2008年广东省各市数学中考压试题精编

合集下载

2008年广东省广州市数学中考真题(word版含答案)

2008年广东省广州市数学中考真题(word版含答案)
23.(本小题满分12分)
如图10,射线AM交一圆于点BLeabharlann C,射线AN交该圆于点D、E,且 .
(1)求证:AC=AE;
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.
24.(本小题满分14分)
如图11,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是 上异于A、B的动点.过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE.
13.函数 中自变量x的取值范围是*.
14.将线段AB平移1cm,得到线段 ,则对应点A与 的距离为*cm.
15.命题“圆的直径所对的圆周角是直角”是*命题(填“真”或“假”).
16.已知平面内的凸四边形ABCD,现从一下四个关系式①AB=CD、②AD=BC、③AB∥CD、④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率为*.
19.(本小题满分10分)
实数a、b在数轴上的位置如图7所示.
化简 .
20.(本小题满分10分)
如图8,在菱形 中, °,过点 作 且与 的延长线交于点 .
求证:四边形 是等腰梯形.
21.(本小题满分12分)
如图9,一次函数 的图象与反比例函数 的图象相交于A、B两点.
(1)根据图象,分别写出点A、B的坐标;
秘密★启用前
2008年广州市初中毕业生学业考试
数学
本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.

2008年广东省中考数学试卷(Word版)(含解析)

2008年广东省中考数学试卷(Word版)(含解析)

★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.22.(2008•广东•2•3′)2008年5月7日北京奥运会火炬接力传递活动在广州举行,整个火炬传递路线全长约40 820米,用科学记数法表示火炬传递路程是()A.408.2×102米B.40.82×103米C.4.082×104米D.0.4082×105米3.(2008•广东•3•3′)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+14.(2008•广东•4•3′)下列图形中是轴对称图形的是()A.B.C.D.5.(2008•广东•5•3′)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A.28 B.28.5 C.29 D.29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.6.(2008•广东•6•4′)-2的相反数是.7.(2008•广东•7•4′)经过点A(1,2)的反比例函数解析式是.8.(2008•广东•8•4′)已知等边三角形ABC的边长为3+,则△ABC的周长是.9.(2008•广东•9•4′)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM= °.10.(2008•广东•10•4′)如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2008•广东•11•6′)计算:cos60°+2-1+(2008﹣π)0.12.(2008•广东•12•6′)解不等式4x﹣6<x,并在数轴上表示出解集.13.(2008•广东•13•6′)如图,在△ABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法和证明),并求AD的长.14.(2008•广东•14•6′)已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(2008•广东•15•6′)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2008•广东•16•7′)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.17.(2008•广东•17•7′)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.18.(2008•广东•18•7′)如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F,点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.19.(2008•广东•19•7′)如图,梯形ABCD是拦水坝的横断面图,(图中i=1:是指坡面的铅直高度DE与水平宽度CE的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果保留三位有效数字.参考数据:≈1.732,≈1.414)五、解答题(三)(本大题3小题,每小题9分,共27分)2021.(2008•广东•21•9′)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.22.(2008•广东•22•9′)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.(1)填空:如图1,AC= ,BD= ;四边形ABCD是梯形;(2)请写出图1中所有的相似三角形;(不含全等三角形)(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持△ABD 不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=t,△FBP面积为S,求S与t之间的函数关系式,并写出t的取值范围.★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.2考点:绝对值。

2008年广东茂名市中考数学试题及答案

2008年广东茂名市中考数学试题及答案

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

茂名市2008年初中毕业生学业考试与高中阶段学校招生考试数 学 试 卷温馨提示:亲爱的同学,请你相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功.第一卷(选择题,满分40分,共2页)一、精心选一选(本大题共10小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的). 1.-21的相反数是( ) A.-2 B.2 C.21 D.21- 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D 3.下列运算正确的是( )A.-22=4 B.22-=-45.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

C. a ·a 2= a 2D.a +2a =3a4.用平面去截下列几何体,截面的形状不可能...是圆的几何体是( ) A.球 B.圆锥 C.圆柱 D.正方体5.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m2C.m +1 D.m -16.在数轴上表示不等式组10240x x +>⎧⎨-⎩≤的解集,正确的是( )A B -2 -1 0 1 2 3C D7.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A.10 B.20 C.24 D.258.一组数据3、4、5、a 、7的平均数是5,则它的方差是( ) A.10 B.6 C.5 D.2 9.已知反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-ax +a 的图象不经过...( ) A.第一象限 B.第二象限C.第三象限 D.第四象限 10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

2008年数学中考试题分类汇编(应用题)

2008年数学中考试题分类汇编(应用题)

(2008年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。

求这个月的石油价格相对上个月的增长率。

20.(2008年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?河北周建杰分类(2008年泰州市)15.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.tan)(2008年泰州市)24.如图某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即 为1︰1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1︰1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分)第24题图(2008年南京市)25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当2(第25题)(2008年遵义市)26.(12分)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.应用;(2)问主要考查一元一次不等式组的应用.以下是江西康海芯的分类:1. (2008年郴州市)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?辽宁省岳伟分类2008年桂林市1.某校在教学楼前铺设小广场地面,其图案设计如图。

2008年全国中考数学压轴题分类解析

2008年全国中考数学压轴题分类解析
表 示出 B 的长度 和点 Ⅳ的纵 坐标 , AMN M 其 B的面积 S与 t 函数 关 系式 即可得到. 的
并求 为何值时, Y的值最大, 最大值是多少?
解 () B 1 略.c的解析式为Y=÷ + ÷.
-t 二

C B Q D


() 2 略.A B A C的面积是÷.

