2018年九年级数学模拟试题

合集下载

浙教版2018-2019学年度九年级中考数学模拟试卷C

浙教版2018-2019学年度九年级中考数学模拟试卷C

浙教版2018-2019学年度九年级中考数学模拟试卷C一.选择题(共10小题,满分30分,每小题3分)1.若一个数的倒数是﹣2,则这个数是()A.B.﹣C.D.﹣2.2017年中秋小长假长沙县的旅游收入约为1900万,将1900万用科学记数法表示应为()A.19×104B.1.9×104C.1.9×107D.0.19×1083.下列运算正确的是()A.2x+3y=5xy B.5x2•x3=5x5C.4x8÷2x2=2x4D.(﹣x3)2=x54.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160B.中位数为158C.众数为158D.方差为20.35.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.57.如图,正方形ABCD中,E为CD的中点,F为BC边上一点,且EF⊥AE,AF的延长线与DC的延长线交于点G,连接BE,与AF交于点H,则下列结论中不正确的是()A.AF=CF+BC B.AE平分∠DAF C.tan∠CGF=D.BE⊥AG8.有下列六个命题:①两条直线被第三条直线所截,同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③从直线外一点到这条直线的垂线段,叫做这点到直线的距离;④负数没有平方根;⑤无限小数都是无理数;⑥算术平方根等于它本身的数只有0.其中正确的命题有()A.2个B.3个C.4个D.5个9.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③二.填空题(共6小题,满分18分,每小题3分)11.函数y=的自变量x的取值范围为.12.分解因式:a3﹣a=.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若x2﹣2x=1,则2x2﹣4x+3=.15.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.16.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为.三.解答题(共4小题,满分23分)17.(5分)计算:2﹣1﹣3tan30°+(﹣1)0++cos60°.18.(6分)先化简,再求值÷(﹣a﹣2),其中a=﹣.19.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状,并证明你的猜想.20.(6分)如图,直线y=mx+n交坐标轴分别于A,B(0,1)两点,交双曲线y=于点C(2,2),点D在直线AB上,AC=2CD.过点D作DE⊥x轴于点E,交双曲线y=于点F,连接CF.(1)求反比例函数y=和直线y=mx+n的表达式;(2)求△CDF的面积.四.解答题(共4小题,满分30分)21.(6分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.22.(8分)在成都“白环改建工程中,某F罕轿建设将由甲,乙两个工程队共同施工完成,据调查得知:甲,乙两队单独完成这项上程所需天数之比为4:5,若先由甲,乙两队合作40天,剩下的工程再乙队做10天完成,(1)求甲.乙两队单独完成这取工程各需多少天?(2)若此项工程由甲队做m天,乙队n天完成,①请用含m的式子表示n;②已知甲队每天的施工费为15万元,乙队每天的施工费用为10万元,若工程预算的总费用不超过1150万元,甲队工作的天数与乙队工作的天数之和不超过90天.请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?23.(8分)某校的教室A位于工地O的正西方向,且OA=200m,一台拖拉机从O点出发,以每秒5m的速度沿北偏西53°的方向行驶,设拖拉机的噪声污染半径为130m,则教室A是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室A 受噪声污染的时间有几秒.(参考数据:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)24.(8分)已知菱形ABCD中,∠A=72°,请你用两种把该菱形分成四个等腰三角形,并标出每个等腰三角形的顶角度数(要求在图中直接画出图形,不要求写作法和证明).五.解答题(共1小题,满分9分,每小题9分)25.(9分)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB=,求△CBD的面积.六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案与试题解析1.解:若一个数的倒数是﹣2,即﹣,则这个数是﹣,故选:B.2.解:将1900万用科学记数法表示应为:1.9×107.故选:C.3.解:A、不是同类项,不能合并,选项错误;B、正确;C、4x8÷2x2=2x6,选项错误;D、(﹣x3)2=x6,选项错误.故选:B.4.解:A、平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B、按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C、数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D、这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选:D.5.解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.6.解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.7.解:由E为CD的中点,设CE=DE=2,则AD=AB=BC=4,∵EF⊥AE,∴∠AED=90°﹣∠FEC=∠EFC,又∵∠D=∠ECF=90°,∴△ADE∽△ECF,∴=,即=,解得FC=1,A、在Rt△ABF中,BF=BC﹣FC=4﹣1=3,AB=4,由勾股定理,得AF=5,则CF+BC=1+4=5=AF,本选项正确;B、在Rt△ADE,Rt△CEF中,由勾股定理,得AE=2,EF=,则AE:EF=AD:DE=1:2,又∠D=∠AEF=90°,所以,△AEF∽△ADE,∠FAE=∠DAE,即AE平分∠DAF,本选项正确;C、∵AB∥DG,∴∠CGF=∠BAF,∴tan∠CGF=tan∠BAF==,本选项正确;D、∵AB≠AE,BF≠EF,∴BE与AG不垂直,本选项错误;故选:D.8.解:①两条平行线被第三条直线所截,同位角相等,错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,错误;④负数没有平方根,正确;⑤无限不循环小数是无理数,错误;⑥算术平方根等于它本身的数有0,1,错误;故选:A.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为0<x=﹣<1,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.11.解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.12.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:当x2﹣2x=1时,原式=2(x2﹣2x)+3=2×1+3=5,故答案为:5.15.解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.16.解:∵点A1的横坐标为0.5=1﹣0.5,点A2的横坐标为0.5+1=1.5=2﹣0.5,点A3的横坐标为0.5+1+2=3.5=4﹣0.5,点A4的横坐标为0.5+1+2+4=7.5=8﹣0.5,…∴点A n的横坐标为2n﹣1﹣0.5,纵坐标都为0,∴点A n的坐标为(2n﹣1﹣0.5,0).故答案为:(2n﹣1﹣0.5,0).17.解:原式=﹣3×+1+2+=2+.18.解:÷(﹣a﹣2)====,当a═﹣时,原式=﹣=.19.解:(1)如图1,连接BD,∵点E、H分别为边AB、AD的中点,∴EH∥BD、EH=BD,∵点F、G分别为BC、DC的中点,∴FG∥BD、FG=BD,∴EH=FG、EH∥FG,∴中点四边形EFGH是平行四边形;(2)四边形EFGH是菱形,如图2,连接AC、BD,∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵,∴△APC≌△BPD(SAS),∴AC=BD,∵点E、F、G分别为AB、BC、CD的中点,∴EF=AC、FG=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形;(3)四边形EFGH是正方形,设AC、BD交点为O,AC与PD交于点M,AC与EH交于点N,∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD、AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.20.解:(1)∵直线y=mx+n经过B(0,1),C(2,2)两点,∴,解得,∴直线的表达式为y=;∵点C(2,2)在双曲线y=上,∴2=,解得k=4,∴反比例函数的解析式为y=;(2)作CH⊥x轴于H,∵C(2,2),∴CH=2,∵DE⊥x轴于点E,∴CH∥DE,∴==,由直线y=x+1可知A(﹣2,0),∴OA=2,AH=4,∵AC=2CD,∴=,∴==,∴DE=3,AE=6,∴D(4,3),把x=4代入y=得,y=1,∴F(4,1),∴DF=3﹣1=2,∴△CDF的面积=×2×(4﹣2)=2.21.解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为:50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为=.22.解:(1)设甲.乙两队单独完成这取工程各需4x,5x天,由题意得:(+)×40+=1,解得:x=20,经检验:x=20是原方程的根,∴4x=80,5x=100,答:甲.乙两队单独完成这取工程各需80,100天;(2)①由题意得:n=(1﹣)÷=100﹣,②令施工总费用为w万元,则w=15m+10×(100﹣)=m+1000.∵两队施工的天数之和不超过90天,工程预算的总费用不超过1150万元,∴m+1000≤1150,m+(100﹣)≤90,∴40≤m≤60,∴当m=40时,完成此项工程总费用最少,∴n=100﹣=50,w=1100元,答:甲、乙两队各工作40,50天,完成此项工程总费用最少,最少费用是1100元.23.解:如图,过点A作AB⊥OM于点B,∵∠MON=53°,∴∠AOM=90°﹣53°=37度.在Rt△ABO中,∠ABO=90°,∵sin∠AOB=,∴AB=AO•sin∠AOB=200×sin37°≈120(m).∵120m<130m.∴教室A在拖拉机的噪声污染范围内.根据题意,在OM上取C,D两点,连接AC,AD,使AC=AD=130m,∵AB⊥OM,∴B为CD的中点,即BC=DB,∴BC==50(m),∴CD=2BC=100(m).即影响的时间为=20(s).24.解:如图所示:25.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°即∠ADC+∠CDB=90°,∵∠ADC=∠ABC,∠CBF=∠CDB,∴∠ABC+∠CBF=90°即∠ABF=90°,∴AB⊥EF∴EF是⊙O的切线;(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=又∵sin∠DAB=∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BD×sin45°=6×=3,∵∠DAB=∠DCB∴tan∠DCB==,∴CG=∴CD=CG+DG=4+3=7,=CD•BG==21.∴S△CBD26.解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=(0﹣3)2+(﹣3a﹣0)2=9a2+9、CD2=(0﹣1)2+(﹣3a+4a)2=a2+1、AD2=(3﹣1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线的解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(﹣x2+2x+3)=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4﹣b,QB2=QG2=(1+1)2+(b﹣0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).。

