机械设计第11章 螺纹连接 第12章轴毂连接
第十二章轴与轮毂连接资料重点
1.按轴受的载荷和功用的不同进行分类 按轴受的载荷和功用的不同,轴可分为心轴(如图12-1)、传
动轴(如图12-2)、和转轴(如图12-3)。
第十二章 轴与轮毂连接
图12-1 心轴(铁路车辆轮轴)
第十二章 轴与轮毂连接
图12-2 传动轴
图12-3 转轴
第十二章 轴与轮毂连接
3.球墨铸铁
球墨铸铁吸振性和耐磨性好,对应力集中敏感低,价格低廉,使 用铸造方法可制成外形复杂的轴,如内燃机中的曲轴。
第十二章 轴与轮毂连接
12.4 轴的设计与计算
为了满足使用要求,并防止轴的疲劳断裂,设计轴时应根据使用 条件对轴进行设计计算。
12.4.1 按扭转强度计算
12.4.2 按弯扭合成强度计算
第十二章 轴与轮毂连接
图12-19 普通平键连接
第十二章 轴与轮毂连接
(2)半圆键连接
半圆键的两个侧面为半圆形,放置在半圆形的轴槽内,如图12-
22所示。工作时半圆键靠两侧面受挤压传递转矩,键在轴槽内可绕其
几何中心摆动,以适应轮毂槽底部的斜度。半圆键连接装拆方便,但
对轴的强度削弱较大,主要用于轻载场合。
完成轴的结构设计后,对于既承受弯矩M又传递转矩T的转轴, 可根据弯矩和转矩的合成强度来进行轴危险截面的强度校核。进行强 度计算时,我们通常把轴当作置于铰链支座上的梁,作用于轴上零件 的力作为集中力,其作用点取零件轮毂宽度的中点。
12.4.3 轴的刚度计算概念
轴的刚度主要是弯曲刚度和扭转刚度。其中,弯曲刚度是轴在弯 矩作用下产生的弯曲变形,其变形量用挠度 和偏转角 来度量;扭转 刚度是在扭矩作用下产生的扭转变形,其变形量用扭转角 来度量。
第十二章 轴与轮毂连接
《机械基础》(教程全集)11、12章
2.轴上零件的轴向固定 轴上零件的轴向位置必须固定,以承受轴向力或不产生轴向移动。 轴向定位和固定主要有两类方法:一是利用轴本身部分结构,如轴
肩、轴环、锥面、过盈配合等;二是采用附件,如套筒、圆螺母、 弹性挡圈、轴端挡圈、紧定螺钉、楔键和销等,详见表11-2。
3.轴上零件的定位 图11-9定位轴肩的结构尺寸 轴上零件利用轴肩或轴环来定位是最方便而有效的办法,如图11-8
11.3轴的结构设计 轴的结构设计主要是确定轴的结构形状和尺寸。由于影响轴结构的 因素很多,故其结构设计具有较大的灵活性和多样性,但一般来说 需满足如下要求: 1)为节省材料、减轻质量,应尽量采用等强度外形和高刚度的剖面 形状; 2)要便于轴上零件的定位、固定、装配、拆卸和位置调整; 3)轴上安装有标准零件(如轴承、联轴器、密封圈等)时,轴的直径 要符合相应的标准或规范; 4)轴上结构要有利于减小应力集中以提高疲劳强度; 5)应具有良好的加工工艺性。多数情况采用阶梯轴,因为它既接近 于等强度,加工也不复杂,且有利于轴上零件的装拆、定位和固定。
图11-4 曲轴
图11-5 挠性轴
a)结构图b)实物图
直轴按形状又可分为光轴、阶梯轴和空心轴三类。 (1)光轴光轴的各截面直径相同。它加工方便,但零件不易定位(图1 1-6a)。
(2)阶梯轴轴上零件容易定位,便于装拆,一般机械中常用(图11-6 b)。 (3)空心轴图11-7所示为空心轴。它可以减轻质量、增加刚度,还可
图11-2传动轴
图11-3转轴
11.1.2按轴线的几何形状分类 按轴线的几何形状不同,轴可分为直轴、曲轴和挠性轴三类。 曲轴(图11-4)常用于往复式机械(如曲柄压力机、内燃机)中,以 实现运动的转换和动力的传递。挠性轴是由几层紧贴在一起的钢 丝层构成的(图11-5),它能把旋转运动和转矩灵活地传到任何位 置,但它不能承受弯矩,多用于转矩不大、以传递运动为主的简 单传动装置中。机械中最常用的是直轴,它是本章研究的对象。
(国家开放大学)机械设计基础形成性考核习题与答案
机械设计基础课程形成性考核作业(一)第1章静力分析基础1.取分离体画受力图时,__CEF__力的指向可以假定,__ABDG__力的指向不能假定。
A.光滑面约束力B.柔体约束力C.铰链约束力D.活动铰链反力E.固定端约束力F.固定端约束力偶矩G.正压力2.列平衡方程求解平面任意力系时,坐标轴选在__B__的方向上,使投影方程简便;矩心应选在_FG_点上,使力矩方程简便。
A.与已知力垂直B.与未知力垂直C.与未知力平行D.任意E.已知力作用点F.未知力作用点G.两未知力交点H.任意点3.画出图示各结构中AB构件的受力图。
4.如图所示吊杆中A、B、C均为铰链连接,已知主动力F=40kN,AB=BC=2m,=30.求两吊杆的受力的大小。
解:受力分析如下图列力平衡方程:Fx0又因为AB=BCF A sinF C sinF A FCFy02F A sinFFF A F B40KN2sin第2章常用机构概述1.机构具有确定运动的条件是什么?答:当机构的原动件数等于自由度数时,机构具有确定的运动2.什么是运动副?什么是高副?什么是低副?答:使两个构件直接接触并产生一定相对运动的联接,称为运动副。
以点接触或线接触的运动副称为高副,以面接触的运动副称为低副。
3.计算下列机构的自由度,并指出复合铰链、局部自由度和虚约束。
