等差数列的定义及其性质学案
2.2.1 等差数列-王后雄学案
张喜林制2.2.1 等差数列教材知识检索考点知识清单1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它的前一项的 都等于____ ,那么这个数列就叫做等差数列.这个常数d 叫做等差数列的 .2.等差数列的单调性:等差数列的公差 时,数列为递增数列;等差数列的公差 时,数列为递减数列; 等差数列的公差 时,数列为常数列.等差数列不会是 .3.等差数列的通项公式=n a4.要证明数列}{n a 为等差数列,只要证明:当2≥n 时,要点核心解读1.等差数列的定义在等差数列的定义中,要强调“从第二项起”和“同一常数”,这体现了等差数列的基本特征,还要注意公差是“每一项与它前一项的差”,防止将被减数和减数颠倒,如果用数学符号来描述,可叙述为:若d n d a a n n ,2(]≥=-- 为常数),则}{n a 是等差数列.还可以写成:若d N n d a a u n ,1++∈<=- 为常数),则}{n a 是等差数列.[注意] 以上定义中的常数是相对于变量n (项数)而言的.2.等差中项如果a 、b 、c 成等差数列,则称b 是a 与c 的等差中项,由以上定义知:b 是a 与c 的等差中项甘a 、b 、c 成等差数列22c a b b c a +=⇔=+⇔ 3.等差数列的判定(1)用定义判定:即判定d a a n n =-+1(常数))(+∈N n 或122++=+n n n a a a (即)112n n n n a a a a -=-+++ 是否成立.(2)用通项公式判定:即用}{n a 为等差数列q pn a n +=⇔q p 、(为常数)判定.4.等差数列的通项公式及其变式通项公式:d n a a n )1(1-+=(其中1a 为首项,d 为公差).变式1:).()(⋅=/-+=m n d m n a a m n变式2:).2(11+∈≥--=N n n n a a d n 且 变式3:).(m n m n a a d m n =/--= [注意] (1)等差数列的通项公式是关于变量n (项数)的一次函数或常数函数(d=0时),因此在解决有关问题时,可用函数方法处理.(2)等差数列的通项公式实质是d a n a n ,,,1四者之间的关系式,只要知道其中三个的值,由它们便可求出另一个的值,特别地,要求等差数列的通项公式,只需先求出首项1a 和公差d5.等差数列的性质(1)等差数列}{n a 中,⋅∈-=-+),()(N m n d m n a a m n(2)若a ,b ,c 成等差数列,则k mc k mb k ma +++,.,也成等差数列(m ,k 为常数).(3)等差数列}{n a 中,若,q p n m +=+则q p m n a a a a +=+).,,,(+∈N q p m n[特别注意] “数列}{n a 中,若,q p m +=则=m a ,,q P a a +是不成立的.(4)等差数列}{n a 中,若公差d>0,则数列}{n a 为递增数列;等差数列}{n a 中,若公差d<0,则数列}{n a 为递减数列.(5)等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按原来的顺序排列,构成的新数列不一定是等差数列,证明:假设从第p 项起,每隔q 项抽出等差数列的项,则组成的新数列是,,,,32q p q q p p a a a a +++ρ ,,)1(q n p a -+ 则有--+q n p a )1(=-+q n p a )2(---+]1)1({q n r p qd d q n p =--+]}1)2([为常数所以等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,显然,剩下的项按原来的顺序排列,构成的新数列不一定是等差数列.(6)若数列}{n b 也是公差为d 的等差数列,则数列+n a 1{λ212}(λλλh n b 是常数)是公差为d )(21λλ+ 的等差数列.证明:因为,)1(,)1(11d n b b d n a a n n -+=-+=所以+n a ]λ])1([112d n a b n -+=λλ-++n b ([12λ,))(1()(]12]1211d n b a d λλλλ+-++=)所以=+--1211n n b a λλ+11[a λ+-])2(d n ])2([12d n b -+λ =)2()(1211-++n b a λλ+](λ,)2d λ所以=+-+--)()(121121n n n n b a b a λλλλ.)(21d λλ+所以数列2121,}{λλλλ<+n n b a 是常数)是公差为d )(21λλ+的等差数列.利用等差数列的性质可使有些问题的解题过程十分简捷.6.等差数列与一次函数的关系通项公式,)1(11d a dn d n a a n -+=-+=即n a 是n 的一次函数式,故表示等差数列各项的点都在一条直线上.如:首项为l ,公差为2的等差数列的通项公式为,12-=n a n 相应的图象是直线12)(-=x x f 上均匀排列开的无穷多个孤立的点,如图2 -2 -1 -1所示,由函数的图象可得等差数列的单调性:当d>0时,数列}{n a 为递增数列(图2 -2 -1-2甲);当d<0时,数列}{n a 为递减数列(图2 -2 -1-2乙);当d=0时,数列}{n a 为常数列(图2 -2 -1-2丙).请注意图象,公差d 恰好为所在直线的斜率,因此有=d ,(n m n m a a n m =/--斜率公式). 典例分类剖析考点1 等差数列的概念命题规律(1)判断所给出的数列是否为等差数列.(2)判断某一项或某些项是否为等差数列中的项.(3)证明某一数列为等差数列.[例1] (1)求等差数列8,5,2,…的第20项;(2) -401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?(3)若数列}{n a 的通项⎩⎨⎧≥+==),2(12),1(1n n n a n 试问数列}{n a 是等差数列吗? [解析] 第(1)小题是求等差数列的指定项,我们可以先求出首项1a 和公差d ,然后将它们代入等差数列的通项公式,即可求出相应的项,第(2)小题是判断一个数是否为一个等差数列的项,只需令此数等于通项公式,并求解此方程,如果它有正整数解,则此数为该数列的项,否则不是.[答案] (1) 由,20,385,81=-=-==n d a 得.49)3()120(820-=-⨯-+=a(2)由,4)5(9,51-=---=-=d a得到这个数列的通项公式为).1(45---=n a n设-401=-5 -4(n -1)成立.解这个关于n 的方程,得n=100.∴ -401是这个数列的第100项.(3)数列}{n a 不是等差数列,根据等差数列定义,一个数列是等差数列的充要条件是从第二项起,每一项与前一项的差都等于同一个常数,而此数列中虽然有,23423==-=- a a a a 但是,2412=/=-a a 因此此数列不满足等差数列的条件,所以它不是一个等差数列,但可以这样说:此数列从第2项起组成一个等差数列.[启示]d a ,]和n 是等差数列的三个基本量,有关等差数列的问题都可以利用这三个基本量来求解这种方法称为基本量法.[例2]在等差数列}{n a 中,已知,5,1185==a a 求⋅10a[解析] 由题目可获取以下主要信息:已知等差数列中的某两项,求另外一项,解答本题可利用通项公式进行.[答案] 设数列}{n a 的公差为d .由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得⎩⎨⎧-==.2,191d a 故.212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a[规律方法] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 1.