() 3 过点 Ⅳ作 上MB于点 P 因为 E , , O上 所以
图2
图3
图4
4 7
维普资讯
分 析 ( ) 1 根据 MN/ BC 由相 似三角形 的相似 比可 / ,
用 的代数式 表示 出圆的直径 MN; ( )过 圆心 D作直线 Jc的垂线 O 当 O = 卅J 2 B D, D 1 、 r
维普资讯
20 0 8年 全 国 中 考 数 学 压 轴 题 分 类 解 析
安徽省岳西县城关 中学
从 今年 的 中考数 学 压轴 题 中 , 们 可 以 看 到 在 考察 我 学 生基本 运算 能 力 、 维能 力 的 同时 , 优生 还 要 着重 考 思 对
4,S 一 ( 2 1 )即 :÷t ) 2 一 了 .
因为此抛 物线 开 口向下 , 以当 t=2时 ,量 = , 所 S大 所 以 当点 运动 2 时 , 秒 AMN B的 面积达 到最 大 , 大值 最
为 . 点 评 本题 是 一 道综 合 性 很 强也 是 传 统 型 的压 轴

9 。A =4, C = 3 是 A 0 ,B A , B上 的动 点 ( 与 A, 不 B重
令 抛物线 解析式 Y=0 解 二次方程 求得 A B的坐标 , , 、 从而

2008年广东省广州市中考数学试题难度结构分析

2008年广东省广州市中考数学试题难度结构分析
A、B 两点 (1)根据图象,分别写出 A、B 的坐标; (2)求出两函数解析式;
(3)根据图象回答:当 x 为何值时,
一次函数的函数值大于反比例函数的函数值 4
图8 22、中 0.53(2008 广州)(12 分)2008 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到 30 千米远的郊区进行抢修。维修工骑摩托车先走,15 分钟后,抢修车装载所需材料出发,结果两车同时 到达抢修点。已知抢修车的速度是摩托车速度的 1.5 倍,求两种车的速度。
抓过关。
4、 明确第 23 题及以前的中档题一般均是问题指向明确,解决问题
的办法也是常规解法的问题。建议①分“数与代数”、“空间与图
形”、“统计与代数”三类,收集近三年广州中考难度在 0.6 以上
的中考题,中下生抓紧这一块过关,后进生要抓难度系数是 0.73
以上的题过关,中等生尤其要抓难度系数是 0.6 以上的题过关;
图6 20、中 0.69(2008 广州)(10 分)如图 7,在菱形 ABCD 中,∠DAB=60°,过点 C 作 CE⊥AC 且与 AB 的延长线交于点 E,求证:四边形 AECD 是等腰梯形
图7
21、中 0.67(2008 广州)(12 分)如图 8,一次函数 y kx b 的图象与反比例函数 y m 的图象相交于 x
5
图 11 目标:灵活运用 9、中 0.58(2008 广州)如图 2,每个小正方形的边长为 1,把阴影部分剪下来,用剪下来的阴影部分拼成 一个正方形,那么新正方形的边长是( )
A 3 B2 C 5 D 6
图2
难题(难度系数<0.5)
目标灵活运用 16、难 0.37(2008 广州)对于平面内任意一个凸四边形 ABCD,现从以下四个关系式①AB=CD; ②AD=BC;③AB∥CD;④∠A=∠C 中任取两个作为条件,能够得出这个四边形 ABCD 是平行四边形的 概率是

2008年广东省中考数学试卷及答案(word版)

2008年广东省中考数学试卷及答案(word版)

2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

2008年广东省各市数学中考压试题精编

2008年广东省各市数学中考压试题精编
O n D A C B m 第25题图21 P
结论: . 证明:略.
情形4 如图23,AB为弦,CD为弦,且AB∥CD. AD BC 结论: = . 证明:略. (上面四种情形中做一个即可,图1分,结论1分,证明3分; 其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是 错误的) (3) 若点C和点E重合, 则由圆的对称性,知点C和点D关于直径AB对称. …………………………………………8分 设 ,则 , .…………………………………………9分 ABC 又D是 的中点,所以 , 即 .………………………………………………………………………………10分 解得 .………………………………………………………………………………………11分 (若求得 或 等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆 的十二等分点,然后说明)
∠DAB=∠CBA, ∠DAB=2∠DBA, 1分 ∠DAB+∠DBA=90 , ∠DAB=60 , 1.5分 ∠DBA=30
, AB=4, DC=AD=2, Rt 2分
AOD,OA=1,OD= , 2.5分
A(-1,0),D(0, ),C(2, ). 4分 (2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点 A(-1,0),B(3,0), 故可设所求为 =
பைடு நூலகம்
BD=BP4,BD=BP5.
10分 由于以上各点互不重合,所以在直线L上,使 PDB为等腰三角形的点P有5个.
6、(2008年广东省湛江市)28. 如图11所示,已知抛物线
与 轴交于A、B两点,与 轴交于点C. 图11 C P B
y
A (1)求A、B、C三点的坐标. (2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积. (3)在 轴上方的抛物线上是否存在一点M,过M作MG

