2017-2018学年八年级数学下册 5 分式与分式方程 5.3.1 分式的加减法课时训练北师大版 精品
八年级数学下册5分式与分式方程5.1认识分式
(fēnshì)
5.1 认识分式
第2课时
第一页,共七页。
1.能说出分式的基本性质. 2.能根据分式的基本性质约分. 3.知道(zhī dào)最简分式的概念,会将分式化为最简分式.
第二页,共七页。
你能说出分数的基本性质吗?我们(wǒ men)常根据分数的基本性质对 分数进行约分,那么分式是不是也可以约分呢?
第五章 分式与分式方程。1.能说出分式的基本性质.。2.能根据分式的基本性质约分.。3. 知道最简分式的概念,会将分式化为最简分式.。我们常根据分数的基本性质对分数进行约分,那 么分式是不是也可以约分呢。B。2.把分式中分子、分母的公因式约去叫约分.。3.分子和分母没 有(méi yǒu)公因式的分式叫最简分式,化简分式的结果要是最简分式或整式.
第三页,共七页。
第四页,共七页。
B
第五页,共七页。
1.分式的基本(jīběn)性质:分式的分子与分母都乘(或除以)同一 个不等于零的整式,分式的值不变.
2.把分式中分子、分母的公因式约去叫约分. 3.分子和分母没有公因式的分式叫最简分式,化简分式的结果要是最简分 式或整式.
第六页,共七页。
内容(nèiróng)总结
北师版八年级下册数学第5章 分式与分式方程 解分式方程
感悟新知
1.
解方程:(1)
3= x-1
4 x
;
(2)
2
x x-3
+
5 3-2
x
=4.
知1-练
解:(1)
3= x-1
4 x
.
方程两边都乘x(x-1),得3x=4(x-1).
解这个方程,得x=4.
检验:将x=4代入原方程,得左边=1=右边.
所以,x=4是原方程的根.
感悟新知
(2)
x 2x-3
+
3-52 x =4.
感悟新知
知识点 3 分式方程的增根
议一议
在解方程时1,x小亮的1 解法2 如下: x2 2x
方程两边都乘x-2,得 1-x=-1-2(x-2). 解这个方程,得x=2.
你认为x=2是原方程的根吗?与同伴交流.
知2-讲
感悟新知
归纳
知3-讲
在这里,x=2不是原方程的根,因为它使得原 分式方程的分母为零,我们称它为原方程的增根.
知1-练
感悟新知
例2 解分式方程:
(1) x (2) x2 4
2 x2
1; x2
x1 x1
3 x2 x
. 2
导引:解分式方程的步骤: ①去分母,化分式方程为整式方程; ②解整式方程; ③检验,并写出原分式方程的根.
知1-练
感悟新知
(1) x
2
1;
x2 4 x 2 x 2
解:
x
2 1,
x 2x 2 x 2 x 2
第5章分式与分式方程
5.4分式方程
第2课时解分式方程
学习目标
1 课时讲解
解分式方程 分式方程的根(解) 分式方程的增根
新北师大版初中数学八年级下册第5章 分式与分式方程《第1课 认识分式》
B
2、分式有意义的条件:
当分式
A B
中的分母B≠0时,分式
A B
有意义。
5.1 分式(二)
诊断练习
1、化简下列各式:
(1) 3 ; 6
(2) 0.3 ; 0.5
(3) 12 ; 18
(4)
3 10 3 6 10 2
.
你用到了什么知识?
复习旧知
分数的基本性质:
分数的分子与分母都乘以(或除以)同一个不 等于零的数,分数的值不变。
产量用式子表示
千克/公顷。
新知探究
Ⅰ、面对日益严重的土地沙化问题,某县决定 在一定期限内固沙造林2400hm²,实际每月固沙 造林的面积比原计划多30hm²,结果提前完成原 计划的任务. 如果设原计划每月固沙造林x hm²,那么
2400
(1)原计划完成造林任务需要 x 个月;
2400
(2)实际完成造林任务用了 x 30 个月.
5xy 5xy 4x
1
4x
最简分式
你有什么见解?
新知归纳
分式约分的定义: 把一个分式的分子、分母的公因式约去,这
种变形称为分式的约分。
最简分式的定义: 分子和分母没有公因式,这样的分式称为最
简分式。
范例讲解 例2、化简分式 a2bc 。
ab
解:
a2bc
ab ac
ab ab
ac
巩固练习
a 1 有意义? 2a 1
由分母2a-1=0,得a 1 .
所以,当a
1
2
时,分式
a
1
有意义.