若,2b c a =+则是否有++c b c a (),5(22)(),2b ac a +能构成等差数列.考点2 等差数列的性质及应用命题规律(1)考查对性质的灵活运用.(2)利用等差数列的性质解决一些计算繁琐的问题,达到减小计算量,优化解题过程的目的.[例3] (1)在等差数列}{n a 中,==++642741,15a a a a a a ,45求数列的通项公式;(2)设}{n a 为等差数列,若,45076543=++++a a a a a 求,82a a +(3)若数列}{n a 为等差数列,),(,q p p a q a q p =/==求⋅+q p a[答案] ,2)1(62471a a a a a +==+.1354741==++∴a a a a10,5624=+∴=∴a a a 且.962=a a62,a a ∴是方程09102=+-x x 的两根,⎩⎨⎧==∴9,162a a 或⎩⎨⎧==1,962a a 若12=a 且,96=a 则.32,2-=∴=n a d n同理可得.213n a n -=故32-=n a n 或.213n a n -=(2)解法一:,28256473a a a a a a a +==+=+.0455576543==++++∴a a a a a a.1802,905825==+∴=∴a a a a解法二:因为}{n a 为等差数列,设首项为,1a 公差为d ,+=++++++=+++∴11117435632a d a d a d a a a a ,20d 即d a d a 4,45020511+∴=+ ,90=.180********=+=+++=+∴d a d a d a a a(3)解法一:可用通项公式求解,,)1(,)1(11d q a a d p a a q p -+=-+=①⎩⎨⎧=-+=-+∴.)1(,)1(11p d q a q d p a 两式相减,得⋅-=-p q d q p )(.1,-=∴=/d q p 代入①,有.1,)1)(1(11-+=∴=--+q p a q p a故.0)1()1(1)1(1=-⋅-++-+=-++=+q p q p d q p a a q p解法二:利用关系式d m n a a m n )(-+=求解,,)(,)(d q p p q d q p a a q p -+=∴-+=即.1,.)(-=∴=/-=-d q p d q p p q故.0)1()][(=-+=-++=+q q d p q p a a p q ρ解法三:利用一次函数图象求解.不妨设p<q ,由于等差数列中,n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点 ,(),,q a p p (),(),q p q a q p a ++共线.设,m a q p =+由已知得三点),(),,(),,(m q p p q q p +共线(如图2 -2 -1-3).由 △ABE ∽ △BCF 得,CFBF BE AE = pm p q q p m p p q p q -=∴-+-=--∴1)( 得,0=m 即.0=+q p a[启示] (1)等差数列性质q p n m +=+“且,,,p n m ”q p n m a a a a N q +=+⇒∈+是否可推广为“若,,+∈N n m 则+m a ”?n m n a a +=不行.例如,当n a n 213-=时,则,854=+a a 而.59-=a 显然 ,n m n m a a a +=/+但该性质可推广为三项情形,即s q p t n m ++=++且+⇒∈+m a N s q p t n m ,,,,,”s q p t n a a a a a ++=+以及四项乃至一般情形,只要两边项数一样,且下标和相等即可,请你完成它的证明.(2)上述各种解法无不体现了等差数列性质的灵活运用.母体迁移 2.等差数列}{n a 中:(1)若,,147n a m a ==则=21a(2)若,1531-=++a a a 则=++++54321a a a a a(3)若,52.,34525432==+++a a a a a a 且,24a a >则=5a(4)若,53=a 则=+412a a考点3 等差数列的通项公式命题规律(1)利用解方程组的方法求1a 和d ,从而求出通项公式.(2)利用通项公式及其变形形式解决一些简单的问题[例4] (2010年辽宁省部分重点中学联考题)在等差数列{n a }中,已知,5,1185==a a 求⋅10a[答案] 方法一:设数列}{n a 的公差为d ,由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得 ⎩⎨⎧-==.2,191d a 故 .212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a 方法二:,,)(m n a a d d m n a a m n m n --=∴-+=,231155858-=-=--=∴a a d .1)2(252810=-⨯+=+=d a a[方法技巧] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 3.已知两个等差数列 ,11,8,5:}{n a 与,,11,7,3:}{ n b 它们的项数均为100项,则它们有多少个彼此具有相同数值的项?考点4 等差数列与一次函数命题规律(1)深刻理解等差数列,进一步理解数列是一特殊的函数,特例是等差数列是一次函数,其中公差d 为斜率.(2)可用函数的性质来处理等差数列问题.[例5] 已知(1,1),(3,5)是等差数列}{n a 图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.[答案] (1)由于(1,1),(3,5)是等差数列}{n a 图象上的两点,所以,5,131==a a 由1213=+=d a a,52=+d 解得,2=d 于是.12-=n a n(2)图象是直线12-=x y 上一些等间隔的点(图略).(3)因为一次函数12-=x y 是增函数,所以数列}{n a 是递增数列.[启示] 本题综合考查数列的通项公式、图象和性质.母体迁移 4.已知数列}{n a 的通项公式为+=2pn a n qn (常数).,R q p ∈(1)当p ,q 满足什么条件时,数列}{n a 是等差数列?(2)求证:对于任意的实数p 和q ,数列}{1n n a a -+是等差数列.考点5 等差数列模型的实际应用命题规律(1)利用等差数列的知识从实际问题中抽象出等差数列的模型.(2)通过构造等差数列的模型去解决实际问题.[例6] 某人有七位朋友,第一位朋友每天晚上都去他家看他,第二位朋友每隔一个晚上到他家去,第三位朋友每隔两个晚上去他家串门,第四位朋友每隔三个晚上去他家做客.依此类推,直至第七位朋友每隔六个晚上在他家出现.这七位朋友昨晚在主人家中碰面,他们还会同一个晚上在主人家中碰面吗?[答案] 第一位朋友每天晚上在主人家;第二位朋友以后在主人家中的天数为:2,4,6,8,…,这些数构成以2为首项,公差为2的等差数列,通项公式为:,2⋅=n a n第三位朋友以后在主人家中的天数为:3,6,9,…,这些数构成以3为首项,公差为3的等差数列,通项公式为:,3⋅=n a n第四、五、六、七位朋友晚上在主人家的天数分别构成以4,5,6,7为首项,公差为4,5,6,7的等差数列;通项公式分别为:;7,6,5,4n a n a n a n a n n n n ====他们要在同一晚上出现,这个数应为这七个数列的公共项,这一项是2,3,4,5,6,7的倍数,而2,3,4,5,6,7的最小公倍数为420,因此第420,840,1260,…天晚上他们会同时在主人家出现.母体迁移 5.