(1)n=7,P L=10,P H=0(2)n=5,P L=7,P H=0F3n2P L PF3n2P L P HH37210352711C处为复合铰链(3)n=7,P L=10,P H=0(4)n=7,P L=9,P H=1F3n2P L PF3n2P L P HH372103729112E、E’有一处为虚约束F为局部自由度C处为复合铰链第3章平面连杆机构1.对于铰链四杆机构,当满足杆长之和的条件时,若取_C_为机架,将得到双曲柄机构。
A.最长杆B.与最短杆相邻的构件C.最短杆D.与最短杆相对的构件2.根据尺寸和机架判断铰链四杆机构的类型。
机械设计基础第11章 轴与轴毂连接答案
第11章 轴与轴毂连接四、简答题5. 轴的当量弯矩计算公式中22)(T M M e α+=中,α应如何取值?答: α的取值由扭转剪应力的循环特性决定:对于不变的转矩,3.0=α;当转矩脉动循环变化时,6.0=α;对于频繁正反转的轴,转矩剪应力可视为对称循环,1=α。
若转矩的变化规律不明确时,一般也按脉动循环处理。
6.普通平键的失效形式和强度条件是什么?答:普通平键的主要失效形式是工作侧面的压溃。
普通平键连接的挤压强度条件为:P P hldT hl d T A F ][42//2σσ≤=≈= 式中,P σ——键侧面上受到的挤压应力,(MPa );T ——传递的功率,N.mm ;d ——轴的直径,mm ;h ——键的高度,mm ;l ——键的工作长度,mm 。
A 型键l=L-b ,B 型键l=L ,C 型键l=L-b/2 ;b ——键的宽度(mm )。
P ][σ——联接中较弱材料的许用挤压应力,MPa六、分析题1.根据承受载荷的不同轴可分为转轴、心轴、传动轴,试分析图中 I 、II 、III 、IV 轴是各属于那种类型?答:I 为传动轴,II 、IV 为转轴,III 为心轴。
2.指出下面图中的结构错误,并提出改进意见。
序号错误原因改正1 箱体两端面与轴承盖接触处无凸台,使端面加工面积过大加凸台2 轴肩过高,轴承无法拆卸轴肩高度要低于轴承内圈高度3 键过长键长应小于轴上齿轮的宽度4 套筒对齿轮的轴向固定不可靠装齿轮的那段轴的长度比齿轮的宽度短1-2mm5 轴上还缺台阶,轴承装配不方便在右边轴承处加非定位轴肩,6 轴与轴承透盖接触轴与轴承透盖之间有间隙,并加上密封圈7 联轴器轴向未定位联轴器左端轴段加轴肩,对联轴器做轴向定位8 缺键,没有周向定位在联轴器和轴之间加键,作周向定位12 3 4 5 6 789 107序号错误原因改正1 轴的两端均伸出过长,增加了加工和装配长度轴的左端第一段轴比联轴器的宽度短1-2mm,轴的右端面和轴承的外端面基本保持一致2 联轴器与轴承盖接触联轴器与轴承盖之间要留有扳手操作空间,3 轴与轴承透盖间缺密封措施轴与轴承透盖间加上密封圈4 轴与轴承透盖接触轴与轴承透盖之间有间隙5 轴上还缺台阶,轴承装配不方便在左边轴承处加非定位轴肩,。
机械设计基础课后习题答案(第四版)
目录第1章机械设计概述 (1)第2章摩擦、磨损及润滑概述 (3)第3章平面机构的结构分析 (12)第4章平面连杆机构 (16)第5章凸轮机构 (36)第6章间歇运动机构 (46)第7章螺纹连接与螺旋传动 (48)第8章带传动 (60)第9章链传动 (73)第10章齿轮传动 (80)第11章蜗杆传动 (112)第12章齿轮系 (124)第13章机械传动设计 (131)第14章轴和轴毂连接 (133)第15章轴承 (138)第16章其他常用零、部件 (152)第17章机械的平衡与调速 (156)第18章机械设计CAD简介 (163)第1章机械设计概述1.1机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么?答:机械设计过程通常可分为以下几个阶段:1.产品规划主要工作是提出设计任务和明确设计要求。
2.方案设计在满足设计任务书中设计具体要求的前提下,由设计人员构思出多种可行方案并进行分析比较,从中优选出一种功能满足要求、工作性能可靠、结构设计可靠、结构设计可行、成本低廉的方案。
3.技术设计完成总体设计、部件设计、零件设计等。
4.制造及试验制造出样机、试用、修改、鉴定。
1.2常见的失效形式有哪几种?答:断裂,过量变形,表面失效,破坏正常工作条件引起的失效等几种。
1.3什么叫工作能力?计算准则是如何得出的?答:工作能力为指零件在一定的工作条件下抵抗可能出现的失效的能力。
对于载荷而言称为承载能力。
根据不同的失效原因建立起来的工作能力判定条件。
1.4标准化的重要意义是什么?答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。
第2章摩擦、磨损及润滑概述2.1按摩擦副表面间的润滑状态,摩擦可分为哪几类?各有何特点?答:摩擦副可分为四类:干摩擦、液体摩擦、边界摩擦和混合摩擦。
干摩擦的特点是两物体间无任何润滑剂和保护膜,摩擦系数及摩擦阻力最大,磨损最严重,在接触区内出现了粘着和梨刨现象。
机械设计基础10联接(螺纹联接)
基本原理
螺纹联接的基本原理是通过螺纹的咬合来实现连接 和紧固。
设计要求
螺纹联接的设计要考虑螺纹的类型、尺寸、加工精 度、连接长度等因素。
螺纹联接的计算和选取方法
计算方法
螺纹联接的计算方法需要考虑载荷情况、材料性能、 螺纹类型等因素。
选取方法
螺纹联接的选取应考虑加载情况、工作环境、连接 性能要求等因素。
螺纹联接的制造和装术包括螺纹加工、表面处理等环节。
2
装配技术
