2,所以n的值是2.19.解:(1)由图可得,抽到“手机”奖品的可能性是:;(2)设计九张牌中有四张写着球拍,其它的五张牌中手机、微波炉、电影票各一张,谢谢参与两张.20.解:(1)∵规定消费50元(含50元)以上才能获得一次转盘的机会,40<50,∴某顾客消费40元,不能获得转盘的机会;(2)某顾客正好消费66元,超过50元,可以获得转盘的机会,若获得9折优惠,则概率:若获得8折优惠,则概率:若获得7折优惠,则概率:.21.解:(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式=;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得=;联立求解可得x=15,y=25.22.解:(1)x=1000﹣412﹣388=200(条);(2)推荐从A家快餐店订外卖.从样本看,A家快餐店获得良好用餐体验的比例为×100%=80%,B家快餐店获得良好用餐体验的比例为×100%=81%,C家快餐店获得良好用餐体验的比例为×100%=78%,A家快餐店获得良好用餐体验的比例最高,由此估计,A家快餐店获得良好用餐体验的比例最高.23.解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),血型A B AB O人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,1300×=312,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以P(两个O型)==.。
第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)
北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。
2020版七年级数学下册第六章概率初步试题(新版)北师大版及参考答案
第六章概率初步1.事件类别的判断必然事件、随机事件、不可能事件是概率初步的重要内容,我们在学习中接触的一些规律、事实、定义等,都是必然事件,而一些不正确的语句都是不可能事件或者随机事件.正确理解和区分这些事件是中考的一个热点,此类问题多以选择题和填空题出现.【例】下列事件中,必然事件是( )A.掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B.掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C.抛掷一枚普通的硬币,掷得的结果不是正面就是反面D.从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球【标准解答】选C.A.是随机事件,故选项不合题意;B.是随机事件,故选项不合题意;C.是必然事件,故选项符合题意;D.是随机事件,故选项不合题意.故选C.1.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( )A.必然事件B.不可能事件C.随机事件D.确定事件2.下列说法中正确的是( )A.“打开电视机,正在播《动物世界》”是必然事件B.某种彩票的中奖概率为千分之一,说明每买1 000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查3.下列说法中正确的是( )A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中必然事件的个数是( )A.1B.2C.3D.45.下列说法属于不可能事件的是( )A.四边形的内角和为360°B.梯形的对角线不相等C.内错角相等D.存在实数x满足x2+1=02.概率的意义概率是用来刻画随机事件发生的可能性大小的为0~1之间的常数,概率小则事件发生的可能性小,概率大则事件发生的可能性就大,因此对事件发生的可能性大小常通过概率的大小来反映,但并不是说这一规律在每次试验中一定存在,它是对大量重复试验而言的.这种规律被广泛应用于人们的日常生活和其他领域.【例】下列说法正确的是( )A.随机抛掷一枚均匀的硬币,落地后反面一定朝上B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大C.某彩票中奖率为36%,说明买100张彩票,有36张中奖D.打开电视,中央一台正在播放新闻联播【标准解答】选B.掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B.从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C.某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时趋近的一个数,并不能说买100张该种彩票就一定有36张能中奖,故此选项错误;D.必然事件是一定会发生的事件,打开电视,中央一台正在播放新闻联播,很明显不一定能发生,错误,故选B.1.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( )A.李东夺冠的可能性较小B.李东和他的对手比赛10局时,他一定会赢8局C.李东夺冠的可能性较大D.李东肯定会赢2.下列说法中正确的是( )A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加“抛出朝上的点数是6”这一事件发生的频率稳定在附近D.为了了解某种节能灯的使用寿命,选择全面调查3.用频率估计概率一般地,当试验的可能结果有很多且各种可能结果发生的可能性相等时,可以用P(A)=的方式得出概率;当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率,即在同样条件下,用大量重复试验所得到的随机事件发生的频率的稳定值来估计这个事件发生的概率.【例】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?【标准解答】(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,∴总球数为50÷=100个,∴红球数为100×40%=40.答:盒中红球有40个.1.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.2.在一个不透明的袋子中装有除颜色外其余均相同的n个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1 000 5 000 10 000 50 000 100 000摸出黑球次数46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n的值是.3.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:根据上表,估计在男性中,男性患色盲的概率为(结果精确到0.01).4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.试验数据如下表解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图法说明理由;如果x的值不可以取7,请写出一个符合要求的x值.4.求概率的关键及基本方法(1)关键:①明确事件发生的所有可能情况;②明确符合条件的情况.(2)基本方法:当等可能事件发生的结果是有限的,且数量较少时,常常将其所有的结果列出计算概率.【例1】一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A. B. C. D.【标准解答】选C.∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是=,故选C.【例2】如图是一个可以自由转动的转盘,转盘分为6个大小相同的扇形,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),指针指向阴影区域的概率是( )A. B. C. D.【标准解答】选C.根据阴影区域的面积占总面积的二分之一,可得指针指向阴影区域的概率为,故选C.1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. B. C. D.2.甲、乙两布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )A. B. C. D.3.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( )A. B. C. D.4.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是.5.从-1,0,,0.3,π,,这六个数中任意抽取一个,抽到无理数的概率为.6.事件A发生的概率为,大量反复做这种试验,事件A平均每100次发生的次数是.7.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.8.某校男子足球队的年龄分布如下面的条形图所示.(1)求这些队员的平均年龄.(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.跟踪训练答案解析1.事件类别的判断【跟踪训练】1.【解析】选C.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,从中任意摸出2个球,有红黄、红白、黄白、白白4种可能,从中任意摸出2个球,它们的颜色相同可能发生,也可能不发生,所以这一事件是随机事件.故选C.2.【解析】选D.A为不确定事件;B为不确定事件,有可能中奖,也有可能不中奖;C的概率为二分之一;D因为数据较多,如果采取普查会耗时耗力,因此易采用抽样调查.3.【解析】选B,A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.000 1的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的次数可能是5次,选项错误.4.【解析】选A.根据在一定条件下一定发生的事情是必然事件.由于:①在足球赛中,弱队战胜强队是随机事件,故①不合题意;②抛掷1枚硬币,硬币落地时正面朝上是随机事件,故②不合题意;③任取两个正整数,其和大于1是必然事件,故③符合题意;④长为3 cm,5 cm,9 cm的三条线段能围成一个三角形是不可能事件,故④不合题意.因此必然事件有1个.故选A.5.【解析】选D.A、是必然事件,故选项不合题意;B、是随机事件,故选项不合题意;C、是随机事件,故选项不合题意;D、不可能事件,故选项符合题意.2.概率的意义【跟踪训练】1.【解析】选C.根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A.李东夺冠的可能性较大,故本选项错误;B.