2
2a 1
新知归纳
分式有意义的条件:
北师大版八年级数学初二下册第5章《分式与分式方程》5.1认识分式5.2分式的乘除法优秀PPT课件
a 1 11 解:(1)当a=1时, 2. 2a 1 2 1 a 1 2 1 1. 当a=2时, 2a 1 4 1 a 1 1 1 0. 当a=-1时, 2a 1 2 1
(2)当分母的值为零时,分式没有 意义,除此以外,分式都有意义.
b by (1) (y≠0); 2 x 2 xy
〔解析〕
(2)
ax a . bx b
据分式的基本性质,分子b 也要乘y,才能得到 2 xy .(2)
b (1) 的分母2x乘y才能化为2xy,为保证分式的值不变,根 2x by
得到a,所以分母bx也需要除以x得到b.在这里,由于已知 解:(1)因为y≠0,所以
ax 的分子ax除以x bx ax
的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.
无意义.试求m,n的值.
x m n1 4.对于分式 ,已知当x=-3时,分式的值为0;当x=2时,分式 m 2n 3m
解:∵当x=-3时,分式的值为0,
3 m n 0, m+n -3, 即 m 2n 9 0, m 2n 9.
问题2
如图(2)所示,面积为1的长方形平均分成了2份,则阴影
部分的面积是多少?
问题3 这两块阴影部分的面积相等吗?
请看下面的问题:
问题1
如图(1)所示,面积为1的长方形,长为a,那么长方形
的宽怎么表示呢? 问题2 如图(2)所示,两个图(1)中的长方形拼接在一起, 它的宽怎么表示呢? 问题3 两图中长方形的宽相等吗?
2.若分式
2x 1 有意义,则x的取值范围是 3x 5
5 3
.
5 解析:依题意得3x+5≠0,解得x≠- 5 ,因此x的取值范围是x≠5 填x≠- . 3 3
北师大版八年级数学下册第五章分式与分式方程PPT
分母颠倒位置后再与被除式相乘。
用符号语言表达:
分数与分式的乘除法法则类似
分数的乘除法法则: 两个分数相乘,把分子相 乘的积作为积的分子,把 分母相乘的积作为积的
分式的乘除法法则: 两个分式相乘,把分子相乘
的积作为积的分子,把分母
相乘的积作为积的分母;
分母;
两个分式相除,把除式的分
子分母颠倒位置后,再与被 除式相乘.
a2 4 12ab (1) 2 8a b 3a 6
a 1 a2 1 (2) 2 2 a 4a 4 a 4
当分子或分母是多项式时,怎么办?
能分解因式的要进行分解因式.
练习
a2 1 (1) a 2 a2 2a
a2 6a 9 12-4a (3) 2 1 4a 4a 2a 1
第五章 分式与分式方程
5.1认识分式
第1课时
1. 知道分式的概念 , 明确分式和整式的区别 .
2. 掌握分式有意义、无意义的条件及分式的值为 0
的条件 .
小明在做练习题时遇到这样一道题目:下列式子中哪些是整式? ① 3x+4y,② 4a,③
������+������ ������������
,④ 8m ,⑤
2
������
������-������
,⑥ x-2,⑦
������+������ ������
.
小明能很快判断出①②④⑥是整式,并能很快地分辨出①⑥是多 项式,②④是单项式,因为单项式和多项式统称为整式.可对于③⑤⑦ 这样的式子小明很好奇:它们不是整式,是什么呢?你知道吗?
1.若分式������+������的值为正整数,小组讨论整数 x 的值有多少种可能.
八年级数学下册 第五章 分式与分式方程
第五章分式与分式方程1.经历用分式、分式方程表示现实情境中数量关系的过程,了解分式、最简分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号意识.2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会求分式的值,会解可化为一元一次方程的分式方程,会检验分式方程的解,发展运算能力.1.经历通过观察、归纳、类比、猜想,从而获得分式的基本性质、分式乘除法则、分式加减法则的过程,发展合情推理能力与代数式的恒等变形能力,积累类比的活动经验.2.能解决一些与分式、分式方程有关的实际问题,发展分析问题、解决问题的能力和应用意识.培养学生的观察能力和类比意识,培养学生勇于质疑、严谨求实的科学态度.本章主要学习分式的概念、基本性质与运算,分式方程及其应用.分式是代数式的重要组成部分.分式的基本性质与运算法则是代数式恒等变形的重要依据,是有关比例的学习基础.分式与分数、因式分解、一元一次方程、反比例函数等联系密切,在中学数学、物理、化学等学科和生产实践中有着广泛的应用.根据《标准》的要求,本章教科书特别关注了下列几个方面:(1)分式、分式方程是描述现实世界数量关系的模型.在学习分式、分式方程的概念时,教科书通过用字母表示现实情境中的数量关系,丰富了分式、分式方程的实际背景,以帮助学生领会分式、分式方程的模型作用,体会分式、分式方程与现实生活的密切联系.(2)在学习分式的基本性质及其运算法则时,十分注重观察、归纳、类比、猜想等思维方法的应用.(3)分式运算的教学重点是运算法则建立的过程和对算理的理解.在分式运算的设计中,教科书适当降低了分式纯运算的难度,只对较简单的分式进行化简、求值与运算.具体地,教科书设计了4节内容:第1节“认识分式”.通过土地沙化、上海世博会等实例中存在的数量关系引入分式的概念,体会分式的模型作用;通过类比分数的基本性质,理解分式的基本性质.第2节“分式的乘除法”.通过类比分数乘除法的法则,获得分式乘除法的法则,并会用法则进行分式运算.第3节“分式的加减法”.通过类比分数加减法的法则,获得分式加减法的法则,并会用法则进行分式运算.第4节“分式方程”.通过列出刻画行程、捐款等实例的方程,分析所列出方程的共同特征,理解分式方程的概念,进而学习怎样解分式方程,并会用分式方程解决简单的实际问题.【重点】1.分式的概念,正确理解分式的基本性质.2.运用分式乘除法的法则进行简单的分式乘除运算.3.会进行简单的分式加减运算.4.