为了测试某种金属热膨胀性质,将这种金属的一根细棒加热,从C 100开始第1次测量细棒长度,以后每升高C50测量一次,把依次量得的数据所成的数列}{n l 表示成图象如图2 -2 -1-4,根据图象解答下列问题:(1)第5次量得金属棒的长度是多少?此时金属棒的温度是多少?(2)求}{n l 的通项公式和金属长度L (单位:m )关于温度t 单位:℃)的函数关系式(设长度是关于温度的一次函数);(3)在C 30的温度条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到,500C o 问铺设时两块金属板之间至少要留多宽的空隙?优化分层测讯学业水平测试1.2006是等差数列4,6,8,…的( ).A .第1002项B .第1001项C .第1003项D .第1006项 2.在数列}{n a 中,),(122,211++∈+==N n a a a n n 则101a 的值为( ).49.A 50.B 51.C 52.D3.在等差数列中,),(,n m m a n a n m =/==则n m a +为( ).n m A -. 0.B 2.m C 2.n D4.设数列}{},{n n b a 都是等差数列,且=+==2211,75,25b a b a ,100则3737b a +等于( ). 0.A 37.B 100.C 37.-D5.在等差数列}{n a 中,若,45076543=++++a a a a a 则82a a +的值等于 6.若,b a =/两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为,,21d d 则=21d d 7.已知数列}{n a 中,,66,2171==a a 通项n a 是项数n 的一次函数,则通项公式=n a 8.体育场一角的看台座位是这样排列的:第一排有15个座位,从第二排起每一排都比前一排多2个座位.你能用n a 表示第n 排的座位数吗?第10排能坐多少个人?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意) 1.(2011年重庆高考题)在等差数列}{n a 中,,4,232==a a 则=10a ( ).12.A 14-B 16.C 18.D)23lg(2-⋅与)23lg(+的等差中项为( ).0.A 2323lg+-⋅B )625lg(-⋅C 1.D3.等差数列}{n a 中,),(,l m m a l a i m =/==则通项公式为( ).n l m a A n ++=. n m a B n -+=1. l m n a C n --=. 2.nl m a D n ++=4.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则=-||n m ( ). 1.A 43.B 21.C 83.D5.-个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( ).2.-A3.-B4.-C 6.-D 6.(2010年湖北黄冈调考题)已知数列}{n a 的前n 项和为=n s ,2n 则++++322111a a a a200620051a a ++的值是( ).214010.-A 214011.-B 214012.-C 214013.-D 7.(高考题改编)下表给出一个等差数阵,其中每行每列都是等差数列,⋅ij a 表示第i 行第J 列的数,则66a 的值是( ).50.A 43.B 24.C 58.D8.(2010年北京海淀区练习题)已知数列}{},{n n b a 都是公差为l 的等差数列,其首项分别为,11b a 、且∈=+1111,,5b a b a ⋅+N 设),(+∈=N n a c n b n 则数列}{n c 的前10项和等于( ).55.A 70.B 58.C 010.D二、填空题(本题包括4小题,每小题5分.共20分)9.(2009年上海高考题)已知函数.,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差.0=/d 若+)(1a f ,0)()(272=++a f a f 则当=k 时,.0)(=k a f10.(2010年南京市调考题)将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,如下表所示,若每行写12个数,每页共15行,则数2007应抄在第 页第 行第 个位置上.11.(2010年苏州市模拟题)在正整数100至500之间能被11整除的整数的个数为 12.若)23lg(),23lg(,lg +-x x x 成等差数列,则=22log x三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)已知数列}{n a 为等差数列,,1c a =公差为l ,若=n b ),(122++∈-N n a a n n 试判断数列}{n b 是否为等差数列?并证明你的结论.14.(13分)(2010年东北八校联考题)已知数列}{n a 为等差数列,关于x 的方程2122++++i i i a x a x a),,,2,1(0n i ==且d d a i (0=/为公差). (1)这些方程是否有公共根?若有,求出它;若没有,请说明理由; (2)在方程有一个公共根的条件下,设另一个根为,i x 则⋅+++11,,11,1121n x x x 是否成等差数列?证明你的结论.15.(14分)(2010年北京模拟题)已知数列}{n a 和}{n b 满足关系式:⋅∈+++=+)(21N n na a ab nn (1)若,2n b n =求数列}{n a 的通项公式;(2)若}{n b 是等差数列,求证:}{n a 也是等差数列.。
数学等差数列教案(精选10篇)
数学等差数列教案数学等差数列教案(精选10篇)作为一名老师,就难以避免地要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!以下是小编为大家整理的数学等差数列教案,仅供参考,希望能够帮助到大家。
数学等差数列教案篇1[教学目标]1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。
[教学过程]一.课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。
这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?(2)公差d是哪两个数的差?(二)等差数列的通项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?根据等差数列的定义可得:因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:将以上-1个式子相加得等差数列的通项公式就是:,三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。
高中数学等差数列教案大全
高中数学等差数列教案大全一、教学目标1.理解等差数列的基本概念和相关术语。
2.能够推导等差数列通项公式。
3.掌握等差数列求和公式及其应用。
二、教学内容1. 等差数列的概念和相关术语等差数列的定义等差数列是一种特殊的数列,它的每一项与前一项的差相等。
这个差值称为等差数列的公差,通常用字母d表示。
相关术语•首项:等差数列中的第一项。
•公差:等差数列中相邻项之间的差。
•通项公式:等差数列中第n项的通项公式。
•前n项和:等差数列中前n项的和。
2. 推导等差数列通项公式等差数列通项公式可以表示任意一项,只要已知它是等差数列中的第几项即可。
接下来介绍如何推导等差数列通项公式。
推导步骤假设等差数列的首项为a₁,公差为d,第n项为an。
推导通项公式的步骤如下:1.找规律:观察等差数列的前几项,列出它们之间的关系。