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。

上海市松江区2018届九年级中考一模试卷数学试题(解析版)

上海市松江区2018届九年级中考一模试卷数学试题(解析版)
2018年上海市松江区中考数学一模试卷
一、选择题:(本大题共6题,每题4分,满分24分)
1.已知 ,那么 的值为()
A. B. C. D.
【答案】C
【解析】
分析:根据比例设a=k,b=3k,然后代入比例式进行计算即可得解.
详解:∵ = ,∴设a=k,则b=3k(k≠0),∴ = = .
故选C.
点睛:本题考查了比例的性质,利用“设k法”求解更简便.
(1)设 , .试用 、 表示 ;
(2)如果△ABC的面积是9,求四边形ADEF的面积.
【答案】(1) ;(2)4.
【解析】
【分析】
(1)由EF∥AB知 = ,据此可得 = =2,即 = = ,从而证△BDE∽△BAC得∠BDE=∠A,即可知DE∥AC、四边形ADEF是平行四边形,再利用 = = = = 及平行四边形法则可得答案;
∴A′C=A′B=2,AA′= =2 ,AB=4 ,
∴AM= AA′= ,A′N=BN= ,
∴AN=AB﹣BN=3 .
∵∠EAM=∠A′AC,∠AME=∠C,
∴△AEM∽△AA′C,
∴ = ,
∴AE= .
同理:△ADM∽△AA′N,
∴ห้องสมุดไป่ตู้= ,
∴AD= = .
故答案为: .
【点睛】本题考查了折叠的性质、勾股定理以及相似三角形的判定及性质,利用相似三角形的性质求出AD、AE的长度是解题的关键.
【答案】a<﹣2
【解析】
【分析】
根据抛物线y=(a+2)x2+x﹣1的开口向下,可得a+2<0,从而可以得到a的取值范围.
【详解】∵抛物线y=(a+2)x2+x﹣1的开口向下,

哈尔滨市2018届九年级下学期初四校级二模数学试题(解析版)

哈尔滨市2018届九年级下学期初四校级二模数学试题(解析版)