李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C.李东夺冠的可能性较大,故本选项正确;D.李东可能会赢,故本选项错误.故选C.2.【解析】选C.用排除法.“打开电视,正在播放新闻节目”不是必然事件,是随机事件,故A错;“抛一枚硬币,正面朝上的概率为”表示有的机会是正面朝上的,不能确定每抛两次就有一次正面朝上,故B错;为了了解某种节能灯的使用寿命,选择全面调查,是错误的,因为这种调查具有破坏性,故D错,所以选C.3.用频率估计概率【跟踪训练】1.【解析】设黑珠子有n颗,由题意可得,=0.3,解得n=14.故估计盒子中黑珠子大约有14颗.答案:142.【解析】随着摸球次数的增加,摸出黑球的频率在0.5左右,所以摸出黑球的概率为0.5,所以n=5÷0.5=10.答案:103.【解析】根据统计表可知:色盲患者的频率大约在0.070左右,所以估计在男性中,男性患色盲的概率为0.07.答案:0.074.【解析】(1)利用图表得出:试验次数越多,频率越接近实际概率,所以出现“和为8”的概率是0.33.(2)当x=7时,∴两个小球上数字之和为9的概率是:=.∴x的值不可以取7.当x=5时,两个小球上数字之和为9的概率是.4.求概率的关键及基本方法【跟踪训练】1.【解析】选C.共有①②③④⑤5种情况,其中能与图中阴影部分构成轴对称图形的有②④⑤三种,所以概率为.2.【解析】选C.设甲袋中白球个数为x个,那么红球个数为2x个,乙袋中白球个数为y个,那么红球个数为3y个,则根据题意,得3x=4y,球的总数为(3x+4y)个,红球总数为(2x+3y)个,∴随机从甲袋中摸出一个球,摸出红球的概率是==,故应选C.3.【解析】选A.由概率的定义,易知:P(红球)==.4.【解析】一共有9块,黑色的有4块,所以最终停留在黑色方砖上的概率是.答案:5.【解析】共有六个数字,无理数有2个,所以抽到无理数的概率P(无理数)==. 答案:6.【解析】100×=5(次).答案:5次7.【解析】∵S正方形=(3×2)2=18,S阴影=4××3×1=6,∴这个点取在阴影部分的概率为:=.答案:8.【解析】(1)该校男子足球队队员的平均年龄是:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=330÷22=15(岁).故这些队员的平均年龄是15岁.(2)∵该校男子足球队一共有22名队员,将会有11名队员作为首发队员出场,∴不考虑其他因素,其中某位队员首发出场的概率为:=.。
(2023年最新)北师大版七年级下册数学第六章 概率初步含答案
北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件M,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概概率为2、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张3、如图,桌上摆放着写有号码的“♥”卡片,它们的背面都完全相同,现将它们背面朝上,从中任意摸出一张,摸到“♥”卡片上写有数字5的概率是()A. B. C. D.4、某学校为了解学生大课间体育活动情况,随机抽取本校部分学生进行调查.整理收集到的数据,绘制成如图所示的统计图.小明随机调查一名学生,他喜欢“踢毽子”的概率是()A. B. C. D.5、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A. B. C. D.6、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.7、甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。
从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.8、有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )A. B. C. D.9、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.10、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.11、在围棋盒中有4颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是,则a的值为()A.1B.2C.3D.412、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.114、某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D.不能确定15、从一副扑g牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④二、填空题(共10题,共计30分)16、如图,一次函数的图象与x轴交于点A,与y轴交于点B,若向的外接圆内随机抛掷一枚小针,则针尖落在阴影部分的概率是________.17、一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球________个.18、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是________.19、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 28500.960 0.940 0.955 0.950 0.949 0.953 0.950合格品频率则这个厂生产的瓷砖是合格品的概率估计值是________.(精确到0.01)20、一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了新色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________.21、在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.22、抛掷一枚分别标有1,2,3,4,5,6的正方体骰子1次,骰子落地时朝上的数为偶数的概率是________.23、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是________.24、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.25、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
七年级数学下册第六章频率初步6.3等可能事件的概率6.3.1等可能事件的概率同步检测新版北师大版_
6.3.1等可能事件的概率同步检测一、填空题:1.某商店举办有奖销售活动,办法如下:凡购货满100元得奖券一张, 多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则1 张奖券中一等奖的概率是___.2.有7张卡片,分别写有0、1、2、3、4、5、6、7、8七个数字, 将它们的背面朝上洗匀后,任意抽出一张:(1)P(抽到数字7)=________; (2)P(抽到数字3)=________; (3)P(抽到一位数)=______; (4)P(抽到三位数)=_____; (5)P(抽到的数大于4)=____; (6)P(抽到的数不大于4)=___; (7)P(抽到奇数)=__________3.从标有1,3,4,6,8的五张卡片中随机抽取两张,和为奇数的概率是.4.从一副扑克牌中任意抽出一张,P(抽到王)=,P (抽到红桃)=.5.掷一枚均匀的小立方体骰子(每个面分别标有数字l,2,3,…,6),P (掷出“2”朝上)=,P (掷出奇数朝上)=.8.布袋里有m个红球、n个白球、p个绿球,任意取出一个,取出的球恰为红色的概率是.二、解答题:7.把分别标有1,2,3,…,10的十个乒乓球放在一个布袋中,然后任意取出一个,取得号码大于7的奇数的概率是多少?8.有一个人住在一栋六层楼内,他打电话邀请一位朋友到家做客,他的朋友进入楼房大门后就开始上楼,那么这个人住在第四层楼的概率是多大?9.准备三张大小一样,分别涂有红、黄、蓝颜色的圆纸片,把每张纸片都对折后剪开,将六张纸片放在盒子里搅匀,随意抽出两张正好拼成原图的可能性有多大?猜一猜,再做试验试一试.10.如果先把新买来的一副扑克牌的大王、小王拿出,并且只拿出这两张,然后将其余的扑克牌正面朝下放在桌子上,从中任意抽取一张,恰为红桃5的概率是多少?抽到大王的概率又是多少?11.某单位选出1名人民代表,选出的代表是男性的概率为P1,如果约定从男性中选举,则选出的代表为共产党员的概率为P2,求从全单位选出的1 名代表是男共产党的概率.参考答案1.2.(1)P= (2)P=0 (3)P=-1 (4)P=0 (5)P= (6)P= (7)P=3. [提示:从五张卡片中抽取两张,共有10种情况,而和为奇数的共有6种情况,所以和为奇数的概率为=.故填.]4.5.6.7..8.提示:由他的朋友开始上楼知,他不是住在一楼.故概率为.9.解:六张纸片分别是2张红色的、2张黄色的、2张蓝色的,从中抽出两张,可能的结果是红红、红黄、红蓝、黄黄、黄蓝、蓝蓝,因此P(拼成原图)==.10.解:P (抽到红桃5)=,P (抽到大王)=0.11.P1P2。
(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》检测卷(含答案解析)(5)
一、选择题1.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是102.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ。
自由转动转盘,则下面说法错误的是( )A.若α>90°,则指针落在红色区域的概率大于0.25B.若α>β+γ+θ,则指针落在红色区域的概率大于0.5C.若α-β>γ-θ,则指针落在红色或黄色区域的概率和为0.5D.若γ+θ=180°,则指针落在红色或黄色区域的概率和为0.53.下列属于必然事件的是()A.任意画一个三角形,其内角和是360°B.2020年春节这一天是晴天C.任意写出一个偶数,一定是2的倍数D.射击运动员射击一次,命中靶心4.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.大量反复抛掷每100次出现正面朝上50次B.连续抛掷10次不可能都正面朝上C.抛掷硬币确定谁先发球的规则是公平的D.连续抛掷2次必有1次正面朝上5.下列事件是必然事件的是()cm cm cm的三根木条能组成一个三角形A.长度分别是3,5,6B.某彩票中奖率是1%,买100张一定会中奖C.2019年女足世界杯,德国队一定能夺得冠军D.打开电视机,正在播放动画片6.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上7.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.16B.13C.12D.238.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来9.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定10.下列事件中,不可能事件是()A.今年的除夕夜会下雪B.在只装有红球的袋子里摸出一个黑球C.射击运动员射击一次,命中10环D.任意掷一枚硬币,正面朝上11.气象台预报“本市明天降水概率是83%”。