2008年梅州市中考数学模拟试题

2008年梅州市中考数学模拟试题

2008年梅州市初中毕业班中考数学模拟考试试题本试卷共4页,23小题,满分120分。

考试用时90分钟。

参考公式:弧长计算公式:180Rn l π=一、选择题:每小题3分,共15分,每小题给出四个答案,其中只有一个正确的。

(2008年模拟)1、北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数法表示为A 、81037.1⨯ B 、91037.1⨯ C 、8107.13⨯ D 、610137⨯ (2008年模拟)2、小马虎在下面的计算中只做对了一道题,他做对的题目是A 、222)(b a b a -=-B 、523a a a =+ C 、6234)2(a a =- D 、a a -=--)1(1 (2008年模拟)3、下列图形中,不是三棱柱的表面展开图的是(2008年模拟)4、下列命题中,错误的是 A 、矩形的对角线互相平分且相等B 、对角线互相垂直的四边形是菱形C 、等腰梯形的两条对角线相等D 、等腰三角形底边上的中点到两腰的距离相等(2008年模拟)5、如图1关于X 的函数y=kx+b(k ≠0)图像,则不等式kx+b ≤0的解集为A 、-1<x <2B 、x ≤2C 、0≤x ≤2D 、 x ≥2 二、填空题:每小题3分,共24分(2008年模拟)6、 -2的相反数是___________.(2008年模拟)7、如图2,.__________50,//=∠+∠=∠︒B A ,C CD AE 则 (2008年模拟)8、某商场举行“庆五一,送惊喜”抽奖活动,10000个奖券中设有中奖奖券200个,小红第一个参与抽奖且抽取一张奖券,她中奖的概率为___________(2008年模拟)9、如图3,图像反映的过程是:小李从家跑步到体育馆,在那里锻炼了一阵后又走到书店去买书,然后散步走回家,其中t 表示时间(分),s 表示小李离家的距离(千米),那么小李在体育馆锻炼和在书店买书共用去的时间是_________分.(2008年模拟)10、如图4,一宽为1CM 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为______________cm.(2008年模拟)11、如图5,平面直角坐标系中,AB 是过点(0,1)且垂 直于y 轴的平面镜,则点P (3,2)在平面镜AB 中的像的 坐标为________________.(2008年模拟)12、已知某二次函数的图像与X 轴的两个交战点的横坐标分别是方程0222=--x x 的两根,则该二次函数图像的对象轴为__________(2008年模拟)13、如图6,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上标记 数字1,2,3,4,5,6,7,……根据你发现的规律, 数字“2008”在射线__________上.三、解答下列各题:本题有10小题,共81分,解答应写出文字说明、推理过程或演算步骤。

2008年中考数学试题及答案解析

2008年中考数学试题及答案解析

2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。

2008年广东省广州市中考数学试题及参考答案

2008年广东省广州市中考数学试题及参考答案

2008年广州市数学中考试题一、选择题(每小题3分,共30分) 1、(2008广州)计算3(2)-所得结果是( ) A 6- B 6 C 8- D 82、(2008广州)将图1按顺时针方向旋转90°后得到的是( )3、(2008广州)下面四个图形中,是三棱柱的平面展开图的是( )4、(2008广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-5、(2008广州)方程(2)0x x +=的根是( )A 2x =B 0x =C 120,2x x ==-D 120,2x x == 6、(2008广州)一次函数34y x =-的图象不经过( )A 第一象限B 第二象限C 第三象限D 第四象限 7、(2008广州)下列说法正确的是( )A “明天降雨的概率是80%”表示明天有80%的时间降雨B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C “彩票中奖的概率是1%”表示买100张彩票一定会中奖D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数8、(2008广州)把下列每个字母都看成一个图形,那么中心对成图形有( )O L Y M P I CA 1个B 2个C 3个D 4个9、(2008广州)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) AB 2CD10、(2008广州)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>二、填空题(每小题3分,共18分) 11、(2008的倒数是12、(2008广州)如图4,∠1=70°,若m ∥n ,则∠2= 13、(2008广州)函数1xy x =-自变量x 的取值范围是 14、(2008广州)将线段AB 平移1cm ,得到线段A ’B ’,则点A 到点A ’的距离是 15、(2008广州)命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”) 16、(2008广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是三、解答题(共102分)17、(2008广州)(9分)分解因式32a ab -18、(2008广州)(9分)小青在九年级上学期的数学成绩如下表所示图2图3图4(1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据图5所示的权重计算, 请计算出小青该学期的总评成绩。

中考数学临考题号押广东卷24题(几何综合)(解析版)

中考数学临考题号押广东卷24题(几何综合)(解析版)
∴DF=FB= ,
∴∠FDB=∠FBD,
∴tan∠FDB=tan∠FBD,
∴ ,
∵∠A=45°,
∴ 是等腰直角三角形,
∴GH=AH,
∴ ,此时,H、D重合,
∴设AD=3x,BD=2x,则AB=5x,AC=BC=5x÷ = ,
∴GH=AH=3x,AG=3 x
∴CG=3 x- = ,
【小问1详解】
∵BC是直径,
∴∠BAC=∠BDC=90°,
∵AD平方∠BAC,
∴∠BAD=∠DAC=45°,
∴BD=DC,且∠DBC=∠DAC=∠DAB=∠DCB=45°
∵BD= ,
∴在等腰Rt△BDC中,BC= BD=4,DC=BD= ,
∵在Rt△BAC中,AB=2,BC=4,
∴利用勾股定理可得AC= ,
(3)连接OD,根据(1)和(2)中的结论可得出∠FBD=75°=∠DEC,再利用 和BD=CD,可得 ,即有∠BDF=∠ECD=45°,则可得∠ODF=90°,即OD⊥DF,可证得DF是⊙O的切线;根据∠BAD=∠BDF=45°,∠F=∠F,证得 ,则有 ,即可找到BF、FD、FA之间的关系,根据 ,即可求出DF.
【分析】(1)把C(1,4)代入y= 求出k=4,把(4,m)代入y= 求出m即可,将A、C两点坐标代入 ,获得直线解析式,然后利用 ,代入即可求解;
(2)设平移后的解析式为 ,而当直线与反比例函数只有一个交点时,两者相切,联立平移后的直线和反比例函数解析式,形成的新的方程的判别式为0,代入数值即可求解;
∴在Rt△AHD中,∠HAD=∠ADH=45°,即HA=HD,
设HD=a,则HA=a,HB=HA-AB=a-2,
在Rt△HBD中,利用勾股定理,

2008年中考数学试题分类汇编(阅读、规律、代数式)

2008年中考数学试题分类汇编(阅读、规律、代数式)

以下是河北省柳超的分类(2008年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2008年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2008年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2008年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2008年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。

18.(2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.10. ( 2008年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P , 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q , 再记直角三角形 ,,22111Q P P Q OP 的面积分别为 ,,21S S ,这样就有,24,21322321nn S n n S -=-=… ; 记21S S W += 1-++n S , 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2008年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的写出你的结论.24.(2008年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售: 方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买; 方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。

2008年我省数学中考试题亮点赏析和问题商榷

2008年我省数学中考试题亮点赏析和问题商榷
3创 新 题 型 , 充 分 考 查 考 生 综 合 运 用 语 言 的 能 .
六 、对英语中考命题的期待与建议
1命 题 方 案 和 原 则 的 制 定 、 命 题 与 审 题 工 作 的 开 . 展 、 试 题 的 分 析 与 评 估 等 都 应 严 格 依 据 新 课 标 , 真 正
力。 口语 测 试 要逐 步 记 入 中考 总 分 ,创 设 真 实 、 有 意