哈尔滨市2018届九年级下学期初四校级二模数学试题一、选择题(每小题3分,共计30分)1.实数﹣5.22的绝对值是()A.5.22 B.﹣5.22 C.±5.22 D.2.下列计算结果正确的是()A.(﹣a3)2=a9B.a2⋅a3=a6C.a3+a3=2a3D.(cos 60°﹣0.5)0=13.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣25.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.6.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.B.C.D.7.二次函数y=﹣x2+2x+4的最大值为()A.3 B.4 C.5 D.68.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.9.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为()A.20°B.30°C.36°D.40°10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B →A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共计30分)11.月球的半径约为1738000m,1738000这个数用科学记数法可表示为.12.分解因式:mx2﹣6mx+9m=.13.函数y=的自变量x取值范围是.14.不等式组的解集为.15.8的算术平方根是.16.已知扇形的弧长为π,圆心角为45°,则扇形半径为.17.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为.18.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.19.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为.20.如图所示,四边形ABCD中,∠BAD=60°,对角线AC、BD交于点E,且BD=BC,∠ACD=30°,若AB=,A C=7,则CE的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求值:•+,其中a=2cos30°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?24.(8分)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当AE=CE时,求四边形AECF的面积.25.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?26.(10分)如图所示,△ABC内接于圆O,CD⊥AB于D;(1)如图1,当AB为直径,求证:∠OBC=∠ACD;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE⊥BC于E,交CD于点F,连接ED,且AD=BD+2ED,若DE=3,OB=5,求CF的长度.27.(10分)如图所示,平面直角坐标系中,O为坐标原点,二次函数y=x2﹣bx+c(b>0)的图象与x轴交于A(﹣1,0)、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE =DF,求此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作QN⊥ED于N,连接MN,且∠QMN+∠QMP=180°,当QN:DH=15:16时,连接PC,求tan∠PCF的值.参考答案一、选择题1.实数﹣5.22的绝对值是()A.5.22 B.﹣5.22 C.±5.22 D.【分析】根据绝对值的性质进行解答即可.【解答】解:实数﹣5.22的绝对值是5.22.故选:A.【点评】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.2.下列计算结果正确的是()A.(﹣a3)2=a9B.a2⋅a3=a6C.a3+a3=2a3D.(cos 60°﹣0.5)0=1【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【解答】解:A、原式=a6,故错误;B、原式=a5,故错误;C、利用合并同类项的知识可知该选项正确;D、cos 60°=0.5,cos 60°﹣0.5=0,所以原式无意义,错误,故选:C.【点评】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.3.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图,可得答案.【解答】解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则0>y>﹣2【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行分析即可.【解答】解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不符合题意;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.5.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.6.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A.B.C.D.【分析】如图,在Rt△ABC中,AC===120m,根据tan∠BAC=,计算即可.【解答】解:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,∴AC===120m,∴tan∠BAC===,故选:C.【点评】本题考查解直角三角形的应用、勾股定理的应用等知识,解题的关键是记住锐角三角函数的定义,属于基础题.7.二次函数y=﹣x2+2x+4的最大值为()A.3 B.4 C.5 D.6【分析】先利用配方法得到y=﹣(x﹣1)2+5,然后根据二次函数的最值问题求解.【解答】解:y=﹣(x﹣1)2+5,∵a=﹣1<0,∴当x=1时,y有最大值,最大值为5.故选:C.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=;确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.9.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为()A.20°B.30°C.36°D.40°【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B →A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选:B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.二、填空题(每小题3分,共计30分)11.月球的半径约为1738000m,1738000这个数用科学记数法可表示为 1.738×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1738000用科学记数法表示为1.738×106.故答案为:1.738×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:mx2﹣6mx+9m=m(x﹣3)2.【分析】先提取公因式m,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:mx2﹣6mx+9m=m(x2﹣6x+9)=m(x﹣3)2.故答案为:m(x﹣3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.函数y=的自变量x取值范围是x≠2 .【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,解得答案.【解答】解:根据题意得x﹣2≠0,解得:x≠2;故答案为:x≠2.【点评】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.14.不等式组的解集为﹣2<x≤3 .【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>﹣2;由②式得x≤3,所以不等式组的解为﹣2<x≤3,故答案为﹣2<x≤3.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.8的算术平方根是2.【分析】依据算术平方根的定义回答即可.【解答】解:由算术平方根的定义可知:8的算术平方根是,∵=2,∴8的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.16.已知扇形的弧长为π,圆心角为45°,则扇形半径为 4 .【分析】根据弧长公式l=代入求解即可.【解答】解:∵l=,∴r=.故答案为4.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.17.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为10% .【分析】设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而求出解.【解答】解:设平均每次上调的百分率是x,依题意得10000(1+x)2=12100,解得:x1=10%,x2=﹣210%(不合题意,舍去).答:平均每次上调的百分率为10%.故答案是:10%.【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是.故答案为.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为1或2 .【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【解答】解:点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3﹣1=2,圆的半径为1,故答案为:1或2.【点评】本题考查了点与圆的位置关系,利用线段的和差得出圆的直径是解题关键,要分类讨论,以防遗漏.20.如图所示,四边形ABCD中,∠BAD=60°,对角线AC、BD交于点E,且BD=BC,∠ACD=30°,若AB=,AC=7,则CE的长为.【分析】此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG 中解决EG长度,最后CE=CG+GE求解.【解答】解:如图,作BH⊥CD于H,交AC于点G,连接DG.∵BD=BC,∴BH垂直平分CD.∴DG=CG.∴∠GDC=∠GCD=30°.∴∠DGH=60°=∠EGD=∠EGB=∠BAD.∴∠ABG+∠ADG=180°.延长GB至K,连接AK使AK=AG,则△AKG是等边三角形.∴∠K=60°=∠AGD.又∠ABK=∠ADG,∴△ABK≌△ADG(AAS).∴AB=AD.∴△ABD是等边三角形.∴BD=AB=.设GH =a ,则DG =CG =KB =2a ,AG =KG =7﹣2a .∴BG =7﹣2a ﹣2a =7﹣4a .∴BH =7﹣3a .在Rt △DBH 中,(7﹣3a )2+(a )2=19,解得a 1=1,a 2=.当a =时,BH <0,所以a =1.∴CG =2,BG =3,tan ∠EBG =.作EF ⊥FG ,设FG =b ,EG =2b ,EF =b ,BF =4b ,BG =4b +b =5b .∴5b =3,b =.∴EG =2b =,则CE =+2=.【点评】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求值: •+,其中a =2cos30°.【分析】根据特殊角的三角函数值以及分式的运算法则即可求出答案.【解答】解:由题意可知:a =2×=,原式=•+=+ ===【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【分析】(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.【点评】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.24.(8分)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当AE=CE时,求四边形AECF的面积.【分析】(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;(2)求出四边形AECF是菱形,求出△ABE是等边三角形,求出高AH,根据菱形的面积公式求出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠B=∠D,∵点E、F分别是BC、AD的中点,∴BE=BC,DF=AD,∴BE=DF,在△ABE和△CDF中∴△ABE≌△CDF(SAS);(2)解:作AH⊥B C于H,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是BC、AD的中点,BC=2AB=4,∴BE=CE=BC=2,DF=AF=AD=2,∴AF∥CE,AF=CE,∴四边形AECF是平行四边形,∵AE=CE,∴四边形AECF是菱形,∴AE=AF=2,∵AB=2,∴AB=AE=BE=2,即△ABE是等边三角形,BH=HE=1,由勾股定理得:AH==,∴四边形AECF的面积是2×=2.【点评】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定,菱形的性质和判定,能综合运用定理进行推理是解此题的关键.25.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?【分析】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+20)元,根据数量=总价÷单价结合购买甲种足球数量是购买乙种足球数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据总价=单价×数量结合此次购买甲、乙两种足球的总费用不超过2910元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+20)元,根据题意得:=2×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:购买一个甲种足球需要50元,购买一个乙种篮球需要70元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+70×(1﹣10%)m≤2910,解得:m≤20.答:这所学校最多可购买20个乙种足球.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26.(10分)如图所示,△ABC内接于圆O,CD⊥AB于D;(1)如图1,当AB为直径,求证:∠OBC=∠ACD;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE⊥BC于E,交CD于点F,连接ED,且AD=BD+2ED,若DE=3,OB=5,求CF的长度.【分析】(1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°﹣∠A和∠ACD=90°∠A即可;(3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出即可.【解答】(1)证明:∵AB为直径,∴∠ACB=90°,∵CD⊥AB于D,∴∠DC=90°,∴∠OBC+∠A=90°,∠A+∠ACD=90°,∴∠OBC=∠ACD;(2)成立,证明:连接OC,由圆周角定理得:∠BOC=2∠A,∵OC=OB,∴∠OBC=(180°﹣∠BOC)=(180°﹣2∠A)=90°﹣∠A,∵∠ADC=90°,∴∠ACD=90°﹣∠A,∴∠OBC=∠ACD;(3)解:分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,∵AE⊥BC,CD⊥BA,∴∠AEC=∠ADC=90°,∴∠BCD+∠CFE=90°,∠BAH+∠DFA=90°,∵∠CFE=∠DFA,∴∠BCD=∠BAH,∵根据圆周角定理得:∠BAH=∠∠BCH,∴∠BCD=∠BAH=∠BCH,∴由三角形内角和定理得:∠CHE=∠CFE,∴CH=CF,∴EH=EF,同理DF=DK,∵DE=3,∴HK=2DE=6,在AD上取DG=BD,延长CG交AK于M,则AG=AD﹣BD=2DE=6,BC=GC,∴∠MCK=∠BCK=∠BAK,∴∠CMK=90°,延长KO交⊙O于N,连接CN、A N,则∠NAK=90°=∠CMK,∴CM∥AN,∵∠NCK=∠ADK=90°,∴CN∥AG,∴四边形CGAN是平行四边形,∴AG=CN=6,作OT⊥CK于T,则T为CK的中点,∵O为KN的中点,∴OT =CN =3,∵∠OTC =90°,OC =5,∴由勾股定理得:CT =4,∴CK =2CT =8,作直径HS ,连接KS ,∵HK =6,HS =10,∴由勾股定理得:KS =8,∴tan ∠HSK ==tan ∠HAK ,∴tan ∠EAB ==tan ∠BCD ,设BD =a ,CD =3a ,∴AD =BD +2ED =a +6,DK =AD =a +2,∵CD +DK =CK ,∴3a +a +2=8,解得:a =,∴DK =a +2=,∴CF =CK ﹣2DK =8﹣=. 【点评】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.27.(10分)如图所示,平面直角坐标系中,O 为坐标原点,二次函数y =x 2﹣bx +c (b >0)的图象与x 轴交于A (﹣1,0)、B 两点,与y 轴交于点C ;(1)求c 与b 的函数关系式;(2)点D 为抛物线顶点,作抛物线对称轴DE 交x 轴于点E ,连接BC 交DE 于F ,若AE =DF ,求此二次函数解析式;(3)在(2)的条件下,点P 为第四象限抛物线上一点,过P 作DE 的垂线交抛物线于点M ,交DE 于H ,点Q 为第三象限抛物线上一点,作QN ⊥ED 于N ,连接MN ,且∠QMN +∠QMP =180°,当QN :DH =15:16时,连接PC ,求tan ∠PCF 的值.【分析】(1)把A(﹣1,0)代入y=x2﹣bx+c,即可得到结论;(2)由(1)得,y=x2﹣bx﹣1﹣b,求得EO=AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=﹣b﹣1,根据等腰直角三角形的性质得到D(,﹣b﹣2),将D(,﹣b﹣2)代入y=x2﹣bx﹣1﹣b解方程即可得到结论;(3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1﹣t,t2﹣4),得到DN=t2﹣4﹣(﹣4)=t2,同理,设MH=s,求得NH=t2﹣s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=﹣(舍去),求得MN=,根据三角函数的定义即可得到结论.=,t2【解答】解:(1)把A(﹣1,0)代入y=x2﹣bx+c,∴1+b+c=0,∴c=﹣1﹣b;(2)由(1)得,y=x2﹣bx﹣1﹣b,∵点D为抛物线顶点,∴EO=AE=+1=BE,∴OB=EO+BE=++1=b+1,当x=0时,y=﹣b﹣1,∴CO=b+1=BO,∴∠OBC=45°,∴∠EFB=90°﹣45°=45°=∠EBF,∴EF=BE=AE=DF,∴DE=AB=b+2,∴D(,﹣b﹣2),将D(,﹣b﹣2)代入y=x2﹣bx﹣1﹣b得,﹣b﹣2=()2﹣﹣b﹣1,解得:b1=2,b2=﹣2(舍去),∴二次函数解析式为:y=x2﹣2x﹣3;(3)连接QM,DM,∵QN⊥ED,MP⊥ED,∴∠QNH=∠MHD=90°,∴QN∥MH,∴∠NMH=∠QNM,∵∠QMN+∠QMP=180°,∴∠QMN+∠QMN+∠NMH=180°,∵∠QMN+∠MQN+∠NMH=180°,∴∠QMN=∠MQN,设QN=MN=t,则Q(1﹣t,t2﹣4),∴DN=t2﹣4﹣(﹣4)=t2,同理,设MH=s,则HD=s2,∴NH=t2﹣s2,在Rt△MNH中,NH2=MN2﹣MH2,∴(t2﹣s2)2=t2﹣s2,∴t2﹣s2=1,∴NH=1,∴tan∠NMH==,∵tan∠MDH===,∴∠NMH=∠MDH,∵∠NMH+∠MNH=90°,∴∠MDH+∠MNH=90°,∴∠NMD=90°;∵QN:DH=15:16,∴DH=t,DN=t+1,。