(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》测试卷(包含答案解析)(5)
一、选择题1.小华把如图所示的44⨯的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.316B.516C.716D.9162.下列说法正确的是()A.一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上的可能性更大;B.天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨;C.相等的圆心角所对的弧相等是必然事件;D.过平面内任意三点可以画一个圆是随机事件.3.下列事件中,是必然事件的为()A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数4.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 5.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面()A.一定是正面B.是正面的可能性较大C.一定是反面D.是正面或反面的可能性一样大6.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来7.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( ) A.6 B.16 C.22 D.248.下列说法中正确的是()A .367人中至少有两人是同月同日生B .某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C .“打开电视机,正在播放《动物世界》”是必然事件D .“明天降雨的概率是80%”表示明天有80%的时间降雨 9.下列关于事件发生可能性的表述,正确的是()A .事件:“在地面,向上抛石子后落在地上”,该事件是随机事件;B .体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C .掷两枚硬币,朝上的一面是一正面一反面的概率为13; D .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品.10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 11.下列事件是必然事件的是( ). A .购买一张彩票中奖 B .通常加热到100℃时,水沸腾 C .明天一定是晴天D .任意一个三角形,其内角和是360°12.下列命题正确的是(). A .任何事件发生的概率为1B .随机事件发生的概率可以是任意实数C .可能性很小的事件在一次实验中有可能发生D .不可能事件在一次实验中也可能发生二、填空题13.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________. 14.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 15.在-3、-2、-1、0、1、2,3,这七个数中,随机选取一个数,记为a ,那么使得关于x 的反比例函数32a y x+=的图像位于第一、三象限,且使得关于x 的方程11211ax x x+-=--有整数解的概率为_____. 16.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.17.一只不透明的袋子中装有若干个蓝球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,若摸到蓝球的概率是0.8,则袋子中有________个蓝球.18.给出下列事件:①期权餐厅供应客饭,共准备2荤2素4种不同的品种,一顾客任选一种菜肴,且选中素菜;②某一百件产品全部为正品,今从中选出一件次品;③在1,2,3,4,5五条线路停靠的车站上,张老师等候到6路车;④七人排成一排照相,甲.乙正好相邻;⑤在有30个空位的电影院里,小红找到了一个空位;请你将事件的序号填写在横线上,必然事件___________ ,不可能事件____________,不确定事件____________ . 19.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.20.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为14、720和25,试估计黄、蓝、红三种球的个数分别是________.三、解答题21.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1、2、3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.22.某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名优秀团员参加服务,其中男生6人,女生4人.()1若从这10人中随机选一人当队长,求选中女生当队长的概率;()2现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.23.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.(1)求木箱中装有标1的卡片张数;(2)求从箱子中随机摸出一张标有数字3的卡片的概率.24.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:朝上的点数123456出现的次数79682010(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?25.如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份).(1)小华购物450元,他获得购物券的概率是多少?(2)小丽购物600元,那么:① 她获得50元购物券的概率是多少?② 她获得100元以上(包括100元)购物券的概率是多少?26.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)求这次抽查的家长总人数;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形和正方形的面积公式及概率公式即可得到结论.【详解】解:∵正方形的面积为4×4=16,阴影区域的面积为12×4×1+12×2×3=5,∴飞镖落在阴影区域的概率是516,故选:B.【点睛】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出阴影部分的面积与总面积的比.2.D解析:D【分析】利用概率的意义和必然事件的概念的概念进行分析.【详解】A. 一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上和反面朝上的可能性相同,故选项A错误;B. 概率是针对数据非常多时,趋近的一个数,所以降水概率为50%,那么明天也不一定会降水,故此选项错误;C. 在同圆或等圆中,相等的圆心角所对的弧相等是必然事件,故选项C错误;D. 过平面内任意三点可以画一个圆是随机事件,此选项正确.故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.3.C解析:C【解析】【分析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.4.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 367人中至少有2人生日相同,是必然事件,故A不符合题意;B. 打开电视,正在播广告,是随机事件,故B符合题意;C. 没有水分,种子发芽,是不可能事件,故C不符合题意;a b b a,是必然事件,故D不符合题意.D. 如果a、b都是实数,那么+=+故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【解析】【分析】根据实际情况可知,硬币有2面,正面和反面;投掷一次,正面与反面的可能性是一样的,据此解答.【详解】解:小明连续抛一枚硬币,前5次都是正面朝上,抛第6次正面朝上和反面朝上的可能性一样大.故选D.【点睛】本题考查的是可能性的运用,较为简单.6.D解析:D【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、拔苗助长是不可能事件,故A不符合题意;B、刻舟求剑是不可能事件,故B不符合题意;C、守株待兔是随机事件,故C不符合题意;D、冬去春来是必然事件,故D符合题意;故选D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.8.A解析:A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,所以A错误;B. 体育彩票的中奖率为10%,则买100张彩票不一定10张中奖,所以B错误;C. 掷两枚硬币,朝上的一面是一正面一反面的概率为1,2C所以错误;D. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,所以D正确.故选D.【点睛】本题考查的是概率,熟练掌握概率的计算方法是解题的关键.10.A解析:A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.第II卷(非选择题)请点击修改第II卷的文字说明11.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.12.C解析:C【分析】根据随机事件、不可能事件的定义和概率的性质判断各选项即可.【详解】A中,只有必然事件概率才是1,错误;B中,随机事件的概率p取值范围为:0<p<1,错误;C中,可能性很小的事件,是有可能发生的,正确;D中,不可能事件一定不发生,错误故选:C【点睛】本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.二、填空题13.