人教A版高中数学必修一9月周练3-(有答案)

合集下载

2021-2022年高一上学期周练(9.9)数学试题 含答案

2021-2022年高一上学期周练(9.9)数学试题 含答案

xx.09一. 填空题1. 用恰当的符号填空:(1) ; (2) ;(3) ; (4) ;2. 已知全集{0,1,2,3,4,5,6,7,8,9}U =,集合,集合,则3. 已知集合,,若,则的取值范围是4. 已知集合,集合{|()(2)0}B x x m x =--<,且,则 ,5. 已知集合,,则集合的子集的个数为6. 设,,则7. 已知非空集合,满足条件“若,则”,则集合的个数是8. 已知集合,,则9. 用表示集合中元素的个数,设为集合,称为有序三元组,如果集 合满足||||||1A B B C C A ===,且,则称有序三元组为最小相交,由集合的子集构成的所有有序三元组中,最小相交的有序三元组的个数为10. 设{1,2,3,,2024,2025}M=⋅⋅⋅,是的子集且满足:当时,,则中元素最多有个11. 设集合,若且,记为中元素的最大值与最小值之和,则对所有的,的平均值为二. 选择题12. 设集合,,则()A. B. C. D.13. 现有以下四个判断:(1)质数奇数;(2)集合与集合没有相同的子集;(3)空集是任何集合的真子集;(4)若,,则;其中,正确的判断的个数为()A. 0B. 1C. 2D. 314. 下列表示图形中的阴影部分的是()A.B.C.D.15. 满足,且关于的方程有实数解的有序数对的个数为( )A. 14B. 13C. 12D. 1016. 若集合{(,,,)|04,04,04E p q r s p s q s r s =≤<≤≤<≤≤<≤且,{(,,,)|04,04F t u v w t u v w =≤<≤≤<≤且,用表示集合中的元素个数,则( )A. 50B. 100C. 150D. 200三. 解答题17. 已知集合,,且,求实数;18. 已知集合2*{|1,}A m m n n N ==+∈,2*{|22,}B y y x x x N ==-+∈,探究、 之间的关系,并证明你的结论;19. 设123{,,,,}n A a a a a M =⋅⋅⋅⊆,若1212n n a a a a a a ++⋅⋅⋅+=⋅⋅⋅,则称 为集合的元“好集”;(1)写出实数集的一个二元“好集”;(2)问:正整数集上是否存在二元“好集”?说明理由;(3)求出正整数集上的所有“好集”;一. 填空题1. 、、、2.3.4. 、5.6. 7. 8. 9. 10. 11.二. 选择题12. C 13. B 14. A 15. B 16. D三. 解答题17. 或或; 18. 真包含于;19.(1);(2)不存在;(3);_21273 5319 匙24398 5F4E 彎37178 913A 鄺oZ22081 5641 噁35923 8C53 豓`24314 5EFA 建@w30649 77B9 瞹(。

度高中数学 周练卷(一)新人教A版必修1

度高中数学 周练卷(一)新人教A版必修1

周练卷(一)(时间:90分钟满分:120分)【选题明细表】知识点、方法题号集合的概念1,2,5,6集合的运算4,7,9,10,13,14,17 由集合的运算求参数15,16,18,19,20 集合间关系3,8,11,121.下列表示:①{0}=∅;②∅∈{0};③∅{0};④0∈∅中,正确的个数为( A )(A)1 (B)2 (C)3 (D)4解析:因为∅是不含有任何元素的集合,所以①错;因为集合与集合之间不是∈关系,所以②错;因为∅是任何非空集合的真子集,所以③对;因为∅中不含任何元素,所以④错.故选A.2.集合A={1,x,y},B={1,x2,2y},若A=B,则实数x的取值集合为( A )(A){} (B){,-}(C){0,} (D){0,,-}解析:集合A={1,x,y},B={1,x2,2y},若A=B,则解得x=1或0,y=0,显然不成立,或解得x=,故实数x的取值集合为{}.故选A.3.设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数是( B )(A)5 (B)4 (C)3 (D)2解析:A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选B.4.若全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},则(∁U A)∩B等于( D )(A){2,5} (B){1,3,4}(C){1,2,4,5} (D){1}解析:因为全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},所以(∁U A)∩B={1,3}∩{1,2,5}={1}.故选D.5.下列各组对象能构成集合的是( B )(A)充分接近的所有实数(B)所有的正方形(C)著名的数学家(D)1,2,3,3,4,4,4,4解析:选项A,C不满足集合的确定性;选项B正方形是确定的,故能构成集合;选项D不满足集合的互异性.故选B.6.若集合A={-1,1},B={0,2},则集合{z|z=2x2+y,x∈A,y∈B}中的元素的个数为( D )(A)5 (B)4 (C)3 (D)2解析:集合A={-1,1},B={0,2},所以集合{z|z=2x2+y,x∈A,y∈B}={2,4},故选D.7.设全集U={(x,y)|y=x+1,x,y∈R},M={(x,y)|=1},则∁U M等于( B )(A) (B){(2,3)} (C)(2,3) (D){2,3}解析:全集U={(x,y)|y=x+1,x,y∈R},M={(x,y)|=1}={(x,y)|y=x+1且x≠2},∁U M={(2,3)}.故选B.8.(2018·秦州区高一期末)设全集U是实数集R,M={x|x>2},N={x|1<x<3},则图中阴影部分所表示的集合是( C )(A){x|2<x<3}(B){x|x<3}(C){x|1<x≤2}(D){x|x≤2}解析:图中阴影部分表示的集合中的元素是在集合N中,但不在集合M中.又M={x|x>2},N={x|1<x<3},所以图中阴影部分表示的集合是(∁U M)∩N={x|x≤2}∩{x|1<x<3}={x|1<x≤2},故选C.9.已知集合M={x|-1<x<1},N={x|x2<2,x∈Z},则( C )(A)M⊆N (B)N⊆M(C)M∩N={0} (D)M∪N=N解析:N={x|x2<2,x∈Z}={-1,0,1},故M∩N={0}.故选C.10.定义集合A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},集合N={x|x=2k-1,k∈Z},则集合M-N的子集个数为( C )(A)2 (B)3 (C)4 (D)无数个解析:因为M={1,2,3,4,5},N={x|x=2k-1,k∈Z},由新定义A-B={x|x∈A且x∉B},得M-N={2,4},所以M-N的子集为∅,{2},{4},{2,4},共4个.故选C.11.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( B )(A)1 (B)2 (C)3 (D)4解析:M∩{a1,a2,a3}={a1,a2},a1∈M,a2∈M,a3∉M,又M⊆{a1,a2,a3,a4},则a4∈M或a4∉M,故M={a1,a2,a4}或M={a1,a2},故选B.12.(2018·黄陵县高二期末)下列六个关系式:①{a,b}⊆{b,a},②{a,b}={b,a},③0=∅,④0∈{0},⑤∅∈{0},⑥⌀⊆{0},其中正确的个数为( C )(A)6个(B)5个(C)4个(D)少于4个解析:根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确.故选C.二、填空题(每小题5分,共20分)13.已知集合A={-1,0,1,2},B={-2,1,2},则A∩B= .解析:因为集合A={-1,0,1,2},B={-2,1,2},所以A∩B={1,2}.答案:{1,2}14.(2018·丽水高二期末)已知全集U={1,2,3,4,5,6,7},集合A={1,2,3},B={2,3,4},则A∩B= ,∁U A= .解析:全集U={1,2,3,4,5,6,7},集合A={1,2,3},B={2,3,4},所以A∩B={2,3};∁U A={4,5,6,7}.答案:{2,3} {4,5,6,7}15.(2018·怀仁县高二期末)已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是 .解析:a=0时,ax2-3x+2=0,即x=,A={},符合要求;a≠0时,ax2-3x+2=0至多有一个解,Δ=9-8a≤0,a≥.综上,a的取值范围为{a|a≥或a=0}.答案:{a|a≥或a=0|16.设集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A⊇B,则实数k的取值范围是.解析:由题意得解得即-1≤k≤.答案:{k|-1≤k≤}三、解答题(共40分)17.(本小题满分8分)已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B). 解:如图所示,因为A={x|-2<x<3},B={x|-3≤x≤2},所以∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3}.18.(本小题满分10分)已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围. 解:若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A⊆∁U B;若B≠∅,则a+1≤2a-1,即a≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A⊆∁U B,如图,则a+1>5,所以a>4,所以实数a的取值范围为{a|a<2,或a>4}.19.(本小题满分10分)(2018·张掖高二期末)已知集合A={x|0<2x+a≤3},B={x|-<x<2}.(1)当a=1时,求(∁R B)∪A;(2)若A∩B=A,求实数a的取值范围.解:(1)a=1时,集合A={x|0<2x+1≤3}={x|-<x≤1},B={x|-<x<2},所以∁R B={x|x≤-或x≥2},所以(∁R B)∪A={x|x≤1或x≥2}.(2)若A∩B=A,则A⊆B,因为A={x|0<2x+a≤3}={x|-<x≤},所以解得-1<a≤1,所以实数a的取值范围是{a|-1<a≤1}.20.(本小题满分12分)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=∅,求m的值. 解:A={-2,-1},由 (∁U A)∩B=∅得B⊆A,因为方程x2+(m+1)x+m=0的判别式:Δ=(m+1)2-4m=(m-1)2≥0,所以B≠∅,所以B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4且m=(-2)·(-2)=4,这两式不能同时成立, 所以B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3且m=(-1)·(-2)=2,得m=2.经检验知m=1和m=2符合条件.所以m=1或m=2.。