亮点赏析
1立 足 “ 基 ” 体 现 考 试 性 质 。 . 双 ,
例 1 已 知 : 如 图 l所 示 的 一 张 矩 形 纸 片 A : c D
学 生 能 够 正 常 毕 业 ,又 要合 理 区 分不 同学 业 水 平 的学 生 。 本 题 较 好 地体 现 了 这种 考 试 性 质 。 它 以 折 纸 为切 入 点 ,考 查 对 称 、三 角 形 、特 殊 四 边 形 等 知识 ;3个 设 问 中 ,既 有 直 接 的证 明 、计 算 ,也 有 结 论 开 放 的探 索性 问题 。 几 个 问题 层 层 递 进 、层 次 分 明 ,给 不 同学 业 水 平 的 考 生 提供 了施 展 才能 的空 间 。
制 的 书 面表 达 题 应 给 考 生 留 出 自 由发 挥 的 空 间 。层
20 0 8年我 省数 学中考试题 亮点赏析和 问题商榷
省 普通教 育教 学研 究室 陈中峰
评 析 :中 考 既 是 水 平考 试 ,又 是 选 拔 考 试 ,其 考
试 结 果 既 能 衡 量 学 生 的 学业 水 平 ,又 是 高 中校 选拔 新 生 的 依 据 。 中 考 试 卷 既 要 保 证 让 具 备 初 中 基 础 知 识 的
义 的 多种 交 际 形 式 ,倡 导 采 用 人 机 对 话 的 口试 方 式 , 考 查 考 生 的 口语 交 际 能 力 。 听 力考 试 应 以考 查 考 生通

