高三总复习电磁场和电磁波教案
电磁场与电磁波电子教案
电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电磁场的定义与特性1.2 电磁场的基本方程1.3 电磁场的边界条件1.4 电磁场的能量与辐射第二章:静电场2.1 静电场的基本方程2.2 静电场的边界条件2.3 静电场的能量与能量密度2.4 静电场的势与电场强度第三章:稳恒磁场3.1 稳恒磁场的性质3.2 稳恒磁场的磁感应强度3.3 磁场的基本方程3.4 磁场的边界条件第四章:电磁波的基本概念4.1 电磁波的产生与传播4.2 电磁波的波动方程4.3 电磁波的能量与动量4.4 电磁波的极化与反射、折射第五章:电磁波的传播与应用5.1 电磁波在自由空间的传播5.2 电磁波在介质中的传播5.3 电磁波的辐射与天线理论5.4 电磁波的应用(如无线通信、微波炉等)第六章:电磁波的波动方程与群速度6.1 电磁波的波动方程6.2 电磁波的相速度与群速度6.3 电磁波的色散现象6.4 电磁波的传播特性分析第七章:电磁波的极化与散射7.1 电磁波的极化类型与极化率7.2 电磁波的圆极化与线极化7.3 电磁波的散射现象及其原理7.4 电磁波散射的应用(如雷达、遥感等)第八章:电磁波在天线理论与辐射中的应用8.1 天线的基本原理与类型8.2 天线的辐射特性与方向性8.3 天线的设计与优化8.4 电磁波在天线辐射中的应用(如无线通信、广播等)第九章:电磁波在介质中的传播与波导9.1 电磁波在均匀介质中的传播9.2 电磁波在非均匀介质中的传播9.3 波导的基本概念与特性9.4 波导中的电磁波传播与应用第十章:电磁波在现代科技领域的应用10.1 无线通信与电磁波10.2 微波炉与电磁波10.3 雷达技术与电磁波10.4 光学与电磁波(如光纤通信、激光等)10.5 电磁波在其他领域的应用(如医学、工业等)重点和难点解析重点一:电磁场的基本概念补充说明:电磁场的定义是电荷产生的一种场,具有能量和动量。
基本方程包括高斯定律、法拉第感应定律和安培定律。
电磁场与电磁波教案
电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。
高中物理教案电磁场与电磁波
高中物理教案电磁场与电磁波教案:高中物理教案——电磁场与电磁波教案概述:本教案主要围绕高中物理课程中的电磁场与电磁波这一主题展开,旨在帮助学生深入理解电磁场和电磁波的基本概念、性质和应用,并培养学生分析和解决与该主题相关问题的能力。
通过引导学生进行实验观察、数学计算和科学推理,以及鼓励学生进行小组讨论和合作实践,以提高学生的实际操作能力和探究精神。
第一部分:电磁场的基本概念和性质介绍:本部分旨在引导学生了解电磁场的基本概念和性质,包括电场和磁场的产生原理、电荷和磁荷的相互作用、电磁感应现象等内容。
通过实验观察和数学计算,帮助学生理解电磁场的本质和基本规律。
1.1 电场和磁场的概念和产生原理- 电场的概念和性质- 磁场的概念和性质- 电场和磁场的产生原理1.2 电荷和磁荷的相互作用- 电荷的特性和相互作用规律- 磁荷的特性和相互作用规律1.3 电磁感应现象- 电磁感应的概念和原理- 法拉第电磁感应定律及其应用实验设计:教师可设计相关实验,如通过电磁铁和螺线管之间的相互作用观察电磁感应现象,并运用安培环路定理进行实验验证。
第二部分:电磁波的特性和应用介绍:本部分旨在帮助学生了解电磁波的基本特性和应用,包括电磁波的分类、传播特性、电磁波谱、电磁波的吸收与衍射等内容。
通过实验探究和分析讨论,激发学生对电磁波的深入认识和应用思考。
2.1 电磁波的分类与特性- 电磁波的概念和特性- 电磁波的分类及其频率范围2.2 电磁波的传播特性- 电磁波的传播速度和方向- 电磁波的干涉和衍射现象2.3 电磁波谱及应用- 电磁波谱的分类和应用领域- 无线电通信、光通信和医学诊断中的电磁波应用实验设计:教师可设计相关实验,如利用光栅进行电磁波的衍射实验,观察不同波长电磁波的衍射现象,通过数据分析和学生讨论,加深对电磁波传播特性的理解。
第三部分:电磁场与电磁波的相互关系介绍:本部分旨在引导学生理解电磁场与电磁波的相互关系,包括电磁波的产生原理、电磁场对电磁波的作用,以及电磁波对电磁场的影响。
电磁场与电磁波电子教案
电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。
高中物理教案:电磁场与电磁波
高中物理教案:电磁场与电磁波
1. 引言
本节课将介绍电磁场和电磁波的基本概念及其重要性。
学生将了解电磁场的定义、性质和来源,以及电磁波的特征和应用。