新人教A版必修12021学年高中数学周练卷3测评含解析

新人教A版必修12021学年高中数学周练卷3测评含解析

周练卷(三)一、选择题(每小题5分,共40分)1.函数f(x)=x2+3的奇偶性是(B)A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:函数f(x)=x2+3的定义域为R,f(-x)=(-x)2+3=x2+3=f(x),所以该函数是偶函数.2.函数f(x)=x2(x<0)的奇偶性为(D)A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数解析:∵函数f(x)=x2(x<0)的定义域为(-∞,0),不关于原点对称,∴函数f(x)=x2(x<0)为非奇非偶函数.3.下列函数中,既是偶函数又在(-3,0)上单调递减的函数是(C)A.y=x3B.y=-x2+1C.y=|x|+1 D.y=x解析:A项为奇函数;B项为偶函数,但在(-3,0)上单调递增,不合题意;C项,函数是偶函数,当x∈(-3,0)时,y=-x+1单调递减,符合题意;D项,函数的定义域为[0,+∞),不关于原点对称,所以该函数既不是奇函数也不是偶函数,不合题意.故选C.4.若函数y=x2-6x-7,则它在[-2,4]上的最大值、最小值分别是(C)A.9,-15 B.12,-15C.9,-16 D.9,-12解析:函数的对称轴为x =3,所以当x =3时,函数取得最小值为-16, 当x =-2时,函数取得最大值为9,故选C.5.设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( C )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数解析:f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,|f (x )|g (x )为偶函数,f (x )|g (x )|为奇函数,|f (x )g (x )|为偶函数,故选C.6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0],x 1≠x 2,有f (x 2)-f (x 1)x 2-x 1<0,则( B )A .f (-3)<f (-2)<f (1)B .f (1)<f (-2)<f (-3)C .f (-2)<f (1)<f (-3)D .f (-3)<f (1)<f (-2)解析:由任意的x 1,x 2∈(-∞,0](x 1≠x 2),f (x 2)-f (x 1)x 2-x 1<0可知函数f (x )在(-∞,0]上单调递减.又因为函数f (x )为R 上的偶函数,所以f (1)=f (-1). 而-3<-2<-1,所以f (-3)>f (-2)>f (-1), 即f (-3)>f (-2)>f (1).故选B.7.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( D )A .y =x (x -2)B .y =x (|x |+2)C .y =|x |(x -2)D .y =x (|x |-2)解析:由x ≥0时,f (x )=x 2-2x ,f (x )是定义在R 上的奇函数得,当x <0时,-x >0,f (x )=-f (-x )=-(x 2+2x )=x (-x -2).∴f (x )=⎩⎪⎨⎪⎧x (x -2),x ≥0,x (-x -2),x <0,即f (x )=x (|x |-2).8.定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为( B )A.⎩⎨⎧⎭⎬⎫xx <-12或x >12B.⎩⎨⎧⎭⎬⎫x -12<x <0或0<x <12C.⎩⎨⎧⎭⎬⎫xx <-12或0<x <12D.⎩⎨⎧⎭⎬⎫x -12<x <0或x >12 解析:结合性质画出f (x )的草图,如图所示.由图象可知x 与f (x )同号的区间为⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题(每小题5分,共15分)9.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是[-14,0].解析:若a =0,则f (x )=2x -3,显然函数在区间(-∞,4)上单调递增,符合题意;若a ≠0,则由函数在区间(-∞,4)上单调递增可得a <0,且-22a ≥4,解得-14≤a <0.综上,实数a 的取值范围是[-14,0].10.已知函数f (x )=ax 3-bx +3(其中a ,b 为常数),若f (3)=2 015,则f (-3)=-2_009.解析:设g (x )=f (x )-3,则g (x )=ax 3-bx , 显然g (x )为R 上的奇函数, 又g (3)=f (3)-3=2 015-3=2 012, 所以g (-3)=-g (3), 即f (-3)-3=-2 012, 解得f (-3)=-2 009.11.奇函数f (x )在区间[3,10]上是增函数,在区间[3,9]上的最大值为6,最小值为-2,则2f (-9)+f (-3)=-10.解析:因为函数在区间[3,10]上是增函数, 所以在区间[3,9]上单调递增.所以函数在区间[3,9]上的最小值为f (3)=-2,最大值为f (9)=6. 又因为函数f (x )为奇函数,所以f (-3)=-f (3)=2, f (-9)=-f (9)=-6.所以2f (-9)+f (-3)=2×(-6)+2=-10. 三、解答题(共45分)12.(15分)判断下列函数的奇偶性.(1)f (x )=⎩⎪⎨⎪⎧1,x 是有理数,-1,x 是无理数;(2)f (x )=x 2+|x +a |+1.解:(1)f (x )为偶函数.因为x ∈Q 时,-x ∈Q , 所以f (-x )=1=f (x ).同理,x 为无理数时,-x 也为无理数. 所以f (-x )=-1=f (x ),所以f (x )为偶函数. (2)①当a =0时,f (x )为偶函数.②当a ≠0时,因为对所有x ∈R 而言|x +a |≠|-x +a |. 所以f (x )既不是奇函数又不是偶函数.13.(15分)已知y =f (x )是奇函数,它在(0,+∞)上是增函数,且f (x )<0,试问F (x )=1f (x )在(-∞,0)上是增函数还是减函数?证明你的结论.解:F (x )在(-∞,0)上是减函数. 证明如下:任取x 1,x 2∈(-∞,0),且x 1<x 2,则有-x 1>-x 2>0. 因为y =f (x )在(0,+∞)上是增函数,且f (x )<0, 所以f (-x 2)<f (-x 1)<0,① 又因为f (x )是奇函数,所以f (-x 2)=-f (x 2),f (-x 1)=-f (x 1),② 由①②得f (x 2)>f (x 1)>0.于是F (x 1)-F (x 2)=f (x 2)-f (x 1)f (x 1)·f (x 2)>0,即F (x 1)>F (x 2),所以F (x )=1f (x )在(-∞,0)上是减函数.14.(15分)已知函数f (x )=4x +ax +b (a ,b ∈R )为奇函数. (1)若f (1)=5,求函数f (x )的解析式;(2)当a =-2时,不等式f (x )≤t 在[1,4]上恒成立,求实数t 的最小值.解:因为函数f (x )=4x +ax +b (a ,b ∈R )为奇函数, 所以f (-x )=-f (x ), 即-4x -a x +b =-4x -ax -b , 所以b =0,(1)f (1)=4+a +b =5,所以a =1. 故函数f (x )的解析式为f (x )=4x +1x .(2)a =-2,f (x )=4x -2x .因为函数y =4x ,y =-2x 在[1,4]上均单调递增, 所以函数f (x )在[1,4]上单调递增, 所以当x ∈[1,4]时,f (x )max =f (4)=312. 因为不等式f (x )≤t 在[1,4]上恒成立, 所以t ≥312,故实数t 的最小值为312.。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

