高中数学教学设计模版及案例

合集下载

高中数学教学设计(4篇)

高中数学教学设计(4篇)

高中数学教学设计(4篇)

高中数学教学设计篇一

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点

重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具

1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规

四、教学思路

(一)创设情景,揭示课题

1.我们都学过画画,这节课我们画一物体:圆柱

把实物圆柱放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(二)研探新知

1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

练习反馈

根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

2.例2,用斜二测画法画水平放置的圆的直观图

高中数学教案设计范例优秀3篇

高中数学教案设计范例优秀3篇

高中数学教案设计范例优秀3篇

篇一:高中数学教案设计范例篇一

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程

1、学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2、学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

3、教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4、教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5、在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

高中数学优秀教案优秀8篇

高中数学优秀教案优秀8篇

高中数学优秀教案优秀8篇

作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?为了让您对于高中数学优

秀教案的写作了解的更为全面,下面山草香给大家分享了8篇高中数学优

秀教案,希望可以给予您一定的参考与启发。

高中数学教学优秀教案篇一

学习目标

学习过程

一、学前准备

复习:

1.(课本P28A13)填空:

(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;

(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;

(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;

(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;

二、新课导学

探究新知(复习教材P14~P25,找出疑惑之处)

问题1:判断下列问题哪个是排列问题,哪个是组合问题:

(1)从4个风景点中选出2个安排游览,有多少种不同的方法?

(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有

多少种不同的方法?

应用示例

例1.从10个不同的文艺节目中选6个编成一个节目单,如果女演员

的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数。

(1)甲站在中间;

(2)甲、乙必须相邻;

(3)甲在乙的左边(但不一定相邻);

(4)甲、乙必须相邻,且丙不能站在排头和排尾;

(5)甲、乙、丙相邻;

(6)甲、乙不相邻;

(7)甲、乙、丙两两不相邻。

高中数学教学优秀教案篇二

高中数学趣味竞赛题(共10题)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教案设计(精选12篇)

高中数学教学设计篇一

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

高中数学优秀教学设计(共6篇)

高中数学优秀教学设计(共6篇)

高中数学优秀教学设计〔共6篇〕

高中数学教学设计模板【1】

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳才能.

1.等差数列的概念;

2.等差数列的通项公式

等差数列“等差”特点的理解、把握和应用

投影片1张

(I)复习回忆

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极考虑,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,假如一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。假设一等差数列的首项是,公差是d,那么据其定义可得:假设将这n-1个等式相加,那么可得:

即:即:即:……

由此可得:师:看来,假设一数列为等差数列,那么只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例【精彩9篇】

高中数学教学设计案例篇一

一、指导思想:

贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。

二。学情分析:

上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。

三。教学目的任务要求分析:

本学期教学的主要任务是数学选修2-2,2-3和学考复习。

(1)认真把握“标准”的教学要求。(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。(3)关注现代信息技术的运用。(4)把握学考大纲复习标准

四、主要措施

1、明确一个观念:高考好才是真的好。平时不好高考肯定

不好,但平时红旗飘飘高考时未必红旗不倒。这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。

2、以老师的精心备课与充满激情的教学,换取学生学习高效率。 3.将学校和教研组安排的有关工作落到实处。

高中数学教学设计案例篇二

1.把握菱形的判定。

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3.通过教具的演示培养学生的学习爱好。

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计

观察分析讨论相结合的方法

高中数学优秀教案(优秀6篇)

高中数学优秀教案(优秀6篇)

高中数学优秀教案(优秀6篇)

高中数学优秀教案篇一

教学准备

教学目标

1.数列求和的综合应用

教学重难点

2.数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{|an|}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=anxn ,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S壹五,求当n为何值时,Sn有最大值,并求出它的最大值

.已知数列{an},an∈N,Sn= (an+2)2

(1)求证{an}是等差数列

(2)若bn= an-30 ,求数列{bn}前n项的最小值

0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

高中数学教案模板10篇

高中数学教案模板10篇

高中数学教案模板10篇

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,熟读唐诗三百首,不会作诗也会吟,本文是可爱的编辑给家人们整编的高中数学教案模板较新10篇,希望可以帮助到有需要的朋友。

教案高中数学模板篇一

小学阶段已经学习过分数,学生头脑中已形成了分数的相关知识,知道分数的分子,分母都是具体的数。因此在学习过程中。学生可能会用学习分数的思维定势来认知和理解分式。但是,他们之间到底有着怎样的联系与不同,以及分式到底蕴含着怎样一种数学思想,和它能够解决哪些实际问题,通过探究,将会找到答案。

一、活动目的:

分式在社会生活的各个方面都有着广泛的应用,它表示现实情境中数量关系,是解决实际问题的常见的一种模型。通过对分式表示现实情境中数量关系的过程,让学生在参与探究、质疑、交流、合作等活动中,体会分式的模型思想,进一步发展符号感;并能用分式表示实际问题中的数量关系。从而达到开发学生思维,启迪学生的智慧的目的。这在本质上也体现了弗莱登塔尔的“数学是一项人类活动”的理念。

二、研究课题

1、分式的概念;

2、分式与分数的不同之处;

3、对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中须含有字母,这是分式与整式的根本区别。

三、活动安排

在教研组的统一计划下,以年级为单位开展活动。

四、活动过程:

1、准备阶段:

(1)动员学生:激发学生的研究课题兴趣,鼓励学生积极参加讨论与交流。

高中数学教案模板(优秀7篇)

高中数学教案模板(优秀7篇)

高中数学教案模板(优秀7篇)

篇一:高中数学优秀教案篇一

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

篇二:高中数学教案格式篇二

一.课题(说明本课名称)

二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)

三.课型(说明属新授课,还是复习课)

四.课时(说明属第几课时)

五.教学重点(说明本课所必须解决的关键性问题)

高中数学优秀教学设计

高中数学优秀教学设计

高中数学优秀教学设计

•相关推荐

高中数学优秀教学设计(通用10篇)

作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的高中数学优秀教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学优秀教学设计篇1

【教学目的】

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

【重点难点】

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

【内容分析】

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是

因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

高中数学教学设计范例5篇

高中数学教学设计范例5篇

高中数学教学设计范例5篇

高中数学教学设计范例1

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

(1)求小球摆动的周期和频率;

(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值(精确到0.001)。

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口在港口能呆多久 (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问

题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材P65面3题

三、小结:

1、三角函数模型应用基本步骤:

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇

(经典版)

编制人:__________________

审核人:__________________

审批人:__________________

编制单位:__________________

编制时间:____年____月____日

序言

下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!

