2011届高考数学第一轮复习章节练习题251
2011届高考数学第一轮复习精品试题:圆锥曲线
2011届高考数学第一轮复习精品试题:圆锥曲线选修1-1 第2章圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.④理解数形结合的思想.⑤了解圆锥曲线的简单应用.§2.1-2椭圆重难点:建立并掌握椭圆的标准方程,经典例题:已知A 、B 为椭圆22a x +22925a y =158a ,AB1Ac a (a>c>0)的点的轨迹是椭圆2)23,25(-,则椭圆方程是() C .18422=+x y D .161022=+y xk 的取值范围为 ()C .(1,+∞)D .(0,1)4.设定点F1(0,-3)、F2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的轨迹是() A .椭圆 B .线段C .不存在 D .椭圆或线段5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有 () A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ()A .41B .22C .42D .217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离()A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是()A .3B .11C 9.在椭圆13422=+y x 内有一点P (1,-1),F A .25B .27 10.过点22=+y x m.21 D .-21 )3的椭圆标准方程为___________.12(-3,2)的椭圆方程为_______________.13y x +的取值范围是________________.14.15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点.(1)若0=⋅PB PA ,求P 点坐标;(2)求直线AB 的方程(用00,y x 表示);(3)求△MON 面积的最小值.(O 为原点)17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. (1)求2211b a+的值; (2)若椭圆的离心率e 满足33e 2218.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q .若L 在变动过程中始终保持其斜率等于1选修1-1 第2§2.3重难点:建立并掌握双曲线的标准方程,经典例题:已知不论b 取何实数,直线y=kx+b k 的取.双曲线 D .两条射线k 的取值范围是() .0≥k D .1>k 或1-<k1=的焦距是 ()A .4B .22C .8D .与m 有关4.已知mx -y+n=0与nx2+my2=mn 所表示的曲线可6.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ()A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有 ()A .相同的虚轴B .相同的实轴C .相同的渐近线D .相同的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,则2ABF ∆(F2为右焦点)的周长是()A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0A .4条B .3条10.给出下列曲线:①4x+2y -1=0;②y=-2x -3A .①③ B .②④ 122=-y x12.13B A ,两点,则AB =__________________.1422=-y x 的弦所在直线方程为.15)0,4的双曲线标准方程,并求此双曲线的离心率.16.2,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).17.已知动点P 与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-.(1)求动点P 的轨迹方程;(2)设M(0,-1),若斜率为k(k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA|=|MB|,试求k 的取值范围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s:相关各点均在同一平面上).选修1-1 第2章圆锥曲线与方程§2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图,直线y=21x 与抛物线y=81x2-4交于A 、B 两点,线段AB 的垂直平分线与直线y=-5交于Q 点.(1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时,求ΔOPQ 面积的最大值.当堂练习:1.抛物线22x y =A .)0,1(B .)0,41( C .)81,0( D .)41,0(2.已知抛物线的顶点在原点,焦点在yA .y x 82=B .y x 42= 3.抛物线x y 122=截直线B .x y 292-=或y x 342= .x y 292-=R t ∈)上的点的最短距离为 ()C .2D .2 6.抛物线)3三点,F 是它的焦点,若CF BF AF ,,成等差数列,A .321,,x x x 成等差数列B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是() A .(0,0) B .(1,1) C .(2,2) D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于()A .4pB .-4pC .p2D .-p 9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则q p 11+ ()A .a 2B .a 21410.若AB 为抛物线y2=2px(p>0)的动弦,且() A .21a B .21p C .2111.抛物线x y =212.已知圆07622=--+x y x ,与抛物线2=y .13.如果过两点)0,(a A 和),0(a B2,1).______.15px y 22=上,△ABC 的重心与此抛物F 的坐标;M 的坐标;.16x+y=0对称的相异两点,求a 的取值范围. 17L 交抛物线A 、B 两点,再以AF 、BF 为邻边R 的轨迹方程.18.已知抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C 在点M 的法线.(1)若C 在点M 的法线的斜率为21-,求点M 的坐标(x0,y0);(2)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.选修1-1第2章圆锥曲线与方程§2.5圆锥曲线单元测试1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是() A 、21B 、33C 、23D 、32)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为() A 、1,1-B 、2,2-C 、1D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2的周(A )10(B )20(4)椭圆13610022=+y x 上的点P(A )15(B )5)椭圆12522=+y x022=-+y 的最大距离是()C )22(D )102的双曲线方程是()(B )222=-x y (D )222=-y x 或222=-x y 8)双曲线916右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为()(A )6(B )8(C )10(D )129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为() (A )28(B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,则双曲线的离心率为()(A )3(B )26(C )36(D )3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q +等于() (A )2a (B )12a (C )4a (D )4a12)如果椭圆193622=+y x 的弦被点(4,2)(A )02=-y x (B )042=-+y x (13)与椭圆22143x y +=14)离心率35=e 15垂直。
2011届高三数学一轮复习过关测试题及答案(九)
备考2011高考数学基础知识训练(9)
班级______ 姓名_________ 学号_______ 得分_______
一、填空题(每题5分,共70分)
1
.函数ylgx的定义域为
2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于= .
3.曲线y?
sinx在点(
4.已知a,b是非零向量,且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是
5.当x?(1,2)时,不等式(x?1)2?logax恒成立,则实数a的取值范围是_______.
6.已知二次函数f(x)?ax2?bx?c,满足条件f(2?x)?f(2?x),其图象的顶点为A,又图象与x 轴交于点B、C,其中B点的坐标为(?1,0),?ABC的面积S=54,试确定这个二次函数的解析式 .
7.函数y?a1?x(a?0,a?1)的图象恒过定点A,若点A在直线mx?ny?1?0(mn?0) 上,则
8.设数列{an}的前n项和为Sn,点(n,
通项公式为.
