2018-2019学年最新人教版九年级数学上册《用列举法求概率》同步课时练习及答案解析-精品试题
2018-2019学年最新人教版九年级数学上册《概率》课时同步练习题及答案解析-精品试题
人教版数学九年级上册25.1.2概率课时练习一、单选题1、商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是().A、抽10次奖必有一次抽到一等奖B、抽一次不可能抽到一等奖C、抽10次也可能没有抽到一等奖D、抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2、下列说法中正确的是().A、“打开电视机,正在播放《动物世界》”是必然事件B、某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D、想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查3、下列事件是确定事件的是().A、阴天一定会下雨B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C、打开电视机,任选一个频道,屏幕上正在播放新闻联播D、在学校操场上向上抛出的篮球一定会下落4、已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是().A、连续抛一枚均匀硬币2次必有1次正面朝上B、连续抛一枚均匀硬币10次,不可能正面都朝上C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D、通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5、下列说法正确的是().A、一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B、为了解全国中学生的心理健康情况,应该采用普查的方式C、一组数据8,8,7,10,6,8,9 的众数和中位数都是8D、若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定6、小明、小雪、丁丁和东东在公园玩飞行棋,四人轮流掷骰子,小明掷骰子7次就掷出了4次6,则小明掷到数字6的概率是().A、B、C、D、不能确定7、“淄博地区明天降水概率是15%”,下列说法中,正确的是().A、淄博地区明天降水的可能性较小B、淄博地区明天将有15%的时间降水C、淄博地区明天将有15%的地区降水D、淄博地区明天肯定不降水8、下列说法错误的是().A、必然事件的概率为1B、数据6、4、2、2、1的平均数是3C、数据5、2、-3、0、3的中位数是2D、某种游戏活动的中奖率为20%,那么参加这种活动100次必有20次中奖9、下列说法正确的是().A、抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等B、一颗质地均匀的骰子已连续抛掷了2000次,其中掷出5点的次数最少,则第2001次一定抛掷出5点C、天气预报说明天下雨的概率是50%,所以明天有一半的时间在下雨D、某种彩票的中奖的概率是1%,因此买100张彩票一定会中奖10、下面说法正确的是().A、一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面只有黑球B、某事件发生的概率为0.5,也就是说,在两次重复的试验中必有一次发生C、随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为D、某校九年级有400名学生,一定有2名学生同一天过生日11、世界杯足球赛正在巴西如火如荼地进行,赛前有人预测,巴西国家队夺冠的概率是90%.对他的说法理解正确的是().A、巴西队一定会夺冠B、巴西队一定不会夺冠C、巴西队夺冠的可能性很大D、巴西队夺冠的可能性很小能性很大12、“上海地区明天降水概率是15%”,下列说法中,正确的是().A、上海地区明天降水的可能性较小B、上海地区明天将有15%的时间降水C、上海地区明天将有15%的地区降水D、上海地区明天肯定不降水13、下列说法正确的是()A、购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是B、国家级射击运动员射靶一次,正中靶心是必然事件C、如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是D、如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品14、下列关于概率的叙述正确的是()A、某运动员投篮5次,投中4次,投中的概率为0.8B、任意抛掷一枚硬币两次,结果是两个都是正面的概率是C、数学选择题,四个选择支中有且只有一个正确,如果从中任选一个,选对的概率为D、飞机失事死亡的概率为0.000000000038,因此乘飞机失事而死亡是不可能事件15、下列说法正确的是().①抛一枚硬币,正面一定朝上;②“明天的降水概率为80%”,表示明天会有80%的地方下雨.③为了解一种灯泡的使用寿命,宜采用普查的方法;④掷一颗骰子,点数一定不大于6.A、1个B、2个C、3个D、4个二、填空题16、小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为________.17、某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为________.18、甲、乙两人下棋,甲不输的概率是0.8,两人下成和棋的概率为0.5,则甲胜的概率为________.19、某产品出现次品的概率为0.05,任意抽取这种产品600件,那么大约有________件是次品.20、小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是________.三、解答题21、甲.乙.丙三个事件发生的概率分别为0.5,0.1,0.9,它们各与下面的哪句话相配.(1)发生的可能性很大,但不一定发生;(2)发生的可能性很小;(3)发生与不发生的可能性一样.22、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?23、动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?24、小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25、一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?答案解析部分一、单选题1、【答案】C【考点】概率的意义【解析】【解答】根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.2、【答案】D【考点】全面调查与抽样调查,随机事件,概率的意义【解析】【解答】A、“打开电视机,正在播放《动物世界》”是随机事件,故A错误;B、某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故C错误;D、想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D正确;故选:D【分析】根据随机事件,可判断A;根据概率的意义,可判断B、C;根据调查方式,可判断D3、【答案】D【考点】随机事件【解析】【解答】A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选:D.【分析】找到一定发生或一定不发生的事件即可.4、【答案】D【考点】概率的意义,利用频率估计概率【解析】【解答】A、连续抛一枚均匀硬币2次有可能一次正面朝上,2次正面朝上,0次正面朝上,故A 错误;B、连续抛一枚均匀硬币10次,有可能正面都朝上,故B错误;C、大量反复抛一枚均匀硬币,平均每100次出现正面朝上的次数不确定,故C错误;D、通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,故D正确;故选:D.【分析】考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.5、【答案】C【考点】全面调查与抽样调查,概率的意义,中位数、众数,方差【解析】【解答】A、一个游戏的中奖概率是,可能会中奖、可能不中奖,故A错误;B、为了解全国中学生的心理健康情况,应该采用抽样调查,故B错误;C、一组数据8,8,7,10,6,8,9 的众数和中位数都是8,故C正确;D、若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则甲组数据比乙组数据稳定,故C错误;故选:C.【分析】本题考查了概率的意义,概率表示事件发生可能性的大小,而不是一定发生,注意方差越小越稳定.6、【答案】B【考点】概率的意义【解析】【解答】骰子上有1,2,3,4,5,6,小明掷到数字6的概率是,故选:B.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,可得答案.7、【答案】A【考点】概率的意义【解析】【解答】“淄博地区明天降水概率是15%”,说明淄博地区明天降水的可能性较小,故A符合题意,故选:A.【分析】本题考查了概率的意义,概率是指事件发生可能性的大小,注意概率的大小仅是发生可能性的大小而不是必然结果.8、【答案】D【考点】概率的意义,算术平均数,中位数、众数【解析】【解答】A、必然事件是一定要发生的事件,必然是加件的概率为1,故A正确;B、数据6、4、2、2、1的平均数是3,故B正确;C、数据5、2、-3、0、3的中位数是2,故C正确;D、某种游戏活动的中奖率为20%,那么参加这种活动100次可能中奖多次,也可能不中奖,故D错误;故选:D.【分析】根据概率的意义,可判断A、D;根据平均数的意义,可判断B;根据中位数的意义,可判断C.9、【答案】A【考点】概率的意义【解析】【解答】A、顶尖朝上的可能性大,故A正确;B、一颗质地均匀的骰子已连续抛掷了2000次,其中掷出5点的次数最少,则第2001次可能抛出5点,也可能不是5点,故B错误;C、天气预报说明天下雨的概率是50%,明天有可能下雨,不是一半时间在下雨,故C错误;D、概率仅仅反映了这一事件发生的可能性的大小,由于总体不是100,故D错误;故选:A.【分析】本题考查了概率的意义,本题解决的关键是理解概率的意义10、【答案】D【考点】概率的意义【解析】【解答】A、一个袋子里有100个同样质地的球,小华摸了8次球,每次都只摸到黑球,这说明袋子里面黑球多,故A错误;B、某事件发生的概率为0.5,也就是说,在两次重复的试验中可能发生两次,可能发生一次,可能不发生,故B错误;C、随机掷一枚均匀的硬币两次,可能两次正面朝上,可能一次正面朝上,可能0次正面朝上,故C错误;D、某校九年级有400名学生,一定有2名学生同一天过生日,故D正确;故选:D.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.11、【答案】C【考点】概率的意义【解析】【解答】巴西国家队夺冠的概率是90%,意思是巴西队夺冠的可能性大,A、夺冠的可能性大并不是一定会夺冠,故A说法错误;B、巴西队夺冠的可能性大,故B说法错误;C、巴西队夺冠的可能性大,故C说法正确;D、巴西队夺冠的可能性大,故D说法错误;故选:C.【分析】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小12、【答案】A【考点】概率的意义【解析】【解答】由分析知:本市明天降水概率是15%”,即明天降水的可能性比较小.故选A.【分析】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小..13、【答案】C【考点】随机事件,概率的意义【解析】【解答】A、购买江苏省体育彩票“中奖”的概率是中奖的张数与发行的总张数的比值,故本项错误;B、国家级射击运动员射靶一次,正中靶心是随机事件,故本项错误;C、如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是正确;D、如果车间生产的零件不合格的概率为,那么平均每检查1000个零件不一定会查到1个次品,故本项错误,故选:C.【分析】随即事件、必然事件的定义,概率的定义判断即可.14、【答案】C【考点】概率的意义【解析】【解答】A、某运动员投篮5次,投中4次,投中的频率为:0.8,故此选项错误;B、任意抛掷一枚硬币两次,结果是两个都是正面的概率是,故此选项错误;C、数学选择题,四个选择支中有且只有一个正确,如果从中任选一个,选对的概率为,此选项正确;D、飞机失事死亡的概率为0.000000000038,因此乘飞机失事而死亡是随机事件,故此选项错误.故选:C【分析】利用概率的意义以及概率求法,分别分析得出即可15、【答案】A【考点】全面调查与抽样调查,随机事件,概率的意义【解析】【解答】(1)抛一枚硬币,正面不一定朝上,故此选项错误;(2)“明天的降水概率为80%”,表示明天会有80%的可能下雨,故此选项错误;(3)为了解一种灯泡的使用寿命,宜采用抽样调查的方法,故此选项错误;(4)掷一颗骰子,点数一定不大于6,正确.则正确的有1个.故选:A.【分析】分别利用概率的意义以及全面调查与抽样调查和随机事件的概念判断得出即可.