三角形单元测试题含标准答案
北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)
北师大版初中数学七年级下册第四单元《三角形》单元测试卷(标准困难)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 192. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整3. 在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. 12B. 13C. 14D. 164. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为( )A. 30°B. 25°C. 35°D. 65°5. 如图,在长方形ABCD中AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC−CD−DA向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,则t的值为( )A. t=12B. t=32C. t=32或t=112D. t=12或t=326. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°7. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是( )A. 2B. 9C. 18D. 278. 用直尺和圆规作一个角等于已知角,如图,能得出∠O=∠O′的依据是( )A. SASB. ASAC. SSSD. AAS9. 如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连接AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是( )A. ①②③④B. ①④③②C. ①④②③D. ②①④③10. 尺规作图“作一个角等于已知角“的依据是( )A. ASAB. SASC. SSSD. AAS11. 为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC 的理由是( )A. SASB. AASC. ASAD. SSS12. 如图,要测量河两岸相对的A、B两点的距离,可以在与AB垂直的河岸BF上取C、D两点,且使BC=CD,从点D出发沿与河岸BF的垂直方向移动到点E,使点E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是( )A. ASAB. HLC. SASD. SSS第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70∘,∠ABC=48∘,那么∠3=.14. D,E分别是△ABC的边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为______.15. 如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.16. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形△ABC 全等,这样的三角形最多可以作出______个.三、解答题(本大题共9小题,共72.0分。
【单元卷】人教版2022~2023学年小学四年级数学上册第三单元测试卷(一)(含答案与解析)
人教版小学四年级(上)第三单元测试卷(一)数学(时间:60分钟满分:100分)学校:班级:考号:得分:一、选择题(满分16分)1.经过一点画射线,可以画()射线。
A.1条B.2条C.无数条2.下面是小马虎写的一篇数学日记,描述恰当的是()。
A.①B.②C.③D.④3.钝角是()。
A.小于90°的角B.大于90°的角 C.大于90°小于180°的角4.两个角正好组成一个平角,如果其中一个角是锐角,另一个角一定是()。
A.锐角B.直角C.钝角D.平角5.下图中,有()条射线。
①②③④⑤A.1 B.2 C.36.下面说法正确的是()。
A.一条直线长6米B.角的两边越长角越大C.从3:00到3:15,分针转动了90°7.(),钟面上时针与分针形成一个钝角。
A.3时B.11时C.5时8.下面两个量角器量角的方法都是正确的,这两个角的度数分别是()。
A.30°和110°B.30°和70°C.150°和70°二、填空题(满分16分)9.先估一估,再用量角器量一量。
是( )角,量得度数是( )。
10.下面的图形中,我找到的线段分别是:( )。
11.如下图①,一共有( )个小于平角的角;如下图②,当∠2=3∠1时,则∠1=( )。
12.1平角=( )角+( )角;1周角=( )角+( )角。
13.手电筒发出的光束,舞台上的光束,都给人一种( )的形象。
14.钟面上的分针从12起转到( ),形成的角是钝角,是( ) °。
15.下图这个三角板中的锐角是( )度。
16.平日里,直直的线有三种:线段、射线和直线。
三种线各有特点:线段有( )个端点、射线有( )个端点、直线有( )个端点。
三、判断题(满分8分)17.周角比平角大,但比钝角小。
( )18.用一副三角尺能拼出一个145°的角。
( )19.互相平行的两条直线长都是5米。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
人教版四年级下册数学第五单元《三角形及多边形的内角和》培优测试卷(含答案)
人教版四年级下册数学第五单元《三角形及多边形的内角和》培优测试卷一、填空题(共1.(本题3分)直角三角形中,一个锐角是37°,另一个锐角是( )。
2.(本题3分)一个三角形中,最多有( )个直角,最多有( )个钝角,最少有( )个锐角。
3.(本题2分)用52厘米的铁丝围一个等腰三角形(接头处忽略),其中一条边是24厘米,另外两条边可能是( )厘米和( )厘米。
4.(本题2分)在直角三角形中,一个锐角是45°,另一个锐角是( )°,这也是一个( )三角形.5.(本题3分)钝角三角形只有一组底和高..6.(本题3分)一个直角和一个锐角的和,一定( )平角。
(填“大于”“小于”或“等于”)。
7.(本题4分)在一个三角形中,一个角是70度,一个角是55度,这个三角形既是( )三角形,又是( )三角形。
8.(本题4分)一个三角形中两个内角是46°和75°,另一个内角是( )°,这是一个( )三角形.9.(本题3分)在等腰三角形中,其中一个角是100°,则另外两个角分别是________°和________°,这是一个________三角形。
(填“锐角”“钝角”或“直角”)二、判断题(共10分)10.(本题2分)三角形中两条较短的边长度的和小于第三条边.( )11.(本题2分)有三个角是钝角的三角形叫做钝角三角形.( )12.(本题2分)三角形的高有无数条。
( )13.(本题2分)正方形和平行四边形的四条边都相等。
( )14.(本题2分)一个三角形中,两个内角的和小于第三个内角,这个三角形一定是锐角三角形.(判断对错)三、选择题(共15分)15.(本题3分)下面的三组线段中,()能围成一个三角形。
A.2、4、6B.5、6、7C.3、7、1316.(本题3分)()三角形是轴对称图形.A.等边B.直角C.锐角17.(本题3分)等腰三角形的两个底角必定是()。
【三套试卷】济南市小学四年级数学下册第五单元精品测试题带答案
第五单元练习检测卷(含答案)一、填空。
(每题3分,共30分)1.一个三角形有()条边,()个角,()个顶点。
2.三角形按角分类有()三角形、( )三角形和()三角形。
3.在许多建筑中,经常可以见到三角形,是因为三角形具有()。
4.一个三角形的两条边的长分别是8 cm和13 cm,第三条边最长是()cm,最短是()cm。