人教版高中数学A版必修1课后习题及答案(全)

人教版高中数学A版必修1课后习题及答案(全)

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。

2023年9月高一数学周测及答案

2023年9月高一数学周测及答案

高一数学周测(2023.9.17)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分三、填空题:本题共4小题,每小题5分,共20分四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.17.已知非空集合{}|121P x a x a =+≤≤+,{}|25Q x x =-≤≤.(1)若3a =,求;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.18.在①x ∃∈R ,2220x ax a ++-=,②存在区间{|24},{|3}A x x B x a x a =<<=<<,使得A B ⋂=∅这两个条件中任选一个,补充在下面问题中,并求解问题.问题:求实数a 满足的条件,使得命题:{|02}p x x x ∀∈≤≤,10x a -+≥,命题q :______,都是真命题.Q P C R )(高一数学周测(2023.9.17)一、单选题1.A2.A3.A4.B5.C6.C7.C8.B二、多选题15.【详解】因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,当B =∅时满足题意,即23a a >+,所以3a >;当B ≠∅时,2+3+3<1a a a ≤-⎧⎨⎩或2+32>2a a a ≤⎧⎨⎩,解得:4a <-或13a <≤;综上可得,实数a 的取值范围是41a a <->或.故答案为:41a a <->或.16.【详解】设参加数学、物理、化学三科竞赛的同学组成的集合分别为A 、B 、C ,由题意画出维恩图,如图所示:全班人数为24510711443++++++=(人).故答案为:43四、解答题17【详解】(1)当3a =时,{}|47P x x =≤≤,{}|25Q x x =-≤≤,则{|4P x x =<R ð或}7x >,(){}|24=-≤< P Q x x Rð;(2)P 是非空集合,“x P ∈”是“x Q ∈”的充分不必要条件,P Q∴Ü所以21112215a a a a +≥+⎧⎪+≥-⎨⎪+≤⎩且12a +=-与215a +=不同时成立,解得02a ≤≤,故a 的取值范围是{}|02a a ≤≤.18.【详解】选择条件①.由命题p 为真,可得不等式10x a -+≥在{|02}x x x ∀∈≤≤上恒成立.因为02x ≤≤,所以113x ≤+≤,所以1a ≤.若命题q 为真,则方程2220x ax a ++-=有解,所以()()22420a a ∆=--≥,解得1a ≥或2a ≤-.又p ,q 都是真命题,所以2a ≤-或1a =,所以实数a 的取值范围是{}21a a a ≤-=或.选择条件②,由命题p 为真,可得不等式10x a -+≥在{|02}x x x ∀∈≤≤上恒成立.因为02x ≤≤,所以113x ≤+≤,所以1a ≤.由A B ⋂=∅,B =∅时,3,0a a a ≥≤解得;B ≠∅时,得34a a a <⎧⎨≥⎩或332a aa <⎧⎨≤⎩,即23a ∴≤或4a ≥.又p,q 都是真命题,所以1243a a a ≤⎧⎪⎨≤≥⎪⎩或,得23a ≤,所以实数a 的取值范围是23a a ⎧⎫≤⎨⎬⎩⎭。

人教A版高中数学必修第一册课后习题 第3章函数的概念与性质 3.4 函数的应用(一)

人教A版高中数学必修第一册课后习题 第3章函数的概念与性质 3.4 函数的应用(一)