二、填空题16、【答案】【考点】概率的意义【解析】【解答】∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为故答案为:【分析】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.17、【答案】1%【考点】概率的意义【解析】【解答】每张彩票的中奖率为1%.【分析】这道题是有关不确定事件中可能性大小的问题,可能性的大小是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,小也可能发生.福利彩票的中奖率是1%,说明中奖是不确定事件,无论买多少张彩票,每张彩票的中奖率为1%.18、【答案】0.3【考点】概率的意义【解析】【解答】∵甲、乙两人下棋,甲不输的概率是0.8,两人下成和棋的概率为0.5,∴甲胜的概率为:0.8-0.5=0.3.故答案为:0.3.【分析】此题主要考查了概率的意义,利用不输的概率即为和棋或获胜进而得出是解题关键.19、【答案】30【考点】概率的意义【解析】【解答】由题意可得:次品数量=600×0.05=30,故答案为:30.【分析】利用总数×出现次品的概率=次品的数量,进而得出答案.20、【答案】54%【考点】概率的意义【解析】【解答】小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是1-46%=54%.【分析】本题中小红不输的概率=小强不获胜的概率.三、解答题21、【答案】(1)发生的概率分别为0.9.(2)发生的概率分别为0.1.(3)发生的概率分别为0.5.【考点】概率的意义【解析】【解答】(1)发生的可能性很大,但不一定发生,0.9;(2)发生的可能性很小,0.1;(3)发生与不发生的可能性一样,0.5.【分析】根据概率的意义分别相配即可.22、【答案】解:∵20个商标中2个已翻出,还剩18张,18张中还有3张有奖的,∴第三次翻牌获奖的概率是:【考点】概率的意义【解析】【分析】先求出20个商标中还剩的张数,再求出其中有奖的张数,最后根据概率公式进行计算即可.23、【答案】现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.【考点】概率的意义【解析】【分析】本题考查了概率的意义,利用了概率的和差.24、【答案】答:小明错,小红对;天气预报是随机事件,小区停电是必然事件。
人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
人教版 九年级上册数学 25.2 用列举法求概率 同步课时训练(含答案)
人教版 初三数学 25.2 用列举法求概率 同步课时训练一、选择题1. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.122. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.233. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.124. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.595. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.236. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( ) A.19B.127C.59D.137. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310B.625C.925D.3258. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.29二、填空题9. 一张圆桌旁有四个座位,A 先坐在如图所示的位置上,B ,C ,D 三人随机坐到其他三个座位上,则A 与B 不相邻坐的概率为________.10. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.11. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.12. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.13. 分别写有数字13,2,-1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.14. 小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是________.15. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17. 甲、乙、丙三名学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序. (1)求甲第一个出场的概率; (2)求甲比乙先出场的概率.18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 在一个不透明的袋子里装有4个分别标有1,2,3,4的小球,它们的形状、大小等完全相同.李强从袋子里随机取出1个小球,记下数字为x,王芳在剩下的3个小球中随机取出1个小球,记下数字为y,这样就确定了点M的坐标(x,y).(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.人教版 初三数学 25.2 用列举法求概率 同步课时训练-答案一、选择题1. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12. 故选D.2. 【答案】A3. 【答案】C4. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.5. 【答案】C[解析] 列表得:B 盘A 盘 3451 4 5 62 5 6 7 3678所以甲获胜的概率是59.6. 【答案】A[解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.7. 【答案】A[解析] 3本小说分别记作A ,B ,C ,2本散文分别记作D ,E.一共有20种等可能的结果,其中2本都是小说的结果有6种,因此随机抽取2本都是小说的概率是310.8. 【答案】D[解析] 如图,用A ,B ,C 分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.二、填空题9. 【答案】13 [解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.10. 【答案】38 [解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.11. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.12. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.13. 【答案】25 [解析] 五个数中2和π是无理数,故从中任意抽取一张,抽到无理数的概率是25.14. 【答案】16 [解析] 画树状图如下:因为从上到下的顺序总共有6种等可能的结果,顺序恰好为“上册、中册、下册”的结果有1种,所以从上到下的顺序恰好为“上册、中册、下册”的概率是16.15. 【答案】19 [解析] 列表如下:由表可知,共有9种等可能的结果,其中两人都抽到物理实验的结果只有1种,所以她们两人都抽到物理实验的概率是19.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:列举出所有出场顺序:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲.一共有6种等可能的结果. (1)其中甲第一个出场的结果有2种, 所以P (甲第一个出场)=13.(2)其中甲比乙先出场的结果有3种, 所以P (甲比乙先出场)=12.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为1 4.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为28=14.20. 【答案】解:(1)画树状图如下:由图可知,点M的坐标共有12种,即(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)以上12个点中,在函数y=x+1的图象上的点有3个,即(1,2),(2,3),(3,4),所以所求概率=312=1 4.。
2018-2019学年最新人教版九年级数学上册《用列举法求概率》同步课时练习及答案解析-精品试题
新人教版数学九年级上册第25章25.2用列举法求概率课时作业一、选择题1.九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是()A.19B.13C.59D.23答案:B知识点:概率公式解析:解答:∵数的总个数有9个,绝对值小于2的数有-1,0,1共3个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是31 93故选B.分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=nm,得到绝对值小于2的数的个数是解决本题的易错点.让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.2.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.14B.34C.13D.12答案:D知识点:列表法与树状图法解析:解答:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得:∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是:1 2故选D.分析:此题考查的是用列表法或树状图法求概率的知识.注意所选每种情况必须均等,注意概率=所求情况数与总情况数之比.由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案.3.从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是()A.0B.34C.12D.14答案:D知识点:概率的公式解析:解答:∵在这一组图形中,中心对称图形只有最后一个,∴卡片上的图形是中心对称图形的概率是1 4故选D.分析:本题主要考查的是概率公式及中心对称图形,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.先判断图中中心对称图形的个数,再根据概率公式进行解答即可.4.下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是1 6答案:A知识点:概率的意义解析:解答:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以D选项的说法正确.故选A.分析:本题考查了概率的意义:概率是对随机事件发生的可能性的度量.表示一个事件发生的可能性大小的数,叫做该事件的概率.也考查了全面调查和抽样调查、随即事件以及概率公式.根据概率的意义对A进行判断;根据随即事件和必然事件对B进行判断;根据全面调查和抽样调查对C进行判断;根据概率公式对D进行判断.5.袋子里有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是()A.25B.35C.23D.32答案:B知识点:概率公式解析:解答:因为3个红球,2个蓝球,一共是5个,从袋子中随机取出一个球,取出红球的概率是35,故选B.分析:本题考查了概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.先求出总球数,再根据概率公式解答即可.6.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A.16B.13C.12D.23答案:B知识点:列表法与树状图法解析:解答:列表得:1 2 3 41 - 2+1=3 3+1=4 4+1=52 1+2=3 - 3+2=5 4+2=63 1+3=4 2+3=5 - 4+3=74 1+4=5 2+4=6 3+4=7 -∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:41 123=故选B.分析:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.7.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是23,则黄球的个数为()A.16B.12C.8D.4答案:D知识点:概率公式解析:解答:设黄球的个数为x个,根据题意得:82 83x= +解得:x=4.故选D.分析:此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.