9.在圆x2?y2?5x内,过点(,)有n(n?N)条弦,它们的长构成等差数列,若a1为过该点最短弦的长,an为过该点最长弦的长,公差d?(,),那么n的值是. ?3 11?的最小值为___________ mnSn)(n?N*)均在函数y=3x-2的图象上.则数列{an}的n5322*1153。
2011年黄冈中学高考数学一轮复习(内部)系列
2011年黄冈中学高考一轮复习(内部)系列:高考数学一轮复习单元测试卷(13)—数形结合思想一、选择题(本题每小题5分,共60分)1.已知集合P={ 0, m},Q={x │Z x x x ∈<-,0522},若P∩Q≠Φ,则m 等于 ( )A .1B .2C .1或25D .1或22.使得点)2sin ,2(cos ααA 到点)sin ,(cos ααB 的距离为1的α的一个值是 ( )A .12π B .6π C .3π-D .4π-3.将函数x x f 2sin :→的图象向右平移B=[-1,1]个单位长度,再作关于x 轴的对称变换,得到y x x R =∈c o s 2,的图象,则f x ()可以是 ( )A .s in xB .c o s xC .2s i n xD .2c o s x4.某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的可用图像表示的是 ( )A .B .C .D .5.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 ( )A .2a πB .22a πC .32a πD .42a π6.已知z ∈C ,满足不等式0<-+z i iz z z 的点Z 的集合用阴影表示为 ( )A .B .C .D .36Cot36Cot 36Cot 36Cot x y O x y O1xy O 1 x y O -7.直角坐标x O y 平面上,平行直线x =n (n =0,1,2,……,5)与平行直线y =n (n =0, 1,2,……,5)组成的图形中,矩形共有 ( )A .25个B .36个C .100个D .225个8.方程11122=---x y y x 所对应的曲线图形是( )A .B .C .D .9.设0<x <π,则函数xxy sin cos 2-=的最小值是( )A .3B .2C .3D .2-310.四面体ABCD 的六条棱中,其中五条棱的长度都是2,则第六条棱长的取值范围是( )A .()2,0B .()32,0C .()32,2D .[)4,211.若直线1+=kx y 与曲线12+=y x 有两个不同的交点,则k 的取值范围是 ( )A .12-<<-kB .22<<-kC .21<<k D .2-<k 或2>k12.某企业购置了一批设备投入生产,据分析每台设备生产的总利润y (单位:万元)与年数x ()N x ∈满足如图的二次函数关系。
2011届高考数学一轮单元达标精品试卷(十五)
2011届高考数学一轮单元达标精品试卷(十五)第十五单元 函数与方程思想(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设直线 ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.设P 是60°的二面角α-l -β内一点,P A ⊥平面α,PB ⊥平面β,A 、B 为垂足,P A =4,PB =2,则AB 的长为 A .2 3B .2 5C .27D .4 23. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是 A .4005B .4006C .4007D .40084.每个顶点的棱数均为三条的正多面体共有 A .2种 B .3种C .4种D .5种5.设函数)(1)(R x xxx f ∈+-=,区间M =[a ,b ](a <b ),集合N ={M x x f y y ∈=),(},则使M =N 成立的实数对(a ,b )有A .0个B .1个C .2个D .无数多个6.设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b f a f ,则)(b a f +的值为A .1B .2C .3D .3log 27.把正方形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为A .90°B .60°C .45°D .30°8.若函数f (x )=(1-m )x 2-2mx -5是偶函数,则f (x )A .先增后减B .先减后增C .单调递增D .单调递减9.定义在(-∞,+∞)上的奇函数f (x )和偶函数g (x )在区间(-∞,0]上的图像关于x 轴对称,且f (x )为增函数,则下列各选项中能使不等式f (b )-f (-a )>g (a )-g (-b )成立的是A .a >b >0B .a <b <0C .ab >0D .ab <010.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列∠B =30°,△ABC 的面积为32,那么b =A .1+32B .1+ 3C .2+32D .2+ 3二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.两个正数a 、b 的等差中项是5,等比中项是4.若a >b ,则双曲线122=-by a x 的离心率e 等于 . 12.若1(2)n x x+-的展开式中常数项为-20,则自然数n = . 13.x 0是x 的方程a x =log a x (0<a <1)的解,则x 0,1,a 这三个数的大小关系是 . 14.已知函数y f x y fx ==-()()与1互为反函数,又y f x y g x =+=-11()()与的图象关于直线y x =对称,若f x x x fx ()log ()()()=+>=-122120,则__ _;g ()6=_______ .15.已知矩形ABCD 的边⊥==PA BC a AB ,2,平面,2,=PA ABCD 现有以下五个数据:,4)5(;2)4(;3)3(;1)2(;21)1(=====a a a a a 当在BC 边上存在点Q ,使QD PQ ⊥时,则a 可以取_____________.(填上一个正确的数据序号即可)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},集合B ={x |log 2(x 2-5x +8)=1},集合C ={x |m 822-+x x =1,m ≠0,|m |≠1}满足A ∩Bφ, A ∩C =φ,求实数a 的值.17.(本小题满分12分)有一组数据)(,,,:2121n n x x x x x x <<< 的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据 的算术平均值为11.(1)求出第一个数1x 关于n 的表达式及第n 个数n x 关于n 的表达式;(2)若n x x x ,,,21 都是正整数,试求第n 个数n x 的最大值,并举出满足题目要求且n x 取到最大值的一组数据.18.(本小题满分14分) 求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.19.(本小题满分14分)某公司生产的A 型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A 型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p %的管理费(即销售100元要征收p 元),于是该商品的定价上升为每件%170p 元,预计年销售量将减少p 万件.(1)将第二年商场对该商品征收的管理费y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p %的范围是多少?(3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额,则p 应为多少?20.(本小题满分14分)已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件: f (x -1)=f (3-x )且方程f (x )=2x 有等根. (1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.21.(本小题满分14分)设无穷等差数列{a n }的前n 项和为S n .(1)若首项=1a 32 ,公差1=d ,求满足2)(2k k S S =的正整数k ;(2)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S =成立.第十五单元 函数与方程思想参考答案(11) 25(12). 3; (13). 10或1031-(14).12214⎛⎝ ⎫⎭⎪-<--xx (),;(15). ①或②三、解答题(共80分)16.解:由条件即可得B ={2,3},C ={-4,2},由A ∩B ∅Ù,A ∩C =∅,可知3∈A ,2∉A .将x =3代入集合A 的条件得:a 2-3a -10=0 ∴a =-2或a =5 当a =-2时,A ={x|x 2+2x -15=0}={-5,3},符合已知条件.当a =5时,A ={x|x 2-5x +6=0}={2,3},不符合条件“A ∩C ”=∅,故舍去. 综上得:a =-2.17.解:(1) 依条件得:⎪⎩⎪⎨⎧-=+++-=+++=+++-)3()1(11)2()1(9)1(103212121n x x x n x x x nx x x n n n 由)2()1(-得:9+=n x n ,又由)3()1(-得:n x -=111(2)由于1x 是正整数,故 1111≥-=n x ,101≤≤⇒n ,故199≤+=n x n 当n =10时, 11=x ,1910=x ,80932=+++x x x , 此时,62=x ,73=x ,84=x ,95=x ,116=x ,127=x ,138=x ,149=x .18. 