能将实际问题中的等量关系用分式方程表示出来;会解可化为一元一次方程的分式方程,会检验根的合理性.【难点】1.理解和掌握分式有意义的条件;推导分式的基本性质;运用分式的基本性质将分式进行变形.2.分式乘除法法则的推导.3.确定公分母,分式方程的正确变形,检验根的合理性.4.列分式方程解应用题.1.让学生经历用字母表示实际问题中数量关系的过程,进一步发展符号感.让学生经历用字母表示实际问题中数量关系的过程是发展学生符号感的重要环节,与以前用字母表示数量关系相比,本章表示量与量之间关系的代数式可以是分式.教学时应鼓励学生独立思考、自主探索问题情境中的数量关系,并运用符号进行表示.在此基础上可根据教学的实际情况组织学生对一些难点问题展开讨论、交流.2.让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展学生的合情推理能力.教科书为学生探索分式运算的法则提供了丰富的素材,教学时应将重点放在对法则的探索过程上,使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则.同时,还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有条理思考问题的能力.3.解分式方程的关键是把分式方程转化为整式方程.在引导学生探索分式方程的解法时,要注意体现这种“转化”的思想.另外,对分式方程的解法,只要求掌握可化为一元一次方程的分式方程,教学过程中要注意把握这一要求.4.列分式方程解决应用问题比列一元一次方程(组)要稍复杂一些.教学时要引导学生抓住寻找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示等量关系等关键环节.对于常用的数量关系,虽然学生以前大都接触过,但在本章的教学中仍要注意复习、总结,引导学生举一反三,进一步提高分析问题与解决问题的能力.此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验、理解所获得结果的合理性.回顾与思考1课时1认识分式1.了解分式的概念,明确分式和整式的区别,会用分式表示生活情境中的数量关系.2.掌握分式是否有意义、分式的值是否为零的判断方法.3.在分数性质的基础上掌握分式的基本性质,并能利用分式的基本性质对分式进行变形.让学生观察、分析分式的特点,提高学生分析问题、解决问题的能力.培养学生类比的思维习惯,培养学生严谨认真的科学态度.【重点】分式的概念与基本性质.【难点】分式有意义和分式值为零的条件及其应用.第课时1.能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感.2.了解分式的概念,明确分式与整式的区别.1.经历用字母表示现实情境中数量关系的过程,了解分式的概念,体会分式的模型思想,进一步发展符号感.2.使学生经历分析、类比、归纳等活动,培养学生的自学能力,获得学习代数知识的常用方法.1.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性.2.培养学生类比联想的思维习惯.【重点】分式的概念.【难点】理解和掌握分式有意义的条件.【教师准备】多媒体课件.【学生准备】回忆小学学过的分数的有关知识及七年级学过的整式的有关知识.导入一:【问题】下列式子中哪些是整式?哪些是单项式?哪些是多项式?a,-3x2y3,5x-1,x2+xy+y2,.解:a,-3x2y3,5x-1,x2+xy+y2,是整式;a,-3x2y3,是单项式;5x-1,x2+xy+y2是多项式.[设计意图]因为分式概念的学习是学生通过观察、比较分式与整式的区别而获得的,所以必须熟练掌握整式的概念.导入二:【问题】学生思考讨论,用式子表达题目中的数量关系:(1)面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林x公顷,那么原计划完成造林任务需要个月,实际完成造林任务用了个月.,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?【师生活动】让学生充分思考,最好让学生积极投身于问题情境中,根据学生的情况教师可以给予适当的提示和引导.解:(1)(2)-册.[设计意图]让学生经历探索实际问题中数量关系的过程.通过问题情境,让学生初步感受分式是解决问题的一种模型,体会分式的意义,发展符号感.一、认识分式思路一(针对导入一)(1)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元?(2)一块土地分为两块棉田,第一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这块土地平均每公顷的棉产量是多少?(3)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?根据学生交流、讨论,可得出结果.解:(1)-.(2) kg.(3)-册.2.认识分式问题1刚才这些代数式有什么共同特征?它们与整式有什么不同?学生分组交流讨论,展示讨论结果,教师及时补充.它们的共同特征:(1)它们是由分子、分母与分数线构成的;(2)分母中都含有字母.它们与整式的不同点:它们的分母中都含有字母,而整式的分母中不含有字母,例如,-,它们都含有分母,但分母中都不含有字母,所以它们是整式.一般地,用A,B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.问题2分式中,字母可以取任意实数吗?学生领会分式的概念并思考得出:不可以.因为分式中分母含有字母,而分母是除式,不能为零,因此字母的取值就受到制约,即字母的取值不能使分母为零,否则分式就会失去意义.问题3在什么情况下分式的值为0?学生通过类比分数的性质得出:分式的分子为0的时候,分式的值为0.思路二(针对导入二)讨论内容:(针对前面列出的三个代数式)这些代数式有什么共同特征?它们与整式有什么不同?