首先设黄球的个数为x个,根据题意,利用概率公式即可得方程:8283x=+,解此方程即可求得答案.8.一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A.23B.12C.13D.1答案:A知识点:概率公式解析:解答:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是:2÷3=23故选A.分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,白球的数目为2.9.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且如图所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为何?()A.15B.25C.13D.12答案:B知识点:概率公式解析:解答:图中共有各色纸牌3+3+5+4=15张,其中,红色纸牌3张,黄色纸牌3张,抽出红色纸牌或黄色纸牌的机率=62 155=故选B.分析:本题考查了概率公式和条形统计图,要知道:概率=所求情况数与总情况数之比.根据统计图求出各色纸牌的总张数及红色牌和黄色牌的张数,利用概率公式进行计算即可.10.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.12B.13C.23D.56答案:A知识点:列表法与树状图法解析:解答:画树状图得:∵x2+px+q=0有实数根,∴△=b2-4ac=p2-4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,-1),(2,-1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:31 62 =故选A.分析:此题考查的是用列表法或树状图法求概率与一元二次方程判别式的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x 的方程x 2+px+q=0有实数根的情况,继而利用概率公式即可求得答案.11.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是( ) A.12B.13C.14D.16答案:B知识点:概率的意义解析:解答:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2163=,故选B . 分析:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.12.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( ) A.35B.710C.310D.1625答案:B知识点:列表法与树状图法解析:解答:将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:147 2010=故选B.分析:此题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.首先将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,即可画树状图,由树状图即可求得所有等可能的结果与能够翻译上述两种语言的情况,利用概率公式即可求得答案.13.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.1答案:B知识点:概率公式解析:解答:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是21 42 =;故选B.分析:此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.确定既是中心对称的有几个图形,除以4即可求解.14.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.316B.38C.14D.516答案:C知识点:概率公式解析:解答:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=14.故选:C.分析:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.15.“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()A.13B.23C.49D.59答案:D知识点:概率的意义解析:解答:∵他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,∴他遇到绿灯的概率是:11139--=59.故选D.分析:此题主要考查了概率公式的应用,根据事件的概率之和为1得出他遇到绿灯的概率是解题关键.根据十字路口有红、黄、绿三色交通信号灯,他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,由概率之和为1得出他遇到绿灯的概率即可.二、填空题1、盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是____.答案:23知识点:列表法与树状图法解析:解答:画树状图得:∵共有6种等可能的结果,能组成分式的有4种情况,∴能组成分式的概率是:42 63 .故答案为:2 3分析:此题考查的是用列表法或树状图法求概率与分式的定义.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与能组成分式的情况,再利用概率公式求解即可求得答案.2.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是____.答案:15知识点:概率的意义解析:解答:因为将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有5种情况,分别是1,2,5;1,3,4;2,3,3;4,2,2;1,1,6;因为1,2,5两边之和小于第三边,所以错误;因为1,3,4两边之和等于第三边,所以错误因为2,3,3两边之和大于于第三边,所以正确;因为4,2,2两边之和等于第三边,所以错误;因为1,1,6两边之和小于第三边,所以错误;所以其中能构成三角形的是:2,3,3一种情况,所以截成的三段木棍能构成三角形的概率是;故答案为:15分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.先求出将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.3从-2、1、2这三个数中任取两个不同的数相乘,积是无理数的概率是____.答案:23知识点:列表法与树状图法解析:解答:画树状图得:∵共有6种等可能的结果,积是无理数的有4种情况,∴小强和小红同时入选的概率是:42 63 .故答案为:23.分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是无理数的情况,再利用概率公式即可求得答案.4.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是____.答案:1 25知识点:概率公式解析:解答:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,则老师随机抽1名同学,共50种情况,而习惯用左手字手的同学被选中的有2种;故其概率为225=125.故答案为:125分析:本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.让习惯用左手写字的学生数除以学生总数即为所求的概率.5.某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是____.答案:1 2知识点:列表法与树状图法解析:解答:画树状图得:∵共有4种等可能的结果,他们恰好参加同一项比赛的有2种情况∴他们恰好参加同一项比赛的概率是:21 42 =.故答案为:1 2分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果与他们恰好参加同一项比赛的情况,利用概率公式即可求得答案.三、解答题1、现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)列表得:-1 2-2 -3 01 0 33 2 5则共有6种结果,且它们的可能性相同;…(3分)(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:21 63 =分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.2.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了____名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为____,喜欢“戏曲”活动项目的人数是____人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:1250×100%=24%,喜欢“戏曲”活动项目的人数是:50-12-16-8-10=4,故答案为:50,24%,4;(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,故恰好选中“舞蹈、声乐”两项活动的概率是21 126=;(用列表法)舞蹈乐器声乐戏曲舞蹈舞蹈、乐器舞蹈、声乐舞蹈、戏曲乐器乐器、舞蹈乐器、声乐乐器、戏曲声乐声乐、舞蹈声乐、乐器声乐、戏曲戏曲戏曲、舞蹈戏曲、乐器戏曲、声乐故恰好选中“舞蹈、声乐”两项活动的概率是21 126=.分析:本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.总体数目=部分数目÷相应百分比.分析:(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;(2)根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.3、一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有____种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)根据题意画树形图如下:由以上可知共有12种可能结果分别为:(1,-2),(1,3),(1,-4),(-2,1),(-2,3),(-2,-4),(3,1),(3,-2),(3,-4),(-4,1),(-4,-2),(-4,3);故答案为:12.(2)在(1)中的12种可能结果中,两个数字之积为偶数的只有10种,P(积为偶数)=5 6分析:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)依据题意先用列表法或画树状图法分析所有可能,即可得出答案;(2)利用所有结果与所有符合要求的总数,然后根据概率公式求出该事件的概率.4、学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求: (1)此班这次上交作品共____件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程) 答案:答案见解析 知识点:概率的意义 解析:解答:(1)520402521÷=+++ (2)、设四件作品编号为1、2、3、4号,小明的两件作品分别为1、2号. 列举:(1,2);(1,3);(1,4); (2,3);(2,4);(3,4). 所以他的两件作品都被抽中的概率是16. 另:构成树状图,或用表格法求解等方法,答案正确相应给分.分析:本题考查了条形统计图及列表法和树状图的知识,解题的关键是了解直方图中每一个小长方形的高的比等于它们频数的比.(1)用第二小组的频数除以该小组的份数占总份数的多少即可求得总人数; (2)分别列举出所有可能结果后用概率的公式即可求解.5.有质地均匀的A 、B 、C 、D 四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢.问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.答案:答案见解析知识点:游戏的公平性解析:解答:(1)列表得:圆正方形正三角形平行四边形圆(圆,正方形)(圆,正三角形)(圆,平行四边形)正方形(正方形,圆)(正方形,正三角形)(正方形,平行四边形)正三角形(正三角形,圆)(正三角形,正方形)(正三角形,平行四边形)平行四边形(平行四边形,圆)(平行四边形,正方形)(平行四边形,正三角形)由上表可知,所有等可能结果共有12种,既有圆又有三角形的结果共2种,故出现这种情况的概率为:21 126=;(2)由上图表可得出,既是中心对称图形又是轴对称图形有:(正方形,圆),(圆,正方形)两种,则小明赢的概率为:21 126=故小东赢的概率为:56,故此游戏不公平,可以设计这样的一个游戏规则:如果抽出的两个图形,都是轴对称图形,则小明赢;否则,小东赢.分析:此题主要考查了列表法或树状图求概率,注意列表时它是从中随机抽出一张(不放回),这样不可能有重复的卡片.(1)利用列表法列举出所有结果即可,注意是不放回实验;(2)利用(1)中的表格即可求出两人获胜的概率,进而判别游戏公平性.。
