人教版数学八年级下册第17章 172勾股定理的逆定理1

合集下载

人教版八年级数学下册期末复习课件:17

人教版八年级数学下册期末复习课件:17
a=12m2-n2, b=mn, 其中 m>n>0,m、n 是互质的奇数. c=12m2+n2,
应用:当 n=1 时,求有一边长为 5 的直角三角形的另外两条边长.
解:当 n=1 时,a=12(m2-1),b=m,c=12(m2+1).∵直角三角形有一边长为 5,∴当 a=5 时,12(m2-1)=5,解得 m=± 11(舍去);当 b=5 时,即 m=5,∴a= 12,c=13;当 c=5 时,12(m2+1)=5,解得 m=±3.∵m>0,∴m=3,∴a=4,b= 3.综上所述,直角三角形的另外两条边长分别为 12,13 或 3,4.
△BCF 中,由勾股定理,得 BF= BC2+CF2=5.在 Rt△EDF 中,由勾股定理,得
EF= DE2+DF2= 5.在△BEF 中,BE2+EF2=(2 5)2+( 5)2=25=BF2,由勾股定
理的逆定理,得△BEF 是直角三角形,且∠BEF=90°,∴BE⊥EF.
思维训练
15.阅读材料: 能够成为直角三角形三条边长的三个正整数 a、b、c,称为勾股数.世界上第一 次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为
___________________________________
_______.
• 解析:∵(a-b)(a2+b2-c2)=0,∴a=b或a2 +b2=c2.当只有a=b成立时,△ABC是等腰 三角形;当只有a2+b2=直c角2成立时,△ABC是 直角三角形;当两个条件同时成立时, △ABC是等腰直角三角形.
能力提升
• 8.下列定理中,没有逆定理的是 ( B ) • A.等腰三角形的两个底角相等 • B.对顶角相等 • C.三边对应相等的两个三角形全等 • D.直角三角形两个锐角的和等于90°

人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

人教版八年级下册 17.2 勾股定理的逆定理   课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,

DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。

这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。

这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。

但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。

因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。

三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。

五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。

通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。

同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。

2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。

3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。

人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)

人教版八年级下册数学 第17章《勾股定理》讲义 第6讲  勾股定理-逆定理(有答案)

人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计
-让学生分组讨论,尝试发现并总结勾股定理的逆定理。
-教师提供指导性的问题,引导学生通过画图、计算、推理等手段探索定理的正确性。
-分享探究成果,各组展示不同的解题思路和方法,促进学生之间的相互学习和启发。
3.知识讲解,深化理解
-教师对勾股定理的逆定理进行系统的讲解,强调定理的条件和结论。
-通过多媒体演示或实物模型展示,帮助学生形象化理解定理的内涵。
3.创新思维题:
-设立1-2道开放性问题,鼓励学生从不同角度思考,探索多种解题方法。
-鼓励学生尝试自己编写与勾股定理的逆定理相关的题目,并与同学分享,激发学生的学习兴趣和创造力。
4.小组合作任务:
-分配一个小组研究课题,例如“讨论研究,并在下节课上进行汇报展示。
4.设计具有层次性的练习题,使学生在不同难度层次的题目中逐步提高自己的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于发现的精神,使学生体验数学探究的乐趣。
3.培养学生严谨、踏实的科学态度,养成认真思考、独立解决问题的习惯。
4.通过勾股定理的逆定理的学习,使学生感受数学在现实生活中的广泛应用,体会数学的价值。
2.学生在证明过程中可能出现的逻辑错误,需要教师及时指导纠正。
3.学生对于勾股定理与逆定理之间的联系和区别的把握。
教学设想:
1.创设情境,引入新课
-通过呈现一些生活中的实际例子,如建筑物的直角结构、直角三角形的艺术品等,引导学生观察并思考这些直角三角形的特征,自然引入勾股定理的逆定理。
2.自主探究,合作交流
2.强调勾股定理与逆定理之间的联系,提醒学生注意在解决问题时灵活运用。
3.鼓励学生主动探索数学问题,培养他们勇于挑战、不断进取的精神。