螺纹联接的装配技术要注意正确的装配顺序、力矩控制等。
3
检测技术
螺纹联接的检测技术包括外观检查、力矩测试等方法。
螺纹联接的常见问题和解决方法
常见问题
螺纹联接中常见的问题包括松动、脱螺纹、过紧等。
解决方法
解决螺纹联接问题的方法包括增加紧固力、正确选择螺纹类型、使用螺纹锁紧剂等。
机械设计基础10联接(螺 纹联接)
欢迎来到机械设计基础系列第十讲!本讲将介绍螺纹联接,包括定义、分类、 特点、优点、应用领域、基本原理、设计要求等内容。
螺纹联接的定义和概念
螺纹联接是一种常用的紧固连接方式,通过螺纹的互相嵌合实现连接和紧固。 它由一个内螺纹和一个外螺纹构成,通过旋转使螺纹互相咬合达到紧固的效 果。
螺纹联接的分类和特点
分类
螺纹联接可以分为内螺纹联接和外螺纹联接两种 类型。
特点
螺纹联接具有承载能力强、可重复使用、连接牢 固等特点。
螺纹联接的优点和应用领域
1 优点
2 应用领域
提供均匀的紧固力、承载能力高、便于拆卸、 可重复使用等。
广泛应用于机械制造、汽车工程、航空航天、 建筑等领域。
螺纹联接的基本原理和设计要求
机械设计基础(杨可桢版)1-18章答案(全)
机械设计基础(杨可桢版)1-18章答案(全)机械设计基础习题答案第八章回转件的平衡8-1解:依题意该转子的离心力大小为该转子本身的重量为则,即该转子的离心力是其本身重量的倍。
8-2答:方法如下:( 1)将转子放在静平衡架上,待其静止,这时不平衡转子的质心必接近于过轴心的垂线下方;( 2)将转子顺时针转过一个小角度,然后放开,转子缓慢回摆。
静止后,在转子上画过轴心的铅垂线1;( 3)将转子逆时针转过一个小角度,然后放开,转子缓慢回摆。
静止后画过轴心的铅垂线2;( 4)做线1和2的角平分线,重心就在这条直线上。
8-3答:( 1)两种振动产生的原因分析:主轴周期性速度波动是由于受到周期性外力,使输入功和输出功之差形成周期性动能的增减,从而使主轴呈现周期性速度波动,这种波动在运动副中产生变化的附加作用力,使得机座产生振动。
而回转体不平衡产生的振动是由于回转体上的偏心质量,在回转时产生方向不断变化的离心力所产生的。
(2)从理论上来说,这两种振动都可以消除。
对于周期性速度波动,只要使输入功和输出功时时相等,就能保证机械运转的不均匀系数为零,彻底消除速度波动,从而彻底消除这种机座振动。
对于回转体不平衡使机座产生的振动,只要满足静或动平衡原理,也可以消除的。
(3)从实践上说,周期性速度波动使机座产生的振动是不能彻底消除的。
因为实际中不可能使输入功和输出功时时相等,同时如果用飞轮也只能减小速度波动,而不能彻底消除速度波动。
因此这种振动只能减小而不能彻底消除。
对于回转体不平衡产生的振动在实践上是可以消除的。
对于轴向尺寸很小的转子,用静平衡原理,在静平衡机上实验,增加或减去平衡质量,最后保证所有偏心质量的离心力矢量和为零即可。
对于轴向尺寸较大的转子,用动平衡原理,在动平衡机上,用双面平衡法,保证两个平衡基面上所有偏心质量的离心力食量和为零即可。
8-4图 8 . 7解:已知的不平衡质径积为。
设方向的质径积为,方向的质径积为,它们的方向沿着各自的向径指向圆外。
机械设计基础填空题(附答案)
、两构件直接接触并能产生一定相对运动的联接称为运动副,按照其接触特性,又可将它分为 低副高副。
两构件通过面接触组成的运动副称为 低副;平面机构中又可将其分为 回转副移动副。
两构件通过点或直线接触组成的运动副称为 高副,且 自由度>0平面机构具有确定运动的条件是 自由度原动件个数,且机架,与其用回转连架杆接的构件称为 连杆连架杆是曲柄还是摇杆,可将铰链四杆机构分为三种基本型式曲柄摇杆机构、双曲柄机构双摇杆机构越小越大90力角是0,其传力性能很好摇杆为主动件时,在曲柄和连杆则行程速比系数就 越大急回性能也 越明显 1 就意味着该机构的急回性能没有设计中,习惯上用传动角来判断传力性能。
在出现死点时,传动角等于 0,压力角等于 90增大凸轮机构按凸轮形状可分为 盘形凸轮机构、移动凸轮机构和园柱凸轮机构。
按从动件的型式可分为滚子从动件、尖顶从动件和平底从动件理论轮廓;为使凸轮型线在任何位置既不变尖,更不相交,就要求滚子半径必须小于理论轮廓外凸部分的最小曲率半径。
的最小曲率半径。
凸轮机构中,从动件采用等加速等减速运动规律时,将引起 柔性刚性,机械效率 越低增大,为减小的半径越小,压力角就 越大,机械效率推力和避免自锁,压力角应越小越好,连续传动的条件为 重合度≥1m1=m2=m1=α2=α,连续传动的条件为法向模数相等法向螺旋角相等螺旋角大小相等,方向相反(m=m n2=m n1=n1αn2=-β2);一对锥齿轮的正确啮合条件是R1=R2,m1大=m2大=mα1=α2=α。
齿轮的加工方法仿形法范成法大于法向压力角,其法向法向小于直齿轮。
齿条的基园半径为 +∞17产生轴向力,此时该齿轮已产生 根切现象,为克服这一现象可采用 正变位正移距,这样制得的齿轮称为变位齿轮增大,发生根切的最少齿数 变小分度圆上齿廓的压力角为标准值且等于20大于分度园上的压力角(大于20,齿条的齿顶线上的压力角 等于角。
标准渐开线直齿轮齿顶圆上的齿距角。
机械设计基础课程形成性考核作业及答案