人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)
人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A.B.C.D.2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.3.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.B.C.D.4.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为()A.B.C.D.5.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教室前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.B.C.1 D.6.小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,如图,依次制成编号为的五张卡片(除编号和内容外,其余完全相同).将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.则抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率是()A.B.C.D.7.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.B.C.D.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.10.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,是一个可以自由转动的转盘,盘面被平均,分成6等份,分别标有数字2,3,4,5,6,7.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).则转出的数字大于3的概率是.13.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”。
人教版九年级上册25.2 用列举法求概率 同步训练(含答案)
用列举法求概率(原创)一、选择题1.随机掷一枚均匀的硬币两次,一次正面朝上、一次反面朝上的概率是(). A . B . C . D .1.2.从A 地到B 地可坐飞机、火车、汽车、轮船,从B 地到C 地可坐飞机、火车、汽车,小明乘坐以上交通工具,从A 地经B 地到C 地的方法法有()种. A .4 B .6 C .15 D .12.3.有18个型号相同不同颜色的小球,其中白色8个,黑色6个,红色4个.则从中任意取1个,取到绿色小球的概率等于( ).A .31B .92C .0D .944.掷两个普通的正方体骰子,把两个点数相加,则和为7概率的是 ( )A .61B .31C .41D .325.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是( ) .A. 25B .310C .320D .156.(宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )412143123453489A.21B.52C.73D. 747. (新疆)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A. 161B.163C.41D. 165✱8.用1、2、3这3个数字(数字可重复,如“222”)组成3位数,这个3位数是奇数的概率为( ).A .32B .31C .21D .43二、填空题 9.(盐城)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.10. 从61,π,3,211这四个数中任选一个数,选出的这个数是无理数的概率为________.11.已知函数y =(3k -1)x +4(k 为整数),若从-3≤k ≤3中任取整数k ,则得到的函数是具有性质“y 随x 增加而减少”的一次函数的概率为________.12.若从-1、1、2、0这四个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第四象限的概率是________.三、解答题 13.(遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购物品享受9折优惠、指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区域的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.第18题图14.(广州)某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.15.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐在其他三个座位上,求A与B相邻的概率.16.小红和小明用方块4、黑桃5、黑桃7和梅花7四张纸牌玩游戏,他们将纸牌洗均匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回.(1)若小明恰好抽到黑桃5,请用列表法求小红抽出的牌的数字比5大的概率;(2)小红和小明约定:若小明抽到的牌的数字比小红的大,则小明胜;反之,则小红胜,你认为这个游戏是否公平?请说明理由. 若游戏不公平,请修改规则.答案 一、 1.B 2.D3.C 4.A5.D 6.D 7.C8.A二、9. 4910.21 11.74 12.61三、13.(1)14;(2)画树状图或列表略,共有12种等可能的结果,分别为(A ,A ),(A ,B ),(A ,E ),(B ,A ),(B ,B ),(B ,E ),(C ,A ),(C ,B )(C ,E ),(D ,A ),(D ,B ),(D ,E ), P (顾客享受8折优惠)=16.14. (1) E 类:(人),统计如图所示(2)(3) 设 人分别为 ,,,,,画树状图:所以这 人做义工时间都在 中的概率为 .15.解:按顺时针方向依次对B ,C ,D 进行排位,如下:三个座位被B ,C ,D 三人随机坐的可能性共有6种,由图可知:P (A 与B 相邻)=64=32.16.(1)32共有(5,4)、(5,7)、(5,7)三种,小红的牌比5大的有2种5P小明(2)不公平,12,把两人牌数和为奇数、偶数作为判断结果。
九年级数学上册《用列举法求概率》同步练习1_人教新课标版
25.2用列举法求概率1、下列事件中,属于随机事件的是( )A.掷一枚普通正六面体骰子所得点数不超过6 ;B.买一张体育彩票中奖;C.太阳从西边落下;D.口袋中装有10个红球,从中摸出一个白球.2、下列说法正确的是( )A 、可能性很大的事件必然发生;B 、可能性很小的事件也可能发生;C 、如果一件事情可能不发生,那么它就是必然事件;D 、如果一件事情发生的机会只有百分之一,那么它就不可能发生。
3.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( )A 、 18B 、13C 、38D 、354.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )A 、14B 、13C 、12D 、235.(2007河北5)在一个暗箱里放有a 个除颜色外其他完全相同的小球,这a 个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。
通过大量重复摸球实验后发现,摸到红球的概率稳定在25%,那么可以推算出a 大约是否 ( )A .12B .9C .4D .36、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.一辆汽车在一笔直的公路上行驶,途中要经过两个十字路口.那么在两个十字路口都能直接通过(都是绿灯)的概率是_____________.8.袋子内装有除颜色外其余都相同的3个小球,其中一个红球,两个黄球.现连续从中摸两次(不放回),则两次都摸到黄球的概率是____________.9. A 、B 两个口袋中均有3个分别标有数字1、2、3的相同的球,甲、乙两人进行玩球游戏.游戏规则是:甲从A 袋中随机摸一个球,乙从B 袋中随机摸一个球,当两个球上所标数字之和为奇数时,则甲赢,否则乙赢.问这个游戏公平吗?为什么?10.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.(1)你帮妞妞算算爸爸出“锤子”手势的概率是多少?(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?(3)妞妞和爸爸出相同手势的概率是多少?11.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.12.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中随机抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中随机抽出一张,记下卡片上的数字,然后将这两数相加;(1)请用列表或画树形图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?13.小明为了检验两枚六个面分别刻有点数1、2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 000次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.14、一枚均匀的正方体骰子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点的横、纵坐标,那么点A (m ,n )在函数y = 的图象上的概率是多少?15.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?16.小明和小刚用如图25-2-3的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?12x17.(2007河南19)(9分)张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.18.(2007贵阳24)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正(1)计算“3点朝上”的频率和“5点朝上”的频率.(4分)(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(4分)(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.(4分)19.(2007成都19)小华与小丽设计了A 、B 两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字。
人教版 九年级上册数学 25.2 用列举法求概率 同步训练(含答案)