人教版八年级数学下册_2021春《第1课时_勾股定理的逆定理》教学设计

人教版八年级数学下册_2021春《第1课时_勾股定理的逆定理》教学设计

人教版八下17.2.1勾股定理的逆定理(第1课时)教学设计教学内容解析教学流程图地位与作用在证明一个三角形是直角三角形时,之前都是从角的角度进行证明,三角形勾股定理的逆定理则是从边的数量关系的角度进行证明.通过对勾股定理及其逆定理的学习,加深对性质和判定之间关系的认识.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,互逆命题和互逆定理是几何中的重要概念.概念解析勾股定理的逆定理是通过三角形边的数量关系判定一个三角形是直角三角形,是直角三角形的判定定理.思想方法从特殊到一般的探索勾股定理的逆定理,在寻找证明思路的过程中蕴含着逻辑推理及转化思想.知识类型勾股定理的逆定理是原理与规则类知识,通过探索去发现图形的性质,提出一般的猜想,证明勾股定理逆定理.教学重点探索勾股定理的逆定理.教学目标解析教学目标1.探索勾股定理的逆定理,运用勾股定理的逆定理解决简单的问题.2.结合具体实例,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.目标解析目标1达成的标志是能通过画图探究或从逆命题的角度,猜想勾股定理逆定理,并用文字语言、符号语言、图形语言叙述勾股定理逆定理.能证明勾股定理逆定理.记住一些简单的勾股数,并能根据勾股定理的逆定理判断一个三角形是否是直角三角形.目标2达成的标志是会举例说明逆命题和逆定理的概念,以及性质定理和判定定理的关系.能举例说明原命题和逆命题不一定同时成立.能写出一个命题的逆命题,并判断这个逆命题是否成立.教学问题诊断分析具备的基础学生能运用勾股定理进行简单的计算,经历了探究勾股定理的过程,学习过其他图形的性质和判定,能体会性质与判定的关系.与本课目标的差距分析学生对利用计算证明几何结论比较陌生.存在的问题学生难以想到勾股定理逆定理的证明方法,对于没有写成“如果…那么…”形式的命题,在叙述它的逆命题时有时会感到困难.应对策略勾股定理的逆定理的证明关键是构建全等的直角三角形,教学中采取了从特殊到一般、从动手操作到推理证明的顺序,以问题串的形式,使学生在动手操作的基础上和合作交流的良好氛围中.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的,更有利于突破难点.教学难点证明勾股定理的逆定理.教学支持条件分析准备直角边长为3cm,4cm的直角三角形,用来和画出来的三边长为3cm、4cm、5cm的三角形进行比较,看是否能够重合,从而验证勾股定理的逆定理.利用《几何画板》或图形计算器画已知边长的三角形,度量最大角,发现勾股定理的逆定理.教学过程设计课前检测1.在直角三角形中,有两边分别为3和4,则第三边是()A. 1B. 5C.D. 5或2.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上作法中能证明△POM≌△PON根据的是()A. SSSB. SASC. AASD. HL3.写出命题“两条直线相交,只有一个交点”的题设部分和结论部分,判断它是真命题还是假命题,并说明理由.设计意图:复习勾股定理的内容为本节课勾股定理逆定理做准备,全等的证明过程为证明勾股定理逆定理做准备,命题的相关概念为学习互逆命题、互逆定理做准备.新课学习1.探究新知,得到猜想方案一:基于测评,学生对于命题的相关概念遗忘较严重.问题1:我们知道,对于一个直角三角形,已知两条边的长度利用勾股定理可以求出直角三角形的第三边,那么当一个三角形满足什么条件时它是直角三角形?师生互动设计:教师给学生一定的时间思考问题,然后视学生情况以下列问题引导学生进行思考.学生大部分回答①有一个内角是90°;②一个三角形有两个角的和是90°,那么这个三角形是直角三角形.教师总结我们知道,在三角形中,如果有一个角是90°,或两个锐角和为90°,那么这个三角形就为直角三角形,这是从角度的方面判定直角三角形,本节课,我们将学习如何从边的角度判定一个三角形是直角三角形.设计意图:先提出目标性问题,引发学生思考,再逐步探究解决.问题2:实际上,刚才老师提的那个问题,在很久之前的古埃及人已经有了答案,看看他们是怎么做的.在古代,没有直角尺、圆规、量角器等作图工具,人们是怎样得到一个直角的呢?方法:把一根长绳打上13个等距的结,把一根绳子分成等长的12段,然后以3个结间距,4个结间距,5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.按照这种方法真的能得到一个直角吗?设计意图:介绍前人经验,引发思考,让学生感受数学来源于生活,激发学生学习兴趣.合作探究1:接下来我们也按照古人的方法画一画,请同学们组内合作完成合作探究部分,要求组内每位同学完成一幅作图.师生互动设计:学生合作活动1:(小组内合作完成).1.画图:画出边长分别是下列各组数的三角形(单位:厘米)A:3、4、5 ;B:2.5、6、6.5 ;C:3、4、6 ;D:6、8、102.测量:用你的量角器分别测量一下上述各三角形的最大角的度数,并记录下来.3.判断:请判断一下上述你所画的三角形的形状.4.找规律:每组给出的三边之间具有怎么样的数量关系?5.你能得到什么猜想?你的猜想是__________________________.学生分小组回答问题.追问1:C组作图当两边的平方和小于第三边时,这个三角形是钝角三角形,若两边的平方和大于第三边时,这个三角形又是什么三角形呢?追问2:教师适当动画展示,通过老师的动画演示,和同学们的猜想一致,如果给出任意一个三角形,三边长为a、b、c,这三边之间满足什么关系,就构成了直角三角形?结合图形,你能说出这个猜想命题吗?猜想:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.设计意图:教学中让学生画三角形,测量边长,然后计算边长的平方,并分析最长边的平方和其它两边平方和之间的关系,最后引导得出结论.让学生充分经历测量——计算——归纳——猜想等几何定理的探索过程.方案二:基于测评,学生对于命题的相关概念掌握情况良好.问题1:怎样判定一个三角形是直角三角形呢?师生互动设计:学生可能无从回答这个问题.或者从角的关系入手回答.追问1:回忆一下我们学习等腰三角形的过程,学习完了等腰三角形我们学习了什么?是如何进行学习的?学生回答“学习等腰三角形的判定”,通过把等腰三角形的性质中的题设和结论互换,得到等腰三角形判定的猜想.追问2:你还学习过哪些将题设和结论互换得到的定理呢?师生互动设计:学生思考后回答平行线的性质和判定也是将题设和结论互换得到的.追问3:你能从性质和判定的关系出发思考一下怎样判定一个三角形是直角三角形吗?师生互动设计:学生猜想将勾股定理的题设和结论互换得到直角三角形的判定.猜想:如果三角形的三边长a、b、c满足a2+b2=c2 , 那么这个三角形是直角三角形.设计意图:引导学生从研究一个图形的性质和判定的角度入手进行思考,感受性质和判定的关系,体会互逆命题的关系,从而得到猜想.2.证明猜想,得到定理问题3:我们看到这个猜想和勾股定理的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做逆命题.我们得到的这个猜想是不是正确的呢?我们要进行证明.如何证明这个命题呢?师生互动设计:学生先独立思考,然后教师视学生情况直接让学生分析或以下列问题引导.追问1:对于这个猜想我们需要证明的是什么?通过什么证明?师生互动设计:学生回答一个三角形是直角三角形.通过三边的关系进行证明.设计意图:检测学生是否真的明确证明对象.追问2:那么满足什么条件的三角形是直角三角新呢?师生互动设计:学生回答一个内角是90°.设计意图:将证明对象聚焦到三角形的构成元素.追问3:如何证明一个角是90°?师生互动设计:学生感觉到困难.追问4:如果已经有一个三角形是直角三角形呢?师生互动设计:学生回答只需要运用全等进行证明即可.设计意图:帮助学生理清证明对象渗透证明方法.合作探究2:作图:1.三边长度为3cm,4cm,5cm的三角形ABC;2.以3cm,4cm为直角边的直角三角形A'B'C',并剪下△A'B'C',放在△ABC上,两个三角形是否重合?师:如果老师把边长是3、4、5的三角形换成边长分别为a、b、c,且满足a2+b2=c2,你会证明这个三角形是直角三角形么?几何推理论证:已知:在△ABC中,AB=c,BC=a,CA=b,并且a2+b2=c2求证:∠C=90°.(探究的关键是构建一个直角边是a、b的Rt△A’B’C’,然后和△ABC比较!于是画一个Rt△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a)证明 : 作△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a,如图,那么A’B’2=a2+b2(勾股定理)又∵a2+b2=c2(已知)∴A’B’2= c2,即A’B’=c (A’B’>0)∴△ABC≌△A’B’C’(SSS)∴∠C=∠C’=90°,∴△ABC是直角三角形.当我们证明了命题2是正确的,那么命题就成为一个定理.并且这个命题的题设和结论和勾股定理的题设和结论相反,我们就称之为勾股定理逆定理,利用这个定理可以判定一个三角形是否为直角三角形.一般地原命题成立时,它的逆命题可能成立也可能不成立.像勾股定理和它的逆定理这样的两个互逆命题都是成立的,我们称之为互逆定理.设计意图:引导学生分组画三边长度为3cm,4cm,5cm的三角形和3cm,4cm 为直角边的直角三角形.让学生自然联想到三角形全等这一工具,为构造直角三角形,证明当前三角形与一个直角三角形全等做好铺垫,从而证明当前三角形是直角三角形,让学生体会这种证明思路的合理性,经历从特殊到一般的探究过程,从而突破本节课的教学难点.实际应用归纳总结3.定理运用,加深理解【例题1】判断以下线段组成的三角形是不是直角三角形:(1)a=15,b=17,c=8;(2)a=13,b=14,c=15;师生互动设计:学生计算并判断三角形是否为直角三角形,教师进行适当点拨.关注学生能否进一步理解勾股定理的逆定理的用处,以及能否运用几何语言规范书写过程.介绍勾股数,像15、8、17这样,能够成为直角三角形三条边长度的三个正整数,称为勾股数.设计意图:通过练习帮助学生把陈述性的定理转化为认知操作,让学生学会用勾股定理的逆定理判断一个三角形是直角三角形.【例题2】说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等.(2)对顶角相等.(3)线段垂直平分线上的点到线段两端点的距离相等.师生互动设计:学生独立思考并完成回答,教师关注学生如何写出命题的逆定理,对互逆命题关系及真假性的理解,体会原命题成立但是逆命题不一定成立.归纳总结4.课堂小结,有效提升教师引导学生对以下问题进行反思,回顾本节课内容:1.勾股定理的逆定理的内容是什么?它有什么作用?2.原命题、逆命题之间有什么关系?什么是互逆定理?3.我们证明勾股定理的逆定理的思路是什么?设计意图:引导学生回顾和理解勾股定理的逆定理,明确其基本应用.体会互逆命题的有关知识.引导学生回顾和体会证明勾股定理逆定理的基本思路.人教版八下17.2.1勾股定理逆定理(第1课时)目标检测一、选择题1.已知三角形三条边分别是1,,2,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17B.a=3,b=5,c=4C.a=4,b=8,c=9D.a=9,b=40,c=41二、填空题3.下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有:_________________(请填上所有符合题意的序号).4.已知∆ABC中,BC=41,AC=40,AB=9,则此三角形为____________三角形,____________是最大角.三、解答题5.在△ABC中,AB=c,BC=a,CA=b,判断由下列a,b,c组成的三角形是不是直角三角形;如果是,请指出哪个角是直角:(1)a=15,b=8,c=17;(2)a=13,b=15,c=14.。