2. 电磁场
2.1 定义和性质
•电磁场是由带电粒子或者带电体所产生的力场。
•常见的电磁场包括静电场、恒定磁场和变化的磁场。
•介绍库仑定律对于描述静电场的重要性。
2.2 来源和作用
•解释带点粒子在静电力作用下发生运动。
•研究变化的磁场对导线中的带电粒子产生力的影响。
•引入法拉第定律,揭示变化的磁通量对于感应产生感应电动势和涡流。
3. 电磁波
3.1 定义和特征
•定义并解释了什么是电磁波,以及它由哪些组成部分。
•描述了不同频率范围内的电磁波,包括射线、微波、可见光等。
3.2 特点和性质
•揭示了电磁波传播的特点,例如速度、波长和频率。
•解释了电磁波的相互作用、穿透能力和反射折射现象。
4. 应用
4.1 通信技术
•探讨无线通信技术中的电磁波应用。
•提到手机、卫星通信和无线网络等常见应用,并解释其原理。
4.2 医学影像技术
•解释医学影像技术中的X光和核磁共振成像原理。
•引入CT扫描和PET扫描等其他医学影像技术。
4.3 其他领域应用
•探讨雷达、激光器、遥感卫星等其他领域中电磁场与电磁波的应用。
5. 总结
简要总结了本节课学习内容,强调提高学生对电磁场与电磁波重要性及应用领域的理解。
同时,鼓励学生进一步探索相关知识并拓展思维。
电磁场与电磁波教案
电磁场与电磁波教案电磁场与电磁波教案学院:电子与信息工程学院教研室:电信基础教研室课程名称:电磁场与电磁波任课教师:封志宏学期:授课班级:电子与信息工程学院制兰州交通大学教案第1 次课学时:2 章节教学目的和要求讲授主要内容重点难点要求掌握知识点和分析方法第1章,回顾并进一步学习矢量代数的概念和运算,学习三种常用的正交坐标系。
于电磁场的计算经常采用圆柱坐标系和球坐标系,所以这两种坐标系在本课程中非常基础和重要的知识点。
矢量代数三种常用的正交坐标系授课对象重点是直角坐标系、圆柱坐标系和球坐标系,以及三种坐标系之间的换算关系。
要求掌握三种坐标系之下的微积分运算,以及三种坐标系之间的换算关系矢量代数?????????A?(B?C)?B?(C?A)?C?(A?B) ?????????A?(B?C)?(A?C)B?(A?B)C三种常用的正交坐标系 1. 直角坐标系教授思路,采用的教学方法和辅助手段,板书设计,重点如何突出,难点如何解决,师生互动等位置矢量:r?exx?eyy?ezz ????????线元矢量:dl?exdx?eydy?ezdz ??????面元矢量:dSx?exdlydlz?exdydz,dSy?eydlxdlz?eydxdz ???dSz?ezdlxdly?ez dxdy 体积元:dV?dxdydz 2. 圆柱坐标系x??cos?,y??sin?,z?z,0????,0???2?,???z?? 位置矢量:r?e???ezz ???????线元矢量:dl?e?d??e??d??ezdz 面元矢量:???dS??e?dl?dlz?e??d?dz ??? dS??e?dl?dlz?e?d?dz ???dSz?ezdl?dl??ez? d?d? 体积元:dV??d?d?dz 3. 球坐标系x?rsin?cos?,y?rsin?sin?,z?rsin?0?r??,0????,0???2? 作业布置主要参考资料备注位置矢量:r??e?rr 线元矢量:dl??e???rdr?e?rd??e?rsin?d? 面元矢量:dS??e??e?2rrdl?dl?rrsin?d?d? dS?????e?dlrdl??ezrsin?drd?dS??l???e?dlrd??e?rdrd? 体积元:dV?r2sin?drd?d? ,, 编著兰州大学出版社《电磁场与电磁波》李锦屏兰州交通大学教案第 2 次课学时:2 章节教学目的和要求讲授主要内容重点难点要求掌握知识点和分析方法第1章,梯度、散度和旋度是构成麦克斯韦方程组的基本算子,也是计算电磁场的基本算子,所以从方向导数、通量、环流的基础上,把三个算子的物理意义和计算公式介绍并推导出来。
高中物理教案:研究电磁场和电磁波
高中物理教案:研究电磁场和电磁波一、引言(200字)本教案旨在帮助高中物理教师为学生介绍电磁场和电磁波的基本概念。
通过探索电磁场与电磁波的特性,学生将能够了解这两个重要的物理概念对于我们日常生活和科技应用的重要性。
该教案采用逐步推进的方法,让学生通过实验、练习和小组讨论进行深入学习。
二、课程目标(300字)1.了解电荷和电流对于产生电场的作用,并能计算简单情况下的电场强度。
2.理解静止电荷和运动带来的力的变化,并能应用库仑定律进行相关计算。
3.理解基本的导体与绝缘体规律,并能运用高斯定律计算导体内部和周围空间的电场强度。