2008年广东省佛山市中考数学试题及参考答案

2008年广东省佛山市中考数学试题及参考答案

佛山市2008年高中阶段学校招生考试数学试卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字 笔描黑.3.其余注意事项,见答题卡.第Ι卷 (选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 如图,数轴上A 点表示的数减去B 点表示的数,结果是( ).A .8B .-8C .2D .-22. 下列运算正确的是( ).A . 0(3)1-=-B . 236-=- C .9)3(2-=- D . 932-=-3. 化简()m n m n --+的结果是( ).A .0B .2mC .2n -D .22m n -4. 下面的图形中,既是轴对称图形又是中心对称图形的是( ).B C D5. 下列说法中,不正确...的是( ). A .为了解一种灯泡的使用寿命,宜采用普查的方法B .众数在一组数据中若存在,可以不唯一C .方差反映了一组数据与其平均数的偏离程度D .对于简单随机样本,可以用样本的方差去估计总体的方差0 1 B 第1题图6. “明天下雨的概率为80%”这句话指的是( ).A . 明天一定下雨B . 明天80%的地区下雨,20%的地区不下雨C . 明天下雨的可能性是80%D . 明天80%的时间下雨,20%的时间不下雨7. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N . 则线段BM 、DN 的大小关系是( ).A . DN BM >B . DN BM <C . DN BM =D . 无法确定 8. 在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).A . 13B . 23C . 16D .349. 如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是( )2cm .A .π150B .π300 C.5 D .1010.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A - C 表示根据这次测量的数据,可得观测点A 相对观测点B 的高度是( ) 米.A .210B .130C .390D .-210第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.计算:=--)2)(2(b a b a .12.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 . 13.若20082007=a ,20092008=b ,则a 、b 的大小关系是a b .第9题图正视 图 左 视 图俯 视 图第7题图第12题图BCDAP14.在研究抛掷分别标有1、2、3、4、5、6的质地均匀的正六面体骰子时,提出了一个问题:连续抛掷三次骰子,正面朝上的点数是三个连续整数的概率有多大? 假设下表是几位同学抛掷骰子的实验数据: 同学编号抛掷情况12 3 4 5 6 7 8 抛掷次数100 150 200 250 300 350 400 450 正面朝上的点数是三个连续整数的次数101220222533 3641请你根据这些数据估计上面问题的答案大约是 . 15.如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数1y x=(0x >)的图象上,则点E 的坐标是( , ).三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分). 16.解方程组:⎩⎨⎧=+=+.173,7y x y x17.先化简)221(-+p ÷422--pp p ,再求值(其中P 是满足-3 <P < 3的整数).18.如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300m ,求点M 到直线AB 的距离(精确到整数). (参考数据:7.13≈,4.12≈)A住宅小区 M4530B第18题图19.某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):请根据上述信息解答下列问题: (1) B 组的人数是 人;(2) 本次调查数据(指体育活动时间)的中位数落在组内;(3) 若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?20.对于任意的正整数n ,所有形如n n n 2323++的数的最大公约数是什么?21. 如图,在直角△ABC 内,以A 为一个顶点作正方形ADEF ,使得点E 落在BC 边上.(1) 用尺规作图,作出D 、E 、F 中的任意一点 (保留作图痕迹,不写作法和证明. 另外两点不需要用尺规作图确定,作草图即可); (2) 若AB = 6,AC = 2,求正方形ADEF 的边长.22.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.组别 范围(小时) A5.0<t B15.0<≤t C 5.11<≤t D 5.1≥t 人数组别第19题图B C 第21题图(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?23. 如图,△ACD 、△ABE 、△BCF 均为直线BC 同侧的等边三角形.(1) 当AB ≠AC 时,证明四边形ADFE 为平行四边形;(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.24. 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1) 直接写出点M 及抛物线顶点P 的坐标; (2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD - DC - CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形...............提出相关的概念和问题(或者根据问题构造图形),并加以研究............................. 例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:第24题图 第23题图EFDABC(1) 如图1,在圆O所在平面上,放置一条..直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心.......的两条..直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之.(3) 如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F. 请找出点C和点E重合的条件,并说明理由.第25题图1 第25题图2A第25题图3佛山市2008年高中阶段学校招生考试数学试卷参考答案与评分标准一、选择题. 题号 1 2 3 4 5 6 7 8 9 10 答案B DC B A C C BD A二、填空题. 题号1112131415 答案 22252b ab a +- ︒5.22<(或“小于”) 09.0~095.0之间的任意一个数值 (215+,215-)(第14题填理论值1/9给满分;第15题填对一个只给1分,若近似计算不扣分) 三、解答题.16.⎩⎨⎧=+=+)2(.173)1(,7y x y x(2)-(1),得102=x ,即5=x . …………………………………………………………………………3分 把5=x 代入(1),得2=y . ………………………………………………………………………………5分∴ 原方程组的解为:⎩⎨⎧==.2,5y x …………………………………………………………………………6分(用代入消元法,同理给分) 17.=--÷-+4)221(22pp p p =--+⨯-+-)1()2)(2(222p p p p p p 12-+p p . ………………………4分(其中通分1分,除法变乘法1分,分子分母分解因式1分,化简1分)在-3 < p < 3中的整数p 是-2,-1,0,1,2, ……………………………………………………5分 根据题意,这里p 仅能取-1,此时原式 = 21-.…………………………………………………6分(若取p = -2,0,1,2,代入求值,本步骤不得分;直接代-1计算正确给1分)18.过点M 作AB 的垂线MN ,垂足为N .…………………………………………………………………1分∵M 位于B 的北偏东45°方向上,∴∠MBN = 45°,BN = MN . ………………………2分 又M 位于A 的北偏西30°方向上,∴∠MAN =60°,AN =tan 60M N =……3分∵AB = 300,∴AN +NB = 300 . ………………4分 ∴3003=+MN MN . ……………………………5分MN 191≈.………………………………………………6分(由于计算方式及取近似值时机不同有多个值,均不扣分)19.(1) B 组的人数是 30 人; ………………………………………………………………………………2分(2) 本次调查数据的中位数落在 C 组内;…………………………………………………………4分A住宅小区 M45° 30°B北 第18题图N(3) 5120030024064000=⨯(人). ………………………………………………………………………6分(每小题2分,不用补全图形)20.第一类解法(直接推理):)2)(1(2323++=++n n n n nn ..…………………………………………………………………………1分因为n 、1+n 、2+n 是连续的三个正整数,………………………………………………………2分所以其中必有一个是2的倍数、一个是3的倍数. ………………………………………………3分 所以)2)(1(2323++=++n n n n n n 一定是6的倍数. ………………………………………4分 又n n n 2323++的最小值是6,……………………………………………………………………………5分 (如果不说明6是最小值,则需要说明n 、1+n 、2+n 中除了一个是2的倍数、一个是3的倍数,第三个不可能有公因数. 否则从此步以下不给分)所以最大公约数为6. ………………………………………………………………………………………………6分 第二类解法(归纳):情形1 当1=n 时,62323=++n n n ,所以最大公约数为6. ………………………2分 (若回答最大公约数为2或3,只给1分)情形2 当1=n 、2(或其它任意两个正整数)时,62323=++n n n 、24,所以最大公约数为6. ………………………………………………………………………………………………3分 (若回答最大公约数为2或3,给2分)情形3 当1=n 、2、3时,62323=++n n n 、24、120,所以最大公约数为6. ………………………………………………………………………………………………4分 (若回答最大公约数为2或3,给3分)注:若归纳之后再用推理方法说明,则与第一类解法比较给分.21.⑴ 作图:作∠BAC 的平分线交线段BC 于E ; …………………………………………………4分(痕迹清晰、准确,本步骤给满分4分,否则酌情扣1至4分;另外两点及边作的是否准确,不扣分)⑵ 如图,∵ 四边形ADEF 是正方形,∴ EF ∥AB ,AD = DE = EF = F A . ……5分∴ △CFE ∽△CAB .∴CACF BAEF =.…………………………………6分∵ AC = 2 ,AB = 6,设AD = DE = EF = F A = x , ∴662x x -=. ………………………………………………………………………………………………………7分∴ x =23.即正方形ADEF 的边长为23. ………………………………………………………………8分(本题可以先作图后计算,也可以先计算后作图;未求出AD 或AF 的值用作中垂线的方法找到D 点或F 点,给2分)22.(1) 设租用甲种货车x 辆,则乙种货车为8x -辆. ……………………………………1分 依题意,得:208(8)100,68(8)54.x x x x +-≥⎧⎨+-≥⎩ (每列出一个给一分) ………………………………3分解不等式组,得53≤≤x : ………………………………………………………………………………5分 这样的方案有三种:甲种货车分别租5,4,3辆,乙种货车分别租3,4,5辆. ………6分ABC 第21题图DE F【另解:设安排甲种货车x 辆,则有54100)8)(88()620(+≥-+++x x . ……………3分解得513≥x ,又8≤x ,可取整数8,7,6,5,4,3=x . ………………………………………5分租用货车的方案有六种:即甲种货车分别租用8,7,6,5,4,3辆. ………………………6分 (2) 总运费8000300)8(10001300+=-+=x x x s . ………………………………………7分 因为s 随着x 增大而增大,所以当3=x 时,总运费s 最少,为8900元. ………8分 ((1)若用另解,在总得分中扣1分;(2)若用类似列下表的方式解答,可参考给分) 甲车数量 3 4 5 6 7 8 总运费89009200…………23.(1) ∵△ABE 、△BCF 为等边三角形,∴AB = BE = AE ,BC = CF = FB ,∠ABE = ∠CBF = 60°.∴∠FBE = ∠CBA . ………………………1分∴△FBE ≌△CBA .∴EF = AC . ………………………………………2分 又∵△ADC 为等边三角形, ∴CD = AD = AC . ∴EF = AD..……………………………………………………………………………………………………………3分 同理可得AE = DF . ……………………………………………………………………………………………5分 ∴四边形AEFD 是平行四边形. ……………………………………………………………………………6分 (其它证法,参照给分)(2) 构成的图形有两类,一类是菱形,一类是线段. 当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)………7分 (若写出图形为平行四边形时,不给分) 当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). …………8分24.(1) M (12,0),P (6,6). ………………………………………………………………………………………2分(2) 设此函数关系式为:6)6(2+-=x a y . ………………………………………………………3分∵函数6)6(2+-=x a y 经过点(0,3),∴6)60(32+-=a ,即121-=a . ………………4分∴此函数解析式为:31216)6(12122++-=+--=x xx y .………5分(3) 设A (m ,0),则 B (12-m ,0),C )3121,12(2++--m mm ,D )3121,(2++-m mm . …………7分∴“支撑架”总长AD+DC+CB = )3121()212()3121(22++-+-+++-m mm m m= 18612+-m. …………………………………………………………………………………………………9分∵ 此二次函数的图象开口向下.∴ 当m = 0时,AD+DC+CB 有最大值为18. …………………………………………………10分25.解:(1) 弦(图中线段AB )、弧(图中的ACB 弧)、弓形、求弓形的面积(因为是封闭第23题图EFD AB C第24题图图形)等.(写对一个给1分,写对两个给2分)(2) 情形1 如图21,AB 为弦,CD 为垂直于弦AB 的直径. …………………………3分 结论:(垂径定理的结论之一). …………………………………………………………………………4分 证明:略(对照课本的证明过程给分). ……………………………………………………………7分 情形2 如图22,AB 为弦,CD 为弦,且AB 与CD 在圆内相交于点P . 结论:PD PC PB PA ⋅=⋅. 证明:略. 情形3 (图略)AB 为弦,CD 为弦,且m 与n 在圆外相交于点P . 结论:PD PC PB PA ⋅=⋅. 证明:略. 情形4 如图23,AB 为弦,CD 为弦,且AB ∥CD .= .证明:略.(上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C 和点E 重合,则由圆的对称性,知点C 和点D 关于直径AB 对称. …………………………………………8分 设x BAC =∠,则x BAD =∠,x ABC -︒=∠90.…………………………………………9分 又D 是 的中点,所以ABC ACD CAD CAD ∠-︒=+∠=∠1802,即)90(18022x x-︒-︒=⋅.………………………………………………………………………………10分解得︒=∠=30BAC x .………………………………………………………………………………………11分 (若求得AC AB 23=或FB AF ⋅=3等也可,评分可参照上面的标准;也可以先直觉猜测点B 、C 是圆的十二等分点,然后说明)m第25题图21ABC A 第25题图3第25题图22第25题图23m。