人教版 九年级数学 25.2 用列举法求概率 同步训练一、选择题(本大题共10道小题) 1. 2018·大连 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.592. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( ) A.16B.38C.58D.233. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.234. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.125. 在▱ABCD中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,②AC =BD ,③AC ⊥BD ,④ AB ⊥BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.256. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.297. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.238. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.129. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π410. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.313二、填空题(本大题共7道小题)11. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是________.12. 2019·邵阳不透明袋中装有大小、形状、质地完全相同的4个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是________.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.14. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是________.15. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.17. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数的图象恰好经过第一、二、四象限的概率为________.三、解答题(本大题共4道小题)18. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况;(2)小美玩一次游戏,得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为x的值,放回卡片洗匀后,再从三张卡片中随机抽取一张,以其正面数字作为y的值,两次结果记作(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使分式x2-3xyx2-y2+yx-y有意义的(x,y)出现的概率;(3)化简分式x2-3xyx2-y2+yx-y,并求使分式的值为整数的(x,y)出现的概率.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为5 9.2. 【答案】B[解析] 从树状图(C代表雌鸟,X代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.3. 【答案】C[解析] 列表得:B盘A盘3 4 51 4 5 62 5 6 73 6 7 8所以甲获胜的概率是59.4. 【答案】C5. 【答案】A[解析] ①AB=BC,③AC⊥BD能够推出▱ABCD为菱形,4种情形中有2种符合要求,所以所求概率为24=12.6. 【答案】D[解析] 如图,用A,B,C分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.7. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.8. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.9. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】13 [解析] 本题考查了用列举法求概率,关键扣住“不放回”,用列表法列出等可能的结果如下:1 2 4 8 1 2×1=2 4×1=4 8×1=8 2 1×2=2 4×2=8 8×2=16 4 1×4=4 2×4=8 8×4=32 81×8=82×8=164×8=32所以共有12种等可能的结果,其中两次取出的小球上数字之积等于8的结果有4种,所以P(两次取出的小球上数字之积等于8)=412=13.12. 【答案】16 [解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中取出2个小球的颜色恰好是一红一蓝的结果有2种,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16.故答案为16.13.【答案】49【解析】如解图所示,由树状图可知,共有9种情况,而符合两次都摸到红球的情况共有4种,根据计算简单事件的概率公式P =m n =49.14. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.15. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数, 所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.17. 【答案】16 [解析] 函数y =ax2+bx +1的图象一定经过y 轴上的点(0,1),又知其图象经过第一、二、四象限,则图象的开口向上,对称轴在y 轴的右侧,且与x 轴正半轴有两个交点,所以a >0,b <0,b2-4ac >0. 列表如下:由表可知,从-4,-2,1,2四个数中随机取两个数一共有12种等可能的结果,其中只有a =1,b =-4和a =2,b =-4这2种结果符合题意,所以所求概率=212=16.三、解答题(本大题共4道小题)18. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15. (3)125×(3×45-4×15)=200(元). 答:估计游戏设计者可赚200元.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.20. 【答案】解:(1)画树状图如下:所以所有可能出现的结果为(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1). (2)要使分式x2-3xy x2-y2+yx -y有意义,则有(x +y)(x -y)≠0,所以只有(-2,-1),(-2,1),(-1,-2),(1,-2)符合条件,所以使分式x2-3xyx2-y2+y x -y 有意义的(x ,y)出现的概率为49. (3)x2-3xy x2-y2+yx -y=x2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y ) =x2-3xy (x +y )(x -y )+xy +y2(x +y )(x -y ) =x2-3xy +xy +y2(x +y )(x -y ) =x2-2xy +y2(x +y )(x -y ) =(x -y )2(x +y )(x -y )=x -y x +y.将使公式x2-3xy x2-y2+yx -y 有意义的(-2,-1),(-2,1),(-1,-2),(1,-2)分别代入上式,计算可得原式的值分别为13,3,-13,-3, 所以使分式的值为整数的(x ,y)出现的概率为29.21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.。
2019年人教版九年级上25.2用列举法求概率同步练习(有答案)
25.2 用列举法求概率同步练习一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是A. B. C. D.2.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是A. B. C. D.3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字,0,1,若转动转盘两次,每次转盘停止后记录指针所指区域的数字当指针恰好指在分界线上时,不记,重转,则记录的两个数字都是正数的概率为A. B. C. D.4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是A. B. C. D.5.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为A. B. C. D.6.从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为A. B. C. D.7.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是A. B. C. D. 18.小王家新锁的密码是6位数,他记得前两位数是23,后两位数是32,中间两位数忘了,那么他一次按对的概率是A. B. C. D.9.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是A. B. C. D.10.若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字,,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点,那么点P落在直线上的概率是A. B. C. D.二、填空题11.有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是______ .12.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是______ .13.如果任意选择一对有序整数,其中,,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程有两个相等实数根的概率是______ .14.从,,,四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为则一次函数的图象不经过第四象限的概率是______ .15.从,0,2,3这四个数中,任取两个数作为a,b,分别代入一元二次方程中,那么所有可能的一元二次方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.写出按上述规定得到所有可能的两位数;从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.17.近年来,手机微信红包迅速流行起来去年春节,小米的爷爷也尝试用微信发红包,他分别将10元、30元、60元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只能抢一个红包,且抢到任何一个红包的机会均等爷爷只发不抢,红包里钱的多少与抢红包的先后顺序无关.求小米抢到60元红包的概率;如果小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这种情况下,求小米和妈妈两个人抢到红包的钱数之和不少于70元的概率.18.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”如13,35,56等在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.写出所有个位数字是5的“两位递增数”;请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11.12.13.14.15.16. 解:画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率.17. 解:小米抢到60元红包的概率;画树状图为:共有24种等可能的结果数,其中小米和妈妈两个人抢到红包的钱数之和不少于70元的结果数为8,所以小米和妈妈两个人抢到红包的钱数之和不少于70元的概率.18. 解:根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率.。
人教版九年级数学上册用列举法求概率同步练习新
25.2用列举法求概率一.选择题(共16 小题)1.( 2018?广州)甲袋中装有 2 个同样的小球,分别写有数字 1 和 2:乙袋中装有 2 个同样的小球,分别写有数字 1 和 2.从两个口袋中各随机拿出 1 个小球,拿出的两个小球上都写有数字 2 的概率是()A.B.C.D.2.( 2018?临沂) 2018 年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.3.(2018?聊城)小亮、小莹、大刚三位同学随机地站成一排合影纪念,小亮恰巧站在中间的概率是()A.B.C.D.4.( 2018?山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都同样,随机从中摸出一个球,记下颜色后放回袋子中,充足摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.5.( 2018?无锡)如图是一个沿3×3 正方形方格纸的对角线AB剪下的图形,一质点 P 由 A 点出发,沿格点线每次向右或向上运动 1 个单位长度,则点 P 由 A 点运动到 B 点的不一样路径共有()A. 4 条B. 5 条C. 6 条D. 7 条6.(2018?威海)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣ 1,0, 1.卡片除数字不一样外其余均同样,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.7.(2018?攀枝花)布袋中装有除颜色外没有其余区其余 1 个红球和 2 个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.B.C.D.8.( 2017?淄博)在一个不透明的袋子里装有四个小球,球上分别标有6, 7, 8, 9 四个数字,这些小球除数字外都同样.甲、乙两人玩“猜数字”游戏,甲先从袋中随意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.假如m, n 知足 |m﹣ n|≤1,那么就称甲、乙两人“心领意会”,则两人“心领意会”的概率是()A.B.C.D.9.(2017?