上海市杨浦区2018届九年级中考数学三模试卷 带详解

上海市杨浦区2018届九年级中考数学三模试卷 带详解
25.如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M 边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
2.下列式子中,与 互为有理化因式的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
直接利用有理化因式的定义分析得出答案.
【详解】∵( )( ,)
=12﹣2,
=10,
∴与 互为有理化因式的是: ,
故选B.
【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式.单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
3、4、5的平均数为: (3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
故中位数不相等,方差相等.
故选D.
【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为( )
13.在某公益活动中,小明对本年级同学 捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.
14.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。

2018年静安区初三二模数学试卷(含详细答案)

2018年静安区初三二模数学试卷(含详细答案)

静安区 2018学年第二学期期中教学质量调研九年级数学试卷2018.4 (满分 150分,100分钟完成)考生注意:1.本试卷含三个大题,共 25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、 本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共 6题,每题 4分,满分 24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂]1 2 等于1. 2 (A ) 2; 2.下列二次根式里,被开方数中各因式的指数都为 1的是(A ) x 2y 2; (B ) x 2y 2; (C ) (x y )2; (D ) xy 2. (B ) 2; (C ) 2; 2 (D )2 . 2 3.关于 x 的一元二次方程 x 2 mx 1 0的根的情况是(A )有两个不相等的实数根; (C )没有实数根;(B )有两个相等的实数根;(D )不能确定. 4.一次数学作业共有 10道题目,某小组 8位学生做对题目数的情况如下表:做对题目数人数 6 1 7 1 8 2 9 3 10 1那么这 8位学生做对题目数的众数和中位数分别是(A )9和 8; (B )9和 8.5; (C )3和 2;5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为(A )正五边形; (B )正六边形; (C )等腰梯形; (D )3和 1.(D )平行四边形. 6.已知四边形 ABCD 中,对角线 AC 与 BD 相交于点 O ,AD //BC ,下列判断中错误的是 ..(A )如果 AB =CD ,AC =BD ,那么四边形 ABCD 是矩形;(B )如果 AB //CD ,AC =BD ,那么四边形 ABCD 是矩形;(C )如果 AD =BC ,AC ⊥BD ,那么四边形 ABCD 是菱形;(D )如果 OA =OC ,AC ⊥BD ,那么四边形 ABCD 是菱形.二、填空题:(本大题共 12题,每题 4分,满分 48分)[在答题纸相应题号后的空格内直接填写答案]7.计算:2 1 20 ▲ .九年级数学 第 1页共 4页。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

福建省厦门市2018年中考数学模拟卷

福建省厦门市2018年中考数学模拟卷

2018年福建省厦门市中考数学模拟试卷一.选择题(共10小题,满分40分)1.(4分)“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.某市预计投入31600辆共享单车服务于人们,31600用科学记数法表示为()A.3.16×104B.3.16×105C.3.16×106D.31.6×1052.(4分)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.(﹣a)3÷a=﹣a2D.x6÷x3=x24.(4分)如图所示,四边形ABCD是平行四边形,已知AB=4,BC=3,则AC2+BD2的值是()A.45 B.50 C.55 D.605.(4分)有一个数值转换器,流程如下,当输入的x为256时,输出的y是()A.B.C.2 D.46.(4分)图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣47.(4分)某青年排球队12名队员的年龄情况如表:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,198.(4分)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的关系式是()A.y=(x+2)2﹣2 B.y=(x﹣2)2﹣2 C.y=2(x+2)2﹣2 D. y=2(x﹣2)2﹣2 9.(4分)身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A.5月22日B.6月22日C.8月22日D.2月24日10.(4分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:|﹣2|+(2018﹣π)0﹣cos60°=.12.(4分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠C OE=34°,则∠BOD= 度.13.(4分)若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N= 度.14.(4分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).15.(4分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x﹣1)2﹣4,AB 为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.16.(4分)如图,点D,E分别为△ABC的边AB,AC上,若△ADE≌△CFE.则下列结论①AD=CF;②AB∥CF;③AC⊥DF;④点E是AC的中点;不一定正确的是(填写序号).三.解答题(共9小题,满分86分)17.(8分)若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b ﹣1)﹣(a+2b)(﹣2b+a)+2b的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.19.(8分)“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.20.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点C和点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.21.(8分)已知:如图,在▱ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.23.如图,平面直角坐标系中,点A是直线y=x(a≠0)上一点,过点A作AB⊥x轴于点B(2,0),(1)若=,求∠AOB的度数;(2)若点C(4﹣a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.24.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.(1)求证:ED是⊙O的切线;(2)若⊙O半径为3,ED=4,求AB长.25.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ 与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin ∠ODC的值最大时,求点M的坐标.参考答案1.A.2.B.3.C.4.B.5.A.6.D.7.A.8.A.9.B10.A.11..12.56.13.1080°.14.= 15.3+.16.③.17.解:(x﹣2)(x2+ax+b)=x3+ax2+bx﹣2x2﹣2ax﹣2b=x3+(a﹣2)x2+(b﹣2a)x﹣2b,∵(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,∴a﹣2=0且b﹣2a=0,解得:a=2、b=4,(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b=(2a)2﹣(b+1)2﹣(a2﹣4b2)+2b=4a2﹣b2﹣2b﹣1﹣a2+4b2+2b=3a2+3b2﹣1,当a=2、b=4时,原式=3×22+3×42﹣1=12+48﹣1=59.18.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠BDC=∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠B=90°,∴∠ACD=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.19.解:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90°;(2)“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为=.20.解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0),此时△MDB的周长为2+6.21.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF 即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2,∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=2,∴四边形DEBF的面积=BE×DG=2×2=4.22.解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+(2500﹣2000)×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.23.解:(1)∵点A是直线y=x(a≠0)上一点,AB⊥x轴于点B(2,0),若=,∴tan∠AOB=,即∠AOB=60°,(2)过点C作CE⊥x轴于点E,CF⊥AB于F.则四边形ECFB是矩形.∵∠ACO=∠FCE,∴∠ACF=∠OCE,∵AC=CO,∠AFC=∠CEO,∴△ACF≌△OCE,∴AF=OE=4﹣a,CF=CE=b,∴四边形ECFB是正方形,∴CF=CE=BE=2﹣a,∴b=2﹣a,∴AB=4﹣a+2﹣a=6﹣2a,令x=2代入y=,∴y=,∴A(2,)∴AB=,24.解:(1)方法一:连接OD,OE,CD,∵∠ADC=90°,∴∠CDB=90°,∵E是BC的中点,∴DE=CE,∴∠EDC=∠ECD,∵OC=OD,∴∠ODC=∠OCD,∴∠ODC+∠EDC=∠OCD+∠ECD=90°,即OD⊥ED,∴ED与⊙O相切.方法二:连接OE,OD,∵E是BC的中点,∠BDC=90°,∴DE=CE,又∵OD=OC,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠OCE=90°,即OD⊥ED,∵D在⊙O上,∴ED与⊙O相切.(2)∵⊙O半径为3,即OC=3,ED=4,∴CE=ED=4,∴OE==5,∵E为BC中点,OC=OA,∴OE为△ACB的中位线,∴OE=AB,∴AB=10.答:AB长为10.25.解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).。