2.建立方程:将观察到的关系式写成一个方程。
3.解方程:解出通项公式。
例子若等差数列的首项为a₁,公差为d,第n项为an,则观察前几项可得:a₁, a₁+d, a₁+2d, a₁+3d, ...由此得出任意一项的通项公式为:an = a₁ + (n-1)d3. 掌握等差数列求和公式及其应用求和公式等差数列前n项和是一个关于n的二次函数,因此可以求出通项公式。
设等差数列的首项为a₁,公差为d,前n项和为Sn,则有:Sn = (a₁ + an) × n / 2将an代入上式,化简可得:Sn = n/2 ( 2a₁ + (n-1)d )应用等差数列求和公式的应用十分广泛,例如可以用来求某一个等差数列中的前n 项和,或者求某几项的和等问题。
三、教学方法在教学过程中,可以采用多种教学方法,例如板书演示、课堂讲解、课堂练习等,以帮助学生更好地掌握等差数列的概念和应用。
四、教学流程第一步:引入问题通过引入一些等差数列的实例,让学生感性理解等差数列的基本概念和相关术语。
第二步:讲解等差数列的定义和相关术语让学生了解等差数列的基本定义和相关术语。
等差数列的概念教案
等差数列的概念教案
等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等的数列。
这个相等的差值被称为公差,通常用字母d表示。
等差数列可以用数学公式来表示,a_n = a_1 + (n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
在教学等差数列的概念时,可以从以下几个方面展开:
1. 基本概念,首先介绍等差数列的定义,引入公差的概念,让学生了解等差数列的特点,即相邻两项的差是一个固定的值。
2. 等差数列的表示,引导学生了解等差数列的一般表示形式,即a_n = a_1 + (n-1)d,强调首项、公差和项数之间的关系。
3. 等差数列的性质,介绍等差数列的性质,包括任意项与首项的关系、相邻两项的关系,以及等差数列的前n项和公式等内容。
4. 等差数列的应用,通过实际问题引导学生理解等差数列在数学和现实生活中的应用,比如等差数列在数学模型、金融等领域的
应用。
5. 解题方法,介绍解等差数列相关问题的常用方法,包括求和公式的推导和应用,以及根据题目特点选择合适的解题方法等。
教学等差数列的概念时,可以通过举例、图表和实际问题等多种方式,帮助学生深入理解等差数列的概念和性质,培养他们的数学建模能力和解决实际问题的能力。
同时,引导学生发现等差数列在自然界和日常生活中的存在,增强他们对数学的兴趣和实际运用能力。
数学等差数列教案优秀8篇
数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。
本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。
30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。
等差数列的概念、性质(优质课)教案
等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
等差数列的基本定义及性质(教案二)
等差数列的基本定义及性质(教案二)。
一、基本定义等差数列是指一个数列中相邻的两个数字之间的差值相等的数列。
这个差值称为公差,记为d,而数列中的第一项记为a1,第n项记为an。
简单来说,等差数列可以表示为:a1, a1+d, a1+2d, a1+3d, …, an-1+d, an其中,d为公差,a1为首项,an为末项,n为项数。
二、性质1.通项公式对于一个等差数列,我们可以得到以下的通项公式:an = a1 + (n-1)d这个公式表明了,对于等差数列中的任意一项,我们可以通过首项、公差和项数来求出。
2.求和公式对于一个等差数列,我们可以使用以下的公式来求和:Sn = (a1 + an) × n / 2其中,Sn表示前n项和。
3.公差的性质公差有以下的性质:① 两个相邻的项之间的差值等于公差d。
② 对于任意两个项,它们之间的差值可以表示为d × (m - n),其中m和n分别表示这两个项的下标。
③ 如等差数列的首项和公差均为正数,那么数列中的每一项都是正数。
④ 如果等差数列的首项和公差均为负数,那么数列中的每一项都是负数。
4.项数的性质项数有以下的性质:① 对于任意一个等差数列,我们都可以通过首项、末项和公差来求出项数。
② 当n大于2时,等差数列的第n项与第n-1项之间的差值是公差。
③ 任意三个项构成的子等差数列,其公差等于原等差数列的公差。
三、应用等差数列在数学中有着广泛的应用,特别是在数列求和、数学证明、概率统计等方面。
在数列求和中,我们可以通过等差数列的求和公式来求出前n项的和。
在数学证明中,等差数列可以用来证明某些数学定理,例如等差数列的一些性质。
在概率统计中,等差数列可以被用来模拟某些随机变量的分布。
等差数列是数学中一个重要的概念,其基本定义和性质对于我们的数学学习有很大的帮助,因此,掌握等差数列的相关知识是非常必要的。
等差数列的概念学案
2.2.1等差数列导学案一、课前预习:1、预习目标:①通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;②能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;③体会等差数列与一次函数的关系。
2、预习内容:(1)、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母d 表示。
(2)、等差中项:若三个数b A a ,,组成等差数列,那么A 叫做a 与b 的 , 即=A 2 或=A 。
(3)、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。
(4)、等差数列的通项公式:=n a 。
二、课内探究学案例1、1、求等差数列8、5、2… …的第20项解:由81=a 385-=-=d 20=n 得:49)3()120(820-=-⨯-+=a2、401-是不是等差数列5-、9-、13-… …的项?如果是,是第几项?解:由51-=a 4)5(9-=---=d 得14)1(45--=---=n n a n由题意知,本题是要回答是否存在正整数n ,使得:14401-=-n 成立解得:100=n 即401-是这个数列的第100项。
例2、某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4km (不含4km )计费为10元,如果某人乘坐该市的出租车去往14km 处的目的地,且一路畅通,等候时间为0,需要支付多少车费?分析:可以抽象为等差数列的数学模型。
4km 处的车费记为:2.111=a公差2.1=d ,当出租车行至目的地即14km 处时,n=11 求11a所以:2.232.1)111(2.1111=⨯-+=a例3:数列53-=n a n 是等差数列吗?变式练习:已知数列{n a }的通项公式q pn a n +=,其中p 、q 为常数,这个数列是等差数列吗?若是,首项和公差分别是多少?(指定学生求解)解:取数列{n a }中任意两项n a 和1-n a )2(≥n[]q n p q pn a a n n +--+=--)1()(1p q p pn q pn =+--+=)(它是一个与n 无关的常数,所以{n a }是等差数列?并且:q p a +=1 p d = 例5(1) 已知a ,b ,c 成等差数列.求证:ab -c 2,ca -b 2,bc -a 2也成等差数列;(2)三数成等差数列,它们的和为12,首尾二数的积为12,求此三数.三、课后练习与提高1、在等差数列{}n a 中,已知,10,3,21===n d a 求n a =已知,2,21,31===d a a n 求=n已知,27,1261==a a 求=d 已知,8,317=-=a d 求=1a2、已知231,231-=+=b a ,则b a ,的等差中项为( ) A 3 B 2 C 31 D 213、2000是等差数列4,6,8…的( )A 第998项B 第999项C 第1001项D 第1000项4、在等差数列40,37,34,…中第一个负数项是( )A 第13项B 第14项C 第15项D 第16项5、在等差数列{}n a 中,已知,13,2321=+=a a a 则654a a a ++等于( )A 10B 42 C43 D456、等差数列-3,1, 5…的第15项的值为7、等差数列{}n a 中,0,2511>=d a 且从第10项开始每项都大于1,则此等差数列公差d 的取值范围.8、在等差数列{}n a 中,已知,31,10125==a a ,求首项1a 与公差d9、在公差不为零的等差数列{}na中,21,aa为方程0432=+-axax的跟,求{}n a的通项公式。