解:,2111)(x x x f -+=' ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加;当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19. 解:(1)依题意,第二年该商品年销售量为(11.8-p )万件,年销售收入为%170p -(11.8-p )万元,则商场该年对该商品征收的总管理费为%170p -(11.8-p )p %(万元).故所求函数为:y =p-1007(118-10p )p .11.8-p >0及p >0得定义域为0<p <559.(2)由y ≥14,得p-1007(118-10p )p ≥14.化简得p 2-12p +20≤0,即(p -2)(p -10)≤0,解得2≤p ≤10.故当比率在[2%,10%]内时,商场收取的管理费将不少于14万元. (3)第二年,当商场收取的管理费不少于14万元时, 厂家的销售收入为g (p )=%170p -(11.8-p )(2≤p ≤10).∵g (p )=%170p -(11.8-p )=700(10+100882-p )为减函数,∴g (p )max =g (2)=700(万元).故当比率为2%时,厂家销售金额最大,且商场所收管理费又不少于14万元.20.解:(1)∵方程ax 2+bx -2x =0有等根,∴△=(b -2)2=0,得b =2.由f(x -1)=f(3-x)知此函数图像的对称轴方程为x =-ab2=1,得a =-1, 故f(x)=-x 2+2x .(2)∵f(x)=-(x -1)2+1≤1,∴4n ≤1,即n ≤41. 而抛物线y =-x 2+2x 的对称轴为x =1,∴当n ≤41时,f(x)在[m ,n]上为增函数.若满足题设条件的m ,n 存在,则⎩⎨⎧==n n f mm f 4)(4)(即⎪⎩⎪⎨⎧=+-=+-nn n m m m 424222⇒⎩⎨⎧-==-==2020n n m m 或或又m<n ≤41. ∴m =-2,n =0,这时,定义域为[-2,0],值域为[-8,0].由以上知满足条件的m ,n 存在,m =-2,n =0. 21. 解:(1)当1,231==d a 时, n n n n n d n n na S n +=-+=-+=21212)1(232)1(由22242)21(21,)(2k k k k S S k k +=+=得,即 0)141(3=-k k 又4,0=≠k k 所以.(2)设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k =1,2,得⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或 当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a ,)(239S s ≠故所得数列不符合题意. 当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列: ①{a n } : a n =0,即0,0,0,…; ②{a n } : a n =1,即1,1,1,…; ③{a n } : a n =2n -1,即1,3,5,…,(1) (2)。
2011届高考数学第一轮复习精品试题:复数 .doc
2011届高考数学第一轮复习精品试题:复数选修1-2 第3章 数系的扩充与复数的引入 §3.1复数的概念重难点:理解复数的基本概念;理解复数相等的充要条件;了解复数的代数表示法及其几何意义.考纲要求:①理解复数的基本概念. ②理解复数相等的充要条件.③了解复数的代数表示法及其几何意义.经典例题: 若复数1z i =+,求实数,a b 使22(2)az bz a z +=+。
(其中z 为z 的共轭复数).当堂练习: 1.0a =是复数(,)a bia b R +∈为纯虚数的( )A .充分条件 B.必要条件 C.充要条件 D.非充分非必要条件 2设1234,23z i z i=-=-+,则12z z -在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.=+-2)3(31i i( )A .i 4341+ B .i 4341-- C .i 2321+ D .i 2321-- 4.复数z 满足()1243i Z i +=+,那么Z =( )A .2+iB .2-iC .1+2iD .1-2i5.如果复数212bii -+的实部与虚部互为相反数,那么实数b 等于( )A. 2B.23C.2D.-236.集合{Z ︱Z =Z n i i n n ∈+-,},用列举法表示该集合,这个集合是( )A {0,2,-2} B.{0,2}C.{0,2,-2,2i }D.{0,2,-2,2i ,-2i }7.设O 是原点,向量,OA OB →→对应的复数分别为23,32i i --+,那么向量BA →对应的复数是( ).55A i -+ .55B i -- .55C i + .55D i -8、复数123,1z i z i=+=-,则12z z z =⋅在复平面内的点位于第( )象限。
A .一 B.二 C.三 D .四 9.复数2(2)(11)()a a a ia R --+--∈不是纯虚数,则有( ).0A a ≠ .2B a ≠ .02C a a ≠≠且 .1D a =-10.设i 为虚数单位,则4(1)i +的值为 ( )A .4 B.-4 C.4i D.-4i11.设i z i C z 2)1(,=-∈且(i 为虚数单位),则z= ;|z|= .12.复数21i +的实部为 ,虚部为 。
2011届高三数学一轮复习过关测试题及答案(二)
备考2011高考数学基础知识训练(3)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1.若集合A ={}3x x ≥,B ={}x x m <满足A ∪B =R ,A ∩B =∅,则实数m = . 2.命题“03,2>+-∈∀x x R x ”的否定是______________________3. 函数lg(5)ln(5)3y x x x =++-+-的定义域为 . 4.设函数f (x ) = xa (a >0且a ≠1),若f (2) =14,则f (–2)与f (1)的大小关系是________5.设(0,)2πα∈,若3sin 5α=)4πα+=_______________ 6.直角ABC ∆中, 90=∠C ,30=∠A ,1=BC ,D 为斜边AB 的中点,则 CD AB ⋅= ___7.已知}{n a 是递减的等差数列,若56,7758264=+=⋅a a a a ,则前 项和最大.8.设直线b x y +=21是曲线sin ((0,))y x x π=∈的一条切线,则实数b 的值是 9.已知()()2,1,,2a b t =-=,若b a 与的夹角为锐角, 则实数t 的取值范围为10. 已知01a <<,log log aa x =,1log 52a y =,log log a a z =,则,,x y z 由大到小的顺序为 .11.已知函数()y f x =(x ∈R )满足(2)()f x f x +=,且当[1,1]x ∈-时,2()f x x =,则()y f x =与5log y x =的图像的交点的个数为____________12.设()f x 是定义在R 上的奇函数,在(,0)-∞上有'()()0xf x f x +<且(2)0f -=,则不等式()0xf x <的解集为____________.13.设{}n a 是公比为q 的等比数列,10q q <≠且,若数列{}n a 有连续四项在集合{}54,24,18,36,81---中,则_______q =14.若关于x 的不等式211()22n x x +-≥0对任意*n N ∈在(,]x λ∈-∞恒成立,则实常数λ的取值范围是__________.二、解答题(共90分,写出详细的解题步骤)15. 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若A ∩B =B ,求实数a 的取值范围.16. 试讨论关于x 的方程k x =-|13|的解的个数.17.若奇函数f (x )在定义域(-1,1)上是减函数, (1)求满足f (1-a )+f (-a )<0的a 的取值集合M ; (2)对于(1)中的a ,求函数F (x )=a log [1-21()xa-]的定义域.18.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足1()20|10|2f t t =--(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.19. ()y f x =是定义在R 上的奇函数,且当0x ≥时,f(x)=2x -x 2; (1) 求x<0时,f(x)的解析式;(2) 问是否存在这样的正数a,b,当[,]x a b ∈时,g(x)=f(x),且g(x)的值域为[11,]?b a若存在,求出所有的a,b 值;若不存在,请说明理由.20.已知函数()2()log 21xf x =+.(1)求证:函数()f x 在(,)-∞+∞内单调递增;(2)若()2()log 21(0)xg x x =->,且关于x 的方程()()g x m f x =+在[1,2]上有解,求m 的取值范围.参考答案:1.解:结合数轴知,当且仅当m =3时满足A ∪B =R ,A ∩B =∅. 答案:3.2、 2,30x R x x ∃∈-+≤3. 解:由50501030x x x x +>⎧⎪->⎪⎨-≥⎪⎪-≠⎩ 得定义域为: [1,3)(3,5)⋃.答案:[1,3)(3,5)⋃.4、(2)(1)f f ->5、156、−17、 14 86π- 9、 (,4)(4,1)-∞-⋃- 10. 解:由对数运算法则知log ax=log a y=log a z =又由01a <<知log a y x =在(0,)+∞上为减函数, y x z ∴>>.答案:y x z >>. 11、4 12、(,2)(0,2)-∞-⋃ 13、 23- 14、1λ≤-15. 解:由x 2+4x =0得,x 1=0,x 2=-4;∴A ={0,-4}. ∵A ∩B =B ,∴B ⊆A . (1)若B =∅,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.