4.掌握麦克斯韦方程组,并能运用它们分析静态情况下两种不同条件下的定向导线的磁场特性。
5.理解迈克耳孙电磁感应定律,能计算由磁场改变导线中的电流强度。
6.了解电磁波的基本概念和性质,并能运用麦克斯韦方程组解释其产生的原理。
7.能够通过实验研究不同类型的电磁波,如可见光、微波和射频波等,并了解它们应用于日常生活和通信技术的重要性。
三、课程内容(1500字)1. 电荷和电场(400字)•介绍带电粒子和静止带电体所带来的电场强度。
•讲解库仑定律并应用于计算。
•探索高斯定律以及它在理解导体与绝缘体的作用中的重要性。
2. 磁场与安培定律(400字)•学习运动带来的力对物体受力方向变化以及螺线管在不同条件下产生磁场特性之间的关系。
•引入安培环路法则,讲解分析位于环路上各点处磁场强度和方向变化。
3. 迈克耳孙电磁感应定律(300字)•介绍电流和磁场之间的关系。
•讨论不同情况下电磁感应产生的效应。
•引入法拉第电磁感应定律并进行相关实验操作。
4. 电磁波的基本概念(400字)•解释电场和磁场震荡形成无线电波、微波和可见光等电磁波的原理。
•探索麦克斯韦方程组以解释电磁波传播的规律。
5. 应用与发展(100字)•了解不同类型的电磁波在日常生活中的应用,如通信技术、医学成像和雷达系统等。
•探讨未来可能使用的新型电磁波技术,并对其影响进行评估。
电磁场与电磁波教案
电磁场与电磁波教案教案:电磁场与电磁波一、教学目标1.理解电磁场和电磁波的基本概念和特性;2.能够运用电磁场和电磁波的知识,解释常见现象和应用;3.发展科学探究能力和实验设计能力;4.培养学生的分析和解决问题的能力。
二、教学内容1.电磁场的概念和基本特性;2.麦克斯韦方程组;3.电磁波的概念和基本特性;4.电磁波的应用。
三、教学过程第一课时:电磁场1.引入(5分钟)通过展示图片或视频,引发学生对电磁现象的思考,了解学生对电磁现象的了解程度。
2.知识讲解(20分钟)-介绍电磁场的概念和基本特性;-通过实例解释电磁场的产生、传播和作用机制;-分析电磁场与电磁感应的关系。
3.实验演示(20分钟)进行实验,用螺线管和直流电流源组成的实验装置,演示电磁场的感应现象。
要求学生记录实验现象和结果,并进行分析和解释。
4.课堂练习(15分钟)出示相关练习题,让学生自主解答,然后进行讲解和讨论。
5.总结归纳(10分钟)总结本节课的重点内容,强调电磁场的重要性和应用价值。
第二课时:电磁波1.引入(5分钟)回顾上节课的内容,通过复习提问,检查学生对电磁场的掌握程度。
2.知识讲解(20分钟)-介绍电磁波的概念和基本特性;-解释电磁波的传播原理和性质;-探讨电磁波与电磁场的关系。
3.实验设计(25分钟)带领学生进行实验设计,验证电磁波的传播特性。
学生自主设计实验方案、记录实验数据、观察实验现象,并进行分析和解释。
4.课堂练习(15分钟)出示相关练习题,让学生自主解答,然后进行讲解和讨论。
5.应用拓展(10分钟)介绍电磁波在通讯、医学等领域的应用,引发学生对电磁波应用的思考和探索。
四、教学评价1.合作实验报告(20分)要求学生根据自己设计的实验方案,填写实验记录、分析实验数据、总结实验结果,并进行合作评价。
2.知识测试(30分)出题形式多样,包括选择题、判断题、应用题等,以考察学生对电磁场和电磁波的掌握程度。
3.课堂表现(20分)评价学生在课堂上的主动参与程度、回答问题的准确性和深度等。
电磁场与电磁波教学教案
2 教学内容
电磁场基本概念
电磁场的定义:电 场和磁场的统称
电磁场的性质:电 场和磁场相互联系、 相互转化
电磁场的来源:电 荷、电流、变化的 磁场
电磁场的基本方程 :麦克斯韦方程组
电磁波传播特性
电磁波的传播速 度:光速
电磁波的传播方 向:直线传播
电磁波的传播频 率:与波长和频 率有关
电磁波的传播能 量:与振幅和频 率有关
电磁场与电磁波教学 教案
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
教学目标
02
教学内容
04
教学过程
05
教学评价与反 馈
03
教学方法
06
教学反思与改 进
1 教学目标
知识目标
理解电磁场的 基本概念和性
质
掌握电磁波的 产生、传播和
接收原理
学会运用电磁 场和电磁波知 识解决实际问
添加标题
添加标题
添加标题
添加标题
分析反馈结果:对收集到的反馈数 据进行分析,找出学生的难点和薄 弱环节
持续跟踪:在调整教学策略后,持 续关注学生的反馈,以便及时调整 和改进教学。
6 教学反思与改进
反思教学内容和方法
教学方法:是否采用了生动 形象的教学方法,如举例、 图解、实验等?