老师提出思考问题:(1)整式中的分母有没有字母?(2)前面的三个代数式中,分母中有没有字母?(3)前面的三个代数式是不是分数呢?(4)前面的三个代数式中,字母能取任意值吗?(5)前面的三个代数式的值在什么情况下为零?问题预设:学生会比较容易发现这几个式子的分母中都含有字母,但容易与整式中有数字分母的情况混淆,把字母等同于数字看待,这就无法顺利总结出分式的概念.2.认识分式根据学生的观察、讨论,老师进行总结:这三个代数式的共同特征是分母中都含有字母,而整式中虽然也有分母,但分母中不含字母.这样的代数式我们称为分式.一般地,用A,B表示两个整式,A÷B可以表示为的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零.[设计意图]让学生通过观察、归纳总结出整式与分式的异同,从而得出分式的概念.学生通过观察、类比及小组讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑到了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解.这样获得的知识,理解更加透彻,掌握更加牢固,运用起来会更灵活.[知识拓展]1.当整式相除不能整除时,就出现了分式,所以分式实际上是一个商式,其分子是被除式,分母是除式.2.整式和分式统称为有理式,即有理式包括整式和分式.3.分式的概念包括3个方面:(1)分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;(2)分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;(3)在任何情况下,分式的分母的值都不可以为0,否则分式无意义.这里,分母是指除式而言,而不是只就分母中某一个字母来说的.也就是说,分式的分母不为零是隐含在此分式中而无需注明的条件.二、例题讲解(教材例1)(1)当a=1,2,-1时,分别求分式-的值;(2)当a取何值时,分式-有意义?〔解析〕(1)分式的值是由字母的取值决定的,但要注意的是字母的取值一定不能让分母为0,即一定要让分式有意义.(2)只有当分式的分母不为0时,分式才有意义.解:(1)当a=1时,-=-=2.当a=2时,-=-=1.当a=-1时,-=---=0.(2)当分母的值为零时,分式没有意义,除此以外,分式都有意义.由分母2a-1=0,得a=.所以当a≠时,分式-有意义.[设计意图]让学生体会分式的意义,理解如果字母的取值使得分母的值为零,那么分式没有意义,反之则有意义.通过例题讲解,让学生从两方面来理解分式:一是分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零.学生基本能够计算出分式的值,但对于分式在什么条件下有意义,一下子掌握还有一定的难度,需要通过与分数进行类比,多举例才能理解得更深刻.1.分式的概念.一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.2.分式有意义的条件.分式有意义的条件是分母不为0.3.分式的值为0的条件是分子等于0,且分母不等于0.1.(2015·随州中考)若代数式-+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1解析:若代数式-+有意义,则有-解得x≥0且x≠1.故选D.2.若分式-有意义,则x的取值范围是.解析:依题意得3x+5≠0,解得x≠-,因此x的取值范围是x≠-.故填x≠-.3.若分式-的值为0,则x的值是.解析:在这个分式中,x2-1是分子,x+1是分母,因此,分式-的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.4.对于分式---,已知当x=-3时,分式的值为0;当x=2时,分式无意义.试求m,n的值.解:∵当x=-3时,分式的值为0,∴-----即--又∵当x=2时,分式无意义,∴m-2n+3×2=0,即m-2n=-6.解方程组---得-第1课时一、认识分式1.分式初探2.认识分式二、例题讲解一、教材作业【必做题】教材第109页随堂练习的1,2题.【选做题】教材第109页习题5.1的1,2,3题.二、课后作业【基础巩固】1.下列各式是分式的是()A. B. C.+y D.2.(2015·金华中考)要使分式有意义,则x的取值应满足()A.x=-2B.x≠2C.x>-2D.x≠-23.若分式-的值为0,则()A.x=-2B.x=0C.x=1或-2D.x=14.若分式-有意义,则x的取值范围是()A.x≠3B.x=3C.x>3D.x<3【能力提升】5.使分式--无意义的a的值为()A.2B.-2 C ±2 D.36.若分式--的值为1,则x的值为()A.1B.-2 C ±1 D.27.一项工作,甲单独做x小时完成,乙单独做比甲多用6小时完成,那么乙单独做t小时(t<6)能完成这项工作的()A. B. C. D.-8.下列各式中,可能取值为0的是()A.-B.-C.-D.9.若-的值为正数,则x的取值范围是()A.x<-2B.x<1C.x>-2且x≠1D.x>110.要使分式-的值为负,则x.11.当x时,分式--有意义.【拓展探究】12.把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.13.已知当x=1时,分式-无意义;当x=4时,此分式的值为零,求a+b的值.【答案与解析】1.B(解析:由分式的定义可知,分母中含有字母的是分式,注意π为实数,不是字母.故选B.)2.D(解析:分式有意义的条件是分母不为0,则由题意得x+2≠0,则x≠-2.故选D.)3.D(解析:分式值为0的条件是分子为0且分母不为0,所以有-解之即可.故选D.)4.A(解析:分式有意义的条件是分母不为0,即3-x≠0,解之即可.故选A.)5.C(解析:分式无意义的条件是分母为0,即-2=0,解之即可.故选C.)6.D(解析:分式值为1的条件是分子等于分母,且分母不为0,即---解之即可.