(2)若0∈B ,则a 2-1=0,∴a =±1;当a =-1时,B ={0}; 当a =1时,B =A ;都符合A ∩B =B .(3)若-4∈B ,则(-4)2+2(a +1)²(-4)+a 2-1=0,∴a =1或a =7;当a =7时,B ={x |x 2+2(7+1)x +72-1=0}={-4,-12},不符合A ∩B =B . 综上,实数a 的取值范围是a =1或a ≤-1.16. 解:设()|31|x f x =-,则关于x 的方程k x=-|13|的解的个数可转化为观察函数()f x 的图象与直线y k =的交点个数;而函数31,(0)()|31|13,(0)xx xx f x x ⎧-≥⎪=-=⎨-<⎪⎩,由函数3xy =的图象通过图象变换易作出函数()f x 的图象,如下图所示:y=k(k>1)直线y k =是与x 轴平行或重合的直线,观察上图知:当0k <时,直线y k =与()f x 的图象没有交点,故方程k x =-|13|的解的个数为0个; 当0k =时,直线y k =与()f x 的图象有1个交点,故方程k x =-|13|的解的个数为1个; 当01k <<时,y k =与()f x 的图象有2个交点,故方程k x =-|13|的解的个数为2个; 当1k ≥时,直线y k =与()f x 的图象有1个交点,故方程k x =-|13|的解的个数为1个.17.解:(1)不等式f (1-a )+f (-a )<0可化为f (1-a )<-f (-a ),而f (x )为奇函数,∴ f (1-a )<f (a ),又f (x )在定义域(-1,1)上是减函数,∴111111a a a a ⎧⎪⎨⎪⎩-<-<,-<-<,->,解得0<a <12, ∴M ={a |0<a <12}.(2)为使F (x )=a log [1-21()xa-]有意义,必须1-21()xa->0,即21()xa-<1.由0<a <12得12a>,∴2-x <0,∴x >2. ∴函数的定义域为{2}x x >. 18.解:(1)1()()(802)(20|10|)(40)(40|10|)2y g t f t t t t t =⋅=-⋅--=---=(30)(40),(010),(40)(50),(1020).t t t t t t +-<⎧⎨--⎩≤≤≤(2)当0≤t <10时,y 的取值范围是[1200,1225],在t =5时,y 取得最大值为1225; 当10≤t ≤20时,y 的取值范围是[600,1200],在t =20时,y 取得最小值为600. ∴第5天,日销售额y 取得最大,为1225元; 第20天,日销售额y 取得最小,为600元.答:日销售额y 最大为1225元;最小为600元. 19. 解: (1)设0,x <则0x ->于是22()2,()()()2,f x x x f x f x f x x x -=--=--=+又为奇函数,所以0x <即时,2()2(0);f x x x x =+<(2)分下述三种情况: ①01,a b <<≤那么11a>,而当0,()x f x ≥的最大值为1,故此时不可能使()()g x f x =;②若01,a b <<<此时若()(),()g x f x g x =则的最大值为g(1)=f(1)=1,得a=1,这与01a b <<<矛盾;③若1,a b ≤<因为1x ≥时,f(x)是减函数,则2()2,f x x x =-于是有22221()2(1)(1)01(1)(1)0()2g b b b a a a b b b b g a a a a⎧==--⎪⎧--+=⎪⎪⇔⎨⎨---=⎪⎩⎪==-+⎪⎩考虑到1,a b ≤<解得11,2a b ==;综上所述,1,12a b =⎧⎪⎨=⎪⎩20.解:(1)证明:任取12x x <,则()()11221222221()()log 21log 21log 21x x x x f x f x +-=+-+=+,1212,02121x x x x <∴<+<+ , 11222212101,log 02121x x xx ++∴<<∴<++, 12()()f x f x ∴<,即函数()f x 在(,)-∞+∞内单调递增.(2)解法1:由()()g x m f x =+得()()m g x f x =-=()()22log 21log 21x x--+22212log log 12121x x x -⎛⎫==- ⎪++⎝⎭,当12x ≤≤时,222123,152133215x x ≤≤∴≤-≤++, m ∴的取值范围是2213log ,log 35⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)解法2:解方程()()22log 21log 21xxm -=++,得221log 12m m x ⎛⎫+= ⎪-⎝⎭, 22112,1log 212m m x ⎛⎫+≤≤∴≤≤ ⎪-⎝⎭, 解得 2213log log 35m ⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭.m ∴的取值范围是2213log ,log 35⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.备考2011高考数学基础知识训练(4)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1.若{}21A x x ==,{}2230B x x x =--=,则A B = ___________ 2.若a>2,则函数131)(23+-=ax x x f 在区间(0,2)上恰好有_______个零点 3.曲线34y x x =-在点()1,3--处的切线方程是4.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f =5.若(0)()ln (0)x e x g x x x ⎧≤=⎨>⎩,则1(()2g g =6.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为__ _____ 7.若31)sin(,21)sin(=-=+ββαa ,则=βαtan tan _______________. 8.已知31)4sin(=+πθ,),2(ππθ∈,则=θ2sin _______________. 9.=︒︒︒40cos 20cos 10sin _______________.10.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是 _______________. 11.若παπ223<<,则=+-α2cos 21212121_______________. 12.在ABC ∆中,已知53sin =A ,135cos =B ,则=C cos _______________. 13.设函数f (x )=⎪⎩⎪⎨⎧≥--<+,114,1)1(2x x x x 则使得f (x )≥1的自变量x 的取值范围为_______________.14.已知α 、β为一个钝角三角形的两个锐角,下列四个不等式中错误..的是__________.①1tan tan <βα; ②2sin sin <+βα;③1cos cos >+βα; ④2tan )tan(21βαβα+<+. 二、解答题(共90分,写出详细的解题步骤)15.(14分)已知παπ<<43,103cos sin -=αα;(1)求αtan 的值; (2)求)2sin(282cos 112cos2sin82sin 522ααααα--++.16.(14分)求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线.17.(15分) 已知函数23bx ax y +=,当1x =时,有极大值3;(1)求,a b 的值; (2)求函数y 的极小值.18.(15分) 设命题:p 函数3()()2xf x a =-是R 上的减函数,命题:q 函数2()43f x x x =-+在[]0,a 的值域为[]1,3-.若“p 且q ”为假命题,“p 或q ”为真命题,求a 的取值范围.19. (16分 )统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080y x x x =-+<≤已知甲、乙两地相距100千米;(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?20. (16分)设函数R x x x x f ∈+-=,56)(3 (1)求)(x f 的单调区间和极值;(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围; (3)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.参考答案: 1.}1{- 2.1 3.2y x =-4.1x 5.126、(10)(01)- ,,7、5; 8、97-; 9、81; 10、]3,3[-; 11、2sin α;12、651613、x ≤-2或0≤x ≤10 14、④15.(1)因为παπ<<43所以0tan 1<<-α又103cos sin -=αα 所以103tan 1tan cos sin cos sin 222-=+=+αααααα即03tan 10tan 32=++αα 解得:3tan -=α或31tan -=α,又0tan 1<<-α,所以31tan -=α.(2)原式αααααcos 282cos 6sin 4)2cos 52sin 5(222--+++=αααcos 282cos 6sin 452--++=αααcos 232cos 6sin 42--+=αααcos 2cos 3sin 4-+=625223tan 22-=--=α 16.解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为0/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或17.解:(1)'232,y ax bx =+当1x =时,'11|320,|3x x y a b y a b ===+==+=,即320,6,93a b a b a b +=⎧=-=⎨+=⎩(2)32'269,1818y x x y x x =-+=-+,令'0y =,得0,1x x ==或0|0x y y =∴==极小值18、 P 真2523)1,0()23(<<⇔∈-⇔a a 1)2()(2--=x x f 的值域为[—1,3]42≤≤∴a429≤≤⇔a 真由题意知p 、q 中有一个为真命题,一个为假命题1°p 真q 假⎪⎩⎪⎨⎧><<<422523a a a 或223<<∴a 2°p 假q 真⎪⎩⎪⎨⎧≤≤≥≤422523a a a 或425≤≤∴a ∴综上所述a 的取值范围为]4,25[)2,23( 19、解:(1)当40x =时,汽车从甲地到乙地行驶了100 2.540=小时, 要耗没313(40408) 2.517.512800080⨯-⨯+⨯=(升)。