(填整厘米数)5.一个三角形的两个内角分别是42°和65°,第三个内角是()°,它是一个()三角形。
6.如右图,四边形ABCD的内角和是()°,它里面有()个三角形。
7.一个等腰三角形,一个底角的度数是顶角的2倍,这个三角形顶角的度数是()°,底角的度数是()°。
8.一个等腰三角形两条边的长度分别是3 cm、6 cm,这个等腰三角形的周长是() cm。
9.一个直角三角形,其中一个锐角是另一个锐角的2倍,这两个锐角分别是()°和()°。
10.右图是一个等腰三角形和一个等边三角形组成的一个大三角形,其中∠1=()°。
二、判断。
(对的画“√”,错的画“×”)(每题1分,共5分)1.每个三角形都至少有两个锐角。
( )2.直角三角形和钝角三角形都只有一条高。
( )3.钝角三角形两个锐角的和一定小于90°。
( )4.一个等腰三角形,其中两条边的长分别是20 cm和10 cm,这个等腰三角形的周长可能是40 cm,也可能是50 cm。
( )5.等腰直角三角形的一个底角肯定是45°。
( )三、选择。
(将正确答案的序号填在括号里)(每题2分,共10分) 1.下面()组中的三根小棒不能拼成一个三角形。
2.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()。
A.3 cm B.4 cm C.7 cm D.10 cm3.下面各组角中,()组中的三个角可以是一个三角形的三个内角。
冀教版2020-2021学年八年级数学上册第十七章 特殊三角形 单元测试卷(含答案)
八年级冀教版数学《特殊三角形》测试卷考生注意:1.本试卷共6页,总分100分,考试时间90分钟.题号一二三总分21 22 23 24 25 26 27得分一、选择题(本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题中的括号内)1.等腰三角形两边长为4和8,它的周长是_____.()A 16B 18C 20D 16或182.等腰三角形的一个外角为140º,则它的底角为()A 100ºB 40ºC 70ºD 70º或40º3. 直角三角形中,若斜边长为5cm,周长为12cm,则它的面积为()A 、12㎝²B 、6㎝²C 、8㎝²D 、9㎝²4. 如图,D为等边三角形ABC的AC边上一点,BD=CE, ∠1=∠2,那么三角形ADE是()A、钝角三角形B、等腰三角形C、等边三角形D、直角三角形5.三角形三边长分别为6、8、10,那么它的最短边上的高为()A、 4 B 、5 C 、6 D 、86.边长为7、24、25的三角形ABC内有一点P到三边的距离相等,则这个距离是()A、1 B 、3 C 、4 D 、67..如图,△ABC中,AB=AC,∠C=30º,AB的垂直平分线交BC于E,则下列结论正确的是()得分阅卷人A、BE=½CEB、BE=1/3CEC、BE=¼CED、不能确定8. 如图,在等边△ABC 中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是( )A、4 B 、5 C 、6 D 、89. 如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB, ∠AFD=158°,则∠EDF等于()A、68° B 、58°C 、78°D 、86°10. 如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC于E,若DE=2,CD=25,则BE的长为()A、42 B 、32C 、33D 、8得分阅卷人二、填空题(本大题共10个小题;每小题2分,共20分.把答案写在题中横线上)11.等腰三角形的腰长为10,底边长为12,则其底边上的高为______.12.在△ABC中,AB=AC,BD是∠ABC的平分线,且BD=AD,则∠A=_____ 13.E、F分别是Rt△ABC的斜边AB上的两点,AF=AC,BE=BC,则∠ECF=______14. 有一根长7cm的木棒,要放进长、宽、高分别为5cm、4cm、3cm的木箱,_______(填“能”或“不能”)放进去。
人教版数学四年级上册 第3单元《角的度量》必考题检测卷(单元测试)(含答案)
第3单元角的度量必考题检测卷(单元测试)-小学数学三年级上册人教版一、选择题1.上午9:30,钟面上时针和分针组成的角是()。
A.锐角B.钝角C.直角D.平角2.用一副三角板不能拼出的角是()。
A.135°B.105°C.65°3.如果按下面的要求画角,最后得到的角度数最大的是()。
A.把直角三等分得到的小角B.把平角四等分得到的小角C.把周角九等分得到的小角4.下面的图形中,()是直线。
A.B.C.D.5.关于线段、射线和直线的描述,错误的是()。
A.直线比射线长B.线段和射线都是直线的一部分C.线段有两个端点、射线有一个端点、直线没有端点D.直线和射线都可以无限延伸6.从4时到5时,钟面上的分针旋转了()。
A.30°B.150°C.180°D.360°7.将半圆对折两次展开(如图),在这个半圆上得不到()。
A.锐角B.直角C.钝角D.周角8.下图是一张长方形纸折起来以后的图形。
已知∠1=40°,∠2的度数是()。
A.50°B.60°C.70°D.80°9.如图所画的线哪一条是射线?下面四个选项中正确的是()。
A.AB B.AC C.BA D.BC10.度量一个角,角的一边对着量角器上的180°线,另一边对着45°线。
这个角是()°。
A.35B.45C.45或135D.35或145二、填空题11.钟面上,分针转动360°,相应地时针转动( )°;6时整,时针和分针成( )角。
12.∠1+直角+35°=平角,则∠1=( )。
13.已知∠1=∠3,∠2=140°,那么∠1=( )。
14.将一张圆形纸片先左右对折,再上下对折,得到的角是( )度,再对折一次,得到的角是( )度。
15.在锐角、直角、钝角、平角和周角中,( )最大,( )最小。
最新精选2019年七年级下册数学单元测试题《三角形的初步认识》模拟考核题(含标准答案)
解析:BE=2 cm,∠COD=20° 28.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C (1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置? (2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置? (3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?
解析:10°
14.要使△ABC≌△A′B′C′,已知AB=A′B′,∠B=∠B′,如果利用“ASA”,要
补充条件 ,如果利用“AAS”,要补充条件 .
解析:∠A=∠A′,∠=∠C′
15.如图所示,已知在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,BC=5,CD:B
D=2:3,则点D到AB的距离为
由此知符合条件的三角形一共有7个.
22.如图,在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上
的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.
解析:∠ABE=30°,∠ACF=30°, ∠BHC=120°. 23. 如图,已知在△ABC中,BE和CD分别为∠ABC和∠ACB的平分线,且BD=CE,∠1=∠2 .说明BE=CD的理由.
解析: ∠ADC′=80°,∠AEC′=20°
解析:分别作∠ABC与∠BCA的角平分线,两条角平分线的交点即为加油站的位置,根据
角平分线上的点到角两边的距离相等即可说明 25.根据条件作图: (1)任意画一个Rt△ABC,使∠C=90°; (2)画∠CAB的平分线交对边于D; (3)画出点D到Rt△ABC的斜边的垂线段DE.