教学内容:是否涵盖了电磁 场与电磁波的基本概念、原 理和公式?
通过动画和视频,帮助学生理 解抽象的电磁场和电磁波现象
利用交互式软件,让学生动手 操作,加深对电磁场与电磁波 知识的理解
结合实际案例,让学生了解电 磁场与电磁波在实际生活中的 应用
4 教学过程
教科版高中物理4:《电磁场和电磁波》教案新版
3.2《电磁场和电磁波》教案【教学目标】1、知识与技能:知道麦克斯韦电磁理论的主要内容知道电磁波的形成和特点知道赫兹的贡献2、过程与方法:了解联想、推理、类比、对称等物理学的思想了解用实验来验证理论的方法3、情感态度与价值观:体会电磁场理论建立的过程体会自然界对称、和谐之美【重点难点】1、重点:麦克斯韦电磁理论、电磁波的形成和电磁波的特点2、难点:麦克斯韦电磁理论的理解【授课内容】一、麦克斯韦电磁理论的两个基本假设1、电磁场理论的核心之一:变化的磁场能够在周围空间产生电场◎实验为证如图,交流电产生了周期变化的磁场,上面的线圈中产生电流使灯泡发光◎讨论:①如果用不导电的塑料线绕制线圈,线圈中还有电流和电场吗?②线圈不存在时,线圈所处的空间还有电场吗?③若改成恒定的直流电,还有电场吗?麦克斯韦认为在变化的磁场周围产生电场,是一种普遍存在的现象,跟闭合电路是否存在无关,导体环只是用来显示电流的存在◎说明:在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解: (1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场能够在周期空间产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场根据麦克斯韦理论,在给电容器充电的时候,不仅导体中的电流要产生磁场,而且在电容器两极板间变化着的电场周围也要产生磁场◎理解: (1) 均匀变化的电场产生稳定磁场(2) 非均匀变化的电场产生变化磁场〖规律总结〗1、麦克斯韦电磁场理论的理解:①恒定的电场不产生磁场②恒定的磁场不产生电场③均匀变化的电场在周围空间产生恒定的磁场④均匀变化的磁场在周围空间产生恒定的电场⑤振荡电场产生同频率的振荡磁场⑥振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系〖知识迁移〗电磁感应现象其实是麦克斯韦电磁理论的冰山一角。
麦克斯韦电磁理论广泛运用于现代生活的各个领域,如通信,遥感等。
高中物理-电磁场和电磁波教案
高中物理-电磁场和电磁波教案教学目标1.知道麦克斯韦电磁场理论的主要内容。
2.知道电磁波的特点。
3.通过对电磁波发现过程的了解,认识规律的普遍性与特殊性,培养学生的逻辑推理和类比推理能力。
重点难点重点:1.麦克斯韦电磁场理论的主要内容2.电磁波的形成及基本特点难点:“变化的磁场产生电场”,根据电磁感应知识,学生是能够理解的;而对第二个要点“变化的电场产生磁场”在没有实验基础的情况下,只有让学生接收并记住结论,不宜补充课本之外的有关内容。
设计思想本节课讲述了麦克斯韦发现电磁波的背景和过程,这是一次生动的科学思维和科学方法的教育.麦克斯韦凭借自己的数学天赋,从研究法拉第的电磁感应定律到预言“电磁波的存在”,最终建立了完整的电磁学理论.无处不体现着科学探索的精神和方法,更在无形中渗透着创新思维在科学发展中的推动作用。
对学生来说本节内容是比较抽象的,陌生的,甚至是无法感知的.对电磁波的产生机制及存在充满好奇又觉得非常神秘不易理解.所以我们必须去引导学生了解人们对电磁波认知的发展历程,从麦克斯韦预言“电磁波的存在”到赫兹用“电火花实验”证实预言的成立.在学生整体感知的过程中引导学生体会这些科学巨人们的思路、方法及他们一丝不苟的科学精神,并激发他们热爱科学、探索真理的求知热情。
教学资源演示实验相关器材,课件教学设计【课堂引入】问题:大家看到的图片是“神舟九号”发射场面。
“神舟九号”上天后,人们是怎样知道它到达预定的地点呢?通过无线电波。
无线电广播、电视、人造卫星、导弹、宇宙飞船等,传递信息和跟地面的联系都要利用电磁波。
现代社会的各个部门,几乎都离不开“电磁波”,可以说“电”作为现代文明的标志,“电磁波”就是现代文明的神经中枢,或者叫现代化的代名词。
那么,电磁波是什么?它是怎样产生的?它有什么性质?这一节就要讨论这些问题。
【课堂学习】学习活动一:麦克斯韦电磁理论的两个基本假设●变化的磁场产生电场问题1:如图,AB中电流的方向是A→B,问为什么会有A到B的电流?A→B电流形成的实质是导体中有电场,A→B电场产生的电场力使电荷发生了定向移动。
电磁场与电磁波 总复习学习学习教案.ppt
设媒质2为理想导体,则E2、D2、H2、B2均为零,故
errn ern en ern
r
D r
S
B 0
r
E 0
rr
H J
S
理想导体表面上的电荷密度等于 Dr的法向分量 理想导体表面上 Br的法向分量为0 理想导体表面上 Er的切向分量为0
r 理想导体表面上的电流密度等于 H的切向分量
2020/4/20
rr
in
r E
E dl Cr B
r B
r dS
S t
t
2020/4/20
23
蜒 ( 2 )
导体in回路C在Er恒 d定lr磁 场C中(v运r 动Br )
r dl
蜒 ( 3 ) 回路在时变磁场中运动
in
rr E dl
C
(vr
r B)
r dl
C
r B
r
dS
S t r
微分形式
in
s
c
v
• A 0
(u) 0.