【分析】用绿球的个数除以总球数即可【详解】解:摸出的小球是绿球的概率是故答案为:【点睛】本题考查了概率的求法解题关键是理解等可能事件概率的求法解析:1 3【分析】用绿球的个数除以总球数即可.【详解】解:摸出的小球是绿球的概率是31 93 =,故答案为:13.【点睛】本题考查了概率的求法,解题关键是理解等可能事件概率的求法.14.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524=.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.【解析】【分析】若要使得函数y=的图像位于第一三象限则k=3a+2>0故a>-若要使关于x的方程-2=有整数解x=-找出-为整数的a的取值然后找到符合条件的a的值占所给出数的几分之几即可【详解】若要解析:3 7【解析】【分析】若要使得函数y=32ax+的图像位于第一、三象限,则k=3a+2>0故a>-23,若要使关于x的方程11+-axx-2=11x-有整数解,x=-42a-, 找出-42a-为整数的a的取值.然后找到符合条件的a的值占所给出数的几分之几即可.【详解】若要使得函数y=32ax+的图像位于第一、三象限,则k=3a+2>0,故a>-2 3 .若要使关于x的方程11+-axx-2=11x-由整数解,x=-42a-,且x-1≠0则-42a-为整数且x≠1,故a-2可能为﹣4、﹣2、﹣1、1、2、4,当a-2=﹣4时a=﹣2,x=1(舍去).当a-2=﹣2,a=0,x=2.当a-2=﹣1时,a=1,x=4.当a-2=1时,a=3,x=﹣4,当a-2=2时,a=4,x=﹣2.当a-2=4时,a=6,x=﹣1.a>-23且a=0、1、3、4、6,在-3、-2、-1、0、1、2,3这七个数中随即取一个数记为a,则上述a中符合条件的为0、1、3,所以概率为3 7 .【点睛】本题主要考查一次函数、分式方程.要想使分式方程有意义,则分式方程的分母不能为0,即x-1≠0,容易忽略.16.【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=【详解】解:摸出的球是红球的概率=故答案为【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结解析:2 5【解析】【分析】直接根据概率公式求解:摸出的球是红球的概率=25.【详解】解:摸出的球是红球的概率=25.故答案为25.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数..17.8【解析】【分析】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比【详解】解:设袋子里有x 个蓝球则=08解得x=8即有8个蓝球【点睛】本题考查概率能够根据公式列出式子是解答本题 解析:8【解析】【分析】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.【详解】解:设袋子里有x 个蓝球, 则2x x =0.8, 解得x=8. 即有8个蓝球.【点睛】本题考查概率,能够根据公式列出式子是解答本题的关键.18.⑤②③①④【解析】【分析】必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件【详解】根据概念得必然事件:解析:⑤, ②③, ①④.【解析】【分析】必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】根据概念,得必然事件:⑤;不可能事件:②③;不确定事件:①④..【点睛】本题主要考查了必然事件、不可能事件、不确定事件的概念.正确理解概念是解题的关键.19.40【解析】【分析】根据表格中的数据求出摸出黑棋的概率然后求出棋子的总个数再减去黑棋子的个数即可【详解】黑棋子的概率==棋子总数为10÷=50所以白棋子的数量=50﹣10=40(枚)故答案为:40【解析:40【解析】【分析】根据表格中的数据求出摸出黑棋的概率,然后求出棋子的总个数,再减去黑棋子的个数即可.黑棋子的概率=13023421131010+++++++++⨯=15,棋子总数为10÷15=50,所以,白棋子的数量=50﹣10=40(枚).故答案为:40.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.20.【解析】【分析】根据得到各小球的概率以及小球的总个数分别求出晓求得个数即可【详解】∵小明把个除了颜色以外其余都相同的黄蓝红三种球放进一个袋内经多次摸球后得到它们的概率分别为∴黄蓝红三种球的个数分别是解析:20、28、32【解析】【分析】根据得到各小球的概率以及小球的总个数,分别求出晓求得个数即可.【详解】∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为17240205、、,∴黄、蓝、红三种球的个数分别是:80×12=40(个),80×720=28(个),80×25=32(个).故答案为20、28、32.【点睛】此题主要考查了利用频率估计概率,根据概率的意义求出小球的个数是解题关键.三、解答题21.如图所示见解析.【解析】【分析】根据题意指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同,可知2和3的数字数量相等,且1是数量最多的,即可解答【详解】答案不唯一,写出1个即可,如图所示.此题考查可能性的大小,难度不大22.()215;()2游戏不公平.理由见解析. 【解析】【分析】 ()1直接利用概率公式求出即可;()2利用列表法表示出所有可能进而利用概率公式求出即可.【详解】()1现有10人准备到敬老院去服务,其中男生6人,女生4人,∴从这10人中随机选一人当队长,选到女生的概率为42105=; ()2表格如下:第2次第1次2 3 4 5 2()2,3 ()2,4 ()2,5 3()3,2 ()3,4 ()3,5 4()4,2 ()4,3 ()4,5 5 ()5,2 ()5,3()5,4 ∴甲为队长的概率为:()41P 123==和为偶数, 乙为队长的概率为:()82P 123和为奇数==, 因为1233≠, 所以游戏不公平.【点睛】此题主要考查了游戏公平性以及概率公式应用,正确列出表格得出所有等可能结果及概率公式的应用是解题关键.23.(1)10(2)【解析】试题分析:(1)根据数字1卡片的概率可直接用总数乘即可;(2)可设3的卡片为x 张,则2的卡片为3x-8,再根据它们共40张可求出x ,然后求出概率即可.试题解:(1)根据题意得: 50×=10,答:箱中装有标1的卡片10张.(2)设装有标3的卡片x 张,则标2的卡片3x-8张根据题意得x+3x ﹣8=40解得x=12.所以摸出一张有标3的卡片的概率P==; 考点:概率24.(1)3点朝上的频率为101;5点朝上的频率为13;(2)小颖和小红说法都错. 【解析】解:(1)“3点朝上”的频率是;“5点朝上”的频率是. (2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.25.(1)0;(2)①14;②720. 【解析】试题分析:(1)由于每购买500元商品,才能获得一次转动转盘的机会,所以小华购物450元,不能获得转动转盘的机会,故获得购物券的概率为0;(2)①找到50元的份数占总份数的多少即为获得50元购物券的概率;②找到100元及以上的份数占总份数的多少即为获得100元以上(包括100元)购物券的概率.试题(1)∵450<500,∴小华购物450元,不能获得转动转盘的机会,∴小华获得购物券的概率为0;(2)小丽购物600元,能获得一次转动转盘的机会.①她获得50元购物券的概率是520=14; ②她获得100元以上(包括100元)购物券的概率是720. 26.(1)100;(2)见解析;(3)25【分析】(1)根据条形图知道无所谓的人数有20人,从扇形图知道无所谓的占20%,从而可求出解;(2)家长的总人数减去赞成的人数和无所谓的人数求出反对的人数,再算出各部分的百分比画出扇形统计图和条形统计图;(3)学生恰好抽到持“无所谓”态度的概率是,是无所谓的学生数除以抽查的学生人数.【详解】解:(1)20÷20%=100,这次抽查的家长总人数为100;(2)条形统计图:100-10-20=70,扇形统计图:赞成:10100×100%=10%,反对:70100×100%=70%;(3)80508070++=25,∴恰好抽到持“无所谓”态度的概率是25.【点睛】本题考查了条形统计图和扇形统计图,条形统计图考查每组里面具体的人数,扇形统计图考查部分占整体的百分比,以及概率概念的考查等.。
(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》测试题(有答案解析)(5)
一、选择题1.下列说法中不正确的是()A.抛一枚质地均匀的硬币,正面朝上的概率与抛硬币的次数无关B.随机选择一户二孩家庭,头胎、二胎都是男孩的概率为1 4C.任意画一个三角形内角和为360°是随机事件D.连续投两次骰子,前后点数之和为偶数的概率是1 22.下列属于必然事件的是()A.任意画一个三角形,其内角和是360°B.2020年春节这一天是晴天C.任意写出一个偶数,一定是2的倍数D.射击运动员射击一次,命中靶心3.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是64.从-5,-1,0,83, 这五个数中随机抽取一个数,恰好为负整数的概率为()A.15B.25C.35D.455.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A.14B.18C.112D.1166.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件7.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限8.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.09.用一枚质地均匀的硬币做抛掷试验,前10次掷的结果都是正面向上,如果下一次掷得的正面向上的概率为P(A),则( )A.P(A)=1 B.P(A)=12C.P(A)>12D.P(A)<1210.下列说法中错误的是()A.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是1 6B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.某种彩票的中奖率为1%,买100张彩票一定有1张中奖11.下列命题正确的是().A.任何事件发生的概率为1B.随机事件发生的概率可以是任意实数C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生12.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个.14.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别.