三角形内角和综合习题精选(含答案)
...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。
第一章 解直角三角形单元测试卷(标准难度 含答案)
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
人教版数学中考复习《三角形相关问题》专项练习含答案
三角形相关问题一、综合题1.(•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.2.(•北京)在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是________.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.3.(•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.4.(•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.5.(•十堰)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,∠BAO=90°,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.(1)如图1,若点B在OP上,则①AC________OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是________;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式________.6.(•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7.(•黄石)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P 为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF 的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.8.(•荆门)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.9.(•海南)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.10.(•大连)如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为________;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD= ,求PC 的长.11.(•呼和浩特)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.12.(•张家界)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.13.(•北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.14.(•百色)已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x 轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.15.(•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)证明:EG=FH.16.(•河池)解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF 的数量关系,并证明你的结论.17.(•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.18.(•青岛)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.19.(•威海)如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C 点后停止,△ADP以直线AP为轴翻折,点D落在点D1的位置,设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.20.(•达州)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.21.(•达州)小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y= .(1)请你帮小明写出中点坐标公式的证明过程;(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为________;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:________;(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.22.(•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.23.(•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=________,OC△OA=________;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.24.(•赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.答案解析部分一、综合题1.【答案】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB= ,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC= .【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)在Rt△只要证明∠ADC=60°,AD=2即可解决问题;2.【答案】(1)解:①P2,P3②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,∴设P(x,﹣x),当OP=1时,由距离公式得,OP= =1,∴x= ,当OP=3时,OP= =3,解得:x=± ;∴点P的横坐标的取值范围为:﹣≤≤﹣,或≤x≤(2)解:∵直线y=﹣x+1与x轴、y轴交于点A、B,∴A(1,0),B(0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC= ,∴C(1﹣,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣;如图3,当圆过点A,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC= =2 ,∴C(2 ,0).∴圆心C的横坐标的取值范围为:2≤x C≤2 ;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1﹣或2≤x C≤2【解析】【解答】(1)①∵点P1(,0),P2(,),P3(,0),∴OP1= ,OP2=1,OP3= ,∴P1与⊙O的最小距离为,P2与⊙O的最小距离为1,OP3与⊙O的最小距离为,∴⊙O,⊙O的关联点是P2,P3;故答案为:P2,P3;【分析】(1)①根据点P1(,0),P2(,),P3(,0),求得P1= ,P2=1,OP3= ,于是得到结论;②根据定义分析,可得当最小y=﹣x上的点P到原点的距离在1到3之间时符合题意,设P(x,﹣x),根据两点间的距离公式得到即可得到结论;(2根据已知条件得到A(1,0),B(0,1),如图1,当圆过点A时,得到C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,得到C(1﹣,0),于是得到结论;如图3,当圆过点A,则AC=1,得到C(2,0),如图4,当圆过点B,连接BC,根据勾股定理得到C(2 ,0),于是得到结论.3.【答案】(1)PM=PN;PM⊥PN(2)解:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN= BD,PM= CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形(3)解:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2 ,在Rt△ABC中,AB=AC=10,AN=5 ,∴MN最大=2 +5 =7 ,∴S△PMN最大= PM2= × MN2= ×(7 )2= .【解析】【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN= BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM= CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,【分析】(1)利用三角形的中位线得出PM= CE,PN= BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM= BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.4.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS)(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形【解析】【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.5.【答案】(1)=;AC2+CO2=CD2(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立(3)OC﹣AC= CD【解析】【解答】解:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(3.)如图3,结论:OC﹣CA= CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC= CD,故答案为:OC﹣AC= CD.【分析】(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC ﹣AC)2=2CD2,开方后是:OC﹣AC= CD.6.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF 可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE <2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.7.【答案】(1)证明:如图①中,设AD=BC=a,则AB=CD= a.∵四边形ABCD是矩形,∴∠C=90°,∵PC=AD=BC=a,∴PB= = a,∴BA=BP(2)解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,∴CQ=CQ′= a﹣a,∵CQ′//AB,∴= = =(3)证明:如图③中,作TH//AB交NM于H,交BC于K.