山东省青岛市2018年中考数学模拟试题1(含解析)

山东省青岛市2018年中考数学模拟试题1(含解析)

2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。

初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。

2018年中考数学专题复习《全等三角形》模拟演练含答案

2018年中考数学专题复习《全等三角形》模拟演练含答案

中考专题复习模拟演练:全等三角形一、选择题1.如图,某同学将一块三角形玻璃打碎成三块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带(1)去B. 带(2)去C. 带(3)去D. 带(1)(2)去2.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为()A. 80°B. 70°C. 30°D. 100°3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若AC=6 cm,则AE+DE等于( )A. 4 cmB. 5 cmC. 6 cmD. 7 cm4.如图,若△ABE≌△ACF,且AB=5,AE=3,则EC的长为()A. 2B. 3C. 5D. 2.55.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ABC绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G.则旋转后的图中,全等三角形共有()A. 2对B. 3对C. 4对D. 5对6.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE 交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:①CE=BD=2;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有()A. 1个B. 2个C. 3个D. 4个7.如图,在平行四边形ABCD中,连接对角线AC、BD,图中的全等三角形的对数()A. 1对B. 2对C. 3对D. 4对8.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A. 80°B. 70°C. 60°D. 50°9.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B. 35°C. 30°D. 25°10.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是( )A. B. C. D.二、填空题11.用直尺和圆规作一个角等于已知角得到两个角相等的依据是________12.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)13.如图,在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾形工件,现要求最大限度的裁剪出10个与它全等的燕尾形工件,则这个网格的长至少为(接缝不计)________ .14.如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________15.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,其中正确的结论有________(填序号).16.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E 离开点A后,运动________秒时,△DEB与△BCA全等.17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图7,则∠EAB是多少度?请你说出∠EAB= ________度18.如图(1)所示,已知AB=AC,D为∠BAC的角平分线上面的一点,连接BD、CD;如图(2)已知AB=AC,D、E、F为∠BAC的角平分线上面的三点,连接BD、CD、BE、CE、BF、CF;…,依次规律,第N个图形中有全等三角形的对数是________.三、解答题19.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.20.如图,两根旗杆AC与BD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0.5m/s,求这个人走了多长时间?21.如图1,等边△ABC中,D是AB上一点,以CD为边向上作等边△CDE,连结AE.(1)求证:AE∥BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.22.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.(1)证明:BE=CF;(2)如果AB=16,AC=10,求AE的长.23.将一块正方形和一块等腰直角三角形如图1摆放.(1)如果把图1中的△BCN绕点B逆时针旋转90°,得到图2,则∠GBM=________;(2)将△BEF绕点B旋转.①当M,N分别在AD,CD上(不与A,D,C重合)时,线段AM,MN,NC之间有一个不变的相等关系式,请你写出这个关系式:________;(不用证明)②当点M在AD的延长线上,点N在DC的延长线时(如图3),①中的关系式是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.24.已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、选择题C A C B C CD A B C二、填空题11.SSS12.①③④13.2114.60°或120°15.①②③16.0,2,6,817.3518.n(n+1)三、解答题19.证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC20.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠ACM=90°,∴∠ACM=∠DMB,在△ACM和△BMD中,,∴△ACM≌△BMD(AAS),∴AC=BM=3m,∴他到达点M时,运动时间为3÷0.5=6(s),答:这个人从B点到M点运动了6s.21.(1)证明:∵∠BCA=∠DCE=60°,∴∠BCA﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,∵△ABC和△DCE是等边三角形,∴BC=AC,DC=EC,在△BDC与△ACE中,,∴△DBC≌△ACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠BAC=60°,∴∠CAE+∠BAC=∠BAE=120°,∴∠B+∠BAE=180,∴AE∥BC(2)成立,证明如下:∵△DBC≌△ACE,∴∠BDC=∠AEC,在△DMC和△AME中,∵∠BDC=∠AEC(已证),∴∠DMC=∠EMA,∴△DMC∽△EMA,∴∠EAM=∠DCM=60°,∴∠EAC=120°,又∵∠DCA+∠CAE=∠DCE+∠ECA+CEA=180°+∠ECA,∴AE∥BC22.(1)证明:如图,连接BD、CD.∵DG⊥BC,BG=GC,∴DB=DC,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴△DEB≌△DFC,∴BE=CF.(2)解:在Rt△ADE和rT△ADF中,,∴△ADE≌△ADF,∴AE=AF,∴AB﹣BE=AC+CF,∴2AE=AB﹣AC=16﹣10,∴AE=323.(1)45°(2)MN=AM+CN24.(1)解:全等.∵四边形ABCD是矩形,所以∠A=∠B=∠C=∠ADC=90°,AB=CD,由题意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,所以∠A1=∠C=90°,∠CDF+∠EDF=90°,所以∠A1DE=∠CDF,所以△EDA1≌△FDC(ASA)(2)解:△B1DG和△EA1G全等.与△B1DG相似,设FC= ,则B1F=BF= ,B1C= DC=1,△FCB所以,所以,所以△FCB1与△B1DG相似,相似比为4:3(3)解:△FCB1与△B1DG全等.设,则有,,在直角中,可得,整理得,解得 (另一解舍去),所以,当B1C= 时,△FCB1与△B1DG全等.。

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。

2018年中考数学全真模拟试卷及答案(三)

2018年中考数学全真模拟试卷及答案(三)