永州)已知从n 个人中,选出m个人依据必定的次序排成一行,全部不一样的站位方法有 n×( n﹣ 1)× ×( n﹣ m+1)种.现某校九年级甲、乙、丙、丁 4 名同学和 1 位老师共 5 人在毕业前合影纪念(站成一行).若老师站在中间,则不一样的站位方法有()A. 6 种B. 20 种 C. 24 种 D. 120 种10.( 2017?贵港)从长为3, 5,7, 10 的四条线段中随意选用三条作为边,能构成三角形的概率是()A.B.C.D. 111.( 2017?嘉兴)红红和娜娜按以下图的规则玩一次“锤子、剪刀、布”游戏,以下命题中错误的选项是()A.红红不是胜就是输,因此红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出同样手势的概率为12.( 2017?济南)如图,五一旅行黄金周时期,某景区规定 A 和 B 为进口, C, D, E 为出口,小红随机选一个进口进入景区,游乐后任选一个出口走开,则她选择从 A 进口进入、从C, D 出口走开的概率是()A.B.C.D.13.( 2017?济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其余差异,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字构成“孔孟”的概率是()A.B.C.D.14.( 2016?赤峰)从数字2, 3,4 中任选两个数构成一个两位数,构成的数是偶数的概率是()A.B.C.D.15.( 2016?巴中)以下说法正确的选项是()A.掷一枚质地均匀的正方体骰子,骰子停止转动后, 5 点向上是必定事件B.审察书稿中有哪些学科性错误适适用抽样检查法C.甲乙两人在同样条件下各射击10 次,他们的成绩的均匀数同样,方差分别是S 甲2=0.4 ,S 乙2=0.6 ,则甲的射击成绩较稳固D.掷两枚质地均匀的硬币,“两枚硬币都是正面向上”这一事件发生的概率为16.(2016?牡丹江)在一个口袋中有 4 个完好同样的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球而后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5 的概率是()A.B.C.D.17.( 2018?扬州)有 4 根细木棒,长度分别为2cm,3cm,4cm, 5cm,从中任选 3 根,恰巧能搭成一个三角形的概率是.18.( 2018?新疆)一天夜晚,小伟帮助妈妈冲洗两个只有颜色不一样的有盖茶杯,忽然停电了,小伟只能把杯盖和茶杯随机地搭配在一同,则颜色搭配正确的概率是.19.( 2018?包头)从﹣2,﹣ 1, 1, 2 四个数中,随机抽取两个数相乘,积为大于﹣ 4 小于2 的概率是.20.( 2018?咸宁)一个不透明的口袋中有三个完好同样的小球,它们的标号分别为1,2,3.随机摸出一个小球而后放回,再随机摸出一个小球,则两次摸出的小球标号同样的概率是.21.( 2018?滨州)若从﹣1,1, 2 这三个数中,任取两个分别作为点M 的横、纵坐标,则点 M在第二象限的概率是.22.( 2018?绵阳)现有长分别为1,2,3,4,5 的木条各一根,从这 5 根木条中任取 3 根,能构成三角形的概率是.23.( 2017?襄阳)同时投掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.24.( 2017?雅安)分别从数﹣5,﹣ 2,1, 3 中,任取两个不一样的数,则所取两数的和为正数的概率为.25.( 2016?绥化)在一个不透明的口袋中,装有A, B, C, D4 个完好同样的小球,随机摸取一个小球而后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.26.( 2016?黔东南州)在一个不透明的箱子中装有 4 件同型号的产品,此中合格品 3 件、不合格品 1 件,此刻从这4件产品中随机抽取 2 件检测,则抽到的都是合格品的概率是.三.解答题(共8 小题)27.( 2018?吉林)一个不透明的口袋中有三个小球,上边分别标有字母A, B, C,除所标字母不一样外,其余完好同样,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母同样的概率.28.(2018?泸州)为认识某中学学生课余生活状况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行检查统计.现从该校随机抽取n 名学生作为样本,采纳问卷调查的方法采集数据(参加问卷检查的每名学生只能选择此中一项).并依据检查获取的数据绘制成了以下图的两幅不完好的统计图.由图中供给的信息,解答以下问题:(1)求 n 的值;(2)若该校学生共有 1200 人,试预计该校喜爱看电视的学生人数;(3)若检查到喜爱体育活动的4 名学生中有 3 名男生和 1 名女生,现从这 4 名学生中随意抽取 2 名学生,求恰巧抽到 2 名男生的概率.29.( 2018?南充)“每日锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级选举出来的15 名领操员进行竞赛,成绩以下表:成绩 / 分78910人数 / 人2544(1)这组数据的众数是,中位数是.(2)已知获取10 分的选手中,七、八、九年级分别有 1 人、 2 人、 1 人,学校准备从中随机抽取两人领操,求恰巧抽到八年级两名领操员的概率.30.( 2018?苏州)如图,在一个能够自由转动的转盘中,指针地点固定,三个扇形的面积都相等,且分别标有数字1,2, 3.( 1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).31.( 2018?江西)今年某市为创评“全国文明城市”称呼,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从 4 名女班干部(小悦、小惠、小艳和小倩)中经过抽签方式确定 2 名女生去参加.抽签规则:将 4 名女班干部姓名分别写在 4 张完好同样的卡片正面,把四张卡片反面向上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从节余的 3 张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不行能”或“必定”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;概率.32.( 2017?资阳)目前,“精确扶贫”工作已进入攻坚阶段,凡贫穷家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫穷家庭的学生人数按一、二、三、四班分别记为 A1, A2,A3, A4,现对 A1, A2, A3, A4统计后,制成以下图的统计图.(1)求七年级已“建档立卡”的贫穷家庭的学生总人数;(2)将条形统计图增补完好,并求出A1所在扇形的圆心角的度数;(3)现从 A1, A2中各选出一人进行会谈,若 A1中有一名女生, A2中有两名女生,请用树状图表示全部可能状况,并求出恰巧选出一名男生和一名女生的概率.33.(2017?连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,此中 A 类指废电池,过期药品等有毒垃圾, B 类指节余食品等厨余垃圾, C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不一样类.(1)直接写出甲投放的垃圾恰巧是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.34.( 2017?葫芦岛)跟着通信技术的迅猛发展,人与人之间的交流方式更多样、便利.某校数学兴趣小组设计了“你最喜爱的交流方式”检盘问卷(每人必选且只选一种),在全校范围内随机检查了部分学生,将统计结果绘制了以下两幅不完好的统计图,请联合图中所给的信息解答以下问题:(1)此次统计共抽查了名学生;在扇形统计图中,表示“ QQ”的扇形圆心角的度数为;(2)将条形统计图增补完好;(3)该校共有 1500 名学生,请预计该校最喜爱用“微信”进行交流的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“ QQ”、“电话”三种交流方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰巧选择同一种交流方式的概率.参照答案一.选择题(共16 小题)1. C. 2. D. 3. B.4. A. 5. B. 6. B.7. A. 8. B. 9. C. 10. B.11. A. 12. B. 13.B. 14.A. 15. C. 16. C.二.填空题(共10 小题)17..18..19..20..21..22..23..24..25.26..三.解答题(共8 小题)27.解:列表得:A B CA(A, A)( B, A)( C, A)B(A, B)( B, B)( C, B)C(A, C)( B, C)( C, C)由列表可知可能出现的结果共9 种,此中两次摸出的小球所标字母同样的状况数有 3 种,因此该同学两次摸出的小球所标字母同样的概率= =.28.解:( 1) n=5÷ 10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣ 20﹣5=10(人),1200×=240,因此预计该校喜爱看电视的学生人数为240 人;(3)画树状图为:共有 12 种等可能的结果数,此中恰巧抽到 2 名男生的结果数为6,因此恰巧抽到 2 名男生的概率 = = .29.解:( 1)因为 8 分出现次数最多,因此众数为8,中位数为第8 个数,即中位数为9,故答案为: 8、 9;(2)画树状图以下:由树状图可知,共有12 种等可能结果,此中恰巧抽到八年级两名领操员的有 2 种结果,因此恰巧抽到八年级两名领操员的概率为=.30.解:( 1)∵在标有数字1、 2、 3 的 3 个转盘中,奇数的有1、 3 这 2 个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表以下:1231( 1, 1)(2, 1)( 3, 1)2( 1, 2)(2, 2)( 3, 2)3( 1, 3)(2, 3)( 3, 3)由表可知,全部等可能的状况数为9 种,此中这两个数字之和是 3 的倍数的有 3 种,因此这两个数字之和是 3 的倍数的概率为= .31.解:( 1)该班男生“小刚被抽中”是不行能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不行能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、 C、 D,列表以下:A B C DA﹣﹣﹣( B, A)( C, A)( D, A)B( A, B)﹣﹣﹣( C, B)( D, B)C( A, C)( B, C)﹣﹣﹣( D, C)D( A, D)( B, D)( C, D)﹣﹣﹣由表可知,共有12 种等可能结果,此中小惠被抽中的有 6 种结果,因此小惠被抽中的概率为=.32.解:( 1)总数人数为:6÷ 40%=15人(2) A2的人数为15﹣ 2﹣ 6﹣ 4=3(人)补全图形,以下图A1所在圆心角度数为:×360°=48°(3)画出树状图以下:故所求概率为:P= =33.解:( 1)∵垃圾要按A, B,C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰巧是 A 类的概率为:;(2)以下图:,由图可知,共有18 种可能结果,此中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12 种,因此, P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.34.解:( 1)喜爱用电话交流的人数为20,所占百分比为20%,∴此次共抽查了: 20÷ 20%=100人喜爱用 QQ交流所占比率为:=,∴QQ”的扇形圆心角的度数为: 360°×=108°(2)喜爱用短信的人数为: 100× 5%=5人喜爱用微信的人数为: 100﹣20﹣ 5﹣ 30﹣ 5=40增补图形,以下图:(3)喜爱用微信交流所占百分比为:×100%=40%∴该校共有1500 名学生,请预计该校最喜爱用“微信”进行交流的学生有:1500× 40%=600人(4)列出树状图,以下图全部状况共有9 种状况,此中两人恰巧选中同一种交流方式共有 3 种状况,甲、乙两名同学恰巧选中同一种交流方式的概率为:=故答案为:( 1) 100;108°。
人教版九年级上册数学用列举法求概率同步训练