由(2)可知,AD=BC=1,AB=CD= ,DP=CF= ﹣1,∵S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,∵TH//AB//FM,TF=TB,∴HM=HN,∴HT= (FM+BN),∵BN=PM,∴HT= (FM+PM)= PF= •(1+ ﹣1)= ,∴S△MNT= HT= =定值【解析】【分析】(1)如图①中,设AD=BC=a,则AB=CD= a.通过计算得出AB=BP= a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,可得CQ=CQ′= a﹣a,由CQ′//AB,推出= = = ;(3)如图③中,作TH//AB交NM于H,交BC于K.由S△MNT= •TH•CK+ •TH•BK= HT•(KC+KB)= HT•BC= HT,利用梯形的中位线定理求出HT即可解决问题;8.【答案】(1)证明:∵点E是CD的中点,∴DE=CE.∵AB∥CF,∴∠BAF=∠AFC.在△ADE与△FCE中,∵,∴△ADE≌△FCE(AAS)(2)解:由(1)得,CD=2DE,∵DE=2,∴CD=4.∵点D为AB的中点,∠ACB=90°,∴AB=2CD=8,AD=CD= AB.∵AB∥CF,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,∴∠DAC=∠ACD= ∠BDC= ×60°=30°,∴BC= AB= ×8=4【解析】【分析】(1)先根据点E是CD的中点得出DE=CE,再由AB∥CF可知∠BAF=∠AFC,根据AAS 定理可得出△ADE≌△FCE;(2)根据直角三角形的性质可得出AD=CD= AB,再由AB∥CF可知∠BDC=180°﹣∠DCF=180°﹣120°=60°,由三角形外角的性质可得出∠DAC=∠ACD= ∠BDC=30°,进而可得出结论.9.【答案】(1)证明:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF(2)解:在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,∴BG= ,∴CG=BC﹣BG=(3)解:不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.【解析】【分析】(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.10.【答案】(1)∠BAD+∠ACB=180°(2)解:如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴= = = ,∴= ,∴4y2+2xy﹣x2=0,∴()2+ ﹣1=0,∴= (负根已经舍弃),∴= .(3)解:如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴= = ,∴= ,即=∵CD= ,∴PC=1.【解析】【解答】解:(1.)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出= = = ,可得= ,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得= = ,可得= ,即= ,由此即可解决问题;11.【答案】(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD= AC,AE= AB,∴AD=AE,在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE= AB,AD= AC,ED是△ABC的中位线,∴ED∥BC,ED= BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN= BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离= BC,∴BD⊥CE,∴四边形DEMN是正方形.【解析】【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED= BC,MN∥BC,MN= BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离= BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.12.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS)(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形【解析】【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.13.【答案】(1)解:∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α(2)解:PQ= MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△AEB是等腰直角三角形,∴PQ= MB,∴PQ= MB.【解析】【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.14.【答案】(1)解:将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y= ;(2)解:由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).∴S△ACD= AD•CD= × [3﹣(﹣3)]×|﹣2|=6.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.15.【答案】(1)证明:∵四边形ABCD是矩形,∴AD//BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE= AD,CF= BC,∴AE CF,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴CE//AF,∴∠DGE=∠AHD=∠BHF,∵AB//CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.16.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB= BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴= ,∴AE= BF.【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.17.【答案】(1)证明:∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)解:如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF= AB=1,∴BF= ,∴BC=2BF=2 ,∵BD=x,AE=y则DC=2 ﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y= x+2(0<x<2 );(3)解:当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x,x=2 ﹣2,代入y= x+2,解得:y=4﹣2 ,即AE=4﹣2 ,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED= EC,即y= (2﹣y),解得:y= ,即AE= ,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2 或.【解析】【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2 ﹣x;②当AE=ED时,如图3,则ED= EC,即y= (2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.18.【答案】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【解析】【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF= DC,OE= BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.19.【答案】(1)解:如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC= = ,CD1= ﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x= ,∴当x= 时,直线AD1过点C(2)解:如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE= = ,∵AD1=AD=2,PD=PD1=x,∴D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x= ,∴当x= 时,直线AD1过BC的中点E;(3)解:如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a= ,所以y= = ,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=【解析】【分析】(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E 和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.20.【答案】(1)解:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF= =10,∴OC=OE= EF=5(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【解析】【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.21.【答案】(1)证明:∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q= ,∴OQ=OQ1+Q1Q=x1+ = ,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= = ,即线段P1P2的中点P(x,y)P的坐标公式为x= ,y=(2);(﹣3,3)或(7,1)或(﹣1,﹣3)(3)解:如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,由对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,x),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x= ,∴R(,),∴=n,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则= ,= ,解得x= ,y= ,∴M(,),∴MN= = ,即△PEF的周长的最小值为【解析】【解答】(2)①∵M(2,﹣1),N(﹣3,5),∴MN= = ,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.22.