机械设计基础课程形成性考核作业(一)第1章静力分析基础1.取分离体画受力图时,__CEF__力的指向可以假定,__ABDG__力的指向不能假定.A.光滑面约束力B.柔体约束力C.铰链约束力D.活动铰链反力E.固定端约束力F.固定端约束力偶矩G.正压力2.列平衡方程求解平面任意力系时,坐标轴选在__B__的方向上,使投影方程简便;矩心应选在_FG_点上,使力矩方程简便.A.与已知力垂直B.与未知力垂直C.与未知力平行D.任意E.已知力作用点F.未知力作用点G.两未知力交点H.任意点3.画出图示各结构中AB构件的受力图。
4.如图所示吊杆中A、B、C均为铰链连接,已知主动力F=40kN,AB=BC=2m,α=30︒。
求两吊杆的受力的大小。
解:受力分析如下图列力平衡方程:∑=0Fx又因为 AB=BCααsin sin C A F F =⋅C A F F =∑=0FyF F A =⋅αsin 2KN FF F B A 40sin 2===∴α第2章 常用机构概述1.机构具有确定运动的条件是什么?答:当机构的原动件数等于自由度数时,机构具有确定的运动 2.什么是运动副?什么是高副?什么是低副?答:使两个构件直接接触并产生一定相对运动的联接,称为运动副。
以点接触或线接触的运动副称为高副,以面接触的运动副称为低副。
3.计算下列机构的自由度,并指出复合铰链、局部自由度和虚约束。
(1)n =7,P L =10,P H =0 (2)n =5,P L =7,P H =0H L P P n F --=23H L P P n F --=2310273⨯-⨯7253⨯-⨯C 处为复合铰链(3)n =7,P L =10,P H =0 (4)n =7,P L =9,P H =1H L P P n F --=23H L P P n F --=2310273⨯-⨯19273-⨯-⨯E 、E ’有一处为虚约束F 为局部自由度C 处为复合铰链第3章 平面连杆机构1.对于铰链四杆机构,当满足杆长之和的条件时,若取_C_为机架,将得到双曲柄机构。
机械设计基础习题解答第12章
思考题及练习题12.1用轴肩或轴环可以对轴上零件作轴向固定吗?答:轴肩或轴环可以对轴上零件作单向轴向固定12.2圆螺母也可以对轴上零件作周向固定吗?答:圆螺母不能对轴上零件作周向固定,可以轴向固定。
12.3轴肩或轴环的过渡圆角半径是否应小于轴上零件轮毂的倒角高度? 答:轴肩或轴环的过渡圆角半径应小于轴上零件轮毂的倒角高度,以保证装拆方便可靠。
12.4汽车下部变速器与后桥间的轴是否传动轴?答:是传动轴。
12.5轴上零件的轴向固定方法有:1)轴肩和轴环;2)圆螺母与止动垫圈;3)套筒; 4)轴端挡圈和圆锥面;5)弹性挡圈、紧定螺钉或销钉等。
当受轴向力较大时,可采用几种方法?答:轴向力较大时,可采用:1)轴肩和轴环;2)圆螺母与止动垫圈;3)套筒; 4)轴端挡圈和圆锥面。
12.6若轴上的零件利用轴肩来轴向固定,轴肩的圆角半径R 与零件轮毅孔的圆角半径1R 或倒角1C 的关系如何?答:轴肩的圆角半径R 要小于零件轮毅孔的圆角半径1R 或倒角1C 。
12.7为了便于拆卸滚动轴承,轴肩处的直径d (或轴环直径)与滚动轴承内圈外径1D 应保持何种关系?答:1d D <,大约2 mm 。
12.8平键连接的工作原理是什么?主要失效形式是什么?平键的剖面尺寸b ×h 和键的长度L 是如何确定的?举例说明平键连接的标注方法。
答:工作原理:平键的上表面与轮毂键槽顶面留有间隙,依靠键与键槽间的两侧面挤压力 ,传递转矩 。
所以两侧面为工作面。
主要失效形式:键连接的主要失效形式是挤压破坏。
键的剖面尺寸b ×h 和键的长度L 的确定:按照轴的公称直径d ,从国家标准中选择平键的尺寸h b ×。
键的长度L 应略小于轮毂的长度,键长L 应符合标准长度系列。
12.9 圆头(A 型)、方头(B 型)及单圆头(C 型)普通平键各有何优缺点?它们分别用在什么场合?轴上的键槽是如何加工出来的?轮毂上的键槽是如何加工出来的?答:圆头(A 型)对中性好,安装方便,使用广泛;方头(B 型)应力集中小,对轴影响小。
机械设计基础的优秀教案
Grief is no greater than heart death, and no more exhaustion than heart fatigue.整合汇编简单易用(页眉可删)机械设计基础的优秀教案关于机械设计基础方面的教案我们应该要怎么做呢?下面是为大家带来的机械设计基础的教案!第一章机械设计基础概论(一)教学内容1、引言2、机器的组成及其特征3、机械设计的基本要求和一般程序4、机械设计基础课程的内容、性质和任务(二)教学要求1、掌握内容:机器的组成、特征及相关基本概念2、熟悉内容:机械设计的基本要求;机械设计的方法和一般步骤3、了解内容:课程内容、地位、作用和任务第二章平面机构(一)教学内容1、平面机构的组成2、平面机构运动简图3、平面机构的自由度计算4、平面连杆机构的基本型式及其演化5、平面四杆机构的基本特性6、平面四杆机构的设计__7、多杆机构简介(二)教学要求1、掌握内容:自由度、约束、运动副和机构;平面机构自由度计算(复合铰链、局部自由度、虚约束)、机构具有确定运动的条件;平面连杆机构的基本型式及其演化;平面四杆机构有曲柄的条件和几个基本概念(行程速度变化系数K、极位夹角θ、压力角与传动角、死点)2、熟悉内容:平面机构的运动简图;平面四杆机构设计的图解法3、了解内容:平面机构的组成原理;平面四