2020/4/20
3
6. 算符
矢量算符 在直角坐标内,
ex
x
ey
y
ez
z
,
所以 u是个矢量,而 A是个标量, A 是个矢量。
因而矢量算符符合矢量标积、矢积的乘法规则,在
计算时,先按矢量乘法规则展开,再作微分运算。
7.亥姆霍兹定理总结了矢量场的基本性质,分析矢量场总
S
S
(rr)
r R
R3
dS
Er (rr) 1
l
(rr)
r R
dl
4π0 C R3
根据上述定义,真空中静止 点电荷q 激发的电场为
高三物理第一轮复习《第十三章 交变电流 电磁场和电磁波》教案
城东蜊市阳光实验学校交变电流电磁场和电磁波备课指要教学建议1、对正弦交变电流的产生过程的研究过程实际上就是对电磁感应知识的应用过程。
2、正弦交变电流的产生过程是理解正弦交变电流规律的根底,正弦交变规律是理解交变电流的描绘的根底。
3、复习正弦交变电流的规律时要注意将公式,图象以及详细产生过程相结合。
4、要注意交变电流的瞬时值、最大值、有效值的定义以及实际意义,尤其是在有效值的定义中要体会用到的等效思想。
5、注意区别交变电流的瞬时值,有效值以及平均值的详细含义及用法。
案例导入例1一个面积为S 的矩形圈在匀强磁场中以其一条边为转轴做匀速转动,磁场方向与转轴垂直。
线圈中感应电动热e 与时间是是t 的关系如图13-45-1所示。
感应电动势最大值和周期可由图中读出,那么磁感应强度B=。
在t=12T 时刻,线圈平面与磁感应强度的夹角等于。
【分析】由交变电流规律知,不管线圈从何处旋转,都是在中性面处电动势为零,在与中性面垂直处电动势最大,最大值为Em=NBSω。
由图可知t=0时刻,线圈在与中性面垂直处,所以瞬时感应电动势的表达式应为e=Emcosωt=NBSωcosωt。
根据这个规律,即可求解。
【解答】〔1〕由Em=NBSω及T πω2=知B=S N EmT π2,这里N=1,故正确答案为S EmT π2。
〔2〕如图13-45-2所示,t=12T 时,线圈转过的角度6122ππωθ=⨯==T T t ,即θ=30°〔答150°也算对〕。
【答案】〔1〕S EmT π2;〔2〕30°〔或者者150°〕【归纳】该题的解题根底是正弦交变电流的产生原理。
通过此题可以很好的复习正弦交变电流的产生过程及规律。
例2一阻恒定的电阻器,当两端加上10V 的直流电压时,测得它的功率为P ;当两端加上某一正弦交变电流压时,测得它的功率为2P 。
由此可知该交变电流电压的有效值为 V ,最大值为V 。
(完整版)电磁场与电磁波教案
1.1矢量代数
1.2三种常用的正交坐标系
重点
难点
重点是直角坐标系、圆柱坐标系和球坐标系,以及三种坐标系之间的换算关系。
要求掌握知识点和分析方法
要求掌握三种坐标系之下的微积分运算,以及三种坐标系之间的换算关系
教授思路,采用的教学方法和辅助手段,板书设计,重点如何突出,难点如何解决,师生互动等
《电磁场与电磁波》李锦屏编著兰ቤተ መጻሕፍቲ ባይዱ大学出版社
兰州交通大学教案(理论教学用)
第 7 次课 学时:2
授课对象
章节
第2章2.4
教学目的和要求
直角坐标系:
圆柱坐标系:
球坐标系:
1.8亥姆霍兹定理
作业布置
主 要
参考资料
《电磁场与电磁波》李锦屏编著兰州大学出版社
兰州交通大学教案(理论教学用)
第 5 次课 学时:2
授课对象
章节
第2章2.1, 2.1
教学目的和要求
回顾《普通物理》中所学的电荷守恒定律和真空中静电场的基本规律,从梯度、散度、旋度的角度深入理解并掌握静电场的基本规律,为时变场打下基础。
作业布置
1.15,1.27,1.29
主 要
参考资料
《电磁场与电磁波》李锦屏编著兰州大学出版社
兰州交通大学教案(理论教学用)
第 4 次课 学时:2
授课对象
章节
第1章1.7,1.8
教学目的和要求
拉普拉斯运算是电磁场波动方程中的主要运算,亥姆霍兹定理总结了矢量场的基本性质,指出研究矢量场要从场的散度和旋度着手,研究电磁场也要从电场和磁场的散度和旋度着手。
要求掌握知识点和分析方法
掌握矢量场的环流与旋度的计算公式以及斯托克斯公式。
电磁场与电磁波总复习教案
电磁场与电磁波总复习教案一、教学目标1. 回顾电磁场与电磁波的基本概念、原理和特性。
2. 巩固电磁场与电磁波的基本方程和计算方法。
3. 提高学生解决实际问题的能力,为后续课程打下坚实基础。
二、教学内容1. 电磁场的基本概念:电场、磁场、电磁场。
2. 电磁场的产生:库仑定律、安培定律、法拉第电磁感应定律。
3. 电磁场的传播:均匀场、非均匀场、时变场。
4. 电磁波的产生与传播:麦克斯韦方程组、电磁波的波动方程。
5. 电磁波的特性:波长、频率、速度、能量。
三、教学重点与难点1. 重点:电磁场的基本概念、电磁场的产生与传播、电磁波的特性。
2. 难点:电磁场的计算方法、电磁波的产生与传播。
四、教学方法1. 采用讲授法,系统讲解电磁场与电磁波的基本概念、原理和特性。
