2021年高考数学冲刺复习资料专题一 三角与向量的交汇题型分析及解题策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学冲刺复习资料:专题一三角与向量的
交汇题型分析及解题策略
【命题趋向】
三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试题位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点.根据2021年考纲预计在高考中解答题仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建立三角函数关系式,再利用三角函数知识求解;(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一起.
【考试要求】
1.理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.
2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.
3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.
4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A,ω,φ的物理意义.
5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件.
7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.
8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.
【考点透视】
向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要考点如下:
1.考查三角式化简、求值、证明及求角问题.
2.考查三角函数的性质与图像,特别是y=Asin(ωx+ϕ)的性质和图像
及其图像变换.
3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.
4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.
5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.
6.考查利用正弦定理、余弦定理解三角形问题.
【典例分析】
题型一 三角函数平移与向量平移的综合
三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.
【例1】 把函数y =sin2x 的图象按向量→a =(-π6,-3)平移后,
得到函数y =Asin(ωx +ϕ)(A >0,ω>0,|ϕ|=π2)的图象,则ϕ和B 的
值依次为 ( )
A .π12,-3
B .π3,3
C .π3,-3
D .-π12,3 【分析】 根据向量的坐标确定平行公式为⎩⎨⎧ x =x '+π6y =y '+3
,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.
【解析1】 由平移向量知向量平移公式⎩⎨⎧ x '=x -π6y '=y -3,即⎩⎨⎧ x =x '+π6y =y '+3
,代入y =sin2x 得y '+3=sin2(x '+π6),即到y =sin(2x +π3)-3,由此知ϕ
=π3,B =-3,故选C.
【解析2】 由向量→a =(-π6,-3),知图象平移的两个过程,即
将原函数的图象整体向左平移π6个单位,再向下平移3个单位,由此可
得函数的图象为y =sin2(x +π6)-3,即y =sin(2x +π3)-3,由此知ϕ=π3,
B =-3,故选C.
【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.
题型二 三角函数与平面向量平行(共线)的综合
此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.
【例2】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.
(Ⅰ)求角A ;
(Ⅱ)求函数y =2sin 2
B +cos
C -3B 2的最大值. 【分析】 首先利用向量共线的充要条件建立三角函数等式,由于可求得A 角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A 、B 、C 三个角的关系,结合三角民恒等变换公式将函数转化为关于角B 的表达式,再根据B 的范围求最值.
【解】 (Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA
-sinA),则sin 2
A =34, 又A 为锐角,所以sinA =32,则A =π3.
(Ⅱ)y =2sin 2B +cos C -3B 2=2sin 2B +cos (π-π3-B)-3B 2
=2sin 2
B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B =32sin2B -12cos2B +1=sin(2B -π6)+1.
∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max
=2. 【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.
题型三 三角函数与平面向量垂直的综合
此题型在高考中是一个热点问题,解答时与题型二的解法差不多,