人教版八年级下册数学:17.2.2-勾股定理的逆定理课件

人教版八年级下册数学:17.2.2-勾股定理的逆定理课件

过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.

Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿

《勾股定理的逆定理》优质公开课1

《勾股定理的逆定理》优质公开课1
人教版数学八年级下册
第十七章
17.2.1 勾股定理的逆定理
学习目标
1.能利用勾股定理的逆定理判定一个三角形是 否为直角三角形.
2.灵活运用勾股定理及其逆定理解决问题. 3.理解原命题、逆命题、逆定理的概念及关 系.
导入新知
同学们,古埃及人曾经用下面的 方法画直角:将一根长绳打上等距离 的13个结,然后用桩钉成一个三角形 (如图),他们认为其中一个角便是直 角.你知道这是什么道理吗?
新知小结
用数学几何知识解决生活实际问题的关键是:建模 思想,即将实际问题转化为数学问题;这里要特别注意 弄清实际语言与数学语言间的关系;如本例中:“点与 点之间的最短路线”就是“连接这两点的线段”,“点 与直线的最短距离”就是“点到直线的垂线段的长”.
巩固新知
1 如果三条线段长a,b,c满足a2=c2–b2,这三 条线段组成的三角形是不是直角三角形?为 什么?
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论互换,写出原命题的逆命题,最后判 断逆命题的真假.
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
(2)原命题是假命题.逆命题为:如果a2>b2,那么a >b.逆命题是假命题.
(3)原命题是真命题.逆命题为:如果两个数的和为 零,那么它们互为相反数.逆命题是真命题.
A.1个 便是直角.你知道这是什么道理吗?
B.2个
C.3个 D.4个
合作探究
知识点 3 勾 股 数
1. 勾股数:能够成为直角三角形三条边长的三个 正整数. 常见的勾股数有:3,4,5;5,12,13; 8,15,17;7,24,25;9,40,41;….
2.判断勾股数的方法: (1)确定是否是三个正整数; (2)确定最大数; (3)计算:看较小两数的平方和是否等于最大数的

新人教版初中数学八年级下册17.2.1 勾股定理的逆定理

新人教版初中数学八年级下册17.2.1  勾股定理的逆定理

8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.