故选D.)7.C(解析:乙单独做完这项工作需要(x+6)小时,则单独做t小时(t<6)能完成这项工作的.故选C.)8.B(解析:A中分子m2+1>0;B中当m=1时,分子为0,分母不为0,分式的值为0;C中当m=-1时,分子为0,分母为0,分式无意义;D中分子m2+1>0.故选B.)的分母x2-2x+1=(x-1)2≥0,所以若分式的值为正数,则有x+2>0且x-1≠0,即x>-2 9.C(解析:因为分式-且x≠1.故选C.)的值为负,需使分母3-x<0,即x>3.故填>3.)10.>3(解析:要使分式-有意义,则x2-1≠0,解之即可.故填≠±1.)11.≠±1(解析:若分式--12.无意义,所以1-a=0,解得a=1;因为当x=4时,此分式的值为零,所以4+2b=0,解13.解:因为当x=1时,分式-得b=-2,所以a+b=1+(-2)=-1.在学习分式的概念时,避免了传统教学中对于概念的直接给出,叫学生死记硬背,忽略学生学习的过程,也不考虑学生是否真正理解,本课时是让学生通过观察、归纳出整式与分式的异同,从而总结出分式的概念,学生对这样获得的知识,理解得更透彻.对学生学习效果的反馈不够及时,还不能够较全面地了解学生的学习情况,对不足之处未能及时补充.在学习中,要注意观察学生的情感变化,是否遇到困难,学生的积极性、热情是否发挥出来,投入的程度有多少,是否每个学生都参与其中等,作为教师应时刻关注这些,以便适时地引导他们,调动他们,鼓励他们.随堂练习(教材第109页)1.解:(1)当x取1以外的任何实数时,分式都有意义.(2)当x取±3以外的任何实数时,分式都有意义.2.解:当x=0时,-=-.当x=-2时,-=.当x=时,-=0.3.提示: kg.习题5.1(教材第109页)1.解:(2)(4)是整式,(1)(3)是分式.2.提示:(1)x=.(2)x=-2.3.解:当a=-1,b=时,-=--=.-元/kg.4.提示:这箱橘子的零售价至少应定为-5.提示:(1)平均每公顷的棉产量是 kg.(2)这种商品每件的成本是元.易错点考虑问题不全面导致错误已知分式的值为整数,求整数x的所有可能值.-的值为整数,则x-1的值可为1,2,3,6.∴x=2,3,4,7.错解:若分式-的值为负整数时x的值,造成漏解.错因分析:忽略了分式-正解:若分式的值为整数,-则x-1的值可为±6,±3,±2,±1,∴x=7,4,3,2,-5,-2,-1,0.第课时1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法.通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣.【重点】理解分式的基本性质,会进行分式的化简.【难点】灵活应用分式的基本性质将分式变形.【教师准备】预设学生学习过程中容易出错的地方.【学生准备】复习分数的基本性质.导入一:【问题】有位老爷爷把一块地分给三个儿子.老大分到了这块地的,老二分到了这块地的,老三分到了这块地的.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话后,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?这里涉及了分数的基本性质,那么分式也有这样的性质吗?[设计意图]创设故事情境导入新课,激发了学生学习的好奇心,同时复习了分数的基本性质,为学习分式的基本性质做好铺垫.导入二:上节课我们类比整式和分数的概念学习了分式的概念,今天我们来继续学习分式的相关知识,请看下面的问题:问题1如图(1)所示,面积为1的长方形平均分成了4份,则阴影部分的面积是多少?问题2如图(2)所示,面积为1的长方形平均分成了2份,则阴影部分的面积是多少?问题3这两块阴影部分的面积相等吗?这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图]提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.请看下面的问题.(1)填空:==;==.(2)你认为分式与相等吗?为什么?与呢?与同伴交流.学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).问题1如图(1)所示,面积为1的长方形,长为a,那么长方形的宽怎么表示呢?问题2如图(2)所示,两个图(1)中的长方形拼接在一起,它的宽怎么表示呢?问题3两图中长方形的宽相等吗?问题4通过怎样的变形可以由得到?通过怎样的变形可以由得到?变形的依据是什么?问题5若n个这样的长方形拼接在一起,它的宽又该如何表示呢?学生分析得出答案为.教师进一步追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题6若(m+1)个这样的长方形拼接在一起,宽又如何表示呢?追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题7能类比分数的基本性质,归纳出分式的基本性质吗?学生根据上面的问题尝试归纳分式的基本性质,教师在学生回答的基础上补充完善.总结:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).教师强调:a,b,m均为整式,m≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图]一方面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.(1)=(y≠0);(2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕(1)的分母2x乘y才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b也要乘y,才能得到.(2)的分子ax除以x得到a,所以分母bx也需要除以x得到b.