等差数列教案(多篇)
一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。
2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。
3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。
4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。
二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。
2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。
4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。
三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。
2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。
3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。
4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。
四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。
2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。
3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。
4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。
五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。
2. 针对学生的练习情况,进行讲解和解答疑惑。
3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。
学案11:§2.2 等差数列(一)
§2.2 等差数列1.等差数列的概念(1)文字语言:如果一个数列从第项起,每一项与它的的差等于,那么这个数列就叫做等差数列,这个叫做等差数列的,公差通常用字母表示.(2)符号语言:a n+1-a n=d(d为常数,n∈N*).2.等差中项(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是.思考:观察所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列:(1)2,4;(2)-1,5;(3)a,b;(4)0,0.3.等差数列的通项公式以a1为首项,d为公差的等差数列{a n}的通项公式a n=.思考:教材上推导等差数列的通项公式采用了不完全归纳法,还有其它方法吗?如何操作?4.从函数角度认识等差数列{a n}若数列{a n}是等差数列,首项为a1,公差为d,则a n=f(n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加d.思考:由等差数列的通项公式可以看出,要求a n,需要哪几个条件?初试身手1.已知等差数列{a n }的首项a 1=4,公差d =-2,则通项公式a n =( )A.4-2nB .2n -4 C.6-2n D .2n -62.等差数列-6,-3,0,3,…的公差d = .3.下列数列:①0,0,0,0;②0,1,2,3,4;③1,3,5,7,9;④0,1,2,3,….其中一定是等差数列的有 个.4.lg (3+2)与lg (3-2)的等差中项是 .合作探究类型1 等差中项例1 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.规律方法三数a ,b ,c 成等差数列的条件是b =a +c 2(或2b =a +c ),可用来解决等差数列的判定或有关等差中项的计算问题.如若证{a n }为等差数列,可证2a n +1=a n +a n +2(n ∈N *). 跟踪训练1.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8= . 类型2 等差数列的通项公式及其应用例2 (1)在等差数列{a n }中,已知a 4=7,a 10=25,求通项公式a n ;(2)已知数列{a n }是等差数列,a 5=-1,a 8=2,求a 1与d .规律方法1.应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =a ,a 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式. 2.若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷.跟踪训练2.(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?类型3 等差数列的判定与证明探究问题1.在数列{a n }中,若a n -a n -1=d (常数)(n ≥2且n ∈N *),则{a n }是等差数列吗?为什么?2.在数列{a n }中,若有2a n =a n -1+a n +1(n ≥2,n ∈N *)成立,则{a n }是等差数列吗?为什么?3.若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少?例3 已知数列{a n }满足a 1=2,a n +1=2a n a n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由; (2)求a n .等差数列的判定方法有以下三种:(1)定义法:a n+1-a n=d(常数)(n∈N*)⇔{a n}为等差数列;(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}为等差数列;(3)通项公式法:a n=an+b(a,b是常数,n∈N*)⇔{a n}为等差数列.但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.课堂小结1.判断一个数列是否为等差数列的常用方法(1)a n+1-a n=d(d为常数,n∈N*)⇔{a n}是等差数列;(2)2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)a n=kn+b(k,b为常数,n∈N*)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n=a1+(n-1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1,d,n,a n四个量中,只要知道其中任意三个量,就可以求出另一个量.