人教版九年级上册数学25.2用列举法求概率同步训练一、单选题1.下列事件中属于必然事件的是( )A .正数大于负数B .下周二,温州的天气是阴天C .在一个只装有白球的袋子中摸出一个红球D .在一张纸上任意画两条线段,这两条线段相交2.下列事件中,属于随机事件的是( )A .将食用油滴入水中,油会浮在水面上B .掷一枚骰子,向上一面的数字小于7C .太阳从东方落下D .一个射击运动员每次射击的命中环数3.在一个不透明的口袋中,装有一些除颜色外完全相同的红、黑、白三种颜色的小球.已知口袋中有红球5个,白球23个,且从口袋中随机摸出一个红球的概率是110,则口袋中黑球的个数为( ) A .22 B .23 C .25D .27 4.一个游戏转盘如图所示,甲、乙、丙、丁四个扇形的圆心角度数分别为90︒,30,100︒,140︒.转动转盘,当其停止转动后,指针落在哪个区域的可能性最大( )A .甲扇形B .乙扇形C .丙扇形D .丁扇形5.下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定6.下列事件中,是必然事件的是 ( )A .投掷一枚硬币,向上一面是正面B .射击一次,击中靶心C.天气热了,新冠病毒就消失了D.写出一个有理数,它的绝对值是非负数7.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝三种颜色.固定指针,自由转动转盘,停止后指针所指区域(指针指向区域分界线时,忽略不计)的颜色为黄色的概率是()A.12B.23C.13D.148.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910B.110C.118D.120二、填空题9.当一次试验涉及两个因素并且可能出现的结果数目较多时,可以用_____法求概率.10.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是4的倍数的概率是______________.11.一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的__________,记为________.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=________.12.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是蓝色的概率是___.13.如图,小明随意的向长方形ABCD内扎飞镖,已知点P是边BC的中点,则飞镖恰好扎中阴影区域的概率是____.14.袋中装有3个黑球,6个白球(这些球除颜色外都相同),随机摸出一个球,恰好是白球的概率是________________.15.某商场庆“七一”建党节抽奖活动,顾客购物后就可通过转动转盘获得指针指向区域的奖项,顾客只有一次转动转盘的机会(指针与边缘线重合再来一次),其中二等奖对应的扇形圆心角为30°,则顾客获得二等奖的概率为_____________.16.一个不透明的袋中装有黄、白两种颜色的球共40个,这些球除颜色外都相同,小亮通过多次摸球试验后,发现摸到黄球的频率稳定在0.35左右,则袋中白球可能有______个.三、解答题17.四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张,再从剩下的三张中随机抽取一张.(1)用列表或画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能结果;(2)求抽得的两张卡片上的数字之积为奇数的概率.18.用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?19.某中学在艺术节期间向全校学生征集书画作品,美术王老师从全校随机抽取了四个班级记作A 、B 、C 、D ,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师抽查的四个班级共征集到作品多少件?(2)请把图2的条形统计图补充完整;(3)若全校参展作品中有四名同学获得一等奖,其中有二名男生、二名女生.现在要在其中抽两名同学去参加学校总结表彰座谈会,请用画树状图或列表的方法求恰好抽中一名男生一名女生的概率.20.浙江省11个城市的空气质量指数(AQI )如图所示:(1)这11个城市当天的空气质量指数的众数是 ;中位数是 ;(2)当050AQI ≤≤时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.。
人教版九年级上册数学用列举法求概率同步练习
人教版九年级上册数学25.2用列举法求概率同步练习一、单选题1.在一次联欢晚会上,某班进行以下游戏,准备两个不透明的袋子和7个小球(大小、形状完全一样),一个袋子里放置3个小球,球面上分别写着“好”“运”“来”,另一个袋子里放置4个小球,球面上分别写着“新”“年”“好”“运”.现从两个袋子里各随机抽取一个球,球面上的字可以组成“好运”字样的获得一等奖,则获得一等奖的概率为()A.112B.18C.16D.142.一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则两次摸到的球都是红球的概率是()A.12B.13C.49D.593.有5张看上去无差别的卡片,上面分别写着2,4,5,7,9,随机抽取3张,用抽到的三个数字作为边长,恰能构成三角形的概率是()A.25B.38C.13D.274.工厂从三名男工人和两名女工人中,选出两人参加技能大赛,则这两名工人恰好都是男工人的概率为()A.35B.15C.310D.255.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏,分别转动两个转盘(指针指向区域分界线时,忽略不计),若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率为()A.13B.512C.12D.7126.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片,不放回,再另外抽取一张,抽取的两张卡片上数字之积为0的概率是()A.14B.716C.12D.347.某人有红、白、蓝三条长裤和红、白、蓝三件衬衣,他从中任意拿一条长裤和一件衬衣,恰好颜色配套的概率是()A.18B.16C.13D.128.甲、乙两人各自掷一个普通的正方体骰子,如果两者之和为偶数,甲得1分;如果两者之和为奇数,乙得1分,此游戏()试卷第2页,共3页A .是公平的B .对乙有利C .对甲有利D .以上都不对二、填空题 9.当一次试验涉及两个因素并且可能出现的结果数目较多时,可以用_____法求概率.10.在平面直角坐标系中,设点(),P a b .从3,2--,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点(),P a b 落在第四象限内的概率是_______.11.从3,π,0,3.14,4,0.2020020002…(两个2之间依次多一个0)这六个数中随机抽取一个,抽到有理数的概率是__________________.12.有七张正面标有数字3-,2-,1-,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗均后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程()221ax a x a --+20-=有两个不相等的实数根的概率为______.13.某班一个学习小组包含男生3人,女生2人,某次上课小组讨论后,老师随机从该小组中抽取两人回答问题,则抽取到的两人恰好是1男1女的概率是________.14.如图所示的电路图中,当随机闭合1S ,2S ,3S , 4S 中的两个开关时,能够让灯泡发光的概率为 ______ .15.已知线段a 的长度为11,现从1~10这10条整数线段中任取两条,能和线段a 组成三角形的概率为 ___.三、解答题16.一个盒子中有1个红球、1个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.求:(1)两次都摸到红球的概率;(2)两次摸到不同颜色的球的概率17.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?18.如图,有四张背面完全相同的纸牌,其正面分别写有汉字“我”“爱”“山”“西”,将这四张纸牌背面朝上放到水平桌面上,并洗匀.(1)若从中随机抽取一张纸牌,纸牌上的汉字是“爱”的概率是______;(2)若先从中任取一张纸牌,再从剩下的纸牌中任取一张,请用画树状图或列表的方法,求取出的两张纸牌上的汉字能组成“山西”的概率.19.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)补全条形统计图;(2)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版数学九年级上册第25章25.2用列举法求概率课时作业一、选择题1. 九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是()A . 19B.13C.59D.23答案:B知识点:概率公式解析:解答:∵数的总个数有9个,绝对值小于2的数有-1,0,1共3个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是31 93故选B.分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=nm,得到绝对值小于2的数的个数是解决本题的易错点.让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.2.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A . 14B.34C.13D.12答案:D知识点:列表法与树状图法解析:解答:如图,将第二个转盘中的蓝色部分等分成两部分,画树状图得:∵共有6种等可能的结果,可配成紫色的有3种情况,∴可配成紫色的概率是:1 2故选D.分析:此题考查的是用列表法或树状图法求概率的知识.注意所选每种情况必须均等,注意概率=所求情况数与总情况数之比.由于第二个转盘不等分,所以首先将第二个转盘中的蓝色部分等分成两部分,然后画树状图,由树状图求得所有等可能的结果与可配成紫色的情况,再利用概率公式即可求得答案.3. 从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是()A . 0 B. 34C.12D.14答案:D知识点:概率的公式解析:解答:∵在这一组图形中,中心对称图形只有最后一个,∴卡片上的图形是中心对称图形的概率是1 4故选D.分析:本题主要考查的是概率公式及中心对称图形,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.先判断图中中心对称图形的个数,再根据概率公式进行解答即可.4.下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是1 6答案:A知识点:概率的意义解析:解答:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以D选项的说法正确.故选A.分析:本题考查了概率的意义:概率是对随机事件发生的可能性的度量.表示一个事件发生的可能性大小的数,叫做该事件的概率.也考查了全面调查和抽样调查、随即事件以及概率公式.根据概率的意义对A进行判断;根据随即事件和必然事件对B进行判断;根据全面调查和抽样调查对C进行判断;根据概率公式对D进行判断.5.袋子里有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是()A . 25B.35C.23D.32答案:B知识点:概率公式解析:解答:因为3个红球,2个蓝球,一共是5个,从袋子中随机取出一个球,取出红球的概率是35,故选B.分析:本题考查了概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.先求出总球数,再根据概率公式解答即可.6.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A . 16B.13C.12D.23答案:B知识点:列表法与树状图法解析:解答:列表得:1 2 3 41 - 2+1=3 3+1=4 4+1=52 1+2=3 - 3+2=5 4+2=63 1+3=4 2+3=5 - 4+3=74 1+4=5 2+4=6 3+4=7 -∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:41 123=故选B.分析:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.7.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是23,则黄球的个数为()A. 16B. 12C. 8D. 4答案:D知识点:概率公式解析:解答:设黄球的个数为x个,根据题意得:82 83x= +解得:x=4.故选D.分析:此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.首先设黄球的个数为x个,根据题意,利用概率公式即可得方程:8283x=+,解此方程即可求得答案.8.一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A . 23B.12C.13D. 1答案:A知识点:概率公式解析:解答:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是:2÷3=23故选A.分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,白球的数目为2.9.