2018年中考数学全真模拟试卷及答案(三)一.选择题(共10小题,每小题3分,共30分)1.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时2.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣13.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大5.若4x2﹣12xy+9y2=0,则的值是()A.﹣ B.﹣1 C.D.6.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或77.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.8.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.310.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1二.填空题(共6小题,每小题3分,共18分)11.若|x|=|﹣2|,则x=.12.分解因式:y+y2+xy+xy2=.13.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有人.14.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)15.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.16.正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,则点A3的坐标为,则点A n的坐标为.三.解答题(共8小题,共72分)17.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].18.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.19.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732.)20.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40).设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?23.已知:如图,AB是⊙O的直径,OC⊥AB,D是CO的中点,DE∥AB,设⊙O的半径为6cm.(1)求DE的长;(2)求图中阴影部分的面积.24.如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.2.等式成立的条件是()A.x≥1 B.x≥﹣1 C.﹣1≤x≤1 D.x≥1或x≤﹣1【解答】解:∵,∴,解得:x≥1.故选A.3.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【解答】解:5550=5.55×103,故选C.4.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.5.若4x2﹣12xy+9y2=0,则的值是()A.﹣ B.﹣1 C.D.【解答】解:∵4x2﹣12xy+9y2=0,∴(2x﹣3y)2=0,∴2x=3y,∴x=y,∴==.故选:C.6.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.7.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.8.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选B.9.如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO.若S△OBC=1,tan∠BOC=,则k2的值是()A.﹣3 B.1 C.2 D.3【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,=1,∵S△OBC∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选D.10.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二.填空题(共6小题)11.若|x|=|﹣2|,则x=±2.【解答】解:|x|=|﹣2|=2,x=2或x=﹣2,故答案为:2或﹣2.12.分解因式:y+y2+xy+xy2=y(1+y)(1+x).【解答】解:y+y2+xy+xy2=(y+y2)+(xy+xy2)=y(1+y)+xy(1+y)=(1+y)(y+xy)=y(1+y)(1+x).故答案为:y(1+y)(1+x).13.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.【解答】解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故答案为:27.14.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以⑤正确;故答案为:①③⑤.15.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC +S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.16.正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,则点A3的坐标为(,0),则点A n的坐标为(,0).【解答】解:∵四边形OA1B1C1是正方形,∴A1B1=B1C1.∵点B1在直线y=﹣x+2上,∴设B1的坐标是(x,﹣x+2),∴x=﹣x+2,x=1.∴B1的坐标是(1,1).∴点A1的坐标为(1,0).∵A1A2B2C2是正方形,∴B2C2=A1C2,∵点B2在直线y=﹣x+2上,∴B2C2=B1C2,∴B2C2=A1B1=,∴OA2=OA1+A1A2=1+,∴点A2的坐标为(1+,0).同理,可得到点A3的坐标为(1++,0),即A3的坐标为(,0).依此类推,可得到点A n的坐标为(1+++…+,0),而1+++…+=,故A n的坐标为(,0).故答案是:(,0),(,0)三.解答题(共9小题)17.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.18.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,=×3×|﹣3|=.∴S△ADC19.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732.)【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.20.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3,所以两次取出小球上的数字相同的概率==;(2)两次取出小球上的数字之和大于3的结果数为6,所以两次取出小球上的数字之和大于3的概率==.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣2x+80(20≤x≤40).设这种健身球每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?【解答】解:(1)根据题意可得:w=(x﹣20)•y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)根据题意可得:w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.23.已知:如图,AB是⊙O的直径,OC⊥AB,D是CO的中点,DE∥AB,设⊙O 的半径为6cm.(1)求DE的长;(2)求图中阴影部分的面积.【解答】解:(1)连接OE,∵D是CO的中点,⊙O的半径为6cm,∴OD=OC=3cm,∵OC⊥AB,DE∥AB,∴∠ODE=90°,∴DE==3;(2)∵OD=OC,∠ODE=90°,∴∠OED=30°,∴∠DOE=60°,∴图中阴影部分的面积=﹣×3×3=6π﹣(cm2).24.如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(0,1),B(﹣9,10)代入函数解析式,得,解得,抛物线的解析式y=+2x+1;(2分)(2)∵AC∥x轴,A(0,1),∴x2+2x+1=1,解得x1=﹣6,x2=0(舍),即C点坐标为(﹣6,1),∵点A(0,1),点B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设P(m,m2﹣2m+1),∴E(m,﹣m+1),∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥PE,AC=6,(4分)=S△AEC+S△APC=AC•EF+AC•PF,∴S四边形AECP=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵0<m<6,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,=,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)。