2. 利用案例分析,让学生了解电磁场与电磁波在实际应用中的重要性。
3. 开展小组讨论,培养学生合作学习的能力。
4. 利用多媒体课件,增强课堂教学的直观性。
五、教学安排1. 第一课时:电磁场的基本概念、电磁场的产生与传播。
2. 第二课时:电磁波的产生与传播、电磁波的特性。
3. 第三课时:电磁场的计算方法。
4. 第四课时:电磁波在实际应用中的案例分析。
5. 第五课时:课堂练习与总结。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评估1. 课堂提问:通过提问了解学生对电磁场与电磁波基本概念的理解程度。
2. 课堂练习:布置相关练习题,检验学生对电磁场与电磁波计算方法的掌握。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
4. 课后作业:布置综合性作业,让学生巩固所学知识。
七、教学资源1. 多媒体课件:展示电磁场与电磁波的原理、图形和案例。
2. 教材:提供详细的知识点和参考资料。
3. 网络资源:为学生提供更多的学习资料和实例。
4. 实验室:进行电磁场与电磁波的相关实验,增强学生直观感受。
八、教学反思1. 总结本节课的教学效果,反思教学方法的适用性。
《第四章 2 电磁场与电磁波》学历案-高中物理人教版19选择性必修第二册
《电磁场与电磁波》学历案(第一课时)一、学习主题本次学习的主题为《电磁场与电磁波》。
这一主题作为高中物理课程的核心内容,是理解现代电磁学基础的关键。
在第一课时中,我们将着重学习电磁场的基本概念和性质,为后续的电磁波及其应用奠定坚实的基础。
二、学习目标1. 掌握电荷周围存在电场的观点,了解电场强度的基本概念及其表示方法。
2. 理解电流产生磁场的基本原理,掌握安培环路定律及其应用。
3. 了解电磁波的产生、传播及基本特性,初步建立电磁波的物理模型。
4. 培养学生的观察能力、实验能力和理论分析能力,增强学生对物理现象的探究兴趣。
三、评价任务1. 课堂表现:通过学生在课堂上的表现,评价其对电场和磁场基本概念的掌握情况,以及在讨论环节的参与度和表达能力。
2. 作业完成情况:通过布置相关的课后作业,如绘制电场图、解释电磁波产生与传播等,评价学生对知识点的理解和应用能力。
3. 测验或小测验:通过定期的测验或小测验,评估学生对电磁场与电磁波知识点的掌握程度,并针对问题进行及时的教学调整。
四、学习过程1. 导入新课:通过回顾之前学习的静电现象,引出电场的概念,并简要介绍磁场的相关知识。
2. 讲解电场:通过图示和实例,详细讲解电场的概念、电场强度的定义及表示方法。
让学生理解电荷周围存在电场的观点。
3. 学习磁场:讲解电流产生磁场的基本原理,通过实验演示安培环路定律的应用,并让学生动手操作简单的电磁铁实验。
4. 探究电磁波:介绍电磁波的产生、传播及基本特性,通过动画或实验视频展示电磁波的传播过程。
5. 课堂讨论:组织学生进行小组讨论,就电磁场的性质、电磁波的应用等话题展开讨论,培养学生的合作能力和表达能力。
6. 课堂总结:总结本课学习的重点内容,强调电场和磁场的概念及其在现实生活中的应用。
五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对电场和磁场基本概念的掌握情况。
2. 课后作业:布置相关的课后作业,如绘制电场图、解释电磁波的产生与传播等,以巩固学生对知识点的理解和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场和电磁波知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。
本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。
教学目标:1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论.2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度.3.了解我国广播电视事业的发展.教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论教学难点:定性理解麦克斯韦的电磁场理论教学方法:讲练结合,计算机辅助教学教学过程:一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。
2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率LC T π2= LC f π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关(2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。