【答案】(1)证明:在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE(2)证明:①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴= = ,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴= ,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴= ,∵AB=2AG,∴= ,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】【分析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到= = ,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到= ,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到= ,等量代换得到= ,于是得到结论.23.【答案】(1)0;7(2)解:①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2 ,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD= AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2 ,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD= = =2 ,∴BA△BC=BD2﹣CD2=24;(3)解:如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB= AN= × OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3 ,∴S△ABC= BC×AO=6 .【解析】【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC= BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD= AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD= =4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2 ,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.24.【答案】(1)解:如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)解:成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE= OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ= OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)解:如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°【解析】【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED 即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.。
数学中考三角形知识加例题(含答案)
a60第4题图题图NPOA三角形复习★知识点1. 三角形的定义三角形是多边形中边数最少的一种。
它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
顺次相接组成的图形叫做三角形。
★知识点2.三角形的分类(1) 按角分类按角分类(2) 按边分类按边分类例:如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是(么这个三角形一定是( )A 、锐角三角形、锐角三角形B 、直角三角形、直角三角形C 、钝角三角形、钝角三角形D 、正三角形、正三角形 解题思路:根据角度来判断是哪一种三角形。
答案B 练习:如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:,填空:(1)当OP = 时,△AOP 为等边三角形;为等边三角形; (2)当OP = 时,△AOP 为直角三角形;为直角三角形; (3)当OP 满足满足 时,△AOP 为锐角三角形;为锐角三角形; (4)当OP 满足满足 时,△AOP 为钝角三角形。
为钝角三角形。
答案:(1)a ;(2)a 2或2a ;(3)2a <OP <a 2;(4)0<OP <2a或OP >a 2 ◆知识点3.三角形三条重要线段三角形中的主要线段有:三角形的角平分线、中线和高线。
这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:三角形三角形锐角三角形锐角三角形 直角三角形直角三角形钝角三角形钝角三角形三角形三角形 不等边三角形不等边三角形等腰三角形等腰三角形底边和腰不相等的等腰三角等边三角形等边三角形2A 1A 3题图题图DC B A(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。
2020年苏科版初二数学上册第1章《全等三角形》单元检测卷(含答案)
第1章《全等三角形》单元检测卷(满分:100分)一.选择题(共8小题,满分24分,每小题3分)1.如图所示,下列图形中能够重合的图形有()A.1对B.2对C.3对D.4对2.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A.B.C.D.3.在△ABC与△A′B′C′中,已知∠A=∠A′,AB=A′B′,增加下列条件,能够判定△ABC与△A′B′C′全等的是()A.BC=B′C′B.BC=A′C′C.∠B=∠B′D.∠B=∠C′4.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可5.下列语句中,正确的有()(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等.A.1个B.2个C.3个D.0个6.如图,在△ABC中,∠A=50°,点D,E分别在边AC,AB上,连接BD,CE,∠ABD =39°,且∠CBD=∠BCE,若△AEC≌△ADB,点E和点D是对应顶点,则∠CBD的度数是()A.24°B.25°C.26°D.27°7.如图,在2×2的方格纸中,∠1+∠2等于()A.60°B.90°C.120°D.150°8.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有()A.4对B.5对C.6对D.8对二.填空题(共8小题,满分24分,每小题3分)9.如图,把两根钢条AA′,BB′的中点O连在一起,可以做成一个测量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出A′B′的长度,就可以知道工件的内径AB是否符合标准,你能简要说出工人这样测量的道理吗?.10.在△ABC中∠A:∠B:∠C=4:5:9,且△ABC≌△DEF,则∠EDF=度.11.如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件.12.如图,等腰△ABC,CA=CB,△A′BC′≌△ABC,∠A′=75°,∠A′BA=β,则∠ACC′的度数为.(用含β的式子表示)13.如图,为了测量池塘两端点A,B间的距离,小亮先在平地上取一个可以直接到达点A 和点B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.现测得DE=30米,则AB两点间的距离为米.14.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BE=3cm,BF=11cm,则EC=cm.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图,在方格纸中,以AB为一边作△ABP,使△ABC与△ABP全等,P1,P2,P3,P4四个点中符合条件的点P的个数为.三.解答题(共7小题,满分52分)17.(6分)已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF且AC∥DF 求证:△ABC≌△DEF.18.(6分)小明用大小相同高度为2cm的10块小长方体垒了两堵与地面垂直的木墙AD,BE,当他将一个等腰直角三角板ABC如图垂直放入时,直角顶点C正好在水平线DE上,锐角顶点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.19.(7分)如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(1)证明△ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.20.(7分)如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.21.(7分)在平面直角坐标系中,点A(2,0),点B(0,3)和点C(0,2).(Ⅰ)请直接写出OB的长度:OB=;(Ⅱ)如图:若点D在x轴上,且点D的坐标为(﹣3,0),求证:△AOB≌△COD.22.(9分)如图1,CA=CB,CD=CE,∠ACB=∠DCE=α(1)求证:BE=AD;(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.23.(10分)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD 向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:仔细观察图形可得只有一对全等形(最右边的一对直角三角形).故选:A.2.解:在△ABC中,∠B=180°﹣58°﹣72°=50°,根据“SAS”可判断图甲的三角形与△ABC全等.故选:A.3.解:A、若添加条件BC=B′C′,不能判定△ABC≌△A′B′C′,故此选项不合题意;B、若添加条件BC=A′C′,不能判定△ABC≌△A′B′C′,故此选项不合题意;C、若添加条件∠B=∠B′,可利用ASA判定△ABC≌△A′B′C′,故此选项题意;D、若添加条件∠B=∠C′,不能判定△ABC≌△A′B′C′,故此选项不合题意.故选:C.4.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.5.解:①有一条直角边和斜边上的高对应相等的两个直角三角形全等,正确;有两边和其中一边上高对应相等的两个三角形一定全等,所以②正确;③有两边和第三边上的高对应相等的两个三角形全等,错误;故选:B.6.解:∵△AEC≌△ADB,∴AC=AB,∴∠ABC=∠ACB,∵∠A=50°,∴∠ABC=∠ACB=65°,又∵∠ABD=39°,∴∠CBD=65°﹣39°=26°,故选:C.7.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选:B.8.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS).故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:此工具是根据三角形全等制作而成的.∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准.10.解:设∠A、∠B、∠C分别为4x、5x、9x,则4x+5x+9x=180°,解得,x=10°,则∠A=4x=40°,∵△ABC≌△DEF,∴∠EDF=∠A=40°,故答案为:40;11.解:条件是∠ABC=∠DAB,理由是:∵在△ACB和△BDA中∴△ACB≌△BDA(AAS),故答案为:∠ABC=∠DAB.12.