第三章《三角形》知识要点分梳理及单元测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三角形”知识要点梳理
三角形三角形内角和定理
角平分线
中线
高线
全等图形的概念
全等三角形的性质
三角形全等三角形SSS
SAS
全等三角形的判定ASA
AAS
HL(适用于RtΔ)
全等三角形的应用利用全等三角形测距离
作三角形
一、三角形概念
1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”
表示。
2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,
顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;
4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系
1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
用字母可表示为a+b>c,a+c>b,b+c>a;a-b
2、判断三条线段a,b,c能否组成三角形:
(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;
(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第
-<<+. 知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b
三、三角形中三角的关系
1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数。
4、直角三角形的面积等于两直角边乘积的一半。
5、任意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。
6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。
四、三角形的三条重要线段
1、三角形的三条重要线段是指三角形的角平分线、中线和高线。
2、三角形的角平分线:
(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。
3、三角形的中线:
(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
(2)三角形有三条中线,它们相交于三角形内一点。
4、三角形的高线:
(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
(2)任意三角形都有三条高线,它们所在的直线相交于一点。
五、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
3、全等图形的面积或周长均相等。
4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。
5、全等图形在平移、旋转、折叠过程中仍然全等。
6、全等图形中的对应角和对应线段都分别相等。
六、全等分割
1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。
2、对一个图形全等分割:
(1)首先要观察分析该图形,发现图形的构成特点;
(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。
七、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形的对应边、对应角相等。这是今后证明边、角相等的重要依据。
4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键。
八、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
5、注意以下内容
(1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等。
(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等。
(3)两边及其中一边的对角对应相等不能判定两三角形全等。
6、熟练运用以下内容
(1)熟练运用三角形判定条件,是解决此类题的关键。
(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”。
(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”。(4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”。
7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性。
九、作三角形
1、作图题的一般步骤:
(1)已知,即将条件具体化;
(2)求作,即具体叙述所作图形应满足的条件;
(3)分析,即寻找作图方法的途径(通常是画出草图);
(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;
(5)证明,即验证所作图形的正确性(通常省略不写)。
2、熟练以下三种三角形的作法及依据。
(1)已知三角形的两边及其夹角,作三角形。
(2)已知三角形的两角及其夹边,作三角形。
(3)已知三角形的三边,作三角形。
十、利用三角形全等测距离
1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用