课堂检测1.判断正误(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)等差数列{a n}的单调性与公差d有关.()(3)若三个数a,b,c满足2b=a+c,则a,b,c一定是等差数列.() 2.在等差数列{a n}中,若a1·a3=8,a2=3,则公差d=()A.1B.-1C.±1 D.±23.已知a=13+2,b=13-2,则a,b的等差中项为.4.已知数列{a n},a1=a2=1,a n=a n-1+2(n≥3),判断数列{a n}是否为等差数列?说明理由.参考答案新知初探1.(1)2 前一项同一个常数常数公差d2.(3)a+b=2A思考:[提示] 插入的数分别为3,2,a +b 2,0. 3.a 1+(n -1)d思考:[提示] 还可以用累加法,过程如下:∵a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…a n -a n -1=d (n ≥2),将上述(n -1)个式子相加得a n -a 1=(n -1)d (n ≥2),∴a n =a 1+(n -1)d (n ≥2),当n =1时,a 1=a 1+(1-1)d ,符合上式,∴a n =a 1+(n -1)d (n ∈N *).4.(2) d思考:[提示] 只要求出等差数列的首项a 1和公差d ,代入公式a n =a 1+(n -1)d 即可. 初试身手1.【答案】C【解析】a n =a 1+(n -1)d =4+(n -1)×(-2)=4-2n +2=6-2n .2.【答案】3【解析】(-3)-(-6)=3,故d =3.3.【答案】3【解析】①②③是等差数列,④只能说明前4项成等差数列.4.【答案】0【解析】lg (3+2)与lg (3-2)的等差中项为 lg (3+2)+lg (3-2)2= lg [(3+2)(3-2)]2=lg 12=0. 合作探究类型1 等差中项例1 解:∵-1,a ,b ,c ,7成等差数列,∴b 是-1与7的等差中项,∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1. 又c 是3与7的等差中项,∴c =3+72=5. ∴该数列为-1,1,3,5,7.跟踪训练1.【答案】21【解析】由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列. ∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21.类型2 等差数列的通项公式及其应用例2 解:(1)∵a 4=7,a 10=25,则⎩⎪⎨⎪⎧a 1+3d =7,a 1+9d =25,得⎩⎪⎨⎪⎧a 1=-2,d =3, ∴a n =-2+(n -1)×3=3n -5,∴通项公式a n =3n -5(n ∈N *).(2)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1. 跟踪训练2.解:(1)由a 1=8,d =5-8=-3,n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为 a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100,即-401是这个数列的第100项.类型3 等差数列的判定与证明探究问题1.[提示] 由等差数列的定义可知满足a n -a n -1=d (常数)(n ≥2)是等差数列.2.[提示] 是,由等差中项的定义可知.3.[提示] ∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d .∴{a n +a n +2}是公差为2d 的等差数列.例3 解:(1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n ,∴1a n +1-1a n =12, 即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列. (2)由上述可知1a n =1a 1+(n -1)d =n 2,∴a n =2n.1.【答案】 (1)× (2)√ (3)√【解析】 (1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列.(3)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列.2.【答案】C【解析】由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1. 3.【答案】3【解析】a +b 2=13+2+13-22=3-2+3+22= 3.] 4.解:因为a n =a n -1+2(n ≥3),所以a n-a n-1=2(常数).又n≥3,所以从第3项起,每一项减去前一项的差都等于同一个常数2,而a2-a1=0≠a3-a2,所以数列{a n}不是等差数列.。
(完整word版)等差数列的概念教学设计
6.2.1 等差数列的概念【教学目标】1.理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念.2.逐步灵活应用等差数列的概念和通项公式解决问题.3.通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.【教学重点】等差数列的概念及其通项公式.【教学难点】等差数列通项公式的灵活运用.【教学方法】本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.解因为a 3 = 5, a 8= 20,根据通项公式得教师点拨、引导:会找到多种不同的解决办法,教师要逐J a1+(3 —1) d = 5[a 1+(8 —1) d = 20整理,得f a 1+2 d = 5《f a 1+7 d = 20解此方程组,得a 1 = —1, d = 3.所以a25 = —1+(25 —1)X3 = 71.强调:已知首项a 1和公差d,便可求得等差数列的任意项a n.练习五(1)例题给出了哪些量?如何用数列符号表示?(2)例题中的所求量是什么?需要知道哪些条件?教师总结学生思路,给出解题过程.学生自主练习.一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主(1)已知等差数列{a n}中,a 1 = 3, 教师巡视指导.解答,培养学生运算新a n = 21,d = 2,求n. 请个别学生在黑板上做题能力.课(2)已知等差数列{an}中,a4 = 10,a5 = 6,求a8 和d.后,师生共同订正.例5梯子的最高一级是33 cm, 教师出示例题. 通过例题,强化最低一级是89 cm,中间还有7级,各级的宽度成等差数列,求中间各级的宽度.解用{a n}表示题中的等差数歹人已知a 1= 33, a n = 89, n = 9, 贝U a9 = 33+(9 —1)d ,即89 = 33 + 8d, 解得d = 7.于是a2 = 33 + 7 = 40, a3 = 40 + 7 =47, a4 = 47 + 7 = 54, a 5 = 54 +7 = 61, a6 = 61 + 7 = 68, a7 = 68 +7 = 75, a8 = 75 + 7 = 82.引导学生将题中的已知和未知转化为用数列符号表示.学生解答.教师巡视指导.教师出示解题过程,强调解题步骤要规范、严谨,叙述要简明、完整.学生对等差数列通项公式的理解,强化学生学以致用的意识.。