2011届高考数学一轮复习精品题集分类汇编之立体几何(29页)
必修2 立体几何初步§1.1.1柱、锥、台、球的结构特征重难点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征;柱、锥、台、球的结构特征的概括.考纲要求:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.经典例题:如图,长方体ABCD-A1B1C1D1的长、宽、高分别是5cm、4cm、3cm,一只蚂蚁从A到C1点,沿着表面爬行的最短距离是多少.当堂练习:1.由平面六边形沿某一方向平移形成的空间几何体是()A.六棱锥 B.六棱台 C.六棱柱 D.非棱柱、棱锥、棱台的一个几何体2下列说法中,正确的是()A.棱柱的侧面可以是三角形 B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等 D.棱柱的各条棱都相等3.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“?”处的数字是()A. 6 B. 3 C. 1 D. 24.有两个面互相平行, 其余各面都是梯形的多面体是()A.棱柱 B.棱锥 C.棱台 D.可能是棱台, 也可能不是棱台, 但一定不是棱柱或棱锥5.构成多面体的面最少是()A.三个 B.四个 C.五个 D.六个6.用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A.一个几何体是棱锥, 另一个几何体是棱台B.一个几何体是棱锥, 另一个几何体不一定是棱台C.一个几何体不一定是棱锥, 另一个几何体是棱台D.一个几何体不一定是棱锥, 另一个几何体不一定是棱台7.甲:“用一个平面去截一个长方体, 截面一定是长方形”;乙:“有一个面是多边形,其余各面都是三角形的几何体是棱锥”.这两种说法()A.甲正确乙不正确 B.甲不正确乙正确 C.甲正确乙正确 D.不正确乙不正确8.圆锥的侧面展开图是()A.三角形 B.长方形 C. D.形9.将直角三角形绕它的一边旋转一周, 形成的几何体一定是()A.圆锥 B.圆柱 C.圆台 D.上均不正确10.下列说法中正确的是()A.半圆可以分割成若干个扇形B.面是八边形的棱柱共有8个面C.直角梯形绕它的一条腰旋转一周形成的几何体是圆台D.截面是圆的几何体,不是圆柱,就是圆锥11.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能12.A、B为球面上相异两点, 则通过A、B可作球的大圆有()A.一个 B.无穷多个 C.零个 D.一个或无穷多个13.一个正方体内接于一个球,过球心作一个截面,下面的几个截面图中,必定错误的是()A. B. C. D.14.用一个平行于棱锥底面的平面去截棱锥, 得到两个几何体, 一个是________,另一个是.15. 如右图, 四面体P-ABC中, PA=PB=PC=2, ∠APB=∠BPC=∠APC=300. 一只蚂蚁从A点出发沿四面体的表面绕一周, 再回到A点, 问蚂蚁经过的最短路程是_________.16.如右图将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由简单几何体是___________________.17.边长为5cm的正方形EFGH是圆柱的轴截面, 则从E点沿圆柱的侧面到相对顶点G的最短距离是_______________.18.只有3个面的几何体能构成多面体吗?4面体的棱台吗?棱台至少几个面.19.棱柱的特点是:(1)两个底面是全等的多边形,(2)多边形的对应边互相平行,(3)棱柱的侧面都是平行四边形.反过来,若一个几何体,具备上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?20.如下图几何体是由哪些简单几何体构成的?21.(1)圆柱、圆锥、圆台可以看成以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在直线为旋转轴,将矩形、直角三角形、直角梯形旋转一周而形成的曲面围成的几何体,三个图形之间的什么联系?(2)一个含有300的直角三角板绕其一条边旋转一周所得几何体是圆锥吗?如果以底边上的高所在直线为轴旋转1800得到什么几何体?旋转3600又如何?第1章立体几何初步§1.1.2中心投影与平行投影以及直观图的画法重难点:理解中心投影、平行投影的概念,掌握三视图的画法规则及能画空间几何体的三视图并能根据三视图判断空间几何体的形状和结构,了解球、棱柱、棱锥、台的表面积和体积公式的推理过程.考纲要求:①能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图;②会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;③会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求);④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).经典例题:右图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)这个几何体是什么体?(2)如果面A在几何体的底部,那么哪一个面会在上面?(3)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(4)从右边看是面C,面D在后面,那么哪一个面会在上面?当堂练习:1.下列投影是中心投影的是( )A . 三视图B . 人的视觉C . 斜二测画法D .. 人在中午太阳光下的投影2.下列投影是平行投影的是( )A . 俯视图B . 路灯底下一个变长的身影C . 将书法家的真迹用电灯光投影到墙壁上D . 以一只白炽灯为光源的皮影3.若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则该几何体可能是( )A . 圆柱 B. 三棱柱 C. 圆锥 D.球体4.下列几何体中,主视图、左视图、俯视图相同的几何体是( )A . 球和圆柱B . 圆柱和圆锥C . 正方体的圆柱D . 球和正方体5.一个含的圆柱、圆锥、圆台和球的简单组合体的三视图中,一定含有( )A . 四边形B . 三角形C . 圆D .椭圆6.如果用表示一个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么右图中有7个立方体叠成的几何体,从主视图是( )A .B .C .D .7.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段( )A .平行且相等B . 平行但不相等C .. 相等但不平行D . 既不平行也不相等8.下列说法中正确的是( )A . 互相垂直的两条直线的直观图仍然是互相垂直的两条直线B . 梯形的直观图可能是平行四边形C . 矩形的直观图可能是梯形D . 正方形的直观图可能是平行四边形9.如右图中“斜二测”直观图所示的平面图形是( )A . 直角梯形B .等腰梯形C . 不可能是梯形D .平行四边形10.如右图所示的直观图,其平面图形的面积为( )A . 3B . 223 C . 6 D .. 3211.若一个三角形,采用斜二测画法作出其直观图,若其直观图的面积是原三角形面积的( )A .21倍 B .2倍 C .22倍 D .2倍12.如右图,直观图所表示的平面图形是( )A . 正三角形B . 锐角三角形C . 钝角三角形D . 直角三角形13.如右图,用斜二测画法作∆ABC 水平放置的直观图形得∆A1B1C1,其中A1B1=B1C1,A1D1是B1C1边上的中线,由图形可知在∆ABC 中,下列四个结论中正确的是( )A .AB=BC=ACB . AD ⊥BC C . AC>AD>AB>BCD . AC>AD>AB=BC14.主视图与左视图的高要保持______,主视图与俯视图的长应_________,俯视图与左视图的宽度应_________.15.如果一个几何体的视图之一是三角形, 那么这个几何体可能有___________________(写出两个几何体即可).16.一个水平放置的正方形的面积是4, 按斜二测画法所得的直观图是一个四边形, 这个四边形的面积是________________.17.斜二测画法所得的直观图的多边形面积为a, 那么原图多边形面积是_____________.18.如图是由小立方块描成几何体同的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出它的主视图和左视图.19.画出如图的三视图(单位:mm).20.已知斜二测画法得得的直观图 A/B/C/是正三角形,画出原三角形的图形.21.如下图, 如果把直角坐标系放在水平平面内, 用斜二测画法, 如何可以找到a的点P在直观图中的位置P/ ?坐标为(),b第1章 立体几何初步§1.2点、线、面之间的位置关系考纲要求:①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线于另一个平面垂直. ③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.