解:∵△A′BC′≌△ABC,∴∠A=∠A′=75°,BC′=BC,∠A′BC′=∠ABC,∴∠C′BC=∠A′BA=β,∵BC′=BC,∴∠BCC′=,∵CA=CB,∴∠ACB=180°﹣75°×2=30°,∴∠ACC′=∠BCC′﹣∠ACB=60°﹣β,故答案为:60°﹣β.13.解:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=30米,故答案为:30.14.解:∵△ABC≌△DEF,∴EF=BC,∴BE=CF=3.∵BF=11cm,BE=CF=3,∴EC=BF﹣BE﹣CF=11﹣3﹣3=5.故答案为:5.15.解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.16.解:观察图象可知△ABP1,△ABP2,△ABP4与△ABC全等,故答案为3.三.解答题(共7小题,满分52分)17.证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,∴△ABC≌△DEF(ASA).18.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.19.(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(2)解:∵△ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.20.(1)证明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥BN.证明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∴∠DBN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.21.(1)解:∵点B(0,3),∴OB=3,故答案为:3;(2)证明:∵点A(2,0),点B(0,3)和点C(0,2),点D的坐标为(﹣3,0),∴OC=OA=2,OB=OD=3,在△AOB和△COD中∴△AOB≌△COD(SAS).22.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形23.解:(1)BP=2t,则PC=10﹣2t;故答案为(10﹣2t);(2)存在.分两种情况讨论:①当BP=CQ,AB=PC时,△ABP≌△PCQ.因为AB=6,所以PC=6.所以BP﹣10﹣6=4,即2t=4.解得t=2.因为CQ=BP=4,v×2=4,所以v=2.②当BA=CQ,PB=PC时,△ABP≌△QCP.因为PB=PC,所以BP=PC=BC=5,即2t=5.解得t=2.5.因为CQ=BA=6,即v×2.5=6,解得v=2.4.综上所述,当v=2.4或2时,△ABP与△PQC全等.1、老吾老以及人之老,幼吾幼以及人之幼。
九年级下数学相似三角形经典习题(含标准答案)
九年级下数学相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N点20m 的A 处放了一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M 点,若5.1=AC m,小明的眼睛离地面的高度为1.6m,请你帮助小明计算一下楼房的高度(精确到0.1m).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .。
全等三角形单元测试题(含标准答案)
一、选择题(每空3 分,共24 分)1、下列命题不正确的是 ( )A .全等三角形的对应高、对应中线、对应角的平分线相等B .有两个角和其中一个角的平分线对应相等的两个三角形全等C .有两条边和其中一边上的中线对应相等的两个三角形全等D .有两条边和其中一边上的高对应相等的两个三角形全等2、如图所示,AD 平分,,连结BD 、CD并延长分别交AC 、AB 于F 、E 点,则此图中全等三角形的对数为( )A .2对B .3对C .4对D .5对3、如图,在△ABC 中,∠ACB=9O °,AC=BC ,BE ⊥CE 于D ,DE=4cm ,AD=6 cm ,则BE 的长是 ( )A .2cmB .1.5 cmC .1 cmD .3 cm4、如图所示,若≌,则下列结论错误的是( )A .B .AC =BC C .AB =CD D .AD ∥BC5、如图BD、CE 分别是∠ABC 和∠ACB 的平分线,且∠DBC=∠ECB=31°则∠A 度数为( )A .31°B .62°C .59°D .56°6、如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A.15° B.20° C.25°D.30°7、如图(1),在等腰直角△ABC 中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则等于()A.60°B.105° C.120°D.135°二、填空题(每空3 分,共21 分)8、如图,∠A=∠D,AB=CD,要使△AEC≌△DFB,还需要补充一个条件,这个条件可以是(只需填写一个).9、如下图,点E在AB上,AD=AC,∠DAB=∠CAB。
写出图中所有全等三角形。
人教版八级上第章全等三角形单元测试四含答案解析
《第 12 章全等三角形》一、填空题1.如图,△ ABC≌△ DEF, A与 D,B 与 E分别是对应极点,∠ B=32°,∠ A=68°,AB=13cm,则∠ F=度,DE=cm.2.由同一张底片冲刷出来的两张五寸照片的图案全等图形,而由同一张底片冲刷出来的五寸照片和七寸照片全等图形(填“是”或“不是”).3.如图,△ ABC与△ DBC能够完整重合,则△ABC与△ DBC是,表示为△ ABC△DBC.4.如图,△ ABC≌△ BAD, BC=AD,写出其余的对应边和对应角.5.如下图,△ABC≌△ ADE, BC的延伸线交DA于 F,交 DE于 G,∠ ACB=∠AED=105°,∠ CAD=15°,∠B=∠D=30°,则∠ 1 的度数为度.6.如图,已知AB⊥BD,垂足为B, ED⊥BD,垂足为D, AB=CD, BC=DE,则∠ ACE=度.7.如图,已知AF=BE,∠ A=∠ B, AC=BD,经剖析≌.此时有∠ F=.8.如图, AB、 CD订交于 O,且 AO=OB察看图形,图中已具备的另一个相等的条件是,联想“ SAS”,只需增补条件,则有△ AOC≌△ BOD.9.如下图,有一块三角形的镜子,小明不当心弄破碎成1、 2 两块,现需配成相同大小的一块.为了方便起见,需带上块,其原因是.10.如图,把两根钢条AA′, BB′的中点O连在一同,能够做成一个丈量工件内槽宽的工具(工人把这类工具叫卡钳)只需量出A′B′的长度,就能够知道工件的内径AB能否切合标准,你能简要说出工人这样丈量的道理吗?.二、选择题11.以下说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,此中正确的说法为()A.①②③④ B .①③④C.①②④D.②③④12.假如 D是△ ABC中 BC边上一点,而且△ADB≌△ ADC,则△ ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形13.一个正方体的侧面睁开图有几个全等的正方形()A.2 个B.3 个C.4个D.6 个14.关于两个图形,给出以下结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.此中能获取这两个图形全等的结论共有(A.1 个B.2 个C.3个D.4 个15.如图,在△ ABC和△ DEF中,已知 AB=DE,BC=EF,依据( SAS)判断△ ABC≌△ DEF,还需的条件是())A.∠ A=∠ D B.∠ B=∠ EC.∠ C=∠ F D.以上三个均能够16.下边各条件中,能使△ABC≌△ DEF的条件的是()A. AB=DE,∠ A=∠ D, BC=EF B. AB=BC,∠ B=∠ E, DE=EF C. AB=EF,∠ A=∠ D, AC=DF D. BC=EF,∠ C=∠ F, AC=DF17.如图,AD, BC订交于点O, OA=OD, OB=OC.以下结论正确的选项是()A.△ AOB≌△ DOC B.△ ABO≌△ DOC C.∠ A=∠ C D.∠ B=∠ D18.如图,已知AB=AC, AD=AE,∠ BAC=∠ DAE.以下结论不正确的有()A.∠ BAD=∠ CAE B.△ ABD≌△ ACE C. AB=BC D. BD=CE三、解答题19.找出以下图形中的全等图形.20.如图, AB=DC, AC=DB,求证: AB∥ CD.21.已知:如图,AB∥ CD, AD∥BC,求证: AB=CD, AD=BC.22.如图,点A,B, C, D 在一条直线上,△ABF≌△ DCE.你能得出哪些结论?(请写出三个以上的结论)23.如图,点D, E分别在 AB, AC上,且 AD=AE,∠ BDC=∠ CEB.求证: BD=CE.24.如右图,已知DE⊥ AC,BF⊥ AC,垂足分别是E、 F, AE=CF, DC∥ AB,(1)试证明: DE=BF;(2)连结 DF、 BE,猜想 DF与 BE 的关系?并证明你的猜想的正确性.《第 12 章全等三角形》参照答案与试题分析一、填空题1.如图,△ ABC≌△ DEF, A 与 D, B 与 E 分别是对应极点,∠ B=32°,∠ A=68°,AB=13cm,则∠ F= 80度, DE= 13cm.【考点】全等三角形的性质.【剖析】先运用三角形内角和求出∠C,再运用全等三角形的性质可求∠ F 与 DE.【解答】解:∵∠ B=32°,∠ A=68°∴∠ C=180°﹣ 32°﹣ 68°=80°又△ ABC≌△ DEF∴∠ F=80 度, DE=13cm.【评论】本题主要考察了全等三角形的性质,全等三角形的对应边相等,对应角相等,是需要识记的内容.2.由同一张底片冲刷出来的两张五寸照片的图案是全等图形,而由同一张底片冲刷出来的五寸照片和七寸照片不是全等图形(填“是”或“不是”).【考点】全等图形.【剖析】能够完整重合的两个图形叫做全等形,图形重合的是全等形,不重合的不是全等形.【解答】解:由全等形的观点可知:用一张相纸冲刷出来的 2 张 5 寸相片,各相片能够完整重合,故是全等形;由同一张底片冲刷出来的五寸照片和七寸照片,大小不相同,因此不是全等图形.故分别填是,不是【评论】本题考察了全等形的观点,判断能否是全等形主要看图形能否是能够重合.3.如图,△ ABC与△ DBC能够完整重合,则△ABC与△ DBC是全等三角形,表示为△ ABC≌△ DBC.【考点】全等三角形的判断.【剖析】利用全等图形的性质,直接得出答案.【解答】解:∵△ABC与△ DBC能够完整重合,∴△ ABC与△ DBC是全等三角形,表示为:△ ABC≌△ DBC.故答案为:全等三角形,≌.【评论】本题主要考察了全等三角形的判断,利用全等图形的性质从而判断得出是解题重点.4.如图,△ ABC≌△ BAD,BC=AD,写出其余的对应边AC与BD,AB与BA和对应角∠CAB与∠ DBA,∠C与∠ D,∠ CBA与∠ DAB.【考点】全等三角形的性质.【剖析】依据全等三角形的性质(全等三角形的对应边相等,对应角相等)填上即可【解答】解:∵△ABC≌△ BAD, BC=AD,∴AC与 BD, AB与 BA,∠ CAB与∠ DBA,∠ C与∠ D,∠ CBA与∠ DAB,故答案为: AC与 BD, AB与 BA,∠ CAB与∠ DBA,∠ C 与∠ D,∠ CBA与∠ DAB.【评论】本题考察了对全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.5.如下图,△ABC≌△ ADE, BC的延伸线交DA于 F,交 DE于 G,∠ ACB=∠AED=105°,∠ CAD=15°,∠B=∠D=30°,则∠ 1 的度数为60 度.【考点】全等三角形的性质.DFG的大小,再转变【剖析】要求∠ 1 的大小,能够在△DGF中利用三角形的内角和定理求解,转变为求∠为求∠ AFB就能够,在△ACF中能够利用三角形的内角和定理就能够求出.