从袋子中随机摸出一个小球,则摸出的小球是绿球的概率是_____________.15.2020年11月24日中国探月工程嫦娥五号在我国文昌航天发射场发射成功,目前已完成两次轨道修正,两次近月制动,11月30日完成轨返组合体与着上组合体受控分离, 12月1日择机实施动力下降,软着陆于月球正面预选区域.关于嫦娥奔月,中国古代有很多流传至今的美丽神话,相传很久很久以前,嫦娥在月宫养了5只兔子,她们分别叫大白,二白,三白,小白和小黑,由于一次疫情影响,其中一只兔子生病了,嫦娥让她的好友章离子带去看医生,章离子去领兔子时恰好嫦娥不在月宫,章离子就随机带了一只兔子去看医生,请问章离子所带的兔子恰好是生病的兔子的概率是______.16.一个不透明的袋子中装有4个红球,3个白球,2个黄球,这些小球除颜色不同外,其它都相同,从袋子中随机摸出1个小球,则摸出红球的概率是______.17.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.18.如图,A、B是边长1的小正方形组成的网格上的两个格点,在格点上任意放置点C (除去A、B两点),以A、B、C三点为顶点能画出三角形的概率是_____.19.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,随机抽取1张,做了2000次实验,则取出的数是无理数的频率是_____.20.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是______.三、解答题21.在某次数学活动中,如图有两个可以自由转动的转盘A、B,转盘A被分成四个相同的扇形,分别标有数字1、2、3、4,转盘B被分成三个相同的扇形,分别标有数字5、6、7.若是固定不变,转动转盘(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止)(1)若单独自由转动A盘,当它停止时,指针指向偶数区的概率是.(2)小明自由转动A盘,小颖自由转动B盘,当两个转盘停止后,记下各个转盘指针所指区域内对应的数字,请用画树状图或列表法求所得两数之积为10的倍数的概率.22.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;(③指针指向黄色;④指针不指向黄色,估计各事件的可能性大小,完成下列问题.(1)④事件发生的可能性大小是;(2)多次实验,指针指向绿色的频率的估计值是;(3)将这些事件的序号按发生的可能性从小到大的顺序排列为: <<< .23.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1、2、3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.24.用10个球设计一个摸球游戏,使得:(1)摸到红球的机会是21 。
北师大版七年级数学下册第六章概率初步测试卷
北师大版七年级数学测试卷(考试题)第六章概率初步周周测41.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件2.下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为﹣150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中3.下列事件中,属于必然事件的是()A.打开电视,正在播放《新闻联播》B.抛掷一次硬币正面朝上C.袋中有3个红球,从中摸出一球是红球D.阴天一定下雨4.在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率为49.6%,此时出现正面的频数为()A.496 B.500 C.516 D.不能确定5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.66.在一个不透明的袋子里装有若干个红球和黄球,这些球除颜色外完全相同.从中任意摸出一个球,记下颜色后放回,搅匀后再重新摸球,则下列说法中正确的是()A.摸到黄球的频数越大,摸到黄球的频率越大B.摸到黄球的频数越大,摸到黄球的频率越小C.重复多次摸球后,摸到黄球的频数逐渐稳定D.重复多次摸球后,摸到黄球的频率逐渐稳定7.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是()A.次品率小于10% B.次品率大于10%C.次品率接近10% D.次品率等于10%8.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.39.如图所示为一个污水净化塔内部,污水从上方入口进入后,流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.其中正确的判断有()个.A.1个B.2个C.3个D.4个10.袋中有5个红球,6个白球,12个黑球,每个球除颜色外都相同,事先选定一种颜色,若摸到的球的颜色与事先选定的一样,则获胜,否则就失败,为了尽可能获胜,你事先应选择的颜色是.11.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最大.12.从10名学生(6男4女,其中小芳为女生)中,抽选6人参加“防震知识”竞赛.若规定男生选3人,则“选到小芳”的事件应该是____(选填“必然事件、不可能事件、随机事件”).13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个。
北师大版七年级数学下册第六章概率初步周周测6(6.3).doc
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】第六章概率初步周周测6一.选择题:(四个选项中只有一个是正确的,选出正确选项填在题目的括号内)1.如图为一水平放置的转盘(转盘固定不动),使劲转动其指针,并让它自由停下,下面叙述正确的是( )A.指针停在B区比停在A区的机会大B.指针停在三个区的机会一样大C.指针停在哪个区与转盘半径大小有关D.指针停在哪个区可以随心所欲2.转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大? ( )A.转盘甲B.转盘乙C.两个一样大D.无法确定第1题图第2题图3.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当路过十字路口看信号灯时,是绿灯的概率是()A.112B.13C.512D.344.某火车站的显示屏每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该火车站时,显示屏上正好显示火车班次的信息的概率是()A.16B.15C.14D.135.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()6. 自由转动下列转盘(转盘初分成12等份),指针指向阴影区域的概率是23的转盘是()7.如图所示的四个转盘中,C、D转盘被分成8等份;若让转盘自由转动一次,停止后,指针落在阴影部分区域内的概率最大的是()8.如图,利用两个正文形和两个长方形拼成一个大正文形,已知两个正方形的边长分别为3cm和4cm,将一个质地均匀的骰子任意抛向大正方形,落在白色区域的概率为()A.12B.916C.2449D.25499. 如图,A,B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A.625B.15C.425D.725第8题图第9题图10.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设立特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是()A.110000B.5010000C.10010000D.15110000二.填空题:(将正确答案填在题目的横线上)11.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是;12.小明正在玩飞镖游戏,如果小明将飞镖随意投中如图所示的正方形木板,那么投中阴影部分的概率为;13.如图,从6个白色的小方格中随机选取一个涂成黑色,使得到的图形为轴对称图案的概率是__________;14.如图,把一个圆形转盘按1:2:3:4的比例分成A,B,C,D四个扇形,自由转动转盘,转盘停止后,指针落在B扇形的概率是________;15.某电视频道播放正片与广告的时间之比为12:1,广告随机地穿插在正片之间;随机打开电视机收看该频道,开机就能看到正片的概率是_________;第11题图第12题图第13题图第14题图三.解答题:(写出必要的说明过程,解答步骤)16.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,求使图中阴影部分的图形构成一个轴对称图形的概率;17.小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上;(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)(1)中哪个概率较大?要使这两个概率相等,应改变哪块方砖的颜色?18.某超市搞促销活动,设置了两种购物抽奖方式:①从一个装有1个黄球、2个红球、13个白球(所有球除颜色外其它都相同)的不透明纸箱中任意摸出一个球;②转动如图所示的转盘(该转盘等分为8个扇形);规定:顾客购物每满100元,可获得一次抽奖机会,即顾客可以摸球一次或转动转盘一次,如果选择摸球方式,摸到黄球、红球、白球的顾客可分别获得20元、10元、2元的购物券一张;如果选择转动转盘方式,转盘停止转动后指针对黄色、红色、白色区域(若指向边界则重转)的顾客也可以分别获得20元、10元、2元的购物券一张;(1)甲购买了120元的商品,他选择摸球的抽奖方式,那么他获得购物券的概率是多少?获得10元购物券的概率是多少?(2)如果你购买了100元的商品,你会选择哪种抽奖方式?为什么?19.某商场进行有奖促销活动,活动规则:购买500元商品就可以获得一次转转盘的机会(转盘被分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、纪念奖,转动转盘停止后,指针指在哪个获奖区域就可以获得该区域相应等级奖品一件(奖品设置如图所示).商奖次特等奖一等奖二等奖三等奖纪念奖圆心角1°10°30°90°229°20.用18个除颜色外其它都相同的球设计一个摸球游戏:(1)使摸到红球的概率为13,摸到黄球的概率为13;(2)使摸到红球的概率为13,摸到黄球的概率为19,使摸到白球的概率为59;第六章 概率初步 周周测6参考答案与解析1~10 ACCBA DACAD11.49; 12.518; 13.13; 14.15; 15.1213; 16. 图中16个小正方形中有12 个白色的小正方形,涂上阴影后,使图中阴影部分的图形构成一个轴对称图形的情况有2种,∴ 21()126P ==阴影部分构成轴对称图形; 17.(1)P(小皮球停留在黑色方砖上)105189==,P(小皮球停留在白色方砖上)84189==;(2)小皮球停留在黑色方砖上的概率大.要使两个概率相等,可改变第2行第4列的方砖颜色,使其变为白色. (答案不唯一,任意一块黑色方砖改为白色方砖即可)18. (1)由题意得:甲获得购物券的概率为100%,21(10)168P ==获得元购物券; (2)由题意,两种抽奖方式获得购物券的概率都是100%,摸球抽奖时:1(0)16P =获得2元购物券,21(10)168P ==获得元购物券, 13()16P =获得2元购物券;转盘方式:1(0)8P =获得2元购物券,21(10)84P ==获得元购物券,5()8P =获得2元购物券;∴ 要想获得更高(20元,10元)的购物券,选择“转盘方式”;如果只要获得2元就可以了,则选择“摸球抽奖”; 19. 1()360P =彩电获,101()=36036P =获自行车,301()=36012P =获水杯, 901()=3604P =获圆珠笔,229()360P =获卡通画; 20.(1)红球 6个,黄球6个,其它颜色的球6个;(2)红球 6个,黄球2个,白球10个;中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