杆机构设计的解析法和实验法第三章凸轮机构(一)教学内容1、凸轮机构的应用和分类2、常用从动件的运动规律3、图解法设计盘形凸轮轮廓曲线__4、解析法设计凸轮轮廓5、设计凸轮机构应注意的问题(二)教学要求1、掌握内容:从动件常用运动规律及选择;按给定从动件规律设计凸轮轮廓(图解法);凸轮机构基本尺寸的确定2、熟悉内容:凸轮机构的应用及分类3、了解内容:按给定从动件运动规律设计凸轮轮廓(解析法)第四章间歇运动机构(一)教学内容1、棘轮机构2、槽轮机构__3、不完全齿轮机构和凸轮式间歇机构简介(二)教学要求1、掌握内容:棘轮机构;槽轮机构2、了解内容:不完全齿轮机构和凸轮式间歇机构第五章带传动和链传动(一)教学内容1、带传动的类型和应用2、V带和V带轮3、带传动的受力分析和应力分析4、带传动的弹性滑动和传动比利5、普通V带传动的设计6、带传动的张紧和维护(二)教学要求1、掌握内容:带传动的几何尺寸计算、带传动参数的选择和计算;2、熟悉内容:带传动的类型和特点,带的结构和规格,带轮的结构,带传动的受力分析、应力分析,带传动的打滑、弹性滑动、滑动率、失效形式及设计准则,带传动张紧的目的。
机械设计基础第11章 键连接习题解答
11-1一齿轮装在轴上,采用A 型普通平键连接,齿轮、轴、键均用45号钢,轴径d =80mm ,轮毂长度L =150mm ,传递转矩T =2000N.m ,工作中有轻微冲击,试确定平键尺寸和标记并验算连接的强度。
解答:1)确定平键尺寸由轴径d=80mm 查得A 型平键剖面尺寸b=22mm ,h=14mm 。
参照毂长L '=150mm 及键长度系列选取键长L=140mm 。
2)挤压强度校核计算Mpa hld T p 53.608011814102000443=⨯⨯⨯⨯==σl ——键与毂接触长度mmb L l 11822140=-=-=查得[]100=p σ~120pa ,故[]p p σσ≤,安全。
[]MPa 140~100=P σ,取[]P σ=120Mpa11-3图所示凸缘半联轴器及圆柱齿轮,分别用键与减速器的低速轴相连接。
试选择两处键的类型及尺寸,并校核其连接强度。
已知轴的材料为45钢,传递的转矩T =1000N.m ,齿轮用锻钢制造,半联轴器用灰铸铁制成,工作时有轻微冲击。
题11-3图解:1、联轴器处①键的类型和尺寸选A (或C )型普通平键,根据轴径d =70mm ,查表11.1得键的截面尺寸为:b =20mm ,h =12mm ,根据轮毂的长度130mm ,取键长L=110mm ,键的标记:键20×110GB/T1096—1979(键C 20×110GB/T1096—1979)②校核联接强度联轴器的材料为铸铁,查表11.2,取[σP ]=55MP a ,k =0.5h =6mm ,l=L -b =90mm (或l=L -b/2=100mm )满足强度条件2、齿轮处①键的类型和尺寸选A 型平键,根据轴径d =90mm ,查表11.1得键的截面尺寸为:b =25mm ,h =14mm ,根据轮毂的宽度90mm ,取键长L =80mm ,键的标记:键25×80GB/T1096—1979②校核联接强度齿轮和轴的材料均为钢,查表11.2,取[σP ]=110MP a ,k =0.5h =7mm ,l=L -25=55mm[]p a p σMP kld T σ≤=⨯⨯⨯⨯=⨯=725790557101000210233.满足强度条件。
机械设计基础第12章 轴
轴上零件的装配方案不同,则轴的结构形状也不相同。设计时可 拟定几种装配方案,进行分析与选择。
14
三 轴的加工和装配工艺性
轴应便于加工、测量,工作量少、生产效率高
通常情况下轴应设计成阶梯直轴
轴上直径相近处的圆角、倒角、键槽等 尺寸一致
不同轴段的各键槽应布置在同一直线上
磨削或车螺纹应留有越程槽或退刀槽 轴上零件应装拆方便 轴的配合直径应尽量按标准值选取
初算轴的最细处直径
进行结构设计
进行强度验算 刚度验算
有特殊要求 时才进行
振动稳定性计算
作业
P227 12-15 12-13 12-14
34
29
实际上弯曲应力σb和扭转应力σT的性质γ可能不同
对于转轴和转动的心轴:
F
弯曲应力σb γ = -1
扭剪应力 T
n
n
T 大小和方向不变
γ = +1 a = 0.3
T 大小经常变化,方向不变 γ = 0 a = 0.6
T 大小和方向经常变化
γ = -1 a = 1
不同的γ ,对轴疲劳强度的影响程度也不同
31
弯扭合成法计算流程:
轴的简化受力图
重新设计
垂直面受力 垂直面弯矩
强度不满 足要求
水平面受力 水平面弯矩
ca [ 1]b
合成弯矩 扭矩
轴的当量弯矩
32
§12-4 轴的设计方法及综合示例
轴的设计方法:
轴的设计并无固定不变的步骤,视具体情况而定
对于阶梯直轴,一般流程是: 选择轴的材料
d C3 P n
越程槽
15
轴的标准尺寸系列
16
便于轴承的装拆
17
《机械设计基础》课程标准
《机械设计基础》课程标准二、课程定位1.为研究机械类产品的设计、开发、制造、维护保养等提供必要的理论基础。
2.是机电一体化专业、数控专业、模具设计与制造等专业必修的一门专业技术基础课。
3.课程定位于高等职业教育,强调对学生进行专业思维能力。
专业实践能力和动手能力的培养。
4.按照“必需、够用”为度的原则呈现课程内容的针对性和应用性。