在这里,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1);(2)--.处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕(1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式--,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)--=--=-.总结:像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展]1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1);(2).〔解析〕根据分式的基本性质进行化简.解:(1) ==.(2)==.四、议一议在化简时,小颖和小明出现了分歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展]化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图]通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想与有什么关系?(1)--(2)-,与-有什么关系?-的分子分母都乘-1与相等.解:(1)--与-相等.(2)同样的道理,-与-相等.-分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图]通过想一想的设计,让学生掌握分式的符号法则.1.分式的基本性质:=,=(m≠0).(1)分式的基本性质的作用:分式进行变形的依据.(2)在运用分式的基本性质时,必须注意分式的分子分母同时乘或除以的是同一个整式,且不为0.(3)分式的基本性质的研究方法:从分数类比到分式,从特殊到一般.2.分子和分母已没有公因式的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式.3.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.1.若将分式(a,b均为正数)中的字母a,b的值分别扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的C.不改变D.缩小为原来的解析:此分式中的字母分别扩大为原来的2倍,则分式的分子扩大为原来的2倍,分式的分母扩大为原来的4倍,所以分式的值缩小为原来的.故选B.2.填写下列等式中未知的分子或分母.。
北师大版 八年级下册第五章分式与分式方程5.3分式的加减法(第2课时)教案设计
5.3 分式的加减法(第2课时异分母分式的加减)教学目标1.会找最简公分母,能进行分式的通分.2.理解并掌握异分母的分式加减法法则.教学重点异分母的分式加减法法则.教学难点异分母分式的通分.课时安排1课时教学过程导入新课小学我们学习过异分母分数的加减法,如13+12=1×23×2+1323⨯⨯=56,那么如何计算11x+-21x-呢?探究新知异分母的分式加减法法则异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.[合作探究,解决问题]思考:通分的原则是什么?异分母通分时, 通常取各分母的最简公分母作为它们的共同分母.追问:如何进行通分呢?(1)找出各分式中各分母的最简公分母;(2)利用分式的基本性质,将各分式的分子与分母同时乘以同一个适当的式子,使各分式的分母化成最简公分母,使各分式化成分母相同的分式.思考:确定最简公分母的方法与步骤是怎样的?(1)最简公分母的系数是各分母的系数的最小公倍数;(2)各分母中所含的相同字母或多项式取最高次幂;(3)对于只在一些分母中含有的字母或多项式,连同它的指数一起当作最简公分母的一个因式.[练一练]找出下列各题中的各个分式的最简公分母.(1)22y a x ,23x y ,14xy ; (2)13x + ,13x - ; (3)214a - ,12a - ; (4)5x y - ,23()x y - .解:(1)12a 2xy 2;(2)(x +3)(x -3);(3)(a +2)(a -2);(4)(x -y )2.【例1】计算:(1)3a +155a a-; (2)13x --13x +; (3)224a a --12a -.【互动】学生自主解答,小组讨论,老师统一讲解,对存在问题进行点评.解:(1)3a +155a a -=155a +155a a -=15155a a +-=5a a =15; (2)13x --13x +=3(3)(3)x x x +-+-3(3)(3)x x x --+ =(3)(3)(3)(3)x x x x +--+-=33(3)(3)x x x x +-++-=269x -. (3)224a a --12a - =2(2)(2)a a a -+-2(2)(2)a a a +-+ =2(2)(2)(2)a a a a -+-+ =22(2)(2)a a a a ---+ =2(2)(2)a a a --+ =12a +. [老师总结]分母是多项式时,应先因式分解,目的是为了找最简公分母以便通分.【例2】有一客轮往返于重庆和武汉之间,第一次往返航行时,长江的水流速度为a 千米/时;第二次往返航行时,正遇上长江汛期, 水流速度为 b 千米/时(b >a ).已知该船在两次航行中,静水速度都为v 千米/时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?分析:重庆和武汉之间的路程一定,可设其为s ,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,把相关数值代入,比较即可.解:设两次航行的路程都为s . 第一次所用时间为s v a+ +s v a - =222vs v a -, 第二次所用时间为s v b + +s v b - =222sv v b -. ∵b >a ,∴b 2>a 2,∴v 2-b 2<v 2-a 2, ∴222sv v b->222vs v a -. ∴第一次的时间要短些.