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且如图所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为何?()A . 15B.25C.13D.12答案:B知识点:概率公式解析:解答:图中共有各色纸牌3+3+5+4=15张,其中,红色纸牌3张,黄色纸牌3张,抽出红色纸牌或黄色纸牌的机率=62 155=故选B.分析:本题考查了概率公式和条形统计图,要知道:概率=所求情况数与总情况数之比.根据统计图求出各色纸牌的总张数及红色牌和黄色牌的张数,利用概率公式进行计算即可.10.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A . 12B.13C.23D.56答案:A知识点:列表法与树状图法解析:解答:画树状图得:∵x2+px+q=0有实数根,∴△=b2-4ac=p2-4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,-1),(2,-1),(2,1)共3种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:31 62 =故选A.分析:此题考查的是用列表法或树状图法求概率与一元二次方程判别式的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+px+q=0有实数根的情况,继而利用概率公式即可求得答案.11.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A . 12B.13C.14D.16答案:B知识点:概率的意义解析:解答:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是2163==,故选B . 分析:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.12.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( ) A .35 B. 710 C. 310 D. 1625答案:B知识点:列表法与树状图法 解析:解答:将一名只会翻译阿拉伯语用A 表示,三名只会翻译英语都用B 表示,一名两种语言都会翻译用C 表示, 画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况, ∴该组能够翻译上述两种语言的概率为:1472010= 故选B .分析:此题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.首先将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,即可画树状图,由树状图即可求得所有等可能的结果与能够翻译上述两种语言的情况,利用概率公式即可求得答案.13.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A . 14B.12C.34D. 1答案:B知识点:概率公式解析:解答:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是21 42 ;故选B.分析:此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.确定既是中心对称的有几个图形,除以4即可求解.14.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A .316B.38C.14D.516答案:C知识点:概率公式解析:解答:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=14.故选:C.分析:此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.15.“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()A . 13B.23C.49D.59答案:D知识点:概率的意义解析:解答:∵他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,∴他遇到绿灯的概率是:11139--=59.故选D.分析:此题主要考查了概率公式的应用,根据事件的概率之和为1得出他遇到绿灯的概率是解题关键.根据十字路口有红、黄、绿三色交通信号灯,他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,由概率之和为1得出他遇到绿灯的概率即可.二、填空题1、盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是____.答案:23知识点:列表法与树状图法解析:解答:画树状图得:∵共有6种等可能的结果,能组成分式的有4种情况,∴能组成分式的概率是:42 63 .故答案为:2 3分析:此题考查的是用列表法或树状图法求概率与分式的定义.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图求得所有等可能的结果与能组成分式的情况,再利用概率公式求解即可求得答案.2.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是____.答案:15知识点:概率的意义解析:解答:因为将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有5种情况,分别是1,2,5;1,3,4;2,3,3;4,2,2;1,1,6;因为1,2,5两边之和小于第三边,所以错误;因为1,3,4两边之和等于第三边,所以错误因为2,3,3两边之和大于于第三边,所以正确;因为4,2,2两边之和等于第三边,所以错误;因为1,1,6两边之和小于第三边,所以错误;所以其中能构成三角形的是:2,3,3一种情况,所以截成的三段木棍能构成三角形的概率是;故答案为:15分析:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.先求出将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.3从-2、1、2这三个数中任取两个不同的数相乘,积是无理数的概率是____.答案:23知识点:列表法与树状图法解析:解答:画树状图得:∵共有6种等可能的结果,积是无理数的有4种情况,∴小强和小红同时入选的概率是:42 63 .故答案为:23.分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积是无理数的情况,再利用概率公式即可求得答案.4.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是____.答案:1 25知识点:概率公式解析:解答:根据题意,某班共有50名同学,其中有2名同学习惯用左写字手,则老师随机抽1名同学,共50种情况,而习惯用左手字手的同学被选中的有2种;故其概率为225=125.故答案为:125分析:本题考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.让习惯用左手写字的学生数除以学生总数即为所求的概率.5.某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是____.答案:1 2知识点:列表法与树状图法解析:解答:画树状图得:∵共有4种等可能的结果,他们恰好参加同一项比赛的有2种情况∴他们恰好参加同一项比赛的概率是:21 42 .故答案为:1 2分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果与他们恰好参加同一项比赛的情况,利用概率公式即可求得答案.三、解答题1、现有5个质地、大小完全相同的小球上分别标有数字-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)列表得:-1 2-2 -3 01 0 33 2 5则共有6种结果,且它们的可能性相同;…(3分)(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:21 63分析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.2.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了____名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为____,喜欢“戏曲”活动项目的人数是____人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:1250×100%=24%,喜欢“戏曲”活动项目的人数是:50-12-16-8-10=4,故答案为:50,24%,4;(2)(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,故恰好选中“舞蹈、声乐”两项活动的概率是21 126=;(用列表法)舞蹈乐器声乐戏曲舞蹈舞蹈、乐器舞蹈、声乐舞蹈、戏曲乐器乐器、舞蹈乐器、声乐乐器、戏曲声乐声乐、舞蹈声乐、乐器声乐、戏曲戏曲戏曲、舞蹈戏曲、乐器戏曲、声乐故恰好选中“舞蹈、声乐”两项活动的概率是21 126=.分析:本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.总体数目=部分数目÷相应百分比.分析:(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;(2)根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.3、一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有____种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.答案:答案见解析知识点:列表法与树状图法解析:解答:(1)根据题意画树形图如下:由以上可知共有12种可能结果分别为:(1,-2),(1,3),(1,-4),(-2,1),(-2,3),(-2,-4),(3,1),(3,-2),(3,-4),(-4,1),(-4,-2),(-4,3); 故答案为:12.(2)在(1)中的12种可能结果中,两个数字之积为偶数的只有10种, P (积为偶数)=56分析:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. (1)依据题意先用列表法或画树状图法分析所有可能,即可得出答案;(2)利用所有结果与所有符合要求的总数,然后根据概率公式求出该事件的概率. 4、学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求: (1)此班这次上交作品共____件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程) 答案:答案见解析 知识点:概率的意义 解析:解答:(1)520402521÷=+++ (2)、设四件作品编号为1、2、3、4号,小明的两件作品分别为1、2号. 列举:(1,2);(1,3);(1,4); (2,3);(2,4);(3,4).所以他的两件作品都被抽中的概率是16.另:构成树状图,或用表格法求解等方法,答案正确相应给分.分析:本题考查了条形统计图及列表法和树状图的知识,解题的关键是了解直方图中每一个小长方形的高的比等于它们频数的比.(1)用第二小组的频数除以该小组的份数占总份数的多少即可求得总人数;(2)分别列举出所有可能结果后用概率的公式即可求解.5.有质地均匀的A、B、C、D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢.问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.答案:答案见解析知识点:游戏的公平性解析:解答:(1)列表得:圆正方形正三角形平行四边形圆(圆,正方形)(圆,正三角形)(圆,平行四边形)正方形(正方形,圆)(正方形,正三角形)(正方形,平行四边形)正三角形(正三角形,圆)(正三角形,正方形)(正三角形,平行四边形)平行四边形(平行四边形,圆)(平行四边形,正方形)(平行四边形,正三角形)由上表可知,所有等可能结果共有12种,既有圆又有三角形的结果共2种,故出现这种情况的概率为:21 126=;(2)由上图表可得出,既是中心对称图形又是轴对称图形有:(正方形,圆),(圆,正方形)两种,则小明赢的概率为:21 126=故小东赢的概率为:56,故此游戏不公平,可以设计这样的一个游戏规则:如果抽出的两个图形,都是轴对称图形,则小明赢;否则,小东赢.分析:此题主要考查了列表法或树状图求概率,注意列表时它是从中随机抽出一张(不放回),这样不可能有重复的卡片.(1)利用列表法列举出所有结果即可,注意是不放回实验;(2)利用(1)中的表格即可求出两人获胜的概率,进而判别游戏公平性.。