分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。
⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。
⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。
【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如右图所示。
则这时电容器正在_____(充电还是放电),电流大小正在______(增大还是减小)。
解:用安培定则可知回路中的电流方向为逆时针方向,而上极板是正极板,所以这时电容器正在充电;因为充电过程电场能增大,所以磁场能减小,电流在减小。
【例2】右边两图中电容器的电容都是C =4×10-6F ,电感都是L =9×10-4H ,左图中电键K 先接a ,充电结束后将K 扳到b ;右图中电键K 先闭合,稳定后断开。
两图中LC 回路开始电磁振荡t =3.14×10-4s 时刻,C 1的上 C L a K C 1 L 1 L 2C 2 Ki q t too 放电 充电 放电 充极板正在____电(充电还是放电),带_____电(正电还是负电);L 2中的电流方向向____(左还是右),磁场能正在_____(增大还是减小)。
解:先由周期公式求出LC T π2==1.2π×10-4s , t =3.14×10-4s 时刻是开始振荡后的T 65。
再看与左图对应的q-t 图象(以上极板带正电为正)和与右图对应的i-t 图象(以LC 回路中有逆时针方向电流为正),图象都为余弦函数图象。
在T 65时刻,从左图对应的q-t 图象看出,上极板正在充正电;从右图对应的i-t 图象看出,L 2中的电流向左,正在增大,所以磁场能正在增大。
二、电磁场1.麦克斯韦的电磁场理论要深刻理解和应用麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。
(1)变化的磁场(电场)能够在周围空间产生电场(磁场);(2)均匀变化的磁场(电场)能够在周围空间产生稳定的电场(磁场);(3)振荡的磁场(电场)能够在周围空间产生同频率的振荡电场(磁场);可以证明:振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。
点评:变化的磁场在周围空间激发的电场为涡旋电场,涡旋电场与静电场一样,对电荷有力的作用,但涡旋电场又于静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时,电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。
另外要用联系的观点认识规律,变化的磁场产生电场是电磁感应现象的本质。
【例3】右图中,内壁光滑、水平放置的玻璃圆环内,有一直径略小于环口径的带正电的小球,正以速率v 0沿逆时针方向匀速转动。
若在此空间突然加上竖直向上、磁感应强度B 随时间成正比例增加的变化磁场,设小球运动过程中的电量不变,那么()A.小球对玻璃环的压力不断增大B.小球受到的磁场力不断增大C.小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动D.磁场力一直对小球不做功分析:因为玻璃环所处有均匀变化的磁场,在周围产生稳定的涡旋电场,对带正电的小球做功,由楞次定律,判断电场方向为顺时针,在电场力的作用下,小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动。
小球在水平面内沿轨迹半径方向受两个力:环的弹力N和磁场的洛仑兹力f,而且两个力的矢量和始终提供向心力,考虑到小球速度大小的变化和方向的变化以及磁场强弱的变化,弹力和洛仑兹力不一定始终在增大。
洛仑兹力始终和运动方向垂直,所以磁场力不做功。
正确为CD。
2.电磁场:按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一场,称为电磁场。
电场和磁场只是这个统一的电磁场的两种具体表现。
理解电磁场是统一的整体:根据麦克斯韦电磁场理论的两个要点:在变化的磁场的周围空间将产生涡漩电场,在变化的电场的周围空间将产生涡漩磁场.当变化的电场增强时,磁感线沿某一方向旋转,则在磁场减弱时,磁感线将沿相反方向旋转,如果电场不改变是静止的,则就不产生磁场.同理,减弱或增强的电场周围也将产生不同旋转方向的磁场.因此,变化的电场在其周围产生磁场,变化的磁场在其周围产生电场,一种场的突然减弱,导致另一种场的产生.这样,周期性变化的电场、磁场相互激发,形成的电磁场链一环套一环,如下图所示.需要注意的是,这里的电场和磁场必须是变化的,形成的电磁场链环不可能是静止的,这种电磁场是无源场(即:不是由电荷激发的电场,也不是由运动电荷-电流激发的磁场.),并非简单地将电场、磁场相加,而是相互联系、不可分割的统一整体.在电磁场示意图中,电场E矢量和磁场B 矢量,在空间相互激发时,相互垂直,以光速c在空间传播.3.电磁波变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。