注重提高学生分析问题、解决问题的能力。
5.把创新素质的培养贯穿于教学中。
采用行之有效的教学方法,注重发展学生专业思维和专业应用能力。
6.是从理论性、系统性很强的基础课和专业基础课向实践性较强的专业课过渡的一个重要转折点,在教学中具有承上启下的作用,课程知识掌握的程度直接影响到后续课程的学习。
三、课程设计思路1.以专业教学计划培养目标为依据,以岗位需求为基本出发点,以学生发展为本位,设计课程内容。
2.让学生在了解常用机构及机械零部件的基本知识及设计方法和设计理论的基础上,能进行简单机械及传动装置的设计,培养学生初步解决工程实际问题的能力。
3.在课程实施过程中,充分利用课程特征,加大学生工程体验和情感体验的教学设计,激发学生的主体意识和学习兴趣。
四、课程目标通过本课程的学习,使学生获得正确分析、使用和维护机械的基本知识、基本理论及基本技能,初步具备运用手册设计简单机械的能力,为学习有关专业机械设备课程以及参与技术改造奠定必要的基础。
(一)知识目标:1.掌握一般机械中常用机构和通用零件的工作原理、组成、性能特点,初步掌握选用和设计方法。
2.具有对机构和零件进行分析计算的能力、一定的制图能力和使用技术资料的能力。
3.能综合运用所学知识和实践技能,具有设计简单机械和简单传动装置及分析、解决一般工程问题的初步能力。
(二)职业技能目标:1.认识《机械设计基础及课程设计》课程学习的一般过程,注重激发学生的学习动机,通过理论教学、实验课程、课程设计、课外综合实践等多种形式的教学活动培养学生的机械设计能力。
机械设计基础知识点与试题库 下
第六章 轮系简答题1. 定轴齿轮与周转轮系的主要区别是什么样?2. 齿轮系的转向如何确定,(-1)”适用于何种类型的齿轮系?3. 周转轮系由哪几种基本构件组成?一. 填空题.1. 在定轴轮系中,每一个齿轮的回转轴线都是 的.2. 定轴系中的惰轮对_无影响,主要用于改变从动轮的 。
3. 周转轮系中,i H AK 表示 ,iAK 表示 。
4. 平面定轴轮系中,主、,从动轮的转向取决于 ;当 时,主、动轮转向相同:当 时,主,从动轮转向相反 。
5. 一个单一的周转轮系由 、和 组成,一般——不超过两个: 和 的几何轴线必须重合。
6. 一对平行轴外啮全轮传动,两轮转向 ;一对平行轴内啮全轮传动,两轮转向 。
三.选择题。
1,周转轮第的转化轮系为 、。
A.定轴轮系 B.行星轮系 C.差动轮系2.如图1所示轮系,若z1=z2=z3,则传动比i1H=3.在主轴转系的转化轮系中,若轮a 、b 的传动比 为正,则轮a 、b 的绝对速度方向A .相同 B.相反 C.不能确定四.计算题1.图示的轮系中,已知各齿轮的齿数z1=20,z2=40,z’=18,z4=18,z7=20,齿轮7的模数m=3mm,蜗杆头数为1(左旋), 蜗轮齿数z6=40,齿轮1为主动轮,转向如图所示,转速n1=100r/min,试示齿条8的速度和移动方向。
i1H。
3.已知图4.图5所示为输送带行星轮系中,已知各齿轮的齿数分别z1=12,z2=33,z2’=30,z3=78,z4=75,电动机的转速n1=1450r/min,试求输出轴转速nr的大小与方向。
七、其他常用机构1、掌握槽轮机构的工作原理与应用、2、棘轮机构的工作原理与应用,3、螺旋机构的应用及方向判断与移动距离的计算一、填空题1.所谓间歇运动机构,就是在主动件作运动时,从动件能够产生周期性的、、运动机构。
2.欲将一匀速回转运动转变成单向间歇回转运动,采用的机构有、、等,其中间歇时间可调的机构是机构。
机械设计(第二版)螺纹连接习题解答
(1) 选螺栓数目Z:
因为螺栓分布圆直径较大,为保证螺栓间间
距不致过大,所以选用较多的螺栓,初取Z=24。
(2)计算螺栓的轴向工作载荷F:
1)螺栓组连接的最大轴向载荷FQ
2)螺栓的最大轴向工作载荷F:
题11-5图
(3)计算螺栓的总拉力F0
(4)计算螺栓直径:
查GB196—81,取M30(d1=26.211mm>25.139mm)
由教材式(11—13):1.3F′/(π /4)≤[σ] MPa得:
F′=[σ]π /(4×1.3)=178×π×8.3762/5.2N=7535N
(2)求牵引力FR:
由式(11—25)得FR=F′fzm/ =7535×0.15×2×1/1.2N=1883.8 N(取 =1.2)
11—5有一气缸盖与缸体凸缘采用普通螺栓连接,如图所示。已知气缸中的压力p在0~2MPa之间变化,气缸内径D=500mm,螺栓分布圆直径D0=650mm。为保证气密性要求,剩余预紧力F″=1.8F,螺栓间距t≤4.5d(d为螺栓的大径)。螺栓材料的许用拉伸应力[σ]=120MPa,许用应力幅[σɑ]=20MPa。选用铜皮石棉垫片螺栓相对刚度C1/(C1+C2)=0.8,试设计此螺栓组连接。
⑶、轴承端盖为透盖时,必须和轴有间隙,同时,必须考虑密封问题。
㈤、螺纹的常见错误
⑴、轴上螺纹应有螺纹退刀槽;
⑵、紧定螺钉应该拧入轴上被联接零件,端部应顶在轴上;
⑶、螺纹联接应保证安装尺寸;
⑷、避免螺纹联接件承受附加弯矩。
(5)校核螺栓疲劳强度:
故螺栓满足疲劳强度要求。
(6)校核螺栓间距:实际螺栓间距为
故螺栓间距满足联接的气密性要求。
机械基础-第11 章 连接
键的种类