高中数学等差数列教案3篇
高中数学等差数列教案3篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是为大家收集等差数列教案,希望你们能喜欢。
等差数列教案一【教学目标】1. 知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金(1+利率存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?教师:以上三个问题中的数蕴涵着三列数.学生:1:0,5,10,15,20,25,….2:18,15.5,13,10.5,8,5.5.3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10360.思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,-1,-2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.等差数列教案二教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.【方法规律】1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c 均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.等差数列教案三【示范举例】例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.【篇二】教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由_《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察----发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
等差数列的教案
等差数列的教案导语:等差数列是数学中的重要概念,它在各个领域都有广泛应用。
本教案将介绍等差数列的定义、公式和求和公式,并结合实际问题进行练习,以帮助学生更好地理解和应用等差数列。
一、引入在数学中,我们经常会遇到一些数字的排列,这些数字之间有一定的规律。
如果这个规律是每个数字与前一个数字之间的差都相等,那么我们称这个排列为等差数列。
二、定义与公式1. 等差数列的定义等差数列是指一个数列中的每个数都等于它前面的数加上一个常数。
我们用a表示等差数列的首项,用d表示等差数列的公差,那么等差数列可以表示为:a,a+d,a+2d,...2. 等差数列的通项公式对于等差数列的第n项,可以使用通项公式来表示:an = a + (n - 1)d3. 等差数列的前n项和公式对于等差数列的前n项和,可以使用求和公式来表示:Sn = (n/2)(2a + (n - 1)d)三、实例练习现在我们通过一些实际问题来练习等差数列的应用。
实例1:某班级的同学们参加运动会,第一天跑了1000米,以后每天比前一天多跑50米。
问第十天总共跑了多少米?解答:根据题意可知,这是一个等差数列,首项a=1000,公差d=50。
现在我们要求第十天的总距离,即第十项的值。
代入通项公式an = a + (n - 1)d,n=10,得到a10 = 1000 + 9*50 = 1450。
因此,第十天总共跑了1450米。
实例2:一个数列的首项为4,公差为3,共有16个数,请计算这个数列的前16项和。
解答:根据题意可知,这是一个等差数列,首项a=4,公差d=3。
现在我们要求前16项的和,即Sn。
代入求和公式Sn = (n/2)(2a + (n - 1)d),n=16,得到S16 = (16/2)(2*4 + (16 - 1)*3) = 16*17 = 272。
因此,这个数列的前16项和为272。
通过以上实例练习,我们可以看到等差数列在解决实际问题时的应用,让我们更好地理解和运用等差数列的概念和公式。
等差数列的教案
等差数列的教案《等差数列的教案》一、教学目标:1. 理解等差数列的概念和特征。
2. 掌握等差数列的通项公式和求和公式。
3. 能够应用等差数列解决实际问题。
二、教学内容:1. 等差数列的概念和特征。
2. 等差数列的通项公式。
3. 等差数列的求和公式。
4. 类型题探究及综合练习。
三、教学过程:1. 导入(5分钟)通过给学生出示一组数字:2、5、8、11、14,引导学生思考这组数字的规律,并引出等差数列的概念。
2. 概念解释及特征介绍(10分钟)解释等差数列的定义:等差数列是指一个数列中,从第二项开始,每个数都与它的前一项之差相等,这个相等的差叫做等差数列的公差。
让学生举例说明。
介绍等差数列的特征:等差数列的相邻两项之差是常数,称为公差;等差数列的任意三项按顺序相等的式子为等差数列的通项公式。
3. 计算通项公式(15分钟)通过展示一些等差数列的例子,引导学生观察规律,总结等差数列的通项公式为:an = a1 + (n-1)d,其中an表示等差数列中的第n项,a1表示等差数列的首项,d表示等差数列的公差。
通过几个实例的计算演示,让学生明确通项公式的使用方法。
4. 计算求和公式(15分钟)讲解等差数列的求和公式Sn=n/2(a1+an),其中Sn表示等差数列的前n项和。
通过实例演示,让学生掌握求和公式的使用方法。
5. 练习巩固(15分钟)让学生在教师的指导下完成一些基础的等差数列的计算练习,以检验学生的掌握情况。
6. 实际问题应用(10分钟)给学生出示一些实际问题,让学生运用等差数列的知识去解决问题,加深对等差数列的理解和应用。
7. 总结归纳(5分钟)让学生总结等差数列的特征、通项公式和求和公式,以及应用等差数列解决实际问题的方法。
四、教学反思本节课采用了导引-概念解释-公式计算-实例演示-问题应用的教学方式,循序渐进地引导学生掌握等差数列的概念和公式,能够应用等差数列解决实际问题。
同时,通过练习和问题应用的环节,巩固和检验了学生的学习成果。
等差数列教案(5篇)
等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。
学案等差数列
返回目录
考向预测
等差数列知识在高考中属必考内容,一般直接考察等 差数列旳通项公式、前n项和公式旳题目为轻易题,一般以 选择题、填空题形式出现,而与其他知识(函数、不等 式、解析几何等)相结合旳综合题一般为解答题,难度 不大为中档题.近几年主要考察等差数列通项公式、求和 公式旳综合题,难度较小.
返回目录
返回目录
等
n 2
差
数
列
旳 返回目录
(1)等差数列{an}中, a15=33,a45=153,则d=
.
(2)等差数列{an}中,a1+a2+a3+a4+a5=20,则a3= .
(3)若一种等差数列前3项旳和为34,最终三项旳和为
146,且全部项旳和为390,则这个数列旳项数为 ( )
A.13 B.12 C.11 D.10
3
∴Sn=20n+
2
·(- 5)=- 5n2+ 125n
36
6
=- 5 (n- 25)2+ 3 125 .
62
24
∵n∈N+,∴当n=12或13时,Sn有最大值,
且最大值为S12=S13=130.
返回目录
解法三:同解法一得d=- 5 .
3
又由S10=S15,得a11+a12+a13+a14+a15=0. ∴5a13=0,即a13=0.∴当n=12或13时,Sn有最大值, 且最大值 为S12=S13=130.
返回目录
求等差数列前n项和旳最值,常用旳措施: (1)利用等差数列旳单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和旳最值; (3)利用等差数列旳前n项和Sn=An2+Bn(A,B为常 数) 为二次函数,根据二次函数旳性质求0,S9=S12,求数列前多少项和最小.