【总结】(学生总结,老师点评)(1)运用分式解决实际问题时,用分式表示实际问题中的量是解决问题的关键;(2)比较分子相同的两个分式的大小,分母大的反而小.课堂练习1.计算1a +1+1a (a +1)的结果是( ) A.1a +1B.1a a +C.1aD.1a a + 2.计算24142x x ---的结果是( ) A.-12x + B.12x + C.-12x - D.264x x --- 3.计算: (1)32b a a b+ ; (2)21211a a +--;(3)22x y x y y x xy+-- . 4.已知实数a 、b 满足ab =1,求下列分式的值. (1)11a b a b +++ ; (2)221111a b +++.参考答案1.C2.D3.解:(1)22236b a ab + . (2)11a + . (3)2y x- . 4.解:(1)原式=a ab a + +1b b+ =11b ++1b b+=1. (2)原式=2ab a ab+ +2ab b ab +=b a b ++a a b +=1. 课堂小结1、异分母分式的加减法法则:异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.2、最简公分母的确定方法:(1)系数:取分母中各系数的最小公倍数;(2)因式:凡各分母中出现的不同因式都要取到;(3)因式的指数:相同因式取指数最高的.布置作业教材随堂练习/习题5.5的第1、2、3题板书设计异分母分式的加减法异分母的分式相加减,先通分,化为同分母的分式,再按同分母分式的加减法法则进行计算.。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)
第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
2017-2018学年北师大版八年级数学下册教案:第5章分式与分式方程课题分式的基本性质
举例:将分式2x+1 / x-3通过等价变形,转化为2 / (x-3) + 5 / (x-3)。
2.教学难点
(1)约分与通分的运用:学生在进行约分和通分时容易出错,特别是涉及多个项的分子、分母。
举例:对分式(2x+1)/(x-3) * (x+3)/(2x-1)进行通分时,需要找到各个分母的最小公倍数。
五、教学反思
今天我们在课堂上学习了分式的基本性质,回顾整个教学过程,我觉得有几个地方值得思考和改进。
首先,关于导入新课的部分,我通过提问的方式引导学生思考日常生活中的分式应用,但感觉学生的反应并不如预期。可能是我提出的问题不够贴近他们的实际生活,或者问题本身不够有趣。在今后的教学中,我需要更加注意问题的设计,让它能更好地激发学生的兴趣。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的定义、基本性质和它在实际中的应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.分式值的不变性质,即分式的分子、分母同乘(除)一个非零常数,分式的值不变;
5.分式的等价变形及其应用。
二、核心素养目标
本章节的核心素养目标旨在培养学生以下能力:
1.理解并掌握分式的定义与性质,提升学生的数学抽象思维;
2.能够运用分式的基本性质进行约分、通分、分式的乘除及加减运算,增强学生的逻辑推理能力;
2017-2018学年北师大版八年级数学下册教案:第5章分式与分式方程课题分式的基本性质
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。
八年级数学下册第5章分式与分式方程分式方程第2课时分式方程的解法课件(新版)北师大版
A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
2.若关于x的分式方程
的值为 ( D )
A.-1,5
B.1
C.-1.5或2 D.-0.5或-1.5
无解,则m
3.解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
第五章 分 式
5.4 分式方程
第2课时 分式方程的解法
学习目标
1.掌握可化为一元一次方程的分式方程的解法; (重点)
2.理解分式方程产生增根的原因,掌握分式方程验 根的方法.(难点)
导入新课
复习引入
1. 解一元一次方程的步骤: 移项,合并同类项,未知数系数化为1. 2. 解一元一次方程 x x 1 1.
②
去分母后所得整式方程的解却不是
原分式方程的解呢?
我们再来视察去分母的过程:
90 60 30+x 30 x
两边同乘(30+x)(30-x) ① 当x=6时,(30+x)(30-x)≠090(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方 程的解与分式方程的解相同.
x 1
∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,
∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示), 然后根据解的正负性,列关于未知字母的不 等式求解,特别注意分母不能为0.
例3 若关于x的分式方程 求m的值.
无解,
解析:先把分式方程化为整式方程,再分 两种情况讨论求解:一元一次方程无解与分 式方程有增根.
北师版八年级数学下册教学课件(BS) 第五章 分式与分式方程 第2课时 异分母分式的加减(1)
x 1
1 x
1
x
x 1
1 x
1
x 1 x 1 x 1 x 1
2 x2 1
2 x2 1
(2)原式=
x
x 32 3 x
3
x
x 32 3 x
3
x 32 x 32
x2 9
12 x x2 9
注意:先确定公分母(各个分式的分母变成相同),通分后,再计算.