【解答】解:∵∠ACB=∠ AFC+∠ CAF∴∠ AFC=∠ACB﹣∠ CAF=105°﹣ 15°=90°∴∠ DFG=∠AFC=90°∴∠ 1=180°﹣ 90°﹣∠ D=180°﹣ 90°﹣ 30°=60°故填 60.【评论】本题考察了全等三角形的性质;解决本题的重点是能够正确理解题意,由已知条件,联想到所学的定理,充足发掘题目中的结论是解题的重点.6.如图,已知AB⊥BD,垂足为B, ED⊥BD,垂足为D, AB=CD, BC=DE,则∠ ACE= 90度.【考点】全等三角形的判断与性质.【剖析】由已知条件可判断△ABC≌△ CDE,因此∠ ECD=∠ A,再依据平角的定义可求得∠ACE的值.【解答】解:∵AB⊥BD、 ED⊥ BD,∴∠ ABC=∠EDC=90°∵AB=CD, BC=DE∴△ ABC≌△ CDE( SAS)∴∠ ECD=∠A∵在 Rt △ ABC中,∠ A+∠ACB=90°∴∠ ECD+∠ACB=90°∴∠ ACE=180°﹣(∠ECD+∠ACB)=180°﹣ 90°=90°.故填 90.【评论】本题考察三角形全等的判断方法,判断两个三角形全等的一般方法有: SSS、 SAS、 AAS、HL 本题要借助平角来求 90°.7.如图,已知AF=BE,∠ A=∠ B, AC=BD,经剖析△ ADE≌△ BCF.此时有∠ F=∠ E.【考点】全等三角形的判断.【剖析】利用SAS得出全等三角形,从而利用全等三角形的性质得出答案.【解答】证明:∵AC=BD,∴AD=BC,在△ ADE和△ BCF中∵,∴△ ADE≌△ BCF( SAS),∴∠ F=∠ E.故答案为:△ADE,△ BCF,∠ E.【评论】本题主要考察了全等三角形的判断与性质得出对应线段关系是解题重点.8.如图, AB、CD订交于想“ SAS”,只需增补条件O,且 AO=OB察看图形,图中已具备的另一个相等的条件是CO=DO ,则有△ AOC≌△ BOD.∠ AOC=∠ BOD,联【考点】全等三角形的判断.【剖析】依据对顶角相等得出∠AOC=∠ BOD,依据全等三角形的判断定理【解答】解:依据对顶角相等得出∠AOC=∠ BOD,依据全等三角形的判断定理SAS得出另一个条件是OC=OD,即可推出△ AOC≌△ BOD.SAS得出另一个条件是OC=OD.故答案为:∠AOC=∠BOD, CO=DO.【评论】本题考察了全等三角形的判断和对顶角相等,注意:全等三角形的判断定理有SAS, ASA, AAS,SSS.9.如下图,有一块三角形的镜子,小明不当心弄破碎成1、 2 两块,现需配成相同大小的一块.为了方便起见,需带上第1块,其原因是利用SAS得出全等三角形,即可配成与本来相同大小的一块.【考点】全等三角形的应用.【剖析】利用SAS,从而得出全等的三角形,从而求出即可.【解答】解:为了方便起见,需带上第 1 块,其原因是:利用SAS得出全等三角形,即可配成与本来相同大小的一块.故答案为:第1,利用 SAS得出全等三角形,即可配成与本来相同大小的一块.【评论】本题主要考察了全等三角形的判断方法在实质生活中应用,经过实质状况来考察学生对常用的判断方法的掌握状况.10.如图,把两根钢条AA′, BB′的中点O连在一同,能够做成一个丈量工件内槽宽的工具(工人把这类工具叫卡钳)只需量出A′B′的长度,就能够知道工件的内径AB能否切合标准,你能简要说出工人这样丈量的道理吗?此工具是依据三角形全等制作而成的.【考点】全等三角形的应用.【剖析】利用证边相等时,经常经过把边放到两个全等三角形中来证.【解答】解:此工具是依据三角形全等制作而成的.∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠ AOB与∠ A′OB′是对顶角,∴∠ AOB=∠A′OB′,在△ AOB和△ A′OB′中,∵,∴△ AOB≌△ A′OB′( SAS),∴A′B′=AB,∴只需量出A′B′的长度,就能够知道工作的内径AB 能否切合标准.【评论】本题考察全等三角形的应用.在实质生活中,关于难以实地丈量的线段,经常经过两个全等三角形,转变需要丈量的线段到易丈量的边上或许已知边上来,从而求解.二、选择题11.以下说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,此中正确的说法为()A.①②③④ B .①③④C.①②④D.②③④【考点】全等图形.【剖析】依据全等形和全等三角形的观点知进行做题,对选项逐个进行考证,切合性质的是正确的,与性质、定义相矛盾的是错误的.【解答】解:由全等三角形的观点可知:全等的图形是完整重合的,因此①全等图形的形状相同、大小相等是正确的;重合则对应边、对应角是相等的,周长与面积也分别相等,因此①②③④都正确的应选 A.【评论】本题考察了全等形的观点和三角形全等的性质: 1、能够完整重合的两个图形叫做全等形, 2、全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长、面积分别相等,做题时要仔细领会.12.假如 D是△ ABC中 BC边上一点,而且△ADB≌△ ADC,则△ ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形【考点】等腰三角形的判断;全等三角形的性质.【剖析】画出图形就能显然看出来,运用全等的性质,易解.【解答】解:∵△ADB≌△ ADC∴AB=AC∴△ ABC是等腰三角形.应选 D.【评论】本题考察了等腰三角形的判断及全等三角形的性质;利用全等三角形的性质是正确解答本题的重点.13.一个正方体的侧面睁开图有几个全等的正方形()A.2 个B.3 个C.4个D.6 个【考点】几何体的睁开图.【专题】几何图形问题.【剖析】可把一个正方体睁开,察看侧面全等的正方形的个数即可.【解答】解:由于一个正方体的侧面睁开会产生 4 个完整相等的正方形,因此有 4 个全等的正方形.应选 C.【评论】本题考察的是全等形的辨别,属于较简单的基础题.14.关于两个图形,给出以下结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.此中能获取这两个图形全等的结论共有()A.1 个B.2 个C.3个D.4 个【考点】全等图形.【剖析】能够完整重合的两个图形叫做全等形.重申能够完整重合,对选择项进行考证可得答案.【解答】解:①周长相等的两个图形不必定重合,因此不必定全等;②假如面积相同而形状不同也不全等;③假如周长相同面积相同而形状不同,则不全等,④两个图形的形状相同,大小也相等,则两者必定重合,正确.因此只有 1 个正确,应选A.【评论】本题考察了全等形的观点,做题时要定义进行考证.15.如图,在△ ABC和△ DEF中,已知 AB=DE,BC=EF,依据( SAS)判断△ ABC≌△ DEF,还需的条件是()A.∠ A=∠ D B.∠ B=∠ EC.∠ C=∠ F D.以上三个均能够【考点】全等三角形的判断.【剖析】依据三角形全等的判断中的SAS,即两边夹角.做题时依据已知条件,联合全等的判断方法逐个考证,要由地点选择方法.【解答】解:要使两三角形全等,且SAS已知 AB=DE, BC=EF,还差夹角,即∠B=∠ E;A、 C 都不知足要求,D 也就不可以选用.应选 B.【评论】本题考察了三角形全等的判断方法;三角形全等的判断是中考的热门,一般以考察三角形全等的方法为主,判断两个三角形全等,先依据已知条件或求证的结论确立三角形,而后再依据三角形全等的判断方法,看缺什么条件,再去证什么条件.16.下边各条件中,能使△ABC≌△ DEF的条件的是()A. AB=DE,∠ A=∠ D, BC=EF B. AB=BC,∠ B=∠ E, DE=EFC. AB=EF,∠ A=∠ D, AC=DF D. BC=EF,∠ C=∠ F, AC=DF【考点】全等三角形的判断.【剖析】依据三角形全等的判断方法联合各选项供给的已知条件进行判断,逐条清除再确立.【解答】解:A、 AB=DE,∠ A=∠D, BC=EF,∠ A=∠D 不是夹角;B、 AB=BC,∠ B=∠ E, DE=EF不是两三角形的边相等;C、 AB=EF,∠ A=∠ D, AC=DF不是对应边相等;D、 BC=EF,∠ C=∠ F, AC=DF,知足 SAS,三角形全等.应选 D.【评论】本题考察三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意: AAA、SSA不可以判断两个三角形全等,判断两个三角形全等时,一定有边的参加,如有两边一角对应相等时,角一定是两边的夹角.17.如图, AD, BC订交于点 O, OA=OD, OB=OC.以下结论正确的选项是()A.△ AOB≌△ DOC B.△ ABO≌△ DOC C.∠ A=∠ C D.∠ B=∠ D【考点】全等三角形的判断与性质.【剖析】依据题意,OA=OD,OB=OC,有两组对边相等,联合选项进行证明.【解答】解:∵OA=OD, OB=OC又∠ AOB=∠COD∴△ AOB≌△ DOC.应选 A.【评论】本题考察了全等三角形的判断及性质;注意依据已知条件的给定来选择判断的形式,本题比较简单.18.如图,已知AB=AC, AD=AE,∠ BAC=∠ DAE.以下结论不正确的有()A.∠ BAD=∠ CAE B.△ ABD≌△ ACE C. AB=BC D. BD=CE【考点】全等三角形的判断与性质.【剖析】由∠BAC=∠DAE可得∠ BAD=∠ CAE,经过“ SAS”可得△BAD≌△ CAE,从而求解.【解答】解:∵∠BAC=∠ DAE,∴∠ BAD=∠CAE,又AB=AC,AD=AE,∴△ BAD≌△ CAE,∴ BD=CE,∠ BAD=∠ CAE, BD=CE,故 A、 B、 D是正确的, C 是错误的.应选 C.【评论】本题考察的是三角形全等判断定理和全等三角形的性质;是一道较为简单的三角形全等问题,做题时要对选项逐个考证.三、解答题19.找出以下图形中的全等图形.【考点】全等图形.【剖析】依据能够完整重合的两个图形是全等形即可判断出答案.【解答】解:由题意得:(1)和( 10),( 2)和( 12),( 4)和( 8),( 5)和( 9)是全等图形.【评论】本题考察全等形的定义,属于基础题,注意掌握全等形的定义.20.如图, AB=DC, AC=DB,求证: AB∥ CD.【考点】全等三角形的判断与性质;平行线的判断.【专题】证明题.【剖析】剖析:要证AB∥ CD,只需∠ ABC=∠ DCB,要证∠ ABC=∠ DCB,只需△ ABC≌△ DCB.【解答】证明:∵在△ABC和△ DCB中,,∴△ ABC≌△ DCB( SSS).∴∠ ABC=∠DCB(全等三角形的对应角相等).∴AB∥ CD(内错角相等,两直线平行).【评论】本题考察了三角形全等的判断方法;题目要先利用三角形全等求出两角相等,再利用平行线的判断证明.21.已知:如图,AB∥ CD, AD∥BC,求证: AB=CD, AD=BC.【考点】平行四边形的判断与性质.【专题】证明题.【剖析】由“两组对边分别平行的四边形为平行四边形”推知四边形 ABCD是平行四边形,则依据“平行四边形的对边相等”的性质证得结论.【解答】解:如图,∵AB∥ CD,AD∥ BC,∴四边形ABCD是平行四边形,∴AB=CD, AD=BC.【评论】本题考察了平行四边形的判断与性质.平行四边形的判断方法共有五种,应用时要仔细领悟它们之间的联系与差别,同时要依据条件合理、灵巧地选择方法.22.如图,点A,B, C, D 在一条直线上,△ABF≌△ DCE.你能得出哪些结论?(请写出三个以上的结论)【考点】全等三角形的性质.【专题】开放型.【剖析】本题要灵巧运用全等三角形的性质.两个三角形为全等三角形,则对应边相等,对应角相等.【解答】解:∵△ ABF≌△ DCE∴∠ BAF=∠CDE,∠ AFB=∠ DEC,∠ ABF=∠ DCE,AB=DC, BF=CE, AF=DE;∴AF∥ ED,AC=BD, BF∥ CE.【评论】主要考察全等三角形的性质即,全等三角形对应边相等,对应角相等.做题时要从最简单、最显然的开始找,由浅入深,由易到难,顺序渐进.23.如图,点D, E分别在 AB, AC上,且 AD=AE,∠ BDC=∠ CEB.求证: BD=CE.