3.4 函数的应用(一)课后训练巩固提升1.从装满20 L 纯酒精的容器中倒出1 L 酒精,然后用水加满,再倒出1 L 酒精溶液,再用水加满,照这样的方法继续下去,如果倒第k 次时前k 次共倒出纯酒精x L,倒第(k+1)次时前(k+1)次共倒出纯酒精f(x) L,则f(x)的解析式是( )A.f(x)=1920x+1 B.f(x)=120x+1 C.f(x)=1920(x+1) D.f(x)=120xk 次时共倒出纯酒精xL,所以第k 次后容器中含纯酒精(20-x)L,第(k+1)次倒出的纯酒精是20-x 20L,故f(x)=x+20-x 20=1920x+1.2.某商品的进货价为40元/件,当售价为50元/件时,一个月能卖出500件.通过市场调查发现,该商品的单价每提高1元,该商品一个月的销售量就会减少10件,为使销售该商品的月利润最高,商店应将每件商品定价为( )A.45元B.55元C.65元D.70元50元的基础上提高x元,x∈N,每月的月利润为y元,则y与x 的函数解析式为y=(500-10x)·(50+x-40)=-10x2+400x+5000,x∈N,其图象的对称轴为直线x=20,故每件商品的定价为70元时,月利润最高.3.(多选题)甲、乙两人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑步;乙先跑步到两地的中点再改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车的速度快,且两人骑车的速度均大于跑步的速度.现将两人离开A地的距离s与所用时间t的函数关系用图象表示如下:则上述四个函数图象中,表示甲、乙两人运动的函数关系的图象对应正确的是( )A.甲对应图①B.甲对应图③C.乙对应图②D.乙对应图④,知前半程的速度大于后半程的速度,则前半程的直线的斜率大于后半程直线的斜率.乙是先跑步,到中点后改为骑自行车,则前半程的直线的斜率小于后半程直线的斜率.因为甲骑自行车比乙骑自行车的速度快,则甲前半程的直线的斜率大于乙后半程直线的斜率,所以甲是①,乙是④.4.一批商品按期望获得50%的利润定价,结果只销售出70%的商品,为了尽早销售完剩下的商品,商场决定按定价打折出售,这样所获得的全部利润是原来所期望利润的82%,则应打( )A.六折B.七折C.八折D.九折a,商品打x折,-a)×30%=0.5a×82%-0.5a×70%,解得x=8.即商品由题意,得(1.5a·x10应打八折.5.已知直角梯形OABC中,AB∥OC,BC⊥OC,AB=1,OC=BC=2,直线x=t截这个梯形位于此直线左方的图形的面积(图中阴影部分)为y,则函数y=f(t)的大致图象为( )0≤t≤1时,f(t)=12t·2t=t2;当1<t≤2时,f(t)=12×1×2+(t-1)×2=2t-1,故当t∈[0,1]时,函数的图象是抛物线的一部分,当t∈(1,2]时,函数的图象是一条线段,故选C.6.将边长为1 m的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,设S=(梯形的周长)2梯形的面积,则S的最小值是.,根据题意,得S(x)=√3·(3-x)21-x2(0<x<1),令3-x=t,则t∈(2,3),1t ∈(13,12),则S=√3·t2-t2+6t-8=√3·1-8t2+6t-1,故当1t =38,即x=13时,S有最小值,最小值是32√33.7.有一种新型的洗衣液,去污效果特别好.已知在装有一定量水的洗衣机中投放k(1≤k≤4,且k∈R)个单位的洗衣液时,它在水中释放的浓度y(单位:克/升)随着时间x(单位:分钟)变化的函数解析式近似为y=kf(x),其中f(x)={248-x-1(0≤x≤4),7-12x(4<x≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k个单位的洗衣液,第2分钟时水中洗衣液的浓度为3克/升,求k的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.由题意知,k(248-2-1)=3,解得k=1.(2)因为k=4,所以y={968-x -4,0≤x≤4,28-2x,4<x≤14.当0≤x≤4时,由968-x-4≥4,解得-4≤x<8,所以0≤x≤4;当4<x≤14时,由28-2x≥4,解得x≤12,所以4<x≤12.综上,当y≥4时,0≤x≤12.故只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)能.理由:在第12分钟时,水中洗衣液的浓度为2×(7-12×12)+1×[248-(12-10)-1]=5(克/升),因为5>4,所以在第12分钟时还能起到有效去污的作用.8.在经济学中,函数f(f(x)定义为Mf(x)=f(x+1)-f(x).某公司每月最多生产100台报警系统装置,生产x台(x>0)报警系统装置的收益函数为R(x)=3 000x-20x2(单位:元),其成本函数为C(x)=500x+4 000(单位:元).(1)求生产P(P(P(x)取得最大值时的实际意义是什么?由题意,得P(x)=R(x)-C(x)=(3000x-20x2)-(500x+4000)=-20x2+2500x-4000,其中P(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1)-4000-(-20x2+2500x-4000)=248 0-40x,其中x∈[1,99],且x∈N*.(2)由(1)知P(x)=-20x2+2500x-4000=-20(x-1252)2+74125.由x∈N*,知当x=62或x=63时,P(a P(x)=2480-40x,该函数是减函数,即随着产量的增加,每台报警系统装置与前一台相比较,利润在减小,故当x=1时,MP(P(x)取得最大值时的实际意义是生产第2台报警系统装置与生产第1台的总利润差最大.。

2021年高中数学 第9周周测试卷 新人教A版必修1

2021年高中数学 第9周周测试卷 新人教A版必修1

2021年高中数学 第9周周测试卷 新人教A 版必修1本次试卷共100分,时间为1小时 班级 姓名 一、选择题: 共10题,每题只有一个选项,每题5分,共50分。

1、下列给出的对象中,能表示集合的是 ( ) A 、一切很大的数 B 、无限接近零的数 C 、聪明的人 D 、方程的实数根2、设集合 ,又。

那么 ( ) A 、 B 、 C 、 D 、3、下面的图像中可作为函数的图像的是 ( )(A )(B ) (C )(D ) 4、下列集合表示法正确的是( )A 、{1,1,2}B 、{全体正数}C 、{有理数}D 、不等式的解集为{} 5、下列各组函数中,表示同一函数的是( )A .B .C .D .6、.若全集U={0,1,2,3}且,则集合A 的真子集数共有 ( ) A 、3 B 、5 C 、7 D 、87、函数y =1x +1的定义域是 ()A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0)8、设集合,则集合A ∪B= ( )A 、0B 、{0}C 、D 、{-1,0,1} 9、设,若,则a= ( )A 、2B 、—1C 、0D 、—1或2 10、函数的图象是下图中的 ()A .C .D .二、填空题:共4题,每题5分,共20分。

11、设集合A={1,2},B={1,2,3},C={2,3,4},则(A ∩B )∪C= 12、若集合,且A ∩B=B ,则x= 13、设集合,14、已知,则= .三、解答题:共3题,每题10分,共30分。