3.半圆键 半圆键又称“半月键”,外形呈半圆形,如图11-5 所示。轴上的键槽为半圆形, 轮毂上的键槽为直槽,这种键配合时具有自动调心的作用。由于轴必须铣切较深的 键槽,会影响轴的强度与刚度,因此适用于传递转矩较小的场合。
键的种类
4.花键 花键是将轴制成周向均布的多个键,轮毂则制成与键配合的槽,如图11-6 所示。 传动时可使转轴与轮毂作周向与轴向运动。花键强度大,可传递极大的扭矩,广泛 用于汽车及其他机械中需要传递极大扭力的场合,如离合器及汽车前轮驱动轴等。 花键连接按其齿形不同,有矩形花键(图11-7a)和渐开线花键(图11-7b)两种。
连接
学习目标 ➢ 了解键连接的功用与分类。 ➢ 会正确选用键连接。 ➢ 了解销连接的类型、特点和应用。 ➢ 了解常用螺纹的类型、特点和应用。 ➢ 熟悉螺纹连接的主要类型、应用和结构。 ➢ 了解螺纹连接预紧及防松方法。 ➢ 了解弹簧的类型、特点和应用。 ➢ 了解联轴器的功用、类型、特点和应用。 ➢ 了解离合器的功用、类型、特点和应用。
螺纹各部分名称
7)牙底:螺纹的底部。 8)螺距:为相邻两螺纹牙对应点的轴向距 离。 9)导程:螺纹旋转一圈,沿轴向的移动距 离。 10)螺纹深度:螺纹牙顶与牙底之间沿径 向的垂直距离。 11)牙型角:相邻两螺纹牙间所成的槽角。 12)螺纹开角(导程角):螺旋线切线与 轴线间的夹角。
螺纹的功用
1.连接或固定机件 机械中某些需要随时拆卸的零件,可利用螺纹 加以连接或固定。 2.传递动力或运动 用于输送动力或运动的螺纹应具备较高的机械 效率,以减少传动时的动力损失。 3.调节距离或测微 机件间的相对位置需要改变时,可利用螺纹加 以调整,如滑动轴承中的剖分式轴承,此类螺纹大 都使用三角形螺纹。
机械设计基础总复习-机械设计部分
机械设计基础总复习机械设计部分•一、选择题:本题共20小题,每小题1分,共20分。
•二、填空题:本题共8个小题,15个空,每空1分,共15分。
•三、判断题:本题共10个小题,每小题1分,共10分。
•四、简答题:本题共3个小题,共16分。
•五、画图题:本题共3个小题,共23分。
•六、计算题:本题共3个小题,共16分。
3第10章联接第11章齿轮传动第12章蜗杆传动第13章带传动第14章链传动第15章轴第16章滚动轴承第17章滑动轴承第18章联轴器、离合器和制动器第10章联接1、联接分可拆联接与不可拆联接。
不损坏联接中的任一零件就可以将被联接件拆开的联接称为可拆联接,如螺纹联接、键联接和销联接等。
不可拆联接是指必须毁坏联接中的某一部分才能拆开的联接,如焊接、铆钉联接和粘接等。
2、螺纹联接和螺旋传动都是利用具有螺纹的零件进行工作的,前者作为紧固联接件用,后者则作为传动件用。
3、矩形螺纹传动效率高,但精加工较困难,牙根强度弱,螺旋副磨损后的间隙难以修复和补偿,使传动精度降低。
4、传动效率略低于矩形螺纹,但牙根强度高,工艺性和对中性好,可补偿磨损后的间隙,是最常用的传动螺纹。
5、锯齿形螺纹牙根强度高,单侧传动效率高和反向自锁性能好,用于单向受力的传动中。
6、螺纹升角ψ——在螺纹中径圆柱上,螺旋线的切线与垂直于螺纹轴线的平面间的夹角7、牙型角α---螺纹轴向截面内,螺纹牙型两侧边夹角。
8、双头螺柱联接常用于被联接件之一较厚或必须采用盲孔,且需经常拆卸的场合。
9、铰制孔用螺栓联接,螺栓光杆部分与被联接件的螺纹孔之间紧密配合。
10、常用于被联接件之一较厚或必须采用盲孔,且受力不大,不需经常拆卸的场合。
11、装配时预先拧紧,使螺纹联接受到轴向预紧力的作用,即预紧。
目的是保证螺纹联接的可靠性和紧密性,并起到防松作用。
预紧力产生的应力不得的80%。
超过材料屈服极限σs12、联接螺纹一般采用单头三角形螺纹,在静载荷和温度不变的条件下,一般不会自动松动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形螺纹
普通螺纹α = 60˚
粗牙
d
细牙
d
细牙
d
普通细牙螺纹
管螺纹
非螺纹密封管螺纹(圆柱管壁α = 55˚) 用螺纹密封管螺纹(圆锥管壁α = 55˚)
60˚圆锥管螺纹
公称直径——管子的公称通径。强调与普通螺纹不同 55 ˚ 55 ˚
d
d2
d1
d P
d2
d1
P
υ
2υ 非螺纹密封的管螺纹 用螺纹密封的管螺纹
P/2 P/2
P
S
d d d1 2
λ
也是一个假想圆柱的直径,该圆柱的 母线上牙型沟槽和凸起宽度相等。 相邻两牙在中径线上对应两点间的轴向距离
5) 导程Ph
Ph = nP
P/2 P/2
P
S
同一条螺旋线上的相邻 两牙在中径线上对应两点 间的轴向距离P d d d1 6) 螺纹升角 2 中径d2圆柱上,螺旋线的 切线与垂直于螺纹轴线的平 面的夹角 7)牙型角 α 轴向截面内螺纹牙型 相邻两侧边的夹角。牙 型侧边与螺纹轴线的垂 线间的夹角。 牙侧角 β
螺纹副
外螺纹
d2
d
连接螺纹(单线的三角螺纹) 5. 按螺旋的作用分
传动螺纹
螺旋传动
连接螺纹
传动螺纹
圆柱螺纹 5. 按母体形状分 圆锥螺纹
圆柱螺纹 圆锥螺纹
管螺纹
11.1.3 螺纹的主要参数
1) 大径 d 与外螺纹牙顶(或内螺 纹牙底)相重合的假想圆 柱体的直径 2) 小径 d1 与外螺纹牙底(或内螺纹牙顶)相 重合的假想圆柱体的直径 3)中径d2 4) 螺距P
展开中径d2 圆柱面得一斜面.