[学子蓝卷]2008年广东省深圳市中考数学试卷及答案

[学子蓝卷]2008年广东省深圳市中考数学试卷及答案

2008年广东省深圳市中考数学试卷说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

2、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠。

3、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

4、本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。

5、考试结束,请将本试卷和答题卡一并交回。

第一部分 选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的) 1.4的算术平方根是A.-4 B.4 C.-2 D.2 2.下列运算正确的是A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a ÷52a a = 3.2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位, 用科学记数法表示为A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯ 4.如图1,圆柱的左视图是图1 A B C D5.下列图形中,既是..轴对称图形又是..A B C D6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是 A.众数是80 B.中位数是75 C.平均数是80 D.极差是15 7.今年财政部将证券交易印花税税率由3‟调整为1‟(1‟表示千分之一).某人在调整后购买100000元股票,则比调整前少交证券交易印花税多少元?A.200元 B.2000元 C.100元 D.1000元 8.下列命题中错误..的是 A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等 D.对角线相等的四边形是矩形 9.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表 达式是A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 10.如图2,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于A.6π B.4π C.3π D.2π第二部分 非选择题、“迎迎”、“妮x 轴于 A 、表一 表二 表三解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.计算:03)2008(830tan 33π---︒⋅+-17.先化简代数式⎪⎭⎫⎝⎛-++222a a a÷412-a ,然后选取一个合适..的a 值,代入求值.图 2FED C BA图 5E D CB A 18.如图5,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E . (1)求证:梯形ABCD 是等腰梯形.(2)若∠BDC =30°,AD =5,求CD 的长.19.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.(3)写出A 品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.20.如图8,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线. (2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F , 且△BEF 的面积为8,cos∠BFA=32,求△ACF 的面积.21.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?22.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),图 8C图 7图 6OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.2008年广东省深圳市中考数学试卷参考答案及评分意见第二部分 非选择题填空题(本题共5小题,每小题3分,共15分)解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.解: 原式=123333--⋅+ …………………1+1+1+1分 =1213--+ …………………………5分 =1 …………………………6分(注:只写后两步也给满分.) 17.解: 方法一: 原式=41)2)(2()2(2)2)(2()2(2-÷⎥⎦⎤⎢⎣⎡-+++-+-a a a a a a a a=)2)(2()2)(2(42-+-++a a a a a =42+a…………………………5分(注:分步给分,化简正确给5分.) 方法二:原式=)2)(2(222-+⎪⎭⎫⎝⎛-++a a a a a=)2(2)2(++-a a a=42+a…………………………5分取a =1,得 …………………………6分 原式=5 …………………………7分 (注:答案不唯一.如果求值这一步,取a =2或-2,则不给分.) 18.(1)证明:∵AE ∥BD, ∴∠E =∠BDC ∵DB 平分∠ADC ∴∠ADC =2∠BDC 又∵∠C =2∠E ∴∠ADC =∠BCD∴梯形ABCD 是等腰梯形 …………………………3分(2)解:由第(1)问,得∠C =2∠E =2∠BDC =60°,且BC =AD =5∵ 在△BCD 中,∠C =60°, ∠BDC =30° ∴∠DBC =90°∴DC =2BC =10 …………………………7分19.解: (1)C 品牌.(不带单位不扣分) …………………………2分 (2)略.(B 品牌的销售量是800个,柱状图上没有标数字不扣分) ……4分 (3)60°.(不带单位不扣分) …………………………6分 (4)略.(合理的解释都给分) …………………………8分 20.(1)证明:连接BO , …………………………1分方法一:∵ AB=AD =AO∴△ODB 是直角三角形 …………………………3分 ∴∠OBD=90° 即:BD⊥BO∴BD 是⊙O 的切线. …………………………4分方法二:∵AB=AD , ∴∠D=∠ABD∵AB=AO , ∴∠ABO=∠AOB又∵在△OBD 中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90° 即:BD⊥BO∴BD 是⊙O 的切线 …………………………4分 (2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF …………………………5分 ∵AC 是⊙O 的直径∴∠ABC=90°在Rt△BFA 中,cos∠BFA=32=AF BF ∴942=⎪⎭⎫ ⎝⎛=∆∆AF BF S S ACF BEF …………………………7分 又∵BEF S ∆=8∴ACF S ∆=18 …………………………8分21.解:(1)设打包成件的帐篷有x 件,则320)80(=-+x x (或80)320(=--x x ) …………………………2分解得200=x ,12080=-x …………………………3分 答:打包成件的帐篷和食品分别为200件和120件. …………………………3分 方法二:设打包成件的帐篷有x 件,食品有y 件,则⎩⎨⎧=-=+80320y x y x …………………………2分 解得⎩⎨⎧==120200y x …………………………3分答:打包成件的帐篷和食品分别为200件和120件. …………………………3分 (注:用算术方法做也给满分.)(2)设租用甲种货车x 辆,则⎩⎨⎧≥-+≥-+120)8(2010200)8(2040x x x x …………………………4分 解得42≤≤x …………………………5分 ∴x =2或3或4,民政局安排甲、乙两种货车时有3种方案. 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆. …………………………6分(3)3种方案的运费分别为:①2×4000+6×3600=29600;②3×4000+5×3600=30000;③4×4000+4×3600=30400. …………………………8分∴方案①运费最少,最少运费是29600元. …………………………9分 (注:用一次函数的性质说明方案①最少也不扣分.) 22.(1)方法一:由已知得:C (0,-3),A (-1,0) …………………………1分将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a …………………………2分解得:⎪⎩⎪⎨⎧-=-==321c b a …………………………3分所以这个二次函数的表达式为:322--=x x y …………………………3分 方法二:由已知得:C (0,-3),A (-1,0) …………………………1分 设该表达式为:)3)(1(-+=x x a y …………………………2分 将C 点的坐标代入得:1=a …………………………3分 所以这个二次函数的表达式为:322--=x x y …………………………3分 (注:表达式的最终结果用三种形式中的任一种都不扣分)(2)方法一:存在,F 点的坐标为(2,-3) …………………………4分 理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………4分 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形∴存在点F ,坐标为(2,-3) …………………………5分 方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) …………………………4分 ∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) …………………………5分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ), 代入抛物线的表达式,解得2171+=R …………6分②当直线MN 在x 轴下方时,设圆的半径为r (r>0), 则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r ………7分 ∴圆的半径为2171+或2171+-. ……………7分 (4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .……………8分 设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG …………………………9分 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,21,827的最大值为APGS ∆. …………………………10分。