等差数列学案
等差数列学案【等差数列学案】学案目标:1. 理解等差数列的定义和性质;2. 掌握等差数列的通项公式和求和公式;3. 运用等差数列的性质解决实际问题。
学习内容:1. 等差数列的概念2. 等差数列的通项公式3. 等差数列的求和公式4. 等差数列的实际应用学习活动:活动一:理解等差数列的定义和性质(15分钟)1. 引导学生回顾数列的概念。
2. 引入等差数列的定义:如果一个数列中每个后一项与前一项的差值都相等,那么这个数列就是等差数列。
3. 解读等差数列的性质:等差数列的相邻两项之差始终相等。
活动二:掌握等差数列的通项公式(20分钟)1. 引出等差数列的通项公式:假设等差数列的首项为a₁,公差为d,则第n项aₙ可以表示为aₙ = a₁ + (n-1)d。
2. 通过示例演示如何使用通项公式计算等差数列的任意一项。
活动三:掌握等差数列的求和公式(20分钟)1. 引出等差数列的求和公式:对于等差数列的前n项和Sₙ,可以表示为Sₙ = (a₁ + aₙ) * n / 2。
2. 通过示例演示如何使用求和公式计算等差数列的前n项和。
活动四:运用等差数列的性质解决实际问题(25分钟)1. 提供一些实际问题,如寻找等差数列中的缺失项、求等差数列的特定区间和等,让学生运用等差数列的性质解决。
2. 指导学生根据问题建立等差数列模型,并利用已学知识解决问题。
活动五:综合巩固训练(20分钟)1. 提供一些综合性的练习题,涵盖等差数列的各个方面,以检验学生对所学知识的掌握程度。
2. 鼓励学生通过合作讨论和思考,共同解决问题。
学习反思:1. 小结等差数列的定义和性质;2. 总结等差数列的通项公式和求和公式;3. 思考等差数列在解决实际问题中的应用;4. 反思学习过程中的困难和收获,相互交流分享。
拓展延伸:1. 进一步研究等差数列的推广——等差数列的和(从1到n的等差数列),以及高阶等差数列;2. 探究等差数列的几何意义和数学实际应用。
等差数列教案
等差数列教案教案: 等差数列教学目标:1. 了解等差数列的概念及特点;2. 掌握等差数列的通项公式;3. 能够应用等差数列解决实际问题。
教学内容:1. 等差数列的概念和特点2. 等差数列的通项公式3. 应用等差数列解决实际问题教学过程:Step 1 引入对学生进行数列知识的复习,复习完之后告诉学生今天要学习的内容是等差数列。
Step 2 等差数列的概念和特点1. 定义:等差数列是指一个数列中,从第二项开始,每一项与其前一项之差相等。
这个公差用d来表示。
2. 等差数列的特点:等差数列可以用一般项的形式表示为an= a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,n表示项数。
Step 3 等差数列的通项公式1. 推导:假设等差数列的首项为a1,公差为d,那么第n项an可以表示为an = a1 + (n-1)d。
利用这个公式可以得到等差数列的通项公式。
2. 通项公式:an = a1 + (n-1)dStep 4 应用等差数列解决实际问题1. 通过例题引入:假设小明每天存1元钱,第n天他一共存了多少钱?通过将问题分析为等差数列,可以用等差数列的通项公式来解决。
2. 练习:让学生试着解决一些实际问题,如小明从1岁开始每年增长5厘米的身高,那么18岁时他的身高是多少?Step 5 练习巩固通过练习题让学生巩固所学的知识,同时教师可以巡回指导并给予必要的帮助。
Step 6 总结总结等差数列的概念、特点以及通项公式,并强调等差数列在解决实际问题中的应用。
Step 7 作业布置布置相应的作业,要求学生运用所学知识解决实际问题。
教学评价:经过本节课的学习,学生应该能够理解等差数列的概念和特点,并能够应用等差数列的通项公式来解决实际问题。
教师可以通过练习题和课堂表现来进行评价和反馈,以了解学生对于等差数列的掌握情况。
拓展延伸:如果有时间可以进一步拓展等差数列的和公式。
即等差数列前n项和Sn的公式为Sn = (a1 + an) * n / 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1等差数列的概念及其性质导学案(2课时)
【自主学习】
一.等差数列的定义:如果一个数列_____________________________________
那么这个数列就叫做等差数列,这个常数叫做等差数列的_____,通常用字母
_____表示。
即表示为1n n a a d --=(常数)
二.等差数列的通项公式:如果等差数列{n a }的首项为1a ,公差为d ,那么它的
通项公式为n a =___________________;公差d=________________ 通项公式的推广:n a =m a +_________,(n, m ∈*
N )
三.等差中项:三个数 a ,A ,b 组成等差数列,那么把
叫做 与 的等差中项;且有 四.等差数列的常用性质:
1.若{n a }为等差数列,且m+n=p+q ,(n, m, p, q ∈*
N )则_____________ 若m+n=2p, (n, m, p, q ∈*
N )则_____________ 2.{}2,,,....n k k m k m a a a a ++在等差数列中,仍成数列
【课内探究】
探究一:等差数列的相关定义
例1:若a ≠b ,两个等差数列a, 1x ,2x ,b 与a, 1y ,2y , 3y ,b 的公差分别为12,d d ,则12
d d 等于_________
探究二:等差数列的通项公式 例2.(1)求等差数列 8,5,2 ,
…
的通项公式和第 20 项. (2)等差数列-5,-9,-13,
…
的第多少项是-401?
变式1:已知154533,153a a ==,求61a
变式2:在等差数列{n a }中,(1)已知12,3,10,a d n ===求n a ; (2)已知13,21,2n a a d ===,求n ;(3)已知1612,27,a a ==求d ; (4) 已知71,8,3
d a =-=求1a ;
探究三:等差中项
例3:在 3 与 7 之间插入一个数 A ,使 3,A ,7 成等差数列,求A
变式1:已知等差数列{n a }中,13,5a d ==公差,则2a 与5a 的等差中项为 _________ 变式2:已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是__________ 探究四:等差数列的性质
例4:(1)在等差数列}{n a 中45076543=++++a a a a a ,则=+82a a _______ (2)在等差数列}{n a 中,93,a a 是方程0722
=--x x 的两根,则=6a ______ 【巩固练习】你的能量超乎你的想象
1.在等差数列}{n a 中,若1201210864=++++a a a a a ,则1193
1
a a -
的值() A 、14 B 、15 C 、16 D 、17 2.已知{n a }为等差数列,135246105,99a a a a a a ++=++=,则20a 等于( ) A.-1 B .1 C .3 D. 7
3.如果等差数列}{n a 中,12543=++a a a ,那么=+++721a a a ______ A.28 B.24 C.20 D.16
4.已知数列}{n a 为等差数列,且598+=3
a a π,则212tan(+)a a 的值为_______
A.
33 B.3 C .-3
3 D.3-
5.已知等差数列{n a }前三项分别为a-1,2a+1,a+7则这个数列的通项公式为____________
6.已知一个直角三角形的三条边的长度成等差数列.求证:它们的比是 3∶4∶5.。