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析

2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

九年级数学模拟试卷一、选择题(每小题3分,共30分)1.)A.±B. C. ±2 D. 2【答案】D【解析】分析:根据立方根的定义求解即可,如果一个数x 的立方等于a ,即x 3=a ,那么x 叫做a 的立方根,即x故选D. 点睛:本题考查了立方根的求法,熟练掌握立方根的定义是解答本题的关键.2. 太阳半径约为696 000 km ,将696 000用科学记数法表示为( )A. 6.96×105B. 69.6×104C. 6.96×103D. 0.696×108【答案】A【解析】 试题解析:696000=6.96×105. 故选A3. 下列计算,正确的是( )A. a 2-a =aB. a 2·a 3=5aC. a 9÷a 3=a 3D. (a 3)2=5a【答案】B【解析】 分析:根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则逐项及计算即可得到答案. 详解:A. ∵ a 2与a 不是同类项,不能合并,故不正确;B. ∵ a 2·a 3=5a ,故正确;C. ∵ a 9÷a 3=a 6 ,故不正确;D. (a 3)2=6a ,故不正确;故选B.点睛:本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则是解答本题的关键.4. 下列图形中既是轴对称图形又是中心对称图形的是()A. 正五角星B. 等腰梯形C. 平行四边形D. 矩形【答案】A【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A. 正五角星既是轴对称图形又是中心对称图形,故正确;B. 等腰梯形是轴对称图形,不是中心对称图形,故不正确;C. 平行四边形不是轴对称图形,是中心对称图形,故不正确;D. 矩形是轴对称图形,不是中心对称图形,故不正确;故选A.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6. 如图,圆锥的底面半径为3,母线长为6,则侧面积为()A. 8πB. 6πC. 12πD. 18π【答案】D【解析】分析:把圆锥的底面半径为3,母线长为6,代入圆锥的侧面积公式S=πrl计算即可.详解:由题意得,S=π×3×6=18π.故选D.点睛:本题考查了圆锥的侧面积计算公式,熟练掌握圆锥的侧面积公式S=πrl是解答本题的关键.7. 如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是()A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB,,根据作一个角等于已知角的作法,MN是以点E为圆心,DC为半径的弧.故选D.8. 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.9. 如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.23【答案】B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 90°D. 67.5°【答案】D【解析】分析:由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆,由AC=C E可得∠ADC=∠CDE,从而可求出∠CDE的度数,再根据直角三角形两直角互余求出∠DEC的度数.详解::由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆.∵点C为线段AB的中点,∴AC=BC.∵CE=CB,∴AC=CE,∴∠ADC=∠CDE,∵∠ADE=45º,∴∠DEC=45º÷2=22.5º,∴∠DEC =90º-22.5º=67.5º.故选D.点睛:本题考查了共圆的条件,圆周角定理的推论,直角三角形两锐角互余,判断出A 、C 、E 、D 共圆是解答本题的关键.二、填空题(每小题3分,共24分)11. 单项式3x 2y 的次数为 _____.【答案】3【解析】单项式.【分析】根据单项式的概念,把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数,所以单项式3x 2y 的系数为3.12. 分解因式:3m (2x ―y )2―3mn 2=______.【答案】()()322m x y n x y n -+--.【解析】先提取公因式3m ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a-b )(a+b ).解:3m (2x-y )2-3mn 2=3m[(2x-y )2-n 2]=3m (2x-y-n )(2x-y+n ).故答案为3m (2x-y-n )(2x-y+n ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数.详解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C .∵∠ADC =∠B +∠BAD ,∴∠ADC =∠C =2∠B .设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°,∴x +2x +102=180.解得:x =26.∴∠ADC =2x =52°.故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质.14. 设一元二次方程x 2-3x -1=0的两根分别为x 1,x 2,则x 1+x 2(x 22-3x 2)=____.【答案】3【解析】试题解析:有题意可知,222310,x x --=2223 1.x x ∴-= 由韦达定理可得,12123, 1.b c x x x x a a+=-=⋅==-2122212(3)x x x x x x --=-===故答案为 点睛:一元二次方程20(a 0)++=≠ax bx c 根与系数的关系满足: 1212,.b c x x x x a a+=-⋅= 15. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】【分析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16. 如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=°,l 不经过点C ,则AB 的最小值为_____.【答案】4【解析】分析:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC ; 由∠APB =90°可知点P 在以AB 为直径的圆上,则⊙O 与⊙C 相切时,OP 取得最小值,据此求解即可. 详解:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC . ∵∠APB =90°,OA =OB ,∴点P 在以AB 为直径的圆上,∴⊙O 与⊙C 相切时,OP 取得最小值,则OP ′=OC -CP ′=2,∴AB =2OP ′=4.故答案为4.点睛:本题考查了圆与圆的位置关系,两点之间线段最短,判断出当⊙O与⊙C相切时,OP取得最小值是解答本题的关键.17. 已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.【答案】11【解析】分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.详解:∵m-n2=2,即n2=m-2≥0,m≥2,∴原式=m2+2m-4+4m-1=m2+6m+9-14=(m+3)2-14,∴代数式m2+2n2+4m-1的最小值等于(2+3)2-14=11.故答案为11.点睛:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18. 当实数b0=_______,对于给定的两个实数m和n,使得对任意的实数b,有(m-b0)²+(n-b0)²≤(m-b)²+(n-b)².【答案】m n 2【解析】分析:由于b是任意的,所以可令b=x,把(m-b)²+(n-b)²整理配方,根据二次函数的性质即可求得答案. 详解:令b=x,则(m-b)²+(n-b)²=(m-x)²+(n-x)²=2x2-2mx-2nx+m2+n2=2x2-2mx-2nx+m2+n2=2[x2-(m+n)x] +m2+n2=2(x -2m n +)2 +m 2+n 2-2()2m n + =2(x -2m n +)2 + 2()2m n -, ∴当x =2m n +时,2(x -2m n +) + 2()2m n -取得最小值, ∴当b 0=2m n +时,有(m -b 0)²+(n -b 0)²≤ (m -b )²+(n -b )²总成立. 故答案为2m n +. 点睛:本题考查了配方法的应用和利用二次函数求最值,熟练掌握配方的方法和二次函数的性质是解答本题的关键.三、解答题(本大题共10小题,共96分)19. (1)计算(-2)2-tan45°+(-3)0-21()3-; (2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.【答案】(1)5;(2)12. 【解析】分析:(1)根据乘方的意义、特殊角的三角函数值、零指数幂和负整数幂的意义计算即可;(2)按照先算乘除,后算加减的顺序计算,根据多项式除以单项式的法则结算(4ab 3-8a 2b 2)÷4ab ,根据平方差公式计算(2a +b )(2a -b ),合并同类项后把a =2,b =1代入求值.详解:(1).原式=4-1+1-9=-5( 2).原式=b 2-2ab+4a 2-b2=4a 2-2ab ,当a=2,b=1时,原式=4×22-2×2×1=12点睛:本题考查了实数的运算和整式的混合运算,熟练掌握实数的运算法则是解(1)的关键,熟练掌握整式的运算法则是解(2)的关键. 20. 若关于x 的不等式组()x x 10{233x 544x 13a a++>++>++恰有三个整数解,求实数a 的取值范围. 【答案】312a <≤【解析】【分析】根据不等式组恰有三个整数解,即可确定不等式组的解集,从而即可得到一个关于a 不等式组,解之即可.【详解】解:解x x 1023++>得:2x 5>-; 解()3x 544x 13a a ++>++得:x 2a <.∴不等式组的解为2x 25a -<<. ∵关于x 的不等式组()x x 10233x 544x 13a a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,∴223a <≤,解得312a <≤. ∴实数a 的取值范围为312a <≤. 21. 为增强学生环保意识,某中学组织全校3000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第二组(69.5~79.5)”的扇形的圆心角 度;(2)若成绩在90分以上(含90分)的同学可获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为多少?【答案】(1)72°;(2)960名;(3)23.【解析】 试题分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.试题解析:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角=2050×360°=144°, (2)估计该校获奖的学生数=16100%50×2000=640(人); (3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P (选出的两名主持人“恰好为一男一女”)=812=23.故答案为23. 22. 如图,某测量船位于海岛P 的北偏西60°方向,距离海岛200海里的A 处,它沿正南方向航行一段时间后,到达位于海岛P 的西南方向上的B 处.求测量船从A 处航行到B 处的路程(结果保留根号). 【答案】3)海里.【解析】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.【分析】构造直角三角形,将AB 分为AE 和BE 两部分,分别在Rt△BEP 和Rt△BEP 中求解.23. 从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接写出优美线AD 的长.【答案】(1)证明见解析;(2)113°.(3)优美线AD 433或2-4 【解析】 试题分析:(1)根据三角形的优美线的定义,只要证明△ABD 是等腰三角形,△CAD ∽△CBA 即可解决问题,(2)如图2中,分两种情形讨论求解①若AB =AD ,△CAD ∽△CBA ,则∠B =∠ADB =∠CAD ,则AC ∥BC ,这与△ABC 这个条件矛盾, ②若AB =BD , △CAD ∽△CBA ,(3)如图3中,分三种情形讨论①若AD =BD , △CAD ∽△CBA ,则,AD CD AC AB AC BC==设BD =AD =x ,CD =y ,可得242x y x y ==+,解方程即可, ②若AB =AD =4,由AD CD AC AB AC BC==,设BD =AD =x ,CD =y ,可得2424x y y ==+,解方程即可, ③若AB =AD ,显然不可能.(1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°, ∴∠B=∠BAD=50°,∴DB=DA , ∴△ABD 是等腰三角形,∵∠C=∠C ,∠DAC=∠B=50°, ∴△CAD ∽△CBA ,∴线段AD 是△ABC 的优美线.(2)若AB=AD ,舍去,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,)若AB=BD,∠B=46°,∴∠BAD=∠BDA=67°,∵△CAD∽△CBA,∴∠CAD=∠B=46°,∴∠BAC=67°+46°=113°.(3)43AD=或42-4AD=.24. 如图1,已知抛物线2y ax bx c=++与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.(1)求抛物线的解析式;(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,PQ PQMQ NQ+是否为定值?请说明理由.图1 图2【答案】(1)y=12x2-x-4;(2)14或10;(3)是定值,理由见解析.【解析】分析:(1)由题意设抛物线解析式为y=a(x+2)(x-4),把(0,-4)代入求出a即可.(2)由tan∠ACB=OAOC=1,tan∠OAB=OBOA=12,可得tan∠OEA=13,即OAOE=13,从而根据正切函数的定义求出OE的值,进而可求BE的值;(3)设平移后的解析式为y=12(x+2-n)(x-4-n) ,点P的坐标为P(t,12(t+2-n)(t-4-n)),表示出PQ、MQ、NQ后,代入PQMQ+PQNQ化简即可.详解:设(1)y=a(x+2)(x-4),将(0,-4)代入,得-8a=-4a,∴a=12,∴y=12(x+2)(x-4),即y=12x2-x-4;(2). Rt△AOC中,tan∠ACB=OAOC=1;Rt△AOC中,tan∠OAB=OBOA=12,∵∠OEA=∠ACB-∠OAB,∴tan∠OEA=112111x2-+=13,即OAOE=13,∵OA=4,∴OE=12,∴BE=12+2=14或BE=12-2=10,答:BE的长为14或10;(3)平移后:y=12(x+2-n)(x-4-n) ,∴ M(-2+n,0), N(4+n,0),设P(t,12(t+2-n)(t-4-n)),则PQ=-12(t+2-n)(t-4-n),MQ=t-(-2-n)=t+2-n, NQ=4+n-t,∴PQMQ+PQNQ=()()1t2n t4n2t2n-+---+-+()()1t2n t4n24n t-+---+-=-12(t-4-n)+12(t+2-n)=3为定值.点睛:本题是二次函数综合题,考查了待定系数法求函数解析式,锐角三角函数的定义及性质,二次函数的平移变换,题目比较难,属于中考压轴题.。

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)

= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是

版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分

(完整版)2018年广州市荔湾区中考一模数学

(完整版)2018年广州市荔湾区中考一模数学

荔湾区2018年第二学期九年级一模调研测试数学试题一.选择题(本大题共10小题,每小题3分)1、—3的绝对值是( )A 、—3B 、 3C 、 31-D 、 312、 在下列几何体中,主视图是圆的是( )3、 如图所示的图案中既是轴对称图形又是中心对称图形的是( )4、 下列运算正确的是( )A 、826x x x ÷=B 、()2352x y x y = C 、2121a a --=-+() D 、2239x x +=+() 5、 若代数式2x 1+有意义,则实数x 的取值范围是( ) A 、2x ≥- B 、2x ≤- C 、 2x >- D 、 2x <-6、 一次函数的图像过定点A (0,2),且函数值y 随自变量x 的增大而减小,则函数图像经过的象限为( )A 、第一、二、三象限B 、第二、三、四象限C 、第一、二、四象限D 、第一、三、四象限7、 一元二次方2x 3y =程01x 4kx 2=++有两个实数根,则k 的取值范围是( )A 、4k >B 、4k ≥C 、4k ≤D 、0k 4k ≠≤且8、 将抛物线向上平移3个单位,再向上平移2个单位,那么得到的抛物线解析式为( )A 、32x 3y 2++=)(B 、32x 3y 2+-=)( C 、32x 3y 2-+=)(D 、32x 3y 2--=)( 9、 如图⊙O 是△ABC 的外接圆,且∠A =50,则∠OCB = ( )A 、 40B 、 50C 、 25D 、 4510、 已知二次函数2c bx ax y 2+++=的图像如图所示,顶点为(—1,0)下列结论:abc <0,0ac 4b 2=-,a >2,④4a —2b +c >0,其中正确结论的个数是( )A 、1个B 、2个C 、 3个D 、4个二、填空题(本大题共6小题,每小题3分,共18分)11、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,22乙甲S S ,那么两人成绩比较稳定的是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.已知直线 y=2x-5m 与抛物线 y=x2-mx-3 的取值范围是__________ 三、解答题(共 8 题,共 72 分)
在 0≤x≤4 之间有且只有一个公共点,则 m
x 2 y 9 17.(本题 8 分)解方程组 y 3x 1
18.(本题 8 分)如图,点 D 在 AB 上,点 E 在 AC 上,AB = AC,∠B =∠C,求证:BD = EC
B.中位数是 58
C.极差是 40
D.众数是 60
9.一列数 a1、a2、a3、……,其中 a1 )
1 1 , an (n≥2 且 n 为整数),则 a2018=( 2 1 .-1
D.
1 2
10.在平面直角坐标系中,点 A 的坐标为(2,0),点 B 的坐标为(5,0),点 P 为坐标系内一动 点,且 PA=2,以 PB 为边作等边△PBM,则线段 AM 的最大长度为( A. 2 3 B. 2 3 C. 3 3 )
(2) 如图 2,在 Rt△ABC 与 Rt△ABD 中,∠C=∠D=90°,BC=BD=3,AB=5 ① 将 Rt△ABD 绕点 A 顺时针旋转至图 3 的位置,若此时四边形 ADBC 为“邻等四边形”
(∠ADB=∠CBD),求四边形 ADBC 的面积 ② 将 Rt△ABD 绕点 A 顺时针旋转至图 4 的位置,若此时四边形 ADBC 为“邻等四边形”
8 的解集 |x|
23.(本题 10 分)若四边形的四个内角中,有一组邻角相等,我们定义该四边形为“邻等四边 形”,如我们熟悉的正方形,矩形,等腰梯形等.根据上述定义,回答下面问题: (1) 如图 1,在四边形 ABCD 中,BE 平分∠ABC 交 CD 于点 E,且 AD∥BE,∠D=80°,
∠C=40°,探究四边形 ABCD 是否为“邻等四边形”,并证明
6.已知点 A(-2,4)关于原点对称的点的坐标是( A.(-2,-4) B.(2,-4)
C.(2,4)
D.(-2,4)
7.由 7 个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表 示该位置放置的小正方体的个数,则其左视图是( )
8.二中广雅九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对 于这组统计数据,下列说法中正确的是( 班级 人数 A.平均数是 58 1班 52 2班 60 ) 3班 62 4班 54 5班 58 6班 62
2018 年九年级数学模拟试题
一、选择题(共 10 小题,每小题 3 分,共 30 分) 1.计算:1+(-4) 的结果是( A.5 2.分式 A.x>2 B.3
2 有意义,则 x 的取值范围是( x2
) C.-5 ) C.x≠-2 D.x≠2 D.-3
B.x>-2 )
3.下列计算结果是 a7 的是( A.a3+a4 B.(a3)4
20.(本题 8 分)某汽车专卖店销售 A、B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为 96 万元;本周已售出 2 辆 A 型车和 1 辆 B 型车,销售额为 62 万元 (1) 求每辆 A 型车和 B 型车的售价各为多少元? (2) 甲公司拟向该店购买 A、B 两种型号的新能源汽车共 6 辆,购车费不少于 130 万元,且不超 过 140 万元.则有哪几种购车方案?
21.(本题 8 分)已知 AB 是⊙O 的直径,C 是⊙O 上一点,过 C 点作⊙O 的切线交 AB 的延长 线于点 P,过点 A 作 AE⊥PC 于点 E 交⊙O 于点 D (1) 求证:AC 平分∠DAB
3 (2) 若 sin∠CAP= ,求 tan∠P 的值 5
22.(本题 10 分)已知点 A(2,a)、B(-8,b)两点在函数 y
D.5
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.计算 25 的结果为__________
3x 6 的结果为__________ x2 x2
12.计算
13.如图,矩形 ABCD 中,E 为 BC 中点,将△ABE 沿直线 AE 折叠,使得点 B 落在点 F 处, 连 FC.若∠DAF=18°,则∠DCF=__________ 14.经过某十字路口的汽车,可能直行,也可能左转或右转.如果这三种可能性大小相同,则 两辆汽车经过这个十字路口时,至少有一辆左转的概率是__________ 15.如图,在△ABC 中,AD 平分∠BAC,∠B=2∠ADB,AB=3,CD=6,则 AC=__________
C.a3·a4
D.a7+a7
4.从生产的一批螺钉中抽取 1000 个进行质量检查,结果发现有 5 个是次品,那么从中任取 1 个是次品概率约为( A.
1 1000

1 200
B.
C. )
1 2
D.
1 5
5.计算(3+x)(3-x)的结果是( A.x2-9 B.9-x2
C.9+6x+x2 )
D.9-6x+x2
19.(本题 8 分)二中广雅为了解“阳光一小时”活动的开展情况,从全校 2000 名学生中,随 机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果 绘制成如下两幅不完整的统计图 根据以上信息,解答下列问题: (1) 被调查的学生共有__________人,并补全条形统计图 (2) 在扇形统计图中,m=__________,n=__________,表示区域 C 的圆心角为__________度 (3) 全校学生中喜欢篮球的人数大约有多少?
(∠ACB=∠CBD),请直接写出 sin∠BAD=__________
24.(本题 12 分)已知抛物线 y=x2+bx+c 的顶点 P(-3,-4),且图像与 x 轴交于 A、B 两 点(点 A 在点 B 的左边),与 y 轴交于 C 点,AB=4 (1) 求抛物线的解析式 (2) 如图 1,在 x 轴下方抛物线上有一动点 G,GE∥y 轴交线段 AC 与 E 点.若 GE 恰好平分
8 的图像上 |x| 8 的图像 |x|
(1) 直接写出 a=__________,b=__________, 并在网格内画出函数 y
(2) 将点 C(6,c)绕 A 点逆时针旋转 90°得到点 D,若点 D 恰好落在函数图像上,求 c 的值; (3) 设 AB 的解析式为 y=kx+m,请直接写出不等式 kx m
相关文档
最新文档