§1.2.1 平面的基本性质重难点:理解平面的概念及表示,掌握平面的基本性质并注意他们的条件、结论、作用、图形语言及符号语言.经典例题: 如图,设E ,F ,G ,H ,P ,Q 分别是正方体所在棱上的中点,求证:E ,F ,G ,H ,P ,Q 共面.当堂练习:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A . 0B .1C .2D .32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( )A .N a α∈∈B .N a α∈⊂C .N a α⊂⊂D .N a α⊂∈3. 空间不共线的四点,可以确定平面的个数为( )A .0B .1C .1或4D . 无法确定4. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A . 四点中必有三点共线B . 四点中必有三点不共线C .AB ,BC ,CD ,DA 四条直线中总有两条平行 D . 直线AB 与CD 必相交5. 空间不重合的三个平面可以把空间分成( )A . 4或6或7个部分B . 4或6或7或8个部分C . 4或7或8个部分D . 6或7或8个部分6.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A . ①②③B . ②③④C . ③④D . ②③7.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A . 1B .1或3C .1或2或3D .1或 48.如果,,,,B b A a b a =⋂=⋂⊂⊂ αα那么下列关系成立的是( )A .α⊂B .α∉C .A =⋂αD .B =⋂α9.空间中交于一点的四条直线最多可确定平面的个数为( )A .7个B .6个C . 5个D .4个10.两个平面重合的条件是它们的公共部分有( )A .两个公共点B .三个公共点C .四个公共点D .两条平行直线11.一条直线和直线外的三点所能确定的平面的个数是( )A . 1或3个B .1或4个C .1个、3个或4个D . 1个、2个或4个12.三条直线两两相交,可以确定平面的个数是( )A .1个B .1个或2个C .1个或3个D .3个13.空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ⋂GH=P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 C .在直线AC 或BD 上 D .不在直线AC 上也不在直线BD 上14.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .15.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.16.如图,在棱长为a 的正方体ABCD-A1B1C1D1中,M 、N 分别为AA1、C1D1的中点,过D 、M 、N 三点的平面与直线A1B1交于点P ,则线段PB1的长为_______________.17.如图, 正方体ABCD-A1B1C1D1中,对角线BD1与过A1、D 、C1的平面交于点M ,则BM :MD1=________________. (16题) (17题)18.如图,E 、F 、G 、H 分别是空间四边形AB 、BC 、CD 、DA 上的点,且EH 与FG 交于点O .求证:B 、D 、O 三点共线.19.证明梯形是平面图形.20.已知: 直线c b a ||||, 且直线 与a, b, c 都相交. 求证: 直线 ,,,c b a 共面.21.在正方体ABCD-A1B1C1D1中, 直线A1C 交平面ABC1D1于点M , 试作出点M 的位置.第1章 立体几何初步§1.2.2 空间两直线的位置关系重难点:理解异面直线的概念,能计算异面直线所成角;掌握公理4及等角定理. 经典例题:如图,直线a,b 是异面直线,A 、B 、C 为直线a 上三点,D 、E 、F 是直线b 上三点,A ' 、B ' 、C '、D ' 、E '分别为AD 、DB 、BE 、EC 、CF 求证:(1)'''A B C ∠='''C D E ∠;(2)A ' 、B ' 、C '、D ' 、E '共面.当堂练习:1.若a ,b 是异面直线, b, c 是异面直线, 则a ,c 的位置关系是( )A . 相交、平行或异面B . 相交或平行C . 异面D . 平行或异面2.分别和两条异面直线都相交的两条直线的位置关系是( )A .异面B . 相交C .平行D .异面或相交3.在正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有( )A .3条B . 4条C . 6条D . 8条4.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b ( )A . 一定是异面直线B .一定是相交直线C . 不可能是平行直线D .不可能是相交直线5.下面命题中,正确结论有( )如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④ 如果两条直线同平行于第三条直线,那么这两条直线互相平行.A . 1个B . 2个C . 3个D .4个6.下列命题中正确命题的个数是( )两条直线和第三条直线等角,则这两条直线平行;平行移动两条异面直线中的任何一条,它们所成的角不变;过空间四边形ABCD 的顶点A 引CD 的平行线段AE, 则∠BAE 是异面直线AB 与CD 所成的角;④ 四边相等, 且四个角也相等的四边形是正方形.A . 0B . 1C . 2D . 37.已知异面直线a,b 分别在,αβ内,面αβ=c ,则直线c ( )A .一定与a,b 中的两条都相交B .至少与a,b 中的一条都相交C .至多与a,b 中的一条都相交D .至少与a,b 中的一条都平行8.两条异面直线所成的角指的是( )①两条相交直线所成的角; ②过空间中任一点与两条异面直线分别平行的两条相交直线所成的锐角或直角; ③过其中一条上的一点作与另一条平行的直线, 这两条相交直线所成的锐角或直角; ④ 两条直线既不平行又不相交, 无法成角.A .①②B .②③C .③④D .①④9.空间四边形ABCD 中, AB 、BC 、CD 的中点分别是P 、Q 、R , 且PQ=2 , QR=5, PR=3 ,那么异面直线AC 和BD 所成的角是( )A . 900B . 600C . 450D .30010.直线a 与直线b 、c 所成的角都相等, 则b 、c 的位置关系是( )A .平行B .相交C . 异面D . 以上都可能11.空间四边形ABCD 的两条对角线AC 和BD 的长分别为6和4,它们所成的角为900,则四边形两组对边中点的距离等于( )A .B . 5C . 5D . 以上都不对12.如图,ABCD —A1B1C1D1是正方体,E ,F ,G ,H ,M ,N 分别是所在棱的中点, 则下列结论正确的是( ) A .GH 和MN 是平行直线;GH 和EF 是相交直线 B .GH 和MN 是平行直线;MN 和EF 是相交直线C .GH 和MN 是相交直线;GH 和EF 是异面直线D .GH 和EF 是异面直线;MN 和EF 也是异面直线13.点A 是等边三角形BCD 所在平面外一点, AB=AC=AD=BC=a, E 、F 分别在AB 、CD 上,且)0(>==λλFD CF EB AE ,设λλβαλ+=)(f ,λα表示EF 与AC 所成的角,λβ表示EF与BD 所成的角,则( )A 1)(λf 在),0(+∞上是增函数B . )(λf 在),0(+∞上是增函数C . )(λf 在)1,0(上是增函数,在),1(+∞上是减函数D . )(λf 在),0(+∞上是常数14.直线a 、b 不在平面α内,a 、b 在平面α内的射影是两条平行直线,则a 、b 的位置关系是_______________________.15.正方体ABCD-A1B1C1D1中,E 、F 、G 、H 分别为AA1、CC1、C1D1、D1A1的中点,则四边形EFGH 的形状是___________________.16.空间四边形ABCD 中, AD=1 , BC=3, BD=2, AC=2, 且AD BC ⊥, 则异面直线AC 和BD 所成的角为__________________.17.已知a ,b 是一对异面直线,且a ,b 成700角, 则在过P 点的直线中与a ,b 所成的角都为700的直线有____________条.18.已知AC 的长为定值,D ∉平面ABC ,点M 、N 分别是∆DAB 和∆DBC 的重心. 求证: 无论B 、D 如何变换位置, 线段MN 的长必为定值.19.M 、N 分别是正方体ABCD-A1B1C1D1的棱BB1、B1C1的中点,(1)求MN 与AD 所成的角;(2)求MN 与CD 1所成的角.20.如图,已知空间四边形ABCD 的对角线AC=14cm,BD=14cm ,M ,N 分别是AB ,CD的中点,MN=73cm ,求异面直线AC 与BD 所成的角.21.在共点O 的三条不共面直线a 、b 、c 上,在点O 的同侧分别取点A 的A1、B 的B1、C 和C1,使得OC OC OA OA OB OB OA OA 1111,==.求证: ABC ∆∽∆A1B1C1 .第1章 立体几何初步§1.2.3 直线与平面的位置关系重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化.经典例题:直角∆ABC 所在平面外一点S ,且⑴求证:点S与斜边中点D的连线SD⊥面ABC;⑵若直角边BA=BC,求证:BD⊥面SAC.当堂练习:1.下面命题正确的是()A.若直线与平面不相交,则这条直线与这个平面没有公共点B.若直线与平面不相交,则这条直线与这个平面内的任何一条直线没有公共点 C.若一条直线与一个平面有公共点,直线与这相交D.直线在平面外,则直线与平面相交或平行2.直线b是平面α外的一条直线,下列条件中可得出b||α的是()A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的所有直线不相交3.