17.2第1课时勾股定理的逆定理课件人教版数学八年级下册【01】

17.2第1课时勾股定理的逆定理课件人教版数学八年级下册【01】
(11)
(3)
(10) (9)
(4) (5)(6)(7)(8)
问题2:下面有两组数分别是一个三角形的三边长 a, b, c.请分别作出三角形,用量角器量一量,它们都是直角 三角形吗?
①5,12,13; ②8,15,17.

90 120 150
180
60 30
12 13
0
(1) a = 7,b = 24,c = 25; (2) a =3,b = 4,c = 6.
解:(1)∵ 72 + 242 = 625,252 = 625,∴ 72 + 242 = 252, 根据勾股定理的逆定理,这个三角形是直角三角形, 且∠C 是直角.
(2) ∵ 32 + 42 =25,62 = 36, ∴ 32 + 42 ≠ 62,不符合勾股定理的逆定理, 这个三角形不是直角三角形.
为大于 1 的正整数). 试问△ABC 是直角三角形吗?
若是,哪一条边所对的角是直角?请说明理由.
解:∵ AB²+ BC²= (n²- 1)²+ (2n)² = n4 - 2n²+ 1 + 4n² = n4 + 2n²+ 1 = (n²+ 1)² = AC²,
∴△ABC 是直角三角形,边 AC 所对的角是直角.
复习引入 问题1 勾股定理的内容是什么?
B
a
c
如果直角三角形的两条直角边长分别 为 a,b,斜边为 c,那么 a2 + b2 = c2. C
b
A
问题2 求以线段 a、b 为直角边的直角三角形的
斜边 c 的长: ① a=3,b=4; c = 5 ② a=6,b=8; c = 10

人教版八年级数学下册课件 17-2-2 勾股定理的逆定理的应用

人教版八年级数学下册课件 17-2-2   勾股定理的逆定理的应用
100 m 回到原地.
B2

随堂练习
(2)小明从O走到A,再走到B2,最终由B2回到O.
同理,△AOB2是直角三角形,且∠OAB2 =90〫


因此小明向东走 80m 后,又向南走了 60m,再走
B1
100m 回到原地.
综上所述,小明向东走 80m 后,又向南或向北走
了 60m,最后走 100m 回到原地.
分别位于点Q,R处,且相距30海里. 如果知道“远
航” 号沿东北方向航行,能知道“海天” 号沿哪个
方向航行吗?
典例精析
解:根据题意,
PQ=16×1.5=24,
PR=12×1.5=18 ,
QR=30 .
∵ 242+182=302,
即PQ 2+PR2=QR2, ∴ ∠QPR=90°,
由远航号沿东北方向航行可知∠1=45°.
2. 标注有用信息(或添加必要的辅助线),明确已知和所求.
3. 应用数学知识解决问题.
随堂练习

1.如图所示,甲、乙两船从港口 A 同时出发,甲船以
30 海里/时的速度向北偏东 35〫
的方向航行,乙船以
C
35〫
40 海里/时的速度向另一方向航行,2 小时后,甲船
到达 C 岛,乙船到达 B 岛,若 C,B 两岛相距 100
A
海里,则乙船航行的方向是南偏东多少度?
B
随堂练习

解:由题意得:AC=30×2=60(海里),
AB=40×2=80(海里).
C
35〫
因为 + = + = =,
所以∠BAC=90〫.
A
因为 C 岛在港口 A 的北偏东 35〫方向,所
以 B 岛在港口 A 的南偏东 55〫方向.