15、设全集,集合{}{}{}13,04,A x x B x x C x x a =-≤≤=<<=<。

(1)求;(2)求(C U A )∩(C U B)(3)若,求实数的取值范围。

16、求下列函数的定义域:(1)(2)17、已知,,且,试求的表达式.35618 8B22 謢 28643 6FE3 濣32493 7EED 续 24987 619B 憛'7Tk36596 8EF4 軴G29090 71A2 熢N。

2019最新学年度高中数学 周练卷(三)新人教A版必修1(考试专用)

2019最新学年度高中数学 周练卷(三)新人教A版必修1(考试专用)

周练卷(三)(时间:90分钟满分:120分)【选题明细表】1.函数g(x)=在[1,2]上为减函数,则a的取值范围为( C )(A)(-∞,0) (B)[0,+∞)(C)(0,+∞) (D)(-∞,0]解析:因为y=在[1,2]上是减函数,所以要使g(x)=在[1,2]上是减函数,则有a>0.故选C.2.f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是( A )(A)减函数 (B)增函数(C)有增有减 (D)增减性不确定解析:f(x)=(m-1)x2+2mx+3为偶函数,所以m=0,所以f(x)=-x2+3,开口向下,f(x)在区间(2,5)上是减函数.故选A.3.函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,则f(x)在区间[1,2]上是( B )(A)增函数 (B)减函数(C)先增后减函数 (D)先减后增函数解析:因为函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,所以1+a+2=0,解得a=-3,由f(x)=f(-x)得,b=0,即f(x)=-3x2-2.其图象是开口向下,对称轴是y轴的抛物线,则f(x)在区间[1,2]上是减函数.故选B.4.若函数y=x2+(2a-1)x+1在区间(-∞,2]上是减函数,则实数a的取值范围是( B )(A)[-,+∞) (B)(-∞,-](C)[ ,+∞) (D)(-∞,]解析:因为函数y=x2+(2a-1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线,又因为函数在区间(-∞,2]上是减函数,故2≤,解得a≤-,故选B.5.函数f(x)=x|x-2|的增区间是( C )(A)(-∞,1] (B)[2,+∞)(C)(-∞,1],[2,+∞) (D)(-∞,+∞)解析:f(x)=x|x-2|=作出f(x)简图如图,由图象可知f(x)的增区间是(-∞,1],[2,+∞).6.设f(x)是R上的任意函数,则下列叙述正确的是( D )(A)f(x)f(-x)是奇函数(B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数(D)f(x)+f(-x)是偶函数解析:若f(x)是R上的任意函数,则f(x)·f(-x)是偶函数,f(x)-f(-x)是奇函数,f(x)+f(-x)是偶函数,B项无法确定.选D.7.若函数y=x2-6x-7,则它在[-2,4]上的最大值、最小值分别是( C )(A)9,-15 (B)12,-15 (C)9,-16 (D)9,-12解析:函数的对称轴为x=3,所以当x=3时,函数取得最小值为-16,当x=-2时,函数取得最大值为9,故选C.8.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则使得f(x)<0的x的取值范围是( B )(A)(-∞,2) (B)(-2,2)(C)(2,+∞) (D)(-∞,-2)∪(2,+∞)解析:由题意知f(-2)=f(2)=0,f(x)的示意图如图所示.当x∈(-2,0]时,f(x)<f(-2)=0,由对称性知,x∈[0,2)时,f(x)为增函数,f(x)<f(2)=0,故x∈(-2,2)时,f(x)<0,因此选B.9.若对于任意实数x,都有f(-x)=f(x),且f(x)在(-∞,0]上是增函数,则( D )(A)f(-2)<f(2) (B)f(-1)<f(-)(C)f(-)<f(2) (D)f(2)<f(-)解析:对于任意实数x,都有f(-x)=f(x),所以函数为偶函数,根据偶函数图象关于y轴对称,且f(x)在(-∞,0]上是增函数,可知f(x)在(0,+∞)上是减函数. 对于A,f(-2)=f(2),所以A不正确;对于B,因为f(x)在(-∞,0]上是增函数,-1>-,所以f(-1)>f(-),所以B不正确;对于C,f(2)=f(-2),因为f(x)在(-∞,0]上是增函数,-2<-,所以f(2)=f(-2)<f(-),所以C不正确,D正确.故选D.10.若奇函数f(x)当1≤x≤4时的解析式是f(x)=x2-4x+5,则当-4≤x≤-1时,f(x)的最大值是( D )(A)5 (B)-5 (C)-2 (D)-1解析:当-4≤x≤-1时,1≤-x≤4,因为1≤x≤4时,f(x)=x2-4x+5.所以f(-x)=x2+4x+5,又f(x)为奇函数,所以f(-x)=-f(x).所以f(x)=-x2-4x-5=-(x+2)2-1(-4≤x≤-1).当x=-2时,取最大值-1.11.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是( A )(A)f(x)=-x(x+2)(B)f(x)=x(x-2)(C)f(x)=-x(x-2)(D)f(x)=x(x+2)解析:任取x<0,则-x>0,因为x≥0时,f(x)=x2-2x,所以f(-x)=x2+2x, ①又函数y=f(x)在R上为奇函数,所以f(-x)=-f(x), ②由①②得x<0时,f(x)=-x(x+2).故选A.12.定义在R上的奇函数f(x),满足f()=0,且在(0,+∞)上单调递减,则xf(x)>0的解集为( B )(A){x|x<-或x>}(B){x|0<x<或-<x<0}(C){x|0<x<或x<-}(D){x|-<x<0或x>}解析:函数为奇函数,因为f()=0,所以f(-)=0,不等式xf(x)>0化为或结合函数图象可知的解集为0<x<,的解集为-<x<0,所以不等式的解集为{x|0<x<或-<x<0}.选B.二、填空题(每小题5分,共20分)13.函数y=的单调区间是.解析:因为y=可由y=向左平移1个单位得到,画出函数的图象,如图,结合图象可知该函数的递减区间为(-∞,-1)和(-1,+∞).答案:(-∞,-1)和(-1,+∞)14.已知函数f(x)是定义域为R的奇函数,且f(-1)=2,那么f(0)+f(1)= .解析:因为函数f(x)是R上的奇函数.所以f(-x)=-f(x),f(1)=-f(-1)=-2,f(-0)=-f(0),即f(0)=0,所以f(0)+f(1)=-2.答案:-215.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|-1,那么x<0时,f(x)= .解析:由题意,当x>0时,f(x)=x2+|x|-1=x2+x-1,当x<0时,-x>0,所以f(-x)=(-x)2+(-x)-1=x2-x-1,又因为f(-x)=-f(x),所以-f(x)=x2-x-1,即f(x)=-x2+x+1.答案:-x2+x+116.若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m 的取值范围是.解析:由于f(x)在区间[0,2]上是增函数,所以f(2)>f(0),解得a<0.又因f(x)图象的对称轴为x=-=2.所以x在[0,2]上的值域与在[2,4]上的值域相同,所以满足f(m)≥f(0)的m的取值范围是0≤m≤4.答案:[0,4]三、解答题(共40分)17.(本小题满分8分)已知函数f(x)=x2-2x-3,若x∈[t,t+2],求函数f(x)的最值.解:因为对称轴为x=1,①当1≥t+2即t≤-1时,f(x)max=f(t)=t2-2t-3,f(x)min=f(t+2)=t2+2t-3.②当≤1<t+2,即-1<t≤0时,f(x)max=f(t)=t2-2t-3,f(x)min=f(1)=-4.③当t≤1<,即0<t≤1时,f(x)max=f(t+2)=t2+2t-3,f(x)min=f(1)=-4.④当1<t,即t>1时,f(x)max=f(t+2)=t2+2t-3,f(x)min=f(t)=t2-2t-3.设函数最大值为g(t),最小值为ϕ(t)时,则有g(t)=ϕ(t)=18.(本小题满分10分)已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.解:F(x)在(-∞,0)上是减函数.证明如下:任取x1,x2∈(-∞,0),且x1<x2,则有-x1>-x2>0.因为y=f(x)在(0,+∞)上是增函数,且f(x)<0,所以f(-x2)<f(-x1)<0,①又因为f(x)是奇函数,所以f(-x2)=-f(x2),f(-x1)=-f(x1), ②由①②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.19.(本小题满分10分)已知函数f(x)的定义域为D={x|x∈R且x≠0},且满足对于任意的x1,x2∈D都有f(x1·x2)=f(x1)+f(x2).(1)求f(1)及f(-1)的值;(2)判断f(x)的奇偶性并证明.解:(1)令x1=x2=1,得f(1)=f(1)+f(1),所以f(1)=0,令x1=x2=-1,得f(1)=f(-1)+f(-1)=0,所以f(-1)=0.(2)f(x)是偶函数.令x1=x,x2=-1,得f(-x)=f(x)+f(-1),即f(-x)=f(x),故对任意的x≠0都有f(-x)=f(x).所以f(x)是偶函数.20.(本小题满分12分)已知函数f(x)=,若函数f(x)是奇函数,且f(1)=3,f(2)=5.(1)求函数f(x)的解析式;(2)若g(x)=3f(x)+,试证明函数g(x)在(0,1)上是减函数;(3)若不等式g(x)≤m在[,]上恒成立,求m的取值范围.(1)解:因为f(x)=是奇函数,所以f(-x)=-f(x).所以=-.即=-.所以-bx+c=-(bx+c).所以c=-c.所以c=0.所以f(x)=.因为f(1)=3,f(2)=5,所以=3,=5.所以a=,b=.所以f(x)=.(2)证明:g(x)=3f(x)+==7(x+). 设x1,x2∈(0,1)且x1<x2.g(x2)-g(x1)=7(x2+-x1-)=7(x2-x1)(1-)=.因为0<x1<x2<1,所以x1x2<1,x1x2-1<0.x2-x1>0.所以g(x2)-g(x1)<0,g(x2)<g(x1).因此函数g(x)在(0,1)上是减函数.(3)解:由(2)知g(x)在[,]上为减函数. 所以g(x)在x=处取最大值g()=. 所以m≥,即m的取值范围为[,+∞).。