(1)有效地发射电磁波的条件是:①频率足够高(单位时间内辐射出的能量P∝f4);②形成开放电路(把电场和磁场分散到尽可能大的空间里去)。
(2)电磁波的特点:①电磁波是横波。
在电磁波传播方向上的任一点,场强E和磁感应强度B均与传播方向垂直且随时间变化,因此电磁波是横波。
②电磁波的传播不需要介质,在真空中也能传播。
在真空中的波速为c=3.0×108m/s。
③波速和波长、频率的关系:c=λf注意:麦克斯韦根据他提出的电磁场理论预言了电磁波的存在以及在真空中波速等于光速c,后由赫兹用实验证实了电磁波的存在(3)电磁波和机械波有本质的不同4.无线电波的发射和接收(1)无线电波:无线电技术中使用的电磁波(2)无线电波的发射:如图所示。
①调制:使电磁波随各种信号而改变②调幅和调频(3)无线电波的接收①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。
②调谐:使接收电路产生电谐振的过程。
调谐电路如图所示。
通过改变电容器电容来改变调谐电路的频率。
③检波:从接收到的高频振荡中“检”出所携带的信号。
4.电磁波的应用广播、电视、雷达、无线通信等都是电磁波的具体应用。
雷达:无线电定位的仪器,波位越短的电磁波,传播的直线性越好,反射性能强,多数的雷达工作于微波波段。
缺点,沿地面传播探测距离短。
中、长波雷达沿地面的探测距离较远,但发射设备复杂。
【例4】 一台收音机,把它的调谐电路中的可变电容器的动片从完全旋入到完全旋出,仍然收不到某一较高频率的电台信号。
要想收到该电台信号,应该______(增大还是减小)电感线圈的匝数。
解:调谐电路的频率和被接受电台的频率相同时,发生电谐振,才能收到电台信号。
由公式LC f π21=可知,L 、C 越小,f 越大。
当调节C 达不到目的时,肯定是L 太大,所以应减小L ,因此要减小匝数。
【例5】 某防空雷达发射的电磁波频率为f =3×103MH Z ,屏幕上尖形波显示,从发射到接受经历时间Δt=0.4ms ,那么被监视的目标到雷达的距离为______km 。
该雷达发出的电磁波的波长为______m 。
解:由s = c Δt =1.2×105m=120km 。
这是电磁波往返的路程,所以目标到雷达的距离为60km 。
由c = f λ可得λ= 0.1m【例6】 电子感应加速器是利用变化磁场产生的电场来加速电子的。
如图所示,在圆形磁铁的两极之间有一环形真空室,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速.被加速的电子同时在洛伦兹力的作用下沿圆形轨道运动。
设法把高能电子引入靶室,就能进一步进行实验工作。
已知在一个轨道半径为r =0.84m 的电子感应加速器中,电子在被加速的4.2ms 内获得的能量为120MeV .设在这期间电子轨道内的高频交变磁场是线性变化的,磁通量的最小值为零,最大值为1.8Wb ,试求电子在加速器中共绕行了多少周?解:根据法拉第电磁感应定律,环形室内的感应电动势为E =t ∆∆Φ= 429V ,设电子在加速器中绕行了N 周,则电场力做功NeE 应该等于电子的动能E K ,所以有N = E K /Ee ,带入数据可得N =2.8×105周。
【例7】 如图所示,半径为 r 且水平放置的光滑绝缘的环形管道内,有一个电荷量为 e ,质量为 m 0+kt(k >0)。
根据麦克斯韦电磁场理论,均匀变化的磁场将产生稳定的电场,该感应电场对电子将有沿圆环切线方向的作用力,使其得到加速。
设t =0时刻电子的初速度大小为v 0,方向顺时针,从此开始后运动一周后的磁感应强度为B 1,则此时电子的速度大小为A.m re B 1B.m ke r v 222π+ C.m re B 0 D.m ke r v 2202π- 解:感应电动势为E =k πr 2,电场方向逆时针,电场力对电子做正功。
在转动一圈过程中对电子用动能定理:k πr 2e =21mv 2-21mv 02,得答案B 。
【例8】 如图所示,平行板电容器和电池组相连。
用绝缘工具将电容器两板间的距离逐渐增大的过程中,关于电容器两极板间的电场和磁场,下列说法中正确的是A.两极板间的电压和场强都将逐渐减小B.两极板间的电压不变,场强逐渐减小C.两极板间将产生顺时针方向的磁场D.两极板间将产生逆时针方向的磁场解:由于极板和电源保持连接,因此两极板间电压不变。
两极板间距离增大,因此场强E =U /d 将减小。