八年级数学下册第十七章勾股定理勾股定理的逆定理教案新人教版

八年级数学下册第十七章勾股定理勾股定理的逆定理教案新人教版

17.2勾股定理的逆定理【教学目标】知识与技能:1.理解原命题、逆命题、逆定理的概念及关系.2.会用勾股定理的逆定理判断直角三角形.过程与方法:经历探索勾股定理的逆定理的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.情感态度与价值观:通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.【重点难点】重点:理解并掌握勾股定理的逆定理,并会应用.难点:勾股定理的逆定理的证明.【教学过程】一、创设情境,导入新课小明做了一个长为40 cm,宽为30 cm的长方形模型,高兴地交给了老师,老师接过小明的模型,用刻度尺度量了模型的长宽所在的对角线,量得对角线的长为56 cm,然后老师指着模型对小明说:“这个角不是直角,你做的模型不合格.”小明不高兴地问老师:“老师,只通过直尺度量就能判断一个角不是直角吗?”同学们有这样的疑问吗?老师通过直尺度量判断直角有没有根据?带着这些问题,我们学习本节知识.二、探究归纳活动1:互逆命题、互逆定理1.问题1:下面几组数分别是一个三角形的边长a、b、c(单位:cm).①3、4、5;②4、7、9;③6、8、10.(1)这三组数都满足a2+b2=c2吗?(2)尺规作图:分别以每组数为三边长作出三角形.(3)用量角器量一量,它们是直角三角形吗?提示:(1)①③满足a2+b2=c2,②不满足(2)略(3)①③是直角三角形,②不是直角三角形.2.思考:根据上面的几个例子,你能提出一个数学命题吗?3.归纳:如果一个三角形的三边长a,b,c满足_________________,那么这个三角形是___________.答案:a2+b2=c2直角三角形4.问题2:阅读,命题1 : 如果一个三角形是直角三角形,两直角边长为a,b,斜边长为c,那么a2+b2=c2.命题2 :如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(1)观察命题2与命题1,你有什么发现?发现:两个命题的______、______正好相反,命题1的____是命题2的______;命题1的______是命题2的______.我们把像这样的两个命题叫做________.如果把其中一个叫______,那么另一个叫做它的________.(2)你能举出互逆命题的例子吗?(3)如果原命题正确,那么逆命题也正确吗?举例说明.提示:(1)题设结论题设结论结论题设互逆命题原命题逆命题(2)略(3)不一定略5.思考:一个三角形各边长数量应满足怎样的关系时,这个三角形才是直角三角形呢?提示:三角形的三边长a,b,c满足a2+b2=c2时,这个三角形是直角三角形.活动2:1.问题:已知△ABC中,BC=3,AC=4,AB=5,求证△ABC是直角三角形.证明:如图,画一个Rt△A′B′C′,使B′C′=______,A′C′= ______,∠C′= ______°.∵BC=3,AC=4,∴BC=______=3 ,AC=______=4,由勾股定理,得A′B′2=B′C′2+A′C′2=______+______=______,∴A′B′=______,∵AB=5,∴AB=______ ,在△ABC和△A′B′C′中,∵∴△ABC≌△A′B′C′()∴∠C′= ______= ______°∴△ABC是直角三角形.提示:BC AC 90B′C′A′C′ 32 42 255A′B′BC=B′C′,AC=A′C′,AB= A′B′SSS∠C 902.思考:若△ABC的三边不是3、4、5,而是a,b,c,但同样满足a2+b2=c2,你能证明△ABC是直角三角形吗? 提示:略3.思考:如果一个定理的逆命题经过证明是正确的,那么它也是一个定理吗?提示:是归纳:1.如果三角形的三边长是a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,是真命题,可以用来判定直角三角形,我们把它称为勾股定理的逆定理.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理“互为逆定理”.活动3:勾股数思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?提示:是6.应用举例【例1】下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中是假命题的有________(填序号).分析:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故是假命题有②.答案:②总结:要判断一个命题是假命题,只需举出一个反例即可.【例2】观察以下几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26;…,根据以上规律的第⑦组勾股数是()A.14、48、49B.16、12、20C.16、63、65D.16、30、34分析:根据前面的几组数可以得到每组勾股数与各组的序号之间的关系,如果是第n组数,则这组数中的第一个数是2(n+1),第二个是:n(n+2),第三个数是:(n+1)2+1.根据这个规律即可解答.解:选C.根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+1),第二个数是n(n+2),第三个数是(n+1)2+1,故可得第⑦组勾股数是16,63,65.总结:勾股数满足的条件只要三个整数中,满足较小两个整数平方的和等于较大整数的平方,那么这三个整数就是一组勾股数.【例3】如图四边形ABCD是一块草坪,量得四边长AB=3 m,BC=4 m,DC=12 m,AD=13 m,∠B=90°,求这块草坪的面积.分析:连接AC,可以把四边形分割成两个三角形,由勾股定理及逆定理说明△ACD为直角三角形,利用三角形面积公式可求四边形ABCD的面积.解:连接AC,在Rt△ABC中,AB=3 m,BC=4 m,∠B=90°,由勾股定理得AB2+BC2=AC2,∴AC=5 m.在△ADC中,AC=5 m,DC=12 m,AD=13 m∵AC2+DC2=169,AD2=169,∴AC2+DC2=AD2 ,∴△ACD为直角三角形,即∠ACD=90°.所以四边形的面积=S Rt△ABC+S Rt△ADC=AB×BC+AC×DC=×3×4+×5×12=36(m2)即这块草坪的面积是36 m2.总结:应用勾股定理的逆定理判断三条线段能否构成直角三角形的方法1.排序:把三条线段按由小到大排列;2.计算:看较小两条线段边的平方和是否等于最大线段的平方;3.结论:判断能否构成直角三角形.三、交流反思这节课我们学习了互逆命题(定理),探索了勾股定理的逆定理,掌握了直角三角形的判别条件(即勾股定理的逆定理),并能进行简单应用,理解勾股定理和勾股定理的逆定理之间的区别.四、检测反馈1.下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,92.分别有下列几组数据:①6、8、10②12、13、5③7、8、15④40、41、9.其中是勾股数的有()A.4组B.3组C.2组D.1组3.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式: __________________.4.下列命题中,其逆命题成立的是________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.5.叙述下列命题的逆命题,并判断逆命题是否正确.(1)如果a3>0,那么a2>0;(2)如果三角形有一个角小于90°,那么这个三角形是锐角三角形;(3)如果两个三角形全等,那么它们的对应角相等;(4)关于某条直线对称的两条线段一定相等.6.如图在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求:(1)AC的长度;(2)△ABC的面积.7.如图是一块地的平面图,AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,求这块地的面积.五、布置作业教科书第34页习题17.2第1,2,5题六、板书设计17.2勾股定理的逆定理一、互逆命题(定理)二、勾股数三、勾股定理的逆定理四、例题讲解五、板演练习七、教学反思勾股定理的逆定理这节课的教学,我采用了体验探究的教学方式.在课堂教学中,我首先创设情境,提出问题;再让学生通过画图、测量、判断、找规律,猜想出一般的结论;然后由学生想、画、剪、叠,去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝到成功的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,挤出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度的生活习题的练习,拓宽学生知识面,提高学生的发散思维能力.。