2x2 10 x x2 25
3x 3x x 5
x 5 x 5 x 5
3x2 x2
15 x 25
总结归纳
根据分式的基本性质,异分母的分式可以化为同分母的分式,这 一过程称为分式的通分.
找最简公分母: 第一要看系数;第二要看字母(式子). 分母是多项式的先因式分解,再找公分母.
ab (a b)2
= 1 1 a 2b a b
=
ab
a 2b
(a 2b)(a b) (a 2 b)(a b)
因式分解
先化简,再确定最简公 分母
通分
= a b a 2b (a 2b)(a b)
=
3b
(a 2b)(a b)
整式加减法则 最简分式
例5 小刚家和小丽家到学校的路程都是3km,其中小丽走的是平路,骑车速度2v km/h.小刚需要走1km的上坡路、2km的下坡路,在上坡路上的骑车速度为v km/h,在 下坡路上的骑车速度为3v km/h.那么: (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间.
知识要点
异分母分式的加减法则
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母 分式的加减法法则进行计算.
最新北师大版初二数学下册第五章 分式与分式方程 全单元课件
第2课时 分式的基本性质
北师大版 八年级下册
新课导入
问题1、什么是分式?
果除式B中含有字母,那么称
b a- x
推进新课
上面问题中出现了代数式
b ,它们有什么共同特征? a- x (分母中都含有字母)
2400 x
2400 ,x+3
25a+45b , a+b ,
他们与分数有什么相同点和不同点?
相同点 不同点
分数的分子A与分母B都 A 都是 (即A÷B)的形式 是整数;分式的分子A与分母 B B都是整式,并且分母B中都 含有字母
解: (1)由分母 x+2=0,得 x=-2 2 x 4无意义. ∴当x=-2时,分式 x2 (2)由(1)得 当x≠-2时,分式有意义 (3)由分子x2-4=0,得 x=〒2
x 4 ∴当x=2时,分式 的值为零. x2
2
而x+2≠0 ∴ x≠-2
1.当x取什么值时,下列分式无意义?
x (1) ; x 1 x2 ( 2) . 2x 3
做一做
( 1 ) 2010 年上海世博会吸引了成千上万的参观 者,某一时段内的统计结果显示,前 a 天日均参 观人数 35 万人,后 b 天日均参观人数 45 万人,这 (a+b)天日均参观人数为多少万人?25a+45b
a+b
( 2 )文林书店库存一批图书,其中一种图书的 原价是每册a元,现每册降价x元销售,当这种图 书的库存全部售出时,其销售额为b元 .降价销售 开始时,文林书店这种图书的库存量是多少?
分母不 等于0
①分子=0 ②代入分母≠0 ③最后答案
小测验
1、⑴在下面四个代数式中,分式为( B ) 2x 5 1 x8 1 x A、 B、 C、 D、- + 7 4 5 3x 8 ⑵ 当x=-1时,下列分式没有意义的是( C ) x 1 x 2x x 1 A、 B、 C、 D、 x x 1 x 1 x x2 1 有意义。 2、 当x ≠ 时,分式 2 2x 1
最新新编八年级数学下册第五章分式与分式方程知识点归纳新版北师大
第五章 分式与分式方程1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 或 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则 C B C A B A ⋅⋅=CB C A B A ÷÷=分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为 注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5.分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3)分式乘方法则: 分式乘方要把分子、分母分别乘方。
4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
新北师大版初中数学八年级下册第5章 分式与分式方程《5.1认识分式》优质课件
(2) x2 1 x2 2x 1
• 解: (1) a2bc ab ac ac ab ab
(2)
x2 1 x2 2x 1
(x 1)(x 1) (x 1)2
x x
1 1
同除以的ab、
(x-1)在原分式中 充当了分母的因
式,所以默认是 不等于0的,否 则原分式无意义。
1 2
随堂练习1:
1.当x取什么值时,下列分式无意义?
(1) x ; x 1
(2) x 2 . 2x 3
2.当x取什么值时,下列分式的值为零?
(1) x ; (2) x 2 ; (3) x2 4 .
x 1
2x 3
x2
分式有意义 分母不等于零
小结:分式无意义 分母等于零
2400 2400
x
x 30
• (1)2010年上海世博会吸引了成千上万的参观者,某 一时段内的统计结果显示,前 a 天日均参观人数 35 万 人,后 b 天日均参观人数 45 万人,这(a + b)天日均 参观人数为多少万人?
• (2)文林书店库存一批图书,其中一种图书的原价是 每册 a 元,现每册降价 x 元销售,当这种图书的库存全 部售出时,其销售额为 b 元.降价销售开始时,文林书 店这种图书的库存量是多少?
0,1,2时,分别求分式2aa2
1的值。 1
2、从”1,2,a,b,c“中选取若干个数或字母,组成两 个代数式,其中一个是代数式,一个是分式.
3、当x为任意实数时,下列分式一定有意义的是
(B )
(A)
2 x2
1 (B) x2 2
1 ( C) x 2
1 (D)1 x