并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!

Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!

Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!

高中数学教学设计模板5篇

高中数学教学设计模板5篇

高中数学教学设计模板5篇

作为一位杰出的教职工,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢以下是小编整理的高中数学教学设计模板,欢迎大家分享。

高中数学教学设计模板1

一、教学内容分析:

本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:

任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想

本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标

通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

高中数学优秀教学设计(精选15篇)

高中数学优秀教学设计(精选15篇)

高中数学优秀教学设计(精选15篇)

高中数学优秀教学设计(精选15篇)

作为一名老师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。那么教学设计应该怎么写才合适呢?下面是小编为大家整理的高中数学优秀教学设计,希望能够帮助到大家。

高中数学优秀教学设计篇1

一、教学内容分析:

本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、学生学习情况分析:

任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

三、设计思想

本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

四、教学目标

通过直观感知——观察——操作确认的认识方法理解并掌握直线

与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

高中数学教案教学设计范文(7篇)

高中数学教案教学设计范文(7篇)

高中数学教案教学设计范文(7篇)

高中数学教案教学设计范文(7篇)

数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,更是现代社会学习和研究现代科学技术必不可少的基本工具。以下是小编准备的高中数学教案教学设计范文,欢迎借鉴参考。

高中数学教案教学设计范文(精选篇1)

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇

高中数学优秀教学案例10篇

引言

本文将介绍十篇高中数学优秀教学案例,这些案例不仅能够激发学生对数学的兴趣,还能够提高他们的数学理解和解决问题的能力。

案例1:数列与函数的关系

这个案例通过数列与函数的关系展示了数学的实际应用。学生通过分析数列与函数之间的规律,掌握了数学模型的建立和使用方法。

案例2:应用题解决

这个案例通过一系列应用题,让学生综合运用所学的知识来解决实际问题。学生通过解决这些应用题,培养了数学思维和问题解决能力。

案例3:图形的变换

这个案例通过图形变换来帮助学生理解几何知识。学生通过观察图形的变换规律,加深了对几何知识的理解。

案例4:概率统计

这个案例将概率与统计应用于实际生活中的问题中。学生通过

统计数据和计算概率,培养了数据分析和推理能力。

案例5:三角函数的应用

这个案例通过三角函数的应用,让学生更好地理解三角函数的

概念和用途。学生通过解决实际问题,进一步巩固了三角函数的知识。

案例6:平面向量的运算

这个案例通过平面向量的运算,让学生掌握向量的性质和运算

规律。学生通过解决向量运算的问题,提高了数学建模和计算能力。

案例7:解析几何的应用

这个案例通过解析几何的应用,让学生熟练运用解析几何的方

法解决几何问题。学生通过解决实际问题,进一步加深了对解析几

何的理解。

案例8:数学建模

这个案例通过数学建模,让学生在实际问题中运用数学知识进

行建模分析。学生通过解决实际问题,培养了数学建模和分析能力。

案例9:数学思维训练

这个案例通过数学思维训练,提供了一系列拓展性的数学问题

和思考方法。学生通过解决这些问题,培养了创新思维和数学思维

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学教学设计模版

及案例

文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

教学情境一:(问题引入)在 ABC中,已知两边a,b和夹角C,作出三角形。

联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之

首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A

如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()()

222 2 2c c c a b a b

a a

b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B 从而2222cos

c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论

对应问题2 公式有什么特点能够解决什么问题

等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。

对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角

从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222cos 2+-=b a c C ba

[理解定理]余弦定理及其推论的基本作用为:

①已知三角形的任意两边及它们的夹角求第三边;

②已知三角形的三条边求三个角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系

(由学生总结)若∆ABC 中,C=90,则cos 0=C ,这时222=+c a b

由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

教学情境三 例题与课堂练习

例题.在∆ABC 中,已知=a c 060=B ,求b 及A

⑴解:

2222cos =+-b a c ac B =222+-⋅cos 045=2121)+-=8

∴=b

求A 可以利用余弦定理,也可以利用正弦定理:

⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A

解法二:∵0sin sin sin45a

A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

课堂练习 在∆ABC 中,若222a b c bc =++,求角A (答案:A=120°)

教学情境四 课堂小结

(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

(3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。

习题设计

1.在∆ABC 中,a=3,b=4,︒=∠60C ,求c 边的长。

2.在∆ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。

3.若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。

4.△ABC 中,若()222tan a c b B +-=,求角B 的大小。

5.∆ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小)

(本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动)

编写要求:

1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。

2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

3、习题设计:每节课的习题5个左右,其中前两个可作为当堂测验题,要求的难度:只要上课能认真参与的同学基本上都能作对。后三题可根据各校学生水平适当提高,但应紧扣本节课教学目标,难度最好控制在左右。对于所选课本上的题要注明,并具体写出来。

4、把寒假交流的内容,按统一模作板适当修订,并于3月15日前传至学科牵头人处。

相关文档
最新文档