人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解

人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解

勾股定理的逆定理要点讲解一、勾股定理的逆定理1 .勾股定理的逆定理“如果直角三角形两直角边分别为a、b 、c,且满足a2+b2=c2.那么这个三角形是直角三角形.” 我们在判断一个三角形是不是直角三角形时,可直接运用这个逆定理.如图1所示,在△ABC中,如果AC2+BC2=AB2,那么△ABC就是直角三角形.2.勾股定理的逆定理与勾股定理的联系与区别联系:(1)两者都与a2+b2=c2有关,(2)两者所讨论的问题都是直角三角形区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系,“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判别一个三角形是否是直角三角形的一个方法.特别说明:勾股定理的逆定理和勾股定理一样,不是凭空想象出来的,而是古代科学家们在实践中逐步发现和认识的,所以我们在学习勾股定理时,也应通过实践来认识和理解它.如通过勾股数画图、剪纸、户外实践等活动认识和理解逆定理,这样才能使我们的印象深刻,认识清楚,理解透彻.二、勾股定理的逆定理的应用勾股定理的逆定理是判断一个三角形是不是直角三角形的重要依据,是运用直角三角形各种性质的先决条件,它体现了数形结合的重要数学思想,在生产实践与现实生活中有着广泛的应用.例2 如图2所示,在△ABD中,∠A 是直角,AB=3,AD =4,BC=12,DC=13,△DBC是直角三角形吗?为什么?图2分析:要判断△DBC是不是直角三角形,首先要有它的三条边,而其中的BD边需要通过Rt△BAD得到,所以,解答这个问题的步骤应是,先由Rt△BAD 中的AB、AD求得BD,再根据勾股定理的逆定理进行判定.解:是直角三角形.理由:在Rt△BAD中,根据勾股定理,得BD2=AD2+AB2=33+42=25,所以BD=5 .在△DBC中,BD2+BC2=25+144=169=132=CD2.所以△DBC是直角三角形.例3 如图3所示,在某市的地图上有三个景点A、B、C,已知景点A、B 之间的距离为0.4cm,景点C、B之间的距离为0.3cm,景点A、C之间的距离为0.5cm,问这三个景点为顶点的三角形是直角三角形吗?为什么?分析:要判别三角形是不是直角三角形只要验证AB2+BC2=AC2即可.解:因为0.3 2+0.42=0.52,所以这个三角形一定是直角三角形.说明:在运用勾股定理的逆定理判断三角形是不是直角三角形时,一是要根据三角形中的三条边,看两条较小边的平方和是否等于最大边的平方;二是注意将一组勾股数同时扩大或缩小同样的倍数所得数仍是勾股数.。

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。

最新人教版八年级下册数学17.2勾股定理的逆定理(第一课时)

最新人教版八年级下册数学17.2勾股定理的逆定理(第一课时)

17.2勾股定理的逆定理(第一课时)教学目标:1.理解勾股定理的逆定理,经历“实验测量-猜想-论证”的定理探究过程,体会“构造法”证明数学命题的基本思路2.了解逆命题的概念,并了解原命题为真命题,它的逆命题不一定为真命题 教学重难点重点:勾股定理逆定理的内容及应用难点:体会构造法证明数学命题思路教学设计1.创设问题情境问题:前面我们学习了勾股定理,谁能说出它的题设和结论?师生活动:共同回忆勾股定理内容追问:我们知道一个直角三角形三边的数量关系是两天直角边的平方和等于斜边的平方,反过来能否根据所给出的三边数量关系得出这个三角形是直角三角形呢?今天我们就一起来研究这个问题。

问题:据说古埃及人用图中给的方法画直角:把一根绳子,打上13个等距离的结,然后以3个、4个、5个间距的长为边长,用木桩钉成一个三角形,其中一个角便是直角,你认为结论正确吗?师生活动:学生测量课本中的三角形的角度,并计算三边长的关系实验探究:(1)画一画,下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长,画出三角形,①2.5 6 6.5 ② 6, 8 10 ③ 5 12 13(2)量一量,用量角器测量三角形中最大角的度数(3)想一想,请判断这些三角形的形状,并提出假设师生活动:学生小组比赛形式看哪个小组最先完成,和完成的质量 老师进行打分 已知:如图,△ABC 的三边长a ,b ,c ,满足a 2+b 2=c 2.求证:△ABC 是直角三角形.2.证明勾股定理的逆定理问题:要证明一个命题是真命题,我们首先要分析命题的题设和结论,画出图形,写出已知和求证,请大家完成师生活动:学生独立完成,教师巡视指导问题:要证明△ABC 是直角三角形,只要证明∠C 是直角,由命题的条件,能证明么? (1) (2) (3) (4) (5) (6) (7) (8) (13) (12) (11) (10) (9)追问:对于△ABC ,我们难以证明它是一个直角三角形,怎么办?师生活动:教师启发,我们可以构造一个直角三角形边长分别以a ,b 为直角边,根据勾股定理求出斜边为c 然后证明这两个三角形全等,最后得出∠C 是直角,这样我们就完成了证明当我们证明了猜想的正确,那么猜想就变成了一个定理,我们就可以用它判定一个三角形是否为直角三角形了定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 作用:判定一个三角形三边满足什么条件时为直角三角形3应用定理例1 判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1) a=15,b=17,c=8;(2) a=13,b=15,c=14;(3) a= 41 ,b=4,c=5.师生活动:先由学生完成,教师巡视指导,最后规范书写4,介绍逆命题的概念问题:比较我们刚刚学习的定理和勾股定理,这两个命题的题设和结论有什么关系? 师生活动:介绍原命题,逆命题,互逆定理的概念两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.例2说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等;逆命题:内错角相等,两直线平行.真命题.(2)对顶角相等;逆命题:相等的角是对顶角.假命题.(3)线段垂直平分线上的点到线段两端点的距离相等.逆命题:到线段两端点的距离相等的点在线段的垂直平分线上.真命题. 师生活动:学生独立思考口头回答问题,教师点评5,小结教师引导学生参照下列问题回顾本节课内容,并进行相互讨论(1)勾股定理的逆定理的内容是什么?它有什么作用?(2)本节课我们学习了原命题,逆命题等知识,你能说出它们之间的关系吗?A1 B1 C1 A B C ab c(3)在探究勾股定理的逆定理的过程中,我们经历了哪些过程?6,布置作业教科书第33页练习第1,2题习题17.2第4,5题。

17.2.12勾股定理逆定理(教案)