(常考题)北师大版初中数学七年级数学下册第六单元《概率初步》检测(含答案解析)(5)
一、选择题1.下列事件中,属于必然事件的是()A.任意画一个正五边形,它是中心对称图形B.某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C.不等式的两边同时乘以一个数,结果仍是不等式D.相等的圆心角所对的弧相等2.下列事件中,能用列举法求得事件发生的概率的是()A.投一枚图钉,“钉尖朝上”B.一名篮球运动员在罚球线上投篮,“投中”C.把一粒种子种在花盆中,“发芽”D.同时抛掷两枚质地均匀的骰子,“两个骰子的点数相同”3.小明连续抛一枚质量均匀的硬币5次,都是正面朝上,若他再抛一次,则朝上的一面()A.一定是正面B.是正面的可能性较大C.一定是反面D.是正面或反面的可能性一样大4.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到正确算式的概率是()A.14B.12C.34D.15.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.16B.13C.12D.236.下列词语所描述的事件是必然事件的是()A.拔苗助长B.刻舟求剑C.守株待兔D.冬去春来7.在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C.抛掷50000次硬币,可得“正面向上”的频率为0.5D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5188.九年级一班在参加学校4×100米接力赛时,安排了甲,乙,丙,丁四位选手,他们比赛的顺序由抽签随机决定,则丙跑第一棒的概率为()A .14B .18C .112D .1169.“长度分别为6cm 、8cm 、10cm 的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是( )A .必然事件B .不可能事件C .随机事件D .无法确定10.下列关于事件发生可能性的表述,正确的是()A .事件:“在地面,向上抛石子后落在地上”,该事件是随机事件;B .体育彩票的中奖率为10%,则买100张彩票必有10张中奖;C .掷两枚硬币,朝上的一面是一正面一反面的概率为13; D .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品.11.下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若a ,b 异号,则0a b +<;属于确定事件的有( )个.A .1B .2C .3D .412.下列说法正确的是( )A .某种彩票的中奖概率为11000,说明每买1000张彩票,一定有一张中奖 B .可能性是1%的事件在一次试验中一定不会发生 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“367人中有2人同月同日生”为必然事件 二、填空题13.九年级某班有50名同学,在一次数学测试中有35名同学达到优秀,课上老师随机抽取一名同学回答问题,则抽到在此次测试中数学成绩达到优秀的概率是_____. 14.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.15.小明掷一枚硬币10次,有9次正面向上,当他掷第10次时,正面向上的概率是_____.16.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q ;③抽到梅花.上述事件,概率最大的是_____.17.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为________.18.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.19.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是 ______.20.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.三、解答题21.在某次数学活动中,如图有两个可以自由转动的转盘A、B,转盘A被分成四个相同的扇形,分别标有数字1、2、3、4,转盘B被分成三个相同的扇形,分别标有数字5、6、7.若是固定不变,转动转盘(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止)(1)若单独自由转动A盘,当它停止时,指针指向偶数区的概率是.(2)小明自由转动A盘,小颖自由转动B盘,当两个转盘停止后,记下各个转盘指针所指区域内对应的数字,请用画树状图或列表法求所得两数之积为10的倍数的概率.22.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀.(1)如果从中任意摸出1个球.①你能够事先确定摸到球的颜色吗?②你认为摸到哪种颜色的球的概率最大?③如何改变袋中白球、红球的个数,就能使摸到这三种颜色的球的概率相等.(2)从中一次性最少摸出个球,必然会有红色的球.23.有两个一红一黄大小均匀的小正方体,每个小正方体的各个面上分别标有数字1,2,3,4,5,6.如同时掷出这两个小正方体,将它们朝上的面的数字分别组成一个两位数.(红色数字作为十位,黄色数字作为个位),请回答下列问题.(1)请分别写出一个必然事件和一个不可能事件.(2)得到的两位数可能有多少个?其中个位与十位上数字相同的有几个?(3)任写出一组两个可能性一样大的事件.24.有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平?25.在一个布袋中装有2个红球和2个篮球,它们除颜色外其他都相同.()1搅匀后从中摸出一个球记下颜色,不放回继续再摸第二个球,求两次都摸到红球的概率;()2在这4个球中加入x个用一颜色的红球或篮球后,进行如下试验,搅匀后随机摸出1个球记下颜色,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到红球的概率稳定在0.80,请推算加入的是哪种颜色的球以及x的值大约是多少?26.如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份).(1)小华购物450元,他获得购物券的概率是多少?(2)小丽购物600元,那么:① 她获得50元购物券的概率是多少?② 她获得100元以上(包括100元)购物券的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A、正五边形不是中心对称图形,故A是不可能事件;B、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B正确;C、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C错误;D、在同圆或等圆中,相等的圆心角所对的弧相等,故D是随机事件,故D错误;故选:B.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断.2.D解析:D【分析】利用列举法求概率的意义分析得出答案.【详解】解:A、投一枚图钉,“针尖朝上”,无法利用列举法求概率,故此选项错误;B、一名篮球运动员在罚球线上投篮,“投中”,无法利用列举法求概率,故此选项错误;C、把一粒种子种在花盆中,“发芽”,无法利用列举法求概率,故此选项错误;D、同时掷两枚质地均匀的骰子,“两个骰子的点数相同“,可以利用列举法求概率,故此选项正确.故选:D.【点睛】此题主要考查了概率的意义,正确理解列举法求概率的意义是解题关键.3.D解析:D【解析】【分析】根据实际情况可知,硬币有2面,正面和反面;投掷一次,正面与反面的可能性是一样的,据此解答.【详解】解:小明连续抛一枚硬币,前5次都是正面朝上,抛第6次正面朝上和反面朝上的可能性一样大.故选D.【点睛】本题考查的是可能性的运用,较为简单.4.A解析:A【解析】【分析】直接利用整式的乘除运算法则分别计算,再利用概率公式求出答案.【详解】解:(x+2)(x-3)=x2-x-6,故原式计算错误;(x-1)2=x2-2x+1,故原式计算错误;(x+2)(x-2)=x2-4,故原式计算正确;(6ab+2b)÷2b=3a+1,故原式计算错误;则从中随机抽取一张,则抽到正确算式的概率是:14.故选:A.【点睛】此题主要考查了概率公式以及整式的混合运算,正确掌握整式的混合运算法则是解题关键.5.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形,则构成轴对称图形的概率为:31 62故选:C.【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键.6.D解析:D【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、拔苗助长是不可能事件,故A不符合题意;B、刻舟求剑是不可能事件,故B不符合题意;C、守株待兔是随机事件,故C不符合题意;D、冬去春来是必然事件,故D符合题意;故选D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】根据概率的定义对各选项进行逐一分析即可.【详解】解:A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率不同,错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为0.482,错误;故选:A.