F
=f Fn/Fn =f
F
ρ =tan-1 f ——摩擦角
螺纹的拧紧 螺母在 F 和 Fa 的联合 作 用 下 , 逆 着 Fa 等 速向上运动 螺纹的拧松
+ρ
FR
F
Fa
+ρ
FR Fn ρ F’ π d2 d2
v
Fa
螺母在 F 和 Fa 的联 合作用下,顺着 Fa 等速向下运动。
梯形螺纹: β= 15º 锯齿形螺纹: β= 3º
常用于传动。
为了减少摩擦和提高效率,这两种螺纹的牙侧角β比三角形螺纹的要小得 多。用于剖分螺母时,梯形螺纹可消除因摩擦而产生的间隙,应用较广。 锯齿形螺纹的效率比矩形螺纹高,但只适合单向传动。
30º
3º
30º 梯 形
锯齿形
普通螺纹的基本尺寸:见184页表11-2;常用螺纹的类型、特 点 、和应用见183页表11-1。
11.2 螺纹连接的基本类型及螺纹紧固件
11.2.1 螺纹连接的基本类型 e a l1 l1
可承受横向载荷。
d
1. 螺栓连接
用于经常拆装易磨损之处。
孔与螺杆之间 留有间隙
螺纹余留长度l1 静载荷l1>=(0.3~0.5)d; 变载荷l1>=0.75d; 冲击载荷或弯曲载荷l1≥ d; 铰制孔用螺栓l1≈ 0; 螺纹伸出长度a=(0.2~0.3)d; 螺栓轴线到边缘的距离 e=d+(3~6) mm
提问:当 ≤ρ时,若没有力矩T,螺母 在Fa的作用下会运动吗?
不会! --这种现象称为自锁。
1.螺旋副的效率 螺旋转动一圈时,有效功为FaS, 输入功为2π T 定义螺旋副的效率为有效功与输入功之比:
Fa S tan 2 T tan( v )
当ρv一定时在 =45˚-ρv/2 处效率曲线有极大值。
驱动力矩:
-ρ
FR
d2 d2 T F Fa tan( - ) 2 2
Fa
F
若 >ρ
d2 T Fa tan( - ) 2
则 T 为正值,其方向与螺母运动方向相 反,是阻力; 若 ≤ρ 则 T 为负值,方向相反,其方向与预先 假定的方向相反,而与螺母运动方向相同, 成为放松螺母所需外加的驱动力矩。
第4篇 连 接
第11章 螺纹连接
螺纹
螺 纹 连 接
螺纹副的受力分析、效率和自锁 螺纹连接的基本类型及螺纹紧固件
螺纹连接的预紧和防松
螺栓连接的强度计算
第11章 螺纹连接
螺栓连接的强度计算
联
螺栓的材料和许用应力
接
提高螺栓连接强度的措施
螺旋传动概述
11.1 螺纹
11.1.1 螺纹的形成 螺旋线 螺纹 一动点在一圆柱体的表面上,一边绕轴线等 速旋转,同时沿轴向作等速移动的轨迹 一平面图形沿螺旋线运动,运动时保持该图形 通过圆柱体的轴线,就得到螺纹 d2
螺纹
11.1.2 螺纹的分类 三角形螺纹(常用于连接) 矩形螺纹 梯形螺纹 (多用于传动) 锯齿形螺纹
1. 按螺纹的牙型分
30º
15º 3º
30º
矩形螺纹
三角形螺纹梯形螺纹锯齿形螺纹2. 按螺纹的旋向分 3. 按螺纹的线数分
右旋螺纹(常用) 左旋螺纹 单线螺纹 - 主 要 用 于 连
接
多线螺纹-多用于传动 外螺纹 4. 按回转体的内外表面分 内螺纹 内螺纹
对于传动螺旋,一般取: 效率 100 η% 80 60 fv =tanρv =0.1
自锁极限
紧固螺纹区
ρv <
≤25˚
40 20
2.螺旋副的自锁 螺旋副的自锁条件: ≤ρv
0˚ 10˚ 20˚ 30˚ 40˚ 50˚
11.1.5 常用螺纹 管螺纹α = 55˚ 普通螺纹以大径d为公称直径,同一公称直径可以有多种螺 距,其中螺距最大的称为粗牙螺纹,其余的统称为细牙螺纹。粗 牙螺纹应用最广。 细牙螺纹的优点:升角小、小径大、自锁性好、强度高。 缺点:不耐磨易滑扣。 应用:薄壁零件、受动载荷的连接和微调机构。 P P P
驱动力矩:
d 2 d2 Fa tan( ) T F 2 2
当螺纹拧松(滑块下滑)时: Fa ——阻力,F ——驱动力, F’ ——摩擦力, 沿斜面朝下。 Fn
FR F’ F Fa
ρ
v
∠FRFa = -ρ 列出力平衡方程:FR + Fa +F =0
作力多边形可得: F=Fatan( -ρ )
np tan d2
λ
α
S
β
β
π d2
11.1.4 螺旋副的受力分析、效率和自锁
0. 受力分析 矩形螺纹β= 0º Fa ——轴向载荷 F ——水平推力
Fn ——法向反力 FR ——总反力 tanρ =F’/Fn F’=f Fn ——摩擦力 f ——摩擦系数 d2
Fa
螺旋副在轴向载荷Fa作用下相对运动,可看作在 中径的水平力F推动滑块(重物)沿螺纹运动
F Fa
S
F
螺纹的拧紧(滑块上升) Fa ——阻力,F ——驱动力, F’ ——摩擦力, 沿斜面朝下。 ∠FRFa = +ρ FR = Fn +F’ FR =(1 + f ) Fn 得:F=Fatan( +ρ ) FR
+ρ
FR
F
Fa
+ρ
Fn ρ F’ π d2 v F Fa S