17.2.12勾股定理逆定理(教案)
3.引导学生运用勾股定理逆定理解决实际问题,增强学生的数学应用意识和创新意识。
4.培养学生团队合作精神,提高沟通交流能力,增强数学课堂互动。
5.激发学生对数学学科的兴趣,树立正确的数学观念,培育数学美感。
三、教学难点与重点
1.教学重点
(1)理解和掌握勾股定理逆定理的内容,即一个三角形的两边长的平方和等于第三边的平方,则这个三角形是直角三角形。
(2)对于特殊情况的判断,如:一个三角形的两边长分别为1.5和2,第三边长为3.5,判断这个三角形是否为直角三角形(1.5^2 + 2^2 = 2.25 + 4 = 6.25,3.5^2 = 12.25,不是直角三角形)。
(3)解决实际问题,如:一个直角三角形的两个直角边长分别为6和8,求斜边长。将勾股定理逆定理与勾股定理相结合,得出斜边长为10。
17.2.12勾股定理逆定理(教案)
一、教学内容
本节课选自人教版八年级数学下册第17章第2节,主要教学内容为勾股定理逆定理。具体内容包括:
1.理解并掌握勾股定理逆定理的概念:如果一个三角形的两边长的平方和等于第三边的平方,那么这个三角形是直角三角形。
2.学会运用勾股定理逆定理判断一个三角形是否为直角三角形。
此外,我在课堂上观察到,学生们对于自己发现问题和解决问题的过程非常感兴趣。在小组讨论环节,他们积极思考,互相交流,提出了很多有趣的观点和解决方案。这让我意识到,在今后的教学中,应该多设计一些开放性的问题和实践活动,激发学生的创新思维和探究欲望。
最后,今天的课堂总结环节,学生们提出了不少疑问,这说明他们在课堂学习中还有未完全理解的地方。在今后的教学中,我要更加关注学生的反馈,及时解答他们的疑问,确保他们对知识点有全面、深入的理解。

《勾股定理的逆定理》课件PPT1

《勾股定理的逆定理》课件PPT1

3.(2017·常德)命题:“如果m是整数,那么它是有理数”,则它的逆命题 为:_____如___果__m__是__有__理___数__,__那__么___它__是__整__数_.
4.说出下列命题的逆命题,并判断逆命题的真假. (1)同旁内角互补,两条直线平行; (2)线段垂直平分线上的点到线段两端点的距离相等; (3)直角三角形中,30°角所对的直角边等于斜边的一半. 解:(1)逆命题为:两条直线平行,同旁内角互补.是真命题. (2)逆命题为:到线段两端点的距离相等的点在这条线段的垂直平分线上.是真 命题. (3)逆命题为:直角三角形中,一条直角边等于斜边的一半,则这条直角边所对 的角是30°.是真命题.
仔细观察命题1、命题2的题设和结论,你能发现什么?
2
2
2
对应角相等的两个三角形全等.
-b|=0,则△ABC 的形状是____________________________. 等腰直角三角形 (1)如果两个角相等,那么这两个角的补角相等.
解:∵AC2=AD2+CD2=20,BC2=CD2+BD2=80,AB2=(AD+BD)2=100,∴AC2+BC2=AB2.
A.两条直线平行,内错角相等
(1)如果两个角相等,那么这两个角的补角相等.
8.测得一块三角形花坛的三边长分别为1.5 (1)如果两个角相等,那么这两个角的补角相等.
(2)判断一个命题是假命题,只需要能够举出一个反例即可.
m,2
m,2.5
m,则这个花坛的
∴∠DAB=∠DAC+∠BAC=90°+45°=135°.
16.如图,在△ABC中,CD为AB边上的高,AD=2,BD=8,CD=4,试说 明△ABC是直角三角形. 解:∵AC2=AD2+CD2=20,BC2=CD2+BD2=80,AB2=(AD+BD)2=100 ,∴AC2+BC2=AB2.∴△ABC为直角三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.2勾股定理的逆定理(1)
【教学目标】
知识与技能1. (1)理解勾股定理的逆定理。

)了解逆命题的概念,知道原命题为真命题,它的逆命题不一定为真命题。

(2 过程与方法2. 经历“观察-测量-猜想-论证”的定理探究的过程,体会“构造法”证明数学命题的基本思想。

情感态度和价值观3. 通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。

【教学重点】重点:探索并证明勾股定理的逆定理。

难点:应用勾股定理及其逆定理解决实际问题。

【教学方法】自学与小组合作学习相结合的方法。

【教学过程】一、情景导入【过渡】我们大家都认识直角三角形吧。

我们知道,直角三角形是有一个角为直角的。

根据直角三
角形的定义呢,我们能够简单的判断一个三角形是否为直角三角形。

(学生回答如何判断)°的角则为直角三角形。

但90【过渡】根据定义,主要就是看这个三角形有没有一个角满足90°,有是如果遇到没办法准确判断角的大小的时候,我们又该通过什么样的方法来判断呢?能否结合勾股定理的知识,从边长的角度入手呢?今天我们就来探究一下,如果将勾股定理反过来使用,是否同样成立呢?二、新课教学.勾股定理的逆定理1个然后以3 古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13 个结,据说,【过渡】
个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。

你认为5 结间距,4 个结间距、结论正确吗?222,那么3543【过渡】由实际问题转化,这个问题就变为如果三角形的三边长为、、,它们满足+4=5这个三角形就是直角三角形。