【点睛】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.8.A解析:A【解析】【分析】根据概率公式直接进行解答即可.【详解】解:∵有甲,乙,丙,丁四位选手,∴丙跑第一棒的概率为1;4故选:A.【点睛】本题考查概率公式.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.A解析:A【解析】【分析】根据勾股定理逆定理和必然事件的概念即可求解.【详解】“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选A.【点睛】本题考查了勾股定理的逆定理及随机事件,解题的关键是掌握勾股定理逆定理和随机事件与必然事件的概念.10.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,所以A错误;B. 体育彩票的中奖率为10%,则买100张彩票不一定10张中奖,所以B错误;C. 掷两枚硬币,朝上的一面是一正面一反面的概率为1,2C所以错误;D. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,所以D正确.故选D.【点睛】本题考查的是概率,熟练掌握概率的计算方法是解题的关键.11.B解析:B【分析】根据事件发生的可能性大小逐一判断相应事件的类型,即可得答案.【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b<0是随机事件.综上所述:属于确定事件的有(3)(4),共2个,故选:B.【点睛】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键.12.D解析:D【分析】利用概率的意义逐一判断后即可确定正确的选项.【详解】解:A、某种彩票的中奖概率为11000,每买1000张彩票,不一定有一张中奖,故说法错误,不符合题意;B、可能性是1%的事件在一次试验中有可能会发生,故说法错误,不符合题意;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12,故说法错误,不符合题意;D、“367人中有2人同月同日生”为必然事件,说法正确,符合题意,故选:D.本题考查概率的意义,了解概率是描述事件发生可能性大小的量是解题的关键.二、填空题13.【分析】根据概率的计算公式计算即可【详解】∵有50名同学有35名同学达到优秀∴此次测试中数学成绩达到优秀的概率是=;故答案为:【点睛】本题考查了简单概率的计算熟记概率计算公式是解题的关键解析:7 10.【分析】根据概率的计算公式计算即可.【详解】∵有50名同学,有35名同学达到优秀,∴此次测试中数学成绩达到优秀的概率是3550=7 10;故答案为:7 10.【点睛】本题考查了简单概率的计算,熟记概率计算公式是解题的关键.14.5【分析】根据概率的意义即可求出答案【详解】由于每一次正面朝上的概率相等∴第21次抛掷的结果正面朝上的概率为05故答案为:05【点睛】本题考查概率的意义解题的关键是正确理解概率的意义本题属于基础题型解析:5【分析】根据概率的意义即可求出答案.【详解】由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5,故答案为:0.5【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.15.【分析】根据概率的性质和概率公式即可求出当他掷第10次时正面向上的概率【详解】解:∵掷一枚质地均匀的硬币有两种结果:正面朝上反面朝上每种结果等可能出现∴她第10次掷这枚硬币时正面向上的概率是:故答案解析:12.【分析】根据概率的性质和概率公式即可求出,当他掷第10次时,正面向上的概率.解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第10次掷这枚硬币时,正面向上的概率是:12.故答案为:12.【点睛】本题考查了概率统计的问题,根据概率公式求解即可.16.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q牌有4张抽到Q牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花.【解析】【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案.【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427;Q牌有4张,抽到Q牌的可能性是42= 5427;梅花有13张,抽到梅花牌的可能性是13 54;∴概率最大的是抽到梅花;故答案为:③抽到梅花.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】本题考查了概率的简单计算能力是一道列举法求概率的问题属于基础题可以直接应用求概率的公式【详解】因为一枚质地均匀的硬币只有正反两面所以不管抛多少次硬币正面朝上的概率都是故答案为【点睛】本题考查解析:1 2【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12.故答案为12.【点睛】本题考查了概率的意义,一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.甲【解析】∵123456这六个数字中大于3的数字有3个:456∴P(甲获胜)=∵123456这六个数字中小于3的数字有2个:12∴P(乙获胜)=∵∴获胜的可能性比较大的是甲故答案为:甲解析:甲【解析】∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,∴P(甲获胜)=3162=,∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,∴P(乙获胜)=2163=,∵1123>,∴获胜的可能性比较大的是甲,故答案为:甲.19.减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿则原先有受贿裁判评分的概率是现在有受贿裁判评分的概率为所以这样做的目的是减少有效分中有受贿裁判评分的可能性故答案为减少有效分中有受贿裁判评分的可解析:减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿,则原先有受贿裁判评分的概率是79,现在有受贿裁判评分的概率为714,所以这样做的目的是减少有效分中有受贿裁判评分的可能性,故答案为减少有效分中有受贿裁判评分的可能性.20.【分析】可运用相似三角形的性质求出GFMN从而求出OFOM进而可求出阴影部分的面积【详解】解:如图∵GF∥HC∴△AGF∽△AHC∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:11 12【分析】可运用相似三角形的性质求出GF、MN,从而求出OF、OM,进而可求出阴影部分的面积.【详解】解:如图,∵GF ∥HC ,∴△AGF ∽△AHC , ∴1,2GF AG HC AH ⋅== ∴13,22GF HC == 312.22OF OG GF =-=-= 同理MN=23,则有OM=13 1111,22312OFM S ∆=⨯⨯= 1111.1212S =-=阴影 故答案为:1112 【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.三、解答题21.(1)12;(2)16. 【分析】(1)根据概率公式列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.【详解】解:(1)∵指针指向1、2、3、4区是等可能情况, ∴指针指向偶数区的概率是:24=12; (2)根据题意画出树状图如下:一共有12种情况,两数之积为10的倍数的情况有2种,所以,P(两数之积为10的倍数)=212=16.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可(2)4【解析】【分析】(1)①根据颜色不同质地相同可以确定不能事先确定摸到球的颜色;②那种球的数量最多,摸到那种球的概率就大;③使得球的数量相同即可得到概率相同;(2)要想摸出红球是必然事件,必须摸出球的总个数多于白球与黄球的和.【详解】解:(1)①不能事先确定摸到的球是哪一种颜色;②摸到红球的概率最大;③增1个白球,减1个红球;只要使袋子中的白球、黄球、红球的个数相等即可.(2)从中一次性最少摸出4个球,必然会有红色的球.故答案为4.【点睛】本题考查了概率公式,随机事件,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.23.解:(1)必然事件:组成的两位数十位与个位上的数字一定是1~6的数字;不可能事件:组成的两位数是10(答案不唯一);(2)得到的两位数可能有36个;个位与十位上数字相同的有6个;(3)11与12出现的可能性一样大.【解析】【分析】(1)组成的数只要是十位与个位上的数字是1~6的就是必然事件,否则是不可能事件;(2)根据十位上出现的数字与个位上出现的数字的可能情况解答,写出十位与个位数字相同的情况即可;(3)根据任意一个数出现的可能性相同解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章概率初步周周测5一、选择题(共15个小题)1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A. 12B.13C.23D.16答案:B解析:解答:任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163=,故选B.分析:本题关键是算出共有多少球,以及有几个红球.2.一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P(摸到红球)等于()A. 12B.23C.15D.110答案:C解析:解答:袋中有2个红球,3个蓝球和5个白球,故共有球10个,所以从中任意摸出一个球,则P(摸到红球)=21105=,故选C.分析:本题关键是算出共有多少球,以及有几个红球.3.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1> P2B. P1< P2C. P1= P2D.以上都有可能答案:A解析:解答:在甲图中,小球最终停留在黑色区域的概率为P1=63168=,在乙图中,小球最终停留在黑色区域的概率为P2= 39,38>39故选A.分析:本题关键是分别算出在各个图中各自的概率,然后进行比较.4.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是A.120B.19100C.14D.以上都不对答案:C解析:解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.