下列命题正确的个数是()①若直线 上有无数个点不在平面α内, 则α|| ; ②若直线 与平面α平行, 则 与平面α内有任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行, 那么另一条直线也与这个平面平行; ④若直线 与平面α平行, 则 与平面α内的任意一条直线都没有公共点.A.0个 B. 1个 C. 2个 D.3个4.下无命题中正确的是()①过一点, 一定存在和两条异面直线都平行的平面; ②垂直于同一条直线的一条直线和一个平面平行; ③若两条直线没有公共点, 则过其中一条直线一定有一个平面与另一条直线平行.A.① B.③ C.①③ D.①②③5.直线a,b是异面直线,A是不在a,b上的点,则下列结论成立的是()A.过A有且只有一个平面平行于a,b B.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,b D.过A且平行于a,b的平面可能不存在6.直线a,b是异面直线,则下列结论成立的是()A.过不在a,b上的任意一点,可作一个平面与a,b平行B.过不在a,b上的任意一点,可作一条直线与a,b相交C.过不在a,b上的任意一点,可作一条直线与a,b都平行D.过a可以并且只可以作一个平面与b平行7.下面条件中, 能判定直线α平面的一个是()⊥A. 与平面α内的两条直线垂直 B. 与平面α内的无数条直线垂直 C. 与平面α内的某一条直线垂直 D. 与平面α内的任意一条直线垂直8.空间四边形ABCD中, AC=AD, BC=BD, 则AB与CD所成的角为()A. 300 B. 450 C. 600 D. 900 9.如果直线 与平面α不垂直, 那么在平面α内()A.不存在与 垂直的直线 B.存在一条与 垂直的直线C.存在无数条与 垂直的直线 D.任意一条都与 垂直M B F CND AE E M A B HC D A FE G 10.定点P 不在∆ABC 所在平面内, 过P 作平面α, 使∆ABC 的三个顶点到平面α的距离相等, 这样的平面共有( )A . 1个B . 2个C . 3个D . 4个 11.∆ABC 所在平面外一点P, 分别连结PA 、PB 、PC, 则这四个三角形中直角三角形最多有( )A . 4个B . 3个C . 2个D . 1个12.下列四个命题:①过平面外一点存在无数条直线和这个平面垂直;②若一条直线和平面内的无数多条直线垂直,则这条直线和平面垂直;③仅当一条直线和平面内两条相交直线垂直且过交点时这条直线才和平面垂直;④若一条直线平行于一个平面,则和这条直线垂直的直线必和这个平面垂直. 其中正确的个数是( )A .0B . 1C . 2D . 313.如图,在正方形SG1G2G3中,E ,F 分别是G1G2,G2G3的中点,D 是EF 的中点,现沿SE ,SF 及EF 把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G ,这样,下列五个结论:(1)SG ⊥平面EFG ;(2)SD ⊥平面EFG ;(3)GF ⊥平面SEF ;(4)EF ⊥平面GSD ;(5)GD ⊥平面SEF. 正确的是( )A .(1)和(3)B .(2)和(5)C .(1)和(4)D .(2)和(4)14.若直线a 与平面α内的无数条直线平行, 则a 与α的关系为_____________. 15.在空间四边形ABCD 中, AD N AB M ∈∈,,若AMANMB ND =, 则MN 与平面BDC 的位置关系是__________________.16.∆ABC 的三个顶点A 、B 、C 到平面α的距离分别为2cm 、3cm 、4cm ,且它们在平面α的同一侧, 则∆ABC 的重心到平面α的距离为________________.17.若空间一点P 到两两垂直的射线OA 、OB 、OC 的距离分别为a 、b 、c ,则OP 的值为______________.18.已知四面体ABCD 中,M ,N 分别是ACD ABC ∆∆和的重心, 求证:(1)BD||平面CMN ;(2)MN||平面ABD .19.如图,空间四边形ABCD 被一平面所截,截面EFGH 是一个矩形,(1)求证:CD||平面EFGH ; (2)求异面直线AB ,CD 所成的角.20.M ,N ,P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM :MB=CN :NB=CP :PD.求证:(1)AC||平面MNP ,BD||平面MNP ; (2)平面MNP 与平面ACD 的交线||AC . D S G2G 3G 1F E G21. 如图O 是正方体下底面ABCD 中心,B1H ⊥D1O ,H 为垂足. 求证:B1H ⊥平面AD1C .第1章 立体几何初步§1.2.4 平面与平面的位置关系重难点:了解直线与平面的位置关系,在判定和证明直线与平面的位置关系时,除了能熟练运用判定定理和性质定理外,还要充分利用定义;线面关系的判定和证明,要注意线线关系、线面关系的转化.经典例题:如图,在四面体S-ABC 中, SA ⊥底面ABC,AB ⊥BC .DE 垂直平分SC, 且分别交AC 、SC 于D 、E. 又SA =AB,SB =BC.求以BD 为棱, 以BDE 与BDC 为面的二面角的度数.当堂练习:1.下列命题中正确的命题是( )①平行于同一直线的两平面平行; ②平行于同一平面的两平面平行;③垂直于同一直线的两平面平行; ④与同一直线成等角的两平面平行.A .①和②B .②和③C .③和④D .②和③和④2. 设直线 ,m,平面,αβ,下列条件能得出||αβ的是( )A .,m αα⊂⊂,且||,||m ββB . ,m αα⊂⊂,且||mC . ,m αβ⊥⊥,且||mD . ||,||m αβ,且||m3. 命题:①与三角形两边平行的平面平行于是三角形的第三边; ②与三角形两边垂直的直线垂直于第三边;③与三角形三顶点等距离的平面平行这三角形所在平面. 其中假命题的个数为( )A .0B .1C .2D .34.已知a,b 是异面直线,且a ⊥平面α,b ⊥平面β,则α与β的关系是( )A . 相交B . 重合C . 平行D . 不能确定5.下列四个命题:①分别在两个平面内的两直线平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行另一个平面,则这两个平面平行. 其中正确命题是( )A . ①、②B . ②、④C . ①、③D . ②、③A 1A CA 16. 设平面βα||,A βα∈∈B ,,C 是AB 的中点,当A 、B 分别在βα,内运动时,那么所有的动点C ( )A . 不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C . 当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D . 不论A 、B 如何移动,都共面7.,αβ是两个相交平面,a ,b αβ⊂⊂,a 与b 之间的距离为d1,α与β之间的距离为d2,则( ) A .d1=d2 B .d1>d2 C .d1<d2D .d1≥d28.下列命题正确的是( )A . 过平面外一点作与这个平面垂直的平面是唯一的B . 过直线外一点作这条直线的垂线是唯一的C . 过平面外的一条斜线作与这个平面垂直的平面是唯一的D . 过直线外一点作与这条直线平行的平面是唯一的9.对于直线m 、n 和平面α、β, 下列能判断α⊥β的一个条件是( )A .,||,||m n m n αβ⊥B .,,m n m n αβα⊥⋂=⊂C .||,,m n n m βα⊥⊂D .||,,m n m n αβ⊥⊥10.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: ①m l ⊥⇒βα//②m l //⇒⊥βα③βα⊥⇒m l //④βα//⇒⊥m l 其中正确的两个命题是( )A .①与②B .③与④C .②与④D .①与③11.设αβ--是直二面角,直线,,a b αβ⊂⊂且a 不与 垂直,b 不与 垂直,则( )A . a 与b 可能垂直,但不可能平行B . a 与b 可能垂直也可能平行C . a 与b 不可能垂直,但可能平行D . a 与b 不可能垂直,也不可能平行12.如果直线 、m 与平面α、β、γ满足: =β∩γ, //α,m ⊂α和m ⊥γ那么必有( )A .α⊥γ且 ⊥mB .α⊥γ且m ∥βC . m ∥β且 ⊥mD .α∥β且α⊥γ13.如图,正方体ABCD —A1B1C1D1中,点P 在侧面BCC1B1上运动,并且总是保持AP ⊥BD1,则动点P 的轨迹是( A .线段B1C B .线段BC1 C .BB1中点与CC1中点连成的线段 D .BC 中点与B1C1中点连成的线段 14.平面βα平面||, ∆ABC 和∆A/B/C/分别在平面α和平面β内, 若对应顶点的连线共点,则这两个三角形_______________.15.夹在两个平行平面间的两条线段AB 、CD 交于点O ,已知AO=4,BO=2,CD=9,则线段CO 、DO 的长分别为_________________.16.把直角三角形ABC 沿斜边上的高CD 折成直二面角A-CD-B 后, 互相垂直的平面有______对.17.γβα,,是两两垂直的三个平面, 它们交于点O, 空间一点P 到平面,,αβγ的距离分别是2cm , 3cm , 6cm , 则点P 到点O 的距离为__________________.18.已知a 和b 是两条异面直线,求证过a 而平行于b 的平面α必与过b 而平行于a 的平面β平行.。
2011届高三数学第一轮复习(数列综合)