人教A版数学必修一高一年级9月份月考数学试卷答题纸1.docx

人教A版数学必修一高一年级9月份月考数学试卷答题纸1.docx

桑水
总分
正确填涂 填 涂 错误填涂 样
例 1. 答题前,考生先将自己的班级、姓名.考号填写在密封线相应位置。

2.选择题必须使用铅笔填涂;解答题必须使用签字笔、圆珠笔或钢笔书写,
不得用铅笔作解答题:字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无
效;在草稿纸、试题卷上答题无效。

4.保持答题卷卷面清洁。

华中学校高一年级9月份月考
数学试卷答题卡
一、选择题 (共50分 ) 得分 A B C D A B C D B A C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D 1 6 2 7 3 8 4 9 5 10 二、填空题 ( 共25分) 得分 11.__________ ; 12.__________ ; 13._________ ;
14.____ , 15._________ ; 三、解答题(解答应写出文字说明,证明过程或演算步骤)( 共75分) 16.(本小题满分12分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
17.(本小题满分12分)
18.(本小题满分12分)
总分 √ ×
○ ● 0
注 意 事 项
班级 姓名 考号
封 线 内 不 要 答 题
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
桑水。

2020学年高中数学周周回馈练(三)(含解析)新人教A版必修1(2021-2022学年)

2020学年高中数学周周回馈练(三)(含解析)新人教A版必修1(2021-2022学年)

周周回馈练(三)对应学生用书P35一、选择题1.函数y=ax2+a与y=错误!未定义书签。

(a≠0)在同一直角坐标系中的图象可能是()答案 D解析当a>0时,二次函数y=ax2+a的图象开口向上,且对称轴为直线x=0,顶点坐标为(0,a),可排除A、C;当a〈0时,二次函数y=ax2+a的图象开口向下,且对称轴为直线x=0,顶点坐标为(0,a),函数y=错误!未定义书签。

的图象在第二、四象限,排除B.2.有关函数单调性的叙述中,正确的是()A.y=-错误!在定义域上为增函数B.y=错误!未定义书签。

在[0,+∞)上为增函数C.y=-3x2-6x的减区间为[-1,+∞)D.y=ax+3在(-∞,+∞)上必为增函数答案C解析对于A,其定义域为不含0的两个区间,在各自的区间上都是增函数,但不能说在整个定义域上为增函数;对于B,在[0,+∞)上为减函数;对于C,因为y=-3x2-6x=-3(x+1)2+3,可求得减区间为[-1,+∞);对于D,增减性与a的取值有关.故选C。

3.若函数f(x)的定义域为R,且在(0,+∞)上是减函数,则下列不等式成立的是( )A.f错误!未定义书签。

〉f(a2-a+1)B.f错误!≥f(a2-a+1)C.f错误!未定义书签。

<f(a2-a+1)D.f错误!未定义书签。

≤f(a2-a+1)答案 Bﻬ解析∵f(x)在(0,+∞)上是减函数,且a2-a+1=错误!2+错误!≥错误!>0,∴f(a2-a+1)≤f错误!.4.若偶函数f(x)在(-∞,0)上是减函数,则满足f(1)≤f(a)的实数a的值组成的集合是( )A.[1,+∞)B.(-∞,-1]C.(-∞,-1]∪[1,+∞)D.(-∞,0)答案 C解析∵f(x)为偶函数,∴f(a)=f(|a|).又∵f(x)在(0,+∞)上为增函数,∴|a|≥1,∴a≥1或a≤-1.5.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是( )A.f错误!未定义书签。