2008年广东省梅州市数学中考真题(word版含答案)

2008年广东省梅州市数学中考真题(word版含答案)

D.

图2
C,
图3
图5
90后得到
图7

8
18.本题满分8分.
如图8,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线
EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的延长线分别交于点G 、H .
(1)写出图中不全等的两个相似三角形(不要求证明);
(2)除AB =CD ,AD =BC ,OA =OC 这三对相等的线段外,图中还有多对相等的线段,
请选出其中一对加以证明.
19.本题满分8分.
如图9所示,直线L 与两坐标轴的交点坐标分别是A (-3,0),B (0,4),
O 是坐标系原点.
(1)求直线L 所对应的函数的表达式;
(2)若以O 为圆心,半径为R 的圆与直线L 相切,求R 的值.
20.本题满分8分.
已知关于x 的一元二次方程x 2-m x -2=0. ……①
(1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根;
(2) 对于任意实数m ,判断方程①的根的情况,并说明理由.
90是
图7 图8
90,
90, ····
90, ····
··········。

广东省各市中考数学分类解析 专题10:四边形

广东省各市中考数学分类解析 专题10:四边形

广东中考数学试题分类解析汇编专题10:四边形一、选择题1. (广东佛山3分)依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是【】A.平行四边形B.矩形C.菱形D.梯形【答案】 A。