分析:本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.5.一个事件的概率不可能是()A.0B.12C.1D.32答案:D解析:解答:不论任何事件的概率,最小为0,最大为1,没有大于1的存在.故选D.分析:本题关键是清楚概率取值的范围是不小于0且不大于1.6.从1至9这些数字中任意取一个,取出的数字是偶数的概率是()A.0B.1C.59D.49答案:D解析:解答:在1至9这些数字中,共有2,4,6,8四个偶数,因此从这九个数字中任意取一个,取出的数字是偶数的概率是.故选D.分析:本题关键是清楚偶数有几个,然后运用比例就求出来了.7.小刚掷一枚硬币,一连9次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A.0B.1C.12D.23答案:C解析:解答:小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.分析:本题关键是清楚每次掷硬币,都是相互独立的事件.8.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定解析:解答:既然是一大串钥匙,那么应该多于3把,而其中只有一把是能够开锁的,因此任取一把,不能开门的可能性大于能开门的可能性,故选B.分析:本题关键是清楚一大串钥匙的含义.9.有100个相同大小的球,用1至100个数编号,则摸出一个是5的倍数号的球的概率是()A. 120B.19100C.15D.以上都不对答案:C解析:解答:100个相同大小的球,用1至100个数编号,那么编号是5的倍数的共有20个,因此摸出一个是5的倍数号的球的概率是2011005=,故选C.分析:本题关键是找出5的倍数号的球共有多少个.10.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设立特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是()A.110000B.5010000C.10010000D.15110000答案:D解析:解答:每10000张奖券为一个开奖单位,共有奖:特等奖1个+一等奖50个+二等奖100个=151个奖,所以买100元商品的中奖的概率是15110000,故选D.分析:本题关键是找出共有奖多少个.11.在一个口袋中,共有50个球,其中白球20个,红球20个,其余为篮球,从中任摸一球,摸到不是白球的概率是()A.15B.25C.35D.45答案:C解析:解答:口袋中,共有50个球,其中白球20个,那么不是白球的球共有30个,所以摸到不是白球的概率是303505=,故选C.分析:本题关键是找出不是白球的球有多少个.12.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是()A. 0.34B. 0.17C. 0.66D. 0.76答案:C解析:解答:在一次抽奖中,抽中的概率和抽不中的概率之和是1,抽中的概率是0.34,则抽不中的概率是1-0.34=0.76,故选C .分析:本题关键是清楚抽中的概率和抽不中的概率之和是1.13.用1、2、3这三个数字,组成一个三位数,则组成的数是偶数的概率是( ) A.13 B.14C.15D. 16 答案:A解析:解答:用1、2、3这三个数字,组成一个三位数,共有6个不同的数为:123,132,213,231,312,321,其中偶数有132,312两个,所以组成的数是偶数的概率为2163=,故选A .分析:本题关键是找出共有几个数,以及偶数有几个.14.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方( )A.公平B.对甲有利C.对乙有利D.无法确定公平性 答案:A解析:解答:同时掷两枚相同的硬币,所有等可能的事件如下表所示:同面朝上的概率为42=,异面朝上的概率为42=,故选A . 分析:本题关键是弄清楚等可能的事件是什么.15.小伟向一袋中装进a 只红球,b 只白球,它们除颜色外,无其他差别.小红从袋中任意摸出一球,问他摸出的球是红球的概率为( ) A.a b B. b a C.+a a b D.+ba b答案:C解析:解答:袋中装进a 只红球,b 只白球,共有球(a +b )只,所以从袋中任意摸出一球,摸出的球是红球的概率等于+aa b,故选C . 分析:本题关键是弄清楚红球的个数和共有球数. 二、填空题(共5个小题)16.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.答案:38. 解析:解答:由图可以看出,一共有最小规格的正三角形16个,其中涂黑了的有6个.有等可能的情况之下,扔沙包1次击中阴影区域的概率等于63168=. 分析:本题关键是数出共有的最小三角形和涂黑的三角形个数.17.必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______. 答案:必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.解析:解答:根据必然事件、不可能事件、不确定事件的意义,可得必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.分析:本题考察对概率意义的理解,关键是明确各事件的概率.18.一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 答案:14|113解析:解答:一副扑克牌去掉大王、小王后还有52张,其中方块有13张,所以随意抽取一张,抽到方块的概率是131524=;在这52张中,3共有4张,因此抽到3的概率是415213=.分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数. 19.任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______. 答案:12解析:解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,其中有三个奇数,因此朝上的点数是奇数的概率是12. 分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.20.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.答案:1 4解析:解答:因为选择题有四个选项,所以小明靠猜测获得结果,其答对的概率是14.分析:本题考察对概率意义的理解,关键是根据选项个数,分析出概率是多少.三、解答题(共5个小题)21.下列事件中,哪些是确定事件?哪些是不确定事件?(1)任意掷一枚质地均匀的骰子,朝上的点数是6.答案:不确定事件;解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,因此,朝上的点数是6是不确定事件.(2)在一个平面内,三角形三个内角的和是190度.答案:确定事件,也是不可能事件;解答:根据三角形的内角和定理,在一个平面内,三角形三个内角的和是180度.因此,三角形三个内角的和是190度是确定事件,也是不可能事件.(3)线段垂直平分线上的点到线段两端的距离相等.答案:确定事件,也是必然事件;解答:根据线段的垂直平分线的性质可知,线段垂直平分线上的点到线段两端的距离相等,故是一个确定事件,也是必然事件.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.22.请将下列事件发生的概率标在图中:(50%)0.5不可能发生必然发生(100%)1(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;答案:(50%)0.5不可能发生必然发生(100%)1解答:因为每一枚质地均匀的骰子,抛掷后朝上面的点数最小为1,所以两枚朝上面的点数之和最小为2,因此,点数之和为1是不可能发生的.(2)抛出的篮球会下落;答案:(50%)0.5不可能发生必然发生(100%)解答:在地球万有引力的作用下,抛出的篮球会下落,这是必然发生的.所以可能性为1. (3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);答案:310(50%)0.5不可能发生必然发生(100%)解答:口袋中装有3个红球、7个白球,共有10个球,任取一个球,恰好是红球的概率为3 10,所以点应该标在310处.(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.答案:(50%)0.5不可能发生必然发生(100%)解答:掷一枚质地均匀的硬币,硬币落下后,正面朝上与反面朝上的概率相同,都为12,所以点应该标在12即50%处.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.23.下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.答案:14|38解答:由图可以看出,在第一个转盘内,红色区域的圆心角是90°,因此可以算得指针落在红色区域的概率是9013604=;在第二个转盘内,红色区域的圆心角是135°,因此可以算得指针落在红色区域的概率是135273 360728==.解析:分析:本题考察对概率意义的理解,关键是根据图示,由圆心角的度数求出概率.24.用10个球设计一个摸球游戏:(1)使摸到红球的概率为15;答案:2个红球,8个白球;解答:在一个不透明的口袋内装大小材质相同的小球,其中2个红球,8个为白球,则摸到红球的概率符合要求.(2)使摸到红球和白球的概率都是25.答案:4个红球,4个白球,2个其他颜色球.解答:在一个不透明的口袋内装大小材质相同的小球,其中4个红球,4个白球,2个黑球,则摸到红球和白球的的概率符合要求.解析:分析:本题考察对概率意义的理解,关键是根据要求,算出符合条件的各色小球的个数. 25.一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,请问(1)取出的小球编号是偶数的概率是多少?答案:1 2解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为偶数的有25个,所以取出的小球编号是偶数的概率是251 502=.(2)取出的小球编号是3的倍数的概率是多少?答案:8 25解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为3的倍数的小球共有16个,所以所频率为168 5025=.(3)取出的小球编号是质数的概率是多少?答案:6 25解答:从1到50这50个编号中,质数有2,3,5,7,11,13,17,19,23,29,31,37,共12个,所以小球编号是质数概率是126 5025=.解析:分析:本题考察对概率意义的理解,关键是找出各种符合条件的编号的个数.。