人教A版数学必修一南星中学09~10高一上学期周练.doc

人教A版数学必修一南星中学09~10高一上学期周练.doc

南星中学09~10学年度高一上学期数学周练一、选择题:(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 1、44)3(-的值是( )A 、3B 、-3C 、±3D 、812、下列各式中一定成立的是( )A 、7177)(m n mn =B 、31243)3(-=-C 、43433)(y x y x +=+D 、3339=3、在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种细菌由一个可繁殖成( )A 、8B 、16C 、256D 、324、下列所给出的函数中,是幂函数的是( )A 、3x y -=B 、3-=xyC 、32x y =D 、13-=x y5、如图,设a,b,c,d>0,且不等于1,y=a x , y=b x , y=c x ,y=d x 在同一坐标系中的图象如图,则a,b,c,d 的大小顺序( )A 、a<b<c<dB 、a<b<d<cC 、b<a<d<cD 、b<a<c<d 6、若01,1<<->b a ,则函数b a y x+=的图像一定经过( )A 、第一、二、三象限B 、第一、三、四象限y=d x y=c xy=b x y=a x Oy xC 、第二、三、四象限D 、第一、二、四象限7、设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是( )A 、f (x +y )=f(x )·f (y )B 、)()(y f x f y x f =-)( C 、)()]([)(Q n x f nx f n∈= D 、)()]([·)]([)(+∈=N n y f x f xy f nnn8、函数xa y =在[0,1]上的最大值与最小值的和为3,则a 等于( )A 、21B 、2C 、4D 、41 9、)2lg(2lg lg y x y x -=+,则yx2log 的值的集合是( ) A 、{1}B 、{2}C 、{1,0}D 、{2,0}10、函数x y lg =是( )A 、偶函数,在区间)0,(-∞上单调递增B 、偶函数,在区间)0,(-∞上单调递减C 、奇函数,在区间),0(+∞上单调递增D 、奇函数,在区间),0(+∞上单调递减 11、已知函数)2(log ax y a -=在[0,1]上是减函数,则a 的取值范围是( )A 、(0,1)B 、(0,2)C 、(1,2)D 、[2,+∞)12、定义运算()() , .a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数x xx f )21(*2)(=的值域是( )A 、]1,0(B 、),0(+∞C 、),1[+∞D 、]2,21[一、填空题:(本大题共4小题,每小题4分,共16分) 13、若b a ==3lg ,2lg ,则=54lg _____________14、已知函数⎪⎩⎪⎨⎧<+≥=4)1(4)21()(x x f x x f x,则=)3(log 2f _____________15、已知函数121)(+-=x a x f ,若)(x f 是奇函数,则=a ___________ 16、如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ;③ 浮萍从24m 蔓延到212m 需要经过1.5个月;④ 浮萍每个月增加的面积都相等. 其中正确的叙述序号是______________三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17、化简:(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)3322114423()a b ab ba b a⋅(a >0,b >0)。

人教A版数学必修一成都玉林中学高级周练三

人教A版数学必修一成都玉林中学高级周练三

成都玉林中学高2017级数学周练三答题时间为40分钟,全卷满分100分班级 姓名 学号 总分一、一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.请答在题后答题卡上1、如果集合A ={x |x ≤3},a =2,那么( ).A .a ∉AB .{a }⊆AC .{a }∈AD .a ⊆A2、集合2{|10}x x -=可以表示为() A.{1,1}- B.{1}C.{1}- D.∅3、已知集合{}{}13,25A x x B x x A B =-≤<=<≤=U ,则() A.{x |2<x <3}B.{x |-1≤x ≤5}C.{x |-1<x <5}D.{x |-1<x ≤5} 4、在下列图象中,函数)(x f y =的图象可能是()5、判断下列各组中的两个函数是同一函数的为()A.23)(,)(x x g xx x f == B.)0(1)(),0()(0≠=≠=x x g x x x fC.x x g x x f ==)(,)(2 D.2)()(|,|)(x x g x x f ==6、函数32)(2+-=ax x x f 在区间]3,2[上是单调函数,则a 的取值范围是() A.2≤a 或3≥a B.32≤≤a C.2≤a D.3≥a7、已知()g x 是奇函数,若()()1f x g x =-,当(3)2f -=时,则(3)f =()A.4-B.6-C.8-D.10-8、若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是()A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f9、定义两种运算:,)(,222b a b a b a b a -=⊗-=⊕则函数2)2(2)(-⊗⊕=x xx f 的奇偶性为()A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数 10、已知函数()y f x =是偶函数,当0x >时,有4()f x x x=+,且当[3,1]x ∈--时,()f x 的值域是[,]n m ,则m n -的值是( )A .13B .23C .1D .43选择题答题卡二、填空题:本大题共5小题,每小题5分,共25分.11、函数y =___________________________;12、已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = ;13、已知函数21,0()21,0x x f x x x ⎧+≤=⎨+>⎩,若()10f x =,则x = ;14、函数y =f (x )是R 上的偶函数,且当x >0时,f (x )=x 3+1,则当x <0时,f (x )=________;15、已知函数()f x 是定义在区间[-2,2]上的偶函数,当x∈[0,2]时,()f x 是减函数,如果不等式)()1(m f m f <-成立,则实数m的取值范围是 ;三、解答题:本大题共2小题,共25分.16题满分12分,17题满分13分,解答应写出文字说明,演算步骤或证明过程.16、(本小题满分12分)若函数()f x 为奇函数,当0x ≥时,2()24f x x x =-(如图). (Ⅰ)请补全函数()f x 的图象; (Ⅱ)写出函数()f x 的表达式;(Ⅲ)用定义证明函数()y f x =在区间[)1,+∞上单调递增.17、(本小题满分13分)已知函数2()48, [1,5]f x x kx x =--∈,其中k R ∈.f x具有单调性,求k的取值范围;(Ⅰ)若函数()f x的最小值(用含k的式子表示). (Ⅱ)求函数()周练三参考答案 1 2 3 4 5 6 7 8 9 10 BABDBAADAC11、}{2|->x x 12、8 13、-3或2914、13+-x 15、211<≤-m16、解:(Ⅰ)如图所示.……………………………………………………………………4分 (Ⅱ)任取(,0)x ∈-∞,则(0,)x -∈+∞由()f x 为奇函数,则()()22()()[24]24f x f x x x x x =--=----=--…………………………6分综上所述,2224,0()24,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩…………………………………………7分 评分建议:用待定系数法也可以完成,参照以上评分标准给分;观察图象,直接得出函数解析式,没有中间过程,建议这次不扣分; 如果最后结果不写成分段形式,应当扣1分。