【考点】三角形中位线定理,平行四边形的判定。

【分析】根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC。

∴EF=GH,EF∥GH。

∴四边形EFGH是平行四边形。

由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断。

故选A。

2.(广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.20【答案】C。

【考点】等腰梯形的性质,平行四边形的判定和性质。

【分析】∵BC∥AD,DE∥AB,∴四边形ABED是平行四边形。

∴BE=AD=5。

∵EC=3,∴BC=BE+EC=8。

∵四边形ABCD是等腰梯形,∴AB=DC=4。

∴梯形ABCD的周长为:AB+BC+CD+AD=4+8+4+5=21。

故选C。

3. (广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【答案】C。

【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。

16.广州市2008年—2014年中考数学压轴题图文解析

16.广州市2008年—2014年中考数学压轴题图文解析

3
华东师大出版社荣誉出品
《挑战中考数学压轴题》系列产品·16

2014 年广州市中考第 25 题
如图 1,梯形 ABCD 中,AB//CD,∠ABC=90°,AB=3,BC=4,CD=5,点 E 为线
段 CD 上的一个动点(不与点 C 重合) ,△BCE 关于 BE 的轴对称图形为△BFE,联结 CF, 设 CE=x,△BCF 的面积为 S1,△CEF 的面积为 S2. (1)当点 F 落在梯形 ABCD 的中位线上时,求 x 的值; (2)使用 x 表示
DG CO 3 . BG AO 4 3 9 9 所以 DG BG ,点 D 的坐标为 (1, ) . 4 4 4
由 BD//AC,得∠DBG=∠CAO.所以
2
华东师大出版社荣誉出品
《挑战中考数学压轴题》系列产品·16
因为 AC//BD,AG=BG,所以 HG=DG. 而 D′H=DH,所以 D′G=3DG
满分解答
3 3 3 (1)由 y x 2 x 3 ( x 4)( x 2) , 8 4 8
得抛物线与 x 轴的交点坐标为 A(-4, 0)、B(2, 0).对称轴是直线 x=-1. (2) △ACD 与△ACB 有公共的底边 AC,当△ACD 的面积等于△ACB 的面积时,点 B、 D 到直线 AC 的距离相等. 过点 B 作 AC 的平行线交抛物线的对称轴于点 D,在 AC 的另一侧有对应的点 D′. 设抛物线的对称轴与 x 轴的交点为 G,与 AC 交于点 H.
华东师大出版社荣誉出品
《挑战中考数学压轴题》系列产品·16
广州市 2008--2014 年中考数学压轴题图文解析 目录
例1 例2 例3 例4 例5 例6 例7 例8 例9 例 10 例 11 例 12 例 13 2014 年广州市中考第 24 题 / 2 2014 年广州市中考第 25 题 / 4 2014 年广州市中考第 8 题 / 6 2013 年广州市中考第 25 题 / 7 2012 年广州市中考第 24 题 / 9 2012 年广州市中考第 25 题 / 10 2011 年广州市中考第 24 题 / 12 2011 年广州市中考第 25 题 / 13 2010 年广州市中考第 24 题 / 14 2010 年广州市中考第 25 题 2009 年广州市中考第 25 题 2008 年广州市中考第 24 题 2008 年广州市中考第 25 题 / 15 / 17 / 20 / 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1),,..............................1分
等腰;..............................2分
(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)
(3) 若点C和点E重合,
则由圆的对称性,知点C和点D关于直径AB对称. ................................................8分
设,则,.................................................9分
∴ S与t之间的函数关系式为:
,或. .......................................8分
t的取值范围为:. ..................................................................9分
4、(2008年广东省茂名市)25(本题满分10分)如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以
BC为对角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH
∴抛物线的顶点(-,)即为所求的点D. 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线=-3与
抛物线=---4的交点, 8分
∴当=-3时,=-×(-3)-×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. 9分
∠DAB=∠CBA, ∠DAB=2∠DBA, 1分
∠DAB+∠DBA=90, ∠DAB=60, 1.5分
∠DBA=30,AB=4, DC=AD=2, 2分
RtAOD,OA=1,OD=, 2.5分
A(-1,0),D(0, ),C(2, ). 4分
(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),
情形3 (图略)AB为弦,CD为弦,且与在圆外相交于点P.
结论:.
证明:略.
情形4 如图23,AB为弦,CD为弦,且AB∥CD.
结论: = .
证明:略.
(上面四种情形中做一个即可,图1分,结论1分,证明3分;
其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L.
(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)
解: (1) DC∥AB,AD=DC=CB, ∠CDB=∠CBD=∠DBA, 0.5分 源自(3)由题意知,FP∥AE,
∴ ∠1=∠PFB,
又∵ ∠1=∠2=30°,
∴ ∠PFB=∠2=30°,
∴ FP=BP...............................6分
过点P作PK⊥FB于点K,则.
∵ AF=t,AB=8,
∴ FB=8-t,.
在Rt△BPK中,∴ △FBP的面积,
故可设所求为 = (+1)( -3) 6分
将点D(0, )的坐标代入上式得, =.
所求抛物线的解析式为 = 7分
其对称轴L为直线=1. 8分
(3) PDB为等腰三角形,有以下三种情况:
①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B,
(2) 情形1 如图21,AB为弦,CD为垂直于弦AB的直径. ..............................3分
结论:(垂径定理的结论之一). ....................................................................................4分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上.
5、(2008年广东省梅州市)23.(本题满分11分)如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系.
∵MG轴于点G, ∴MGA=PAC =
P1DB为等腰三角形; 9分
②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, P2DB, P3DB为等腰三角形;
③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. 10分
由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个.
(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明)
3、(2008年广州市)25、(2008广州)(14分)如图11,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米
注:其中东莞市、中山市、汕头市与本题,(即2008年广东省的压轴题)是一样的。
2、(2008年广东省佛山市)
25.我们所学的几何知识可以理解为对"构图"的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出"两条直线平行"、"两条直线相交"的概念;若增加第三条直线,则可以提出并研究"两条直线平行的判定和性质"等问题(包括研究的思想和方法).
令OE=,则PE= ∴P
∵点P在抛物线上 ∴
解得,(不合题意,舍去)
∴PE= 4分)
∴四边形ACBP的面积=AB?OC+AB?PE
= 6分)
(3). 假设存在
∵PAB=BAC = ∴PAAC
(1)当t=4时,求S的值
(2)当,求S与t的函数关系式,并求出S的最大值
解:(1)t=4时,Q与B重合,P与D重合,
重合部分是=
(2)当QB=DP=t-4,CR=6-t,AP=6-t
由∽∽,得
,
S=
当t取5时,最大值为
当t取6时,有最大值,综上所述,最大值为。
∴=-4 1分
又由题意可知,、是方程-++=0的两个根,
∴+=, =-=6 2分
由已知得(-)=25
又(-)=(+)-4 =-24
∴ -24=25 解得=± 3分
当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去.
(2)请写出图9中所有的相似三角形(不含全等三角形).
(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
是以OB为对角线的菱形?若存在,求出点P的坐标,
并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解:(1)解法一:∵抛物线=-++经过点A(0,-4),
6、(2008年广东省湛江市)28. 如图11所示,已知抛物线与轴交于A、B两点,与轴交于点C.
(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴
于点G,使以A、M、G三点为顶点的三角形与PCA相似.
若存在,请求出M点的坐标;否则,请说明理由.
解:(1)令,得 解得
令,得
∴ A B C (2分)
(2)∵OA=OB=OC= ∴BAC=ACO=BCO=
∵AP∥CB, ∴PAB=
过点P作PE轴于E,则APE为等腰直角三角形
又D是 的中点,所以,
即...........................................................................................10分
解得....................................................................................................11分
∴=-. 4分
解法二:∵、是方程-++c=0的两个根,
即方程2-3+12=0的两个根.
∴=, 2分
∴-==5,
解得 =± 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵=---4=-(+)+ 6分
2008年广东省各市数学中考压试题精编
1、(2008年广东省)22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
相关文档
最新文档