那么这个结论到底正确不正确呢?我们来自己动手,画出三边长为以下两组1
数据的三角形吧。

2.5,6,6.5; 6,8,10。

a+b=c (学生回答)【过222吗?【过渡】首先看这两组数据,大家思考一下,这两组数据都满足
渡】计算表明,这两组数据均是满足这样一个等式的。

现在,大家就将其作为三角形的三边成,来画一下三角形吧。

(学生动手)【过渡】我看大家都已经画完了,大家用眼睛看过去,这两个三角形像是直角三角形吗?当然,在数学上,我们需要保持严谨的态度。

大家再动手,用量角器分别测量上述各三角形的最大角的度数。

【过渡】从动手结果上来看,这两个三角形同样是直角三角形。

因此,我们就有如下一个猜想:222=cb、c满足a+b那么这个三角形是直角三角形。

a命题2:如果三角形的三边长、【过渡】大家能够证明这个结论吗?课件展示证明过程。

【过渡】通过刚刚的证明,我们知道这个结论是正确的,因此,我们把它称之为勾股定理的逆定理。

我们通常用这个定律作为直角三角形的判定定理。

【练习】判断下列数据中能否作为直角三角形的三边长?10
8、..C3、5、7 ;D6、、.1A.1、、;B5、1213 ;
在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断。

【过渡】从刚刚的命题中,我们能够看
出,这个命题与勾股定理是完全相反的,在数学中,我们就称这样的两个命题为互逆命题。

如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

【过渡】那么我们怎样得到一个命题的逆命题?我们以勾股定理为例。

不难发现,勾股定理的题设是222222因此,+b直角三角形,结论是a=c,而其逆定理却刚好相反,,+ba=c结论则为直角三角形。

它的题设是我们可以得到这样一种方法:把一个命题的题设和结论交换一下,即可得到它的逆命题。

【练习】说出下列命题的逆命题。

这些命题的逆命题是真命题吗?22 aa>b1()如果,那么>b;22 a)如果(2a=b,那么=b;2
(3)等腰三角形的两底角相等两端点的距离相等。

【过渡】勾股定理的逆定理主要用来判定是否为直角三角形,我们通过例题来感受一下吧。

课件展示课本例1、2.
【典题精讲】
例1:判断由线段a,b,c组成的三角形是不是直角三角形?
(1) a=15,b=17,c=8; (2) a=13,b=15,c=14
分析:根据勾股定理的逆定理, 判断一个三角形是不是直角三角形, 只要看两条较少边长的平方和是否等于最大边长的平方.
解:(1)最大边为17
222 =289 17∵15=225+64 =289+8,222,∴15 =17+8∴以15, 8, 17为边长的三角形是直角三角形
(2)最大边为15
222 =225, =169+196=365,∵1315+14222≠+ 14 15∴13∴以13, 15, 14为边长的三角形不是直角三角形
例2 :4.如图,在△ABC中,AD⊥BC于点D,若AD=4,BD=2,CD=8,那么△ABC是直角三角形吗?为什么?
【答案】是,理由见解析.【解析】 ABC△是直角三角形,理由如下: BD=2,BC,AD=4,∵AD⊥222,+BD∴AB=AD=20 ,BCCD=8,AD=4,又∵AD⊥222=CD∴AC+AD=80, BC=CD+BD=10,∵2=100,BC∴222 +AB∴AC,=100=BC3
∴△ABC是直角三角形.
1CD CF,试判断△为CD上一点,且AEF是否是直角三角例3:在正方形ABCD中,E是BC的中点,F4形?试说明理
由.
是是直角三角形【答案】△AEF【解析】4a,设正方形的边长为1CDCF?,BC的中点,∵E是4,CE=BE=2a.∴CF=a,DF=3a222222222222222222=16a+4a=20a,=4a+a=5a,AE=AB+BE=16a由勾股定理得:AF=AD+DF+9a=25a,EF=CE+CF222∴AF=EF+AE,∴△AEF为直角三角形.【当堂达标】2(b=5;③aA-∠C;②∠︰∠B︰∠C=3︰4︰c1.△ABC的三边长分别为a、b、,下列条件:①∠A=∠B是直角三角形的有( )ABC︰b︰c=5︰12︰13,其中能判定△c)(b+-c);④a1个A.2个B.个
3C.个D.4C【答案】C-∠,∠A+∠B+∠C=180°,【解析】①中,∵∠A=∠B角中最大
4B︰∠C=3︰︰5得△ABC∠由;角△=∴∠B90°,∴ABC是直三角形②中,∠A︰5222222??C?180??75?,所以△=,即ab+cc)为锐角三角形;③中,,则△ABCa(b=+c)(b-=b
-c12222.ABC是直角三角形,故选C,故△=+,所以︰︰=︰︰是直角三角形;④中,
因为ABCabc51213abc( )2.下列定理中,没有逆定理的是4
A.直角三角形的两锐角互余
a+bcB.若三角形三边长a,b,c.全等三角形的对应角222,则该三角形是直角三角形=满足
相等C0D.互为相反数的两数之和为C【答案】的逆命题是:两锐角互余的三角形是直角三角形,是真命题.【解析】A222的逆命题是:若,是真命题.Db,c满足a+b=cB的逆命题是:若三角形是直角三角形,则三边长a,,则这两个数互为相反数,是真命题.两数之和为0的逆命题是假命题,则它没有逆定理.C中对应角相等的两个三角形不一定全等,所以C,12cm,16cm20cm,则这块三角形铁皮余料的面积为________.3.若一块三角形铁皮余料的三边长为2【答案】96cm22的边是斜边,所以此三角形的面积为20,知此三角形是直角三角形,且长为20cm【解析】由12+16=21296??16?12)cm(.24.已知两条线段的长为3cm和4cm,当第三条线段的长为时,这三条线段能组成一个直角三角形。

或5 【答案】【解析】”指代不明,因此,要讨论第三边是直角边和5,要使这个三角形是直角三角形,由于“两边长分别为3和2253?4?斜边的情形.当第三边是斜边时,根据勾股定理,第三边的长=,三能构成三角形;当第三边是直角边时,根据勾股定理,第三边的
长3,4,5角形的边长分别为227?4?3734,=亦能构成三角形;
综合以上两种情况,第三边的长,,三角形的边长分别为37。

5应为或
5。

相关文档
最新文档