人教A版数学必修一年秋季期高一9月考答案.docx

人教A版数学必修一年秋季期高一9月考答案.docx

高中数学学习材料唐玲出品学校班别座号姓名密封框内不要作答陆川县中学2012年秋季期高一9月考数学答题卡一、选择题:(每小题5分共60分。

每小题只有一项正确,请将你认为正确的选项的代号填在答题卡相应的位置上)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C B C A D B D B B C D二、填空题:(每小题5分共20分)13、14、4 15、]3--,(∞16、3-83或三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、解:因为()3,4-∞-∈-,所以()2244-=+-=-f………………….3分又因为[]()[]()()42243,3-2-2=-=-=-∈fff,所以……..6分又因为()()[]{}()84244,,34=⨯==-+∞∈ffff所以…...10分37精心制作仅供参考唐玲出品精心制作仅供参考唐玲出品18、解:(1)()2232223++=+++=x x x y 由题意得 …………..3分 02≠+x 022≠+∴x 3223≠++∴x …….4分 3≠∴y …………..5分 综上所述:{}R y y y x x y ∈≠++=,3|283的值域是 ……..6分 (2) 设2,22+==-t x t x 则 (),0≥t ……………..2分 从而()(),331362322≥+-=-+=t t t y ………….5分 所以函数的值域为).,3[+∞ …………….6分19、解:{}10103|2≤--=x x x A {}52|≤≤-=∴x x A …………..3分 A B A =⋃ A B ⊆∴ ………………………..4分 又{}121|-≤≤+=m x m x B当121->+Φ=m m B 时, 2<∴m ………………..7分 当⎪⎩⎪⎨⎧≤--≥++≤+Φ≠51221121m m m m B 时, ⎪⎩⎪⎨⎧≤-≥≥∴332m m m ………………10分精心制作仅供参考唐玲出品20、解:()()222112f x x x x =--=-- ……………2分 ()[]211t t f x +<<- 当即时,在t ,t+2是减函数。

陕西省吴起高级中学人教A版高一上学期数学第九周作业含答案

陕西省吴起高级中学人教A版高一上学期数学第九周作业含答案

高一数学第9周周末作业班级 姓名 家长签字【知识清单】1、写出指数幂的运算性质:2、指数函数的概念?3、指数函数的图像和性质?【典型习题】1.如果x 〉y>0,则x y x y x y y x 等于 ( C ) A . y xy x )(- B .x y y x )(-C .x y y x -)(D .y x y x -)( 2.已知m 〉0,则3231m m•= ( A ) A .m B. 32m C .1 D .92m3.若a 〉0,n 、m 为实数,则下列各式中正确的是 ( D )A .a m ÷a n =nm a B .a n ·a m =a m·n C .(a n )m =a m +nD .1÷a n =a 0-n4.计算(-错误!)0+31)81(-+44)3(π-的结果为 ( C )A .π-5B .π-1C .πD .6-π5.计算(2a -3b -错误!)·(-3a -1b )÷(4a -4b -错误!)得 ( A )A .-错误!b 2B .错误!b 2C .-错误!b 错误!D .错误!b错误! 6.设2x =8y +1 ,9y =3x -9,则x -y =_15__。

7.求下列各式的值(1)错误!0。

5+0. 1-2+错误!-错误!-3π0+错误!;(2)错误!-错误!+(0.002)-错误!-10(错误!-2)-1+(错误!-错误!)0. (3)错误!·错误!·(xy )-1。

[解析] (1)原式=⎝ ⎛⎭⎪⎫259错误!+错误!+错误!-错误!-3+错误!=错误!+100+错误!-3+错误!=100。

(2)原式=(-1)-错误!错误!-错误!+错误!-错误!-错误!+1 =错误!-错误!+(500)错误!-10(错误!+2)+1 =错误!+10错误!-10错误!-20+1=-错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷第1页,总3页 2019年9月高一数学周练3
姓名:___________班级:___________
一、单选题(每题5分)
1.已知集合{}{}12,23A x x x B x x x =->=+>,则A B 等于( ) A .{}31x x -<<- B .{}10x x -<<
C .{}1x x <-
D .{}
3x x >- 【答案】A
2.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩
;(4)若A B ⊆则A B A =
A .0
B .1
C .2
D .3 【答案】D
3.已知{2,1,0}U =,{}
2|20M x R x x =∈-=,则U M =ð( ) A .{}0
B .{1,2}
C .{1}
D .{1,0,2} 【答案】C
4
.函数14y x +
-的定义域为( ) A .[)4,+∞
B .[]2,4
C .[)()2,44,⋃+∞
D .[]4,2-
【答案】C 5.已知函数()f x 满足()3123f x x +=-且()1f a =,则实数a 的值为( ) A .7-
B .6-
C .7
D .6
【答案】C 6.已知函数221,1(),1
x x f x x ax x ⎧+<=⎨+≥⎩,若f[f (0)]=4a ,则实数a 等于( )
A .12
B .45
C .9
D .2
【答案】D
7.下列各组函数中,表示同一函数的是( )
A .()1f x t =+与2()x x g x x
+= B
.2()f x =与()g x x = C .()||f x x =
与()g x =D .()f x x =与32()1
t t g t t +=+
试卷第2页,总3页 【答案】D
8.函数y x x =的图象大致是( )
A .
B .
C .
D .
【答案】C
二、填空题(每题5分)
9.已知集合 ,若 ,实数 的取值范围是______ .
【答案】 . 10.在函数()()()2211222x x y x x x x ⎧+≤-⎪=-<<⎨⎪≥⎩
中,若()3f x =,则x 的值为_____________.
【答案】11.已知集合1A={x|x=(21),}9k k Z +
∈,41B={x|x=,}99
k k Z ±∈,则集合A ,B 之间的关系为________.
【答案】A=B 12.已知函数y=f (x )的定义域是[0,4],则函数
f x 1y +=
的定义域是______.
【答案】(1,3]
三、解答题(第13题12分,第14、15题各14分) 13.已知全集U =R ,集合{}{}
32,16A x x B x x =-<<=≤≤,
试卷第3页,总3页 {}121C x a x a =-≤≤+.
(1)求()U A C B ⋂;
(2)若C A B ⊆,求实数a 的取值范围.
【答案】(1){}
31U A C B x x ⋂=-<<;(2)a 的取值范围是()5,22,2⎛⎤-∞-⋃- ⎥⎝⎦ 14.已知函数

求 、 、 的值;
若 ,求a 的值.
【答案】(1) (2)
15.某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x 人,此次培训的总费用为y 元. (1)求出y 与x 之间的函数关系式;
(2)请你预算:公司此次培训的总费用最多需要多少元?
【答案】(1)
(2)50000。

相关文档
最新文档