【考点】全等三角形的判断与性质.【专题】证明题.【剖析】第一证明△ADC≌△ AEB,推出 AB﹣ AD=AC﹣ AE,可得 BD=CE.【解答】证明:∵∠ADC+∠BDC=180°,∠ BEC+∠AEB=180°,又∵∠ BDC=∠ CEB,∴∠ ADC=∠AEB.在△ ADC和△ AEB中,,∴△ ADC≌△ AEB( ASA).∴AB=AC.∴AB﹣ AD=AC﹣AE.即 BD=CE.【评论】三角形全等的判断是中考的热门,一般以考察三角形全等的方法为主,判断两个三角形全等,先依据已知条件或求证的结论确立三角形,而后再依据三角形全等的判断方法,看缺什么条件,再去证什么条件.24.如右图,已知DE⊥ AC,BF⊥ AC,垂足分别是E、 F, AE=CF, DC∥ AB,(1)试证明: DE=BF;(2)连结 DF、 BE,猜想 DF与 BE 的关系?并证明你的猜想的正确性.【考点】全等三角形的判断与性质.【剖析】( 1)求出 AF=CE,∠ AFB=∠DEC=90°,依据平行线的性质得出∠ DCE=∠ BAF,依据 ASA推出△AFB ≌△ CED即可;(2)依据平行四边形的判断得出四边形是平行四边形,再依据平行四边形的性质得出即可.【解答】( 1)证明:∵ AE=CF,∴ AE+EF=CF+EF,∴ AF=CE,∵ DE⊥ AC,BF⊥ AC,∴∠ AFB=∠DEC=90°,∵ DC∥ AB,∴∠ DCE=∠BAF,在△ AFB和△ CED中∴△ AFB≌△ CED,∴DE=EF;(2)DF=BE, DF∥ BE,证明:∵ DE⊥ AC, BF⊥ AC,∴DE∥ BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE, DF∥ BE.【评论】本题考察了全等三角形的性质和判断,平行线的性质,平行四边形的性质和判断的应用,注意:全等三角形的判断定理有SAS, ASA,AAS, SSS, HL,全等三角形的对应边相等,对应角相等.。
(完整版)小学五年级数学三角形的面积练习题(含标准答案)
2 、 等底等高的三角形面积相等( √ )
3 、 三角形的面积等于平行四边形面积的一半( × )
4 、 用两个直角三角形可以拼成一个长方形,也可以拼成一个平行四边形(√
)
5、 三角形的底扩大到它的2 倍,高也扩大到它的3 倍,面积扩大到它的6 倍(√)
6 、 两个三角形面积相等,它们的形状也一定相同( × )
17 、 三角形的底越长,面积就越大。 ( × )
18 、 两个面积相等的三角形,它们的底和高一定相等。 ( × )
19 、 三角形面积的大小与它的底和高有关,与它的形状和位置无关。 三、选择题
( √)
(1 )两个完全一样的三角形,可以拼成一个( D )
A 、长方形
B、正方形
C、梯形 D、平行四边形
13 、 直角三角形的三条边是 5 米, 4 米和 3 米,面积是 10 平方米。( × )
14 、 一个长方形内画一个最大的三角形,这个三角形的面积是长方形的一半。(√)
15 、 三角形的高等于这个三角形的面积的 2 倍除以底。( √ )
16 、 两个等底等高的三角形,面积一定相等且形状一定相同。 ( × )
B、乙面积大 C、丙面积大
D 、一样大
E、无法比较
( 5 )能拼成一个平
行四边形的两个三角形是( D )。
A 、任意两个三角形 B、形状一样 C、面积相等 D、形状一样而且面积相等
( 6)一个正方形周长扩大 2 倍后,新正方形面积是原来正方形面积的( B)倍。
A、2
B、4
C、8
D 、16
(7 )将一个长方形拉成一个平行四边形(四条边长度不变) ,它的面积 ( A ) 。
三角形的面积 练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形单元测试题含答案
————————————————————————————————作者:————————————————————————————————日期:
2
三角形单元测试
姓名:时间:90分钟满分:100分评分:
一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)
1.以下列各组线段为边,能组成三角形的是()
A.2cm,3cm,5cm B.5cm,6cm,10cm
C.1cm,1cm,3cm D.3cm,4cm,9cm
2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()
A.17 B.22 C.17或22 D.13
3.适合条件∠A=
1
2
∠B=
1
3
∠C的△ABC是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形
4.已知等腰三角形的一个角为75°,则其顶角为()
A.30° B.75° C.105° D.30°或75°
5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()
A.5 B.6 C.7 D.8
6.三角形的一个外角是锐角,则此三角形的形状是()
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定
7.下列命题正确的是()
A.三角形的角平分线、中线、高均在三角形内部
B.三角形中至少有一个内角不小于60°
C.直角三角形仅有一条高
D.直角三角形斜边上的高等于斜边的一半
8.能构成如图所示的基本图形是()
(A) (B) (C) (D)
9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()
A.10cm或6cm B.10cm C.6cm D.8cm或6cm
10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )
A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)
- 3 -
- 4 -
(1) (2) (3)
二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)
11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.
12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成________个三角形.
13.如下图2:∠A+∠B+∠C+∠D+∠E+∠F等于________.
14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.
15.n边形的每个外角都等于45°,则n=________.
16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.
17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.
18.如图3,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.
三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.
20.(8分)如图:
(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.
(2)若∠A=∠B,请完成下面的证明:
已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.
求证:CE∥AB.
- 5 -
21.(8分)(1)如图4,有一块直角三角形XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.
(4) (5)
(2)如图5,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ•仍然分别经过B 、C
,那么∠ABX+∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX 的大小.
22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.
23.(8分)在平面内,分别用3根、5根、
6根……火柴首尾
..依次相接,•能搭成什么形
状的三角形呢?通过尝试,列表如下所示:
问:(1)4根火柴能拾成三角形吗?
(2)8根、12根火柴能搭成几种不同
形状的三角形?并画出它们的示意图.
24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?
(2)∠5的度数是多少?
(3)求四边形ABCD各内角的度数.
- 6 -
答案:
1.B
2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.
3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.
4.D 点拨:分顶角为75°和底角为75°两种情况讨论.
5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.
6.B
7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.
8.B
9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.
10.B 点拨:可根据三角形、四边形内角和定理推证.
11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.
12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.
13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
14.七
15.8 点拨:n=360
45
︒
︒
=8.
16.10
17.四;360
18.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,
∴∠ABD=90°-∠1=30°.
∵BD平分∠ABC,∴∠CBD=∠ABD=30°.
在△BDC中,∠C=180°-(∠BDC+∠CBD)
=180°-(80°+30°)=70°.
20.(1)如答图
(2)证明:
∵∠A=∠B,∠BCD是△ABC的外角,
∴∠BCD=∠A+•∠B=2∠B,
∵CE是外角∠BCD的平分线,
∴∠BCE=1
2
∠BCD=
1
2
×2∠B=∠B,
∴CE∥AB(•内错角相等,两直线平行)
- 7 -
点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°
(2)不变化.
∵∠A=30°,
∴∠ABC+∠ACB=150°,
∵∠X=•90°,
∴∠XBC+∠XCB=90°,
∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)
=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.
22.如答图7-2.
23.解:(1)4根火柴不能搭成三角形;
(2)8根火柴能搭成一种三角形(3,3,2);
12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.
理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.
∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,
∴CO⊥DB.
∴CO是△BCD的高.
(2)∠5=90°-∠4=90°-60°=30°.
(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,
∠DAB=∠5+∠6=30°+30°=60°,
∠ABC=105°.
- 8 -。