2011届高三数学第一轮复习(数列综合)高考在考什么 【考题回放】1、 (2008福建文) 已知{}n a 是整数组成的数列,11a =,且点*1(,)()n n a a n N +∈在函数21y x =+的图像上:(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足111,2n an n b b b +==+,求证:221n n n b b b ++⋅<.解:(1)由已知得:11n n a a +=+,所以数列是以1为首项,公差为1的等差数列;即1(1)1n a n n =+-⋅= (2)由(1)知122na n n nb b +-==112211123()()()12222212112n n n n n n n n n nb b b b b b b b ------=-+-+⋅⋅⋅+-+-=+++⋅⋅⋅++==-- 221221(21)(21)(21)524220n n n n n n n n n b b b ++++-=----=-⋅+⋅=-<所以:221n n n b b b ++⋅<2、(2008福建理) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1,a )内的极值.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---=所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而 ①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值;③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.3、(2008安徽理)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; x (-∞,-2)-2 (-2,0) 0 (0,+∞) f ′(x ) +- 0 + f (x )↗极大值↘极小值↗(Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c++>+-∈- 解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设 [0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈ 当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立 (2) 设 103c <<,当1n =时,10a =,结论成立当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-=∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n nna a a a a n c c c -+++=++>--+++∴ 2(1(3))2111313n c n n c c-=+->+---4.(2008北京理)对于每项均是正整数的数列12n A a a a :,,,,定义变换1T ,1T 将数列A 变换成数列 1()T A :12111n n a a a ---,,,,.对于每项均是非负整数的数列12m B b b b :,,,,定义变换2T ,2T 将数列B 各项从大到小排列,然后去掉所有为零的项,得到数列2()T B ; 又定义2221212()2(2)m m S B b b mb b b b =+++++++.设0A 是每项均为正整数的有穷数列,令121(())(012)k k A T T A k +==,,,. (Ⅰ)如果数列0A 为5,3,2,写出数列12A A ,;(Ⅱ)对于每项均是正整数的有穷数列A ,证明1(())()S T A S A =;(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列0A ,存在正整数K ,当k K ≥时,1()()k k S A S A +=.4.(Ⅰ)解:0532A :,,, 10()3421T A :,,,, 1210(())4321A T T A =:,,,; 11()43210T A :,,,,, 2211(())4321A T T A =:,,,.(Ⅱ)证明:设每项均是正整数的有穷数列A 为12n a a a ,,,, 则1()T A 为n ,11a -,21a -,,1n a -,从而112(())2[2(1)3(1)(1)(1)]n S T A n a a n a =+-+-+++-222212(1)(1)(1)n n a a a ++-+-++-.又2221212()2(2)n n S A a a na a a a =+++++++,所以1(())()S T A S A -122[23(1)]2()n n n a a a =----+++++2122()n n a a a n +-++++2(1)0n n n n =-+++=,故1(())()S T A S A =.(Ⅲ)证明:设A 是每项均为非负整数的数列12n a a a ,,,.当存在1i j n <≤≤,使得i j a a ≤时,交换数列A 的第i 项与第j 项得到数列B , 则()()2()j i i j S B S A ia ja ia ja -=+--2()()0j i i j a a =--≤. 当存在1m n <≤,使得120m m n a a a ++====时,若记数列12m a a a ,,,为C ,则()()S C S A =. 所以2(())()S T A S A ≤.从而对于任意给定的数列0A ,由121(())(012)k k A T T A k +==,,, 可知11()(())k k S A S T A +≤.又由(Ⅱ)可知1(())()k k S T A S A =,所以1()()k k S A S A +≤.即对于k ∈N ,要么有1()()k k S A S A +=,要么有1()()1k k S A S A +-≤.因为()k S A 是大于2的整数,所以经过有限步后,必有12()()()k k k S A S A S A ++===.即存在正整数K ,当k K ≥时,1()()k k S A S A +=. 5、(2008湖南理)数列{}221221,2,(1cos )sin ,1,2,3,.22n n n n n a a a a a n ππ+===++=满足(Ⅰ)求34,,a a 并求数列{}n a 的通项公式; (Ⅱ)设21122,.n n n n na b S b b b a -==+++证明:当162.n n S n≥-<时,13.解: (Ⅰ)因为121,2,a a ==所以22311(1cos)sin 12,22a a a ππ=++=+=22422(1cos )sin 2 4.a a a ππ=++==一般地,当*21(N )n k k =-∈时,222121(21)21[1cos]sin 22k k k k a a ππ+---=++ =211k a -+,即2121 1.k k a a +--=所以数列{}21k a -是首项为1、公差为1的等差数列,因此21.k a k -=当*2(N )n k k =∈时,22222222(1cos)sin 2.22k k k k k a a a ππ+=++= 所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.kk a =故数列{}n a 的通项公式为**21,21(N ),22,2(N ).n n n n k k a n k k +⎧=-∈⎪=⎨⎪=∈⎩(Ⅱ)由(Ⅰ)知,2122,2n n n a n b a -==23123,2222n n nS =++++ ①2241112322222n n nS +=++++ ②①-②得,23111111.222222n n n n S +=++++- 21111[1()]1221.122212n n n n n ++-=-=--- 所以11222.222n n n n n n S -+=--=-要证明当6n ≥时,12n S n -<成立,只需证明当6n ≥时,(2)12nn n +<成立. 证法一(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +<则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k kk k k k k k k k k k k k++++++++=⨯<<++ 由(1)、(2)所述,当n ≥6时,2(1)12n n +<.即当n ≥6时,12.nS n-< 证法二令2(2)(6)2n n n c n +=≥,则21121(1)(3)(2)30.222n n n n n n n n n c c ++++++--=-=< 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==<于是当6n ≥时,2(2)1.2n n +< 综上所述,当6n ≥时,12.n S n-<6、(2008江西理) 等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.(1)求n a 与n b ; (2)证明:11S +21S +……+n S 1<43.16.解:设{n a }公差为d ,由题意易知d ≥0,且d ∈N*,则{n a }通项n a =3 +(n -1)d ,前n 项和d n n n S n 2)1(3-+=。
2011届高考数学一轮复习 精品题集之数列
2011届高考数学一轮复习精品题集之数列第2章数列§2.1数列的概念与简单表示重难点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式.考纲要求:①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量巍峨正整数的一类函数.经典例题:假设你正在某公司打工,根据表现,老板给你两个加薪的方案:(Ⅰ)每年年末加1000元;(Ⅱ)每半年结束时加300元。
请你选择:(1)如果在该公司干10年,问两种方案各加薪多少元?(2)对于你而言,你会选择其中的哪一种?当堂练习:1. 下列说法中,正确的是( )A.数列1,2,3与数列3,2,1是同一个数列.B.数列l, 2,3与数列1,2,3,4是同一个数列.C.数列1,2,3,4,…的一个通项公式是an=n.D.以上说法均不正确.2巳知数列{ an}的首项a1=1,且an+1=2 an+1,(n≥2),则a5为( )A.7.B.15 C.30 D.31.3.数列{ an}的前n项和为Sn=2n2+1,则a1,a5的值依次为( )A.2,14 B.2,18 C.3,4.D.3,18.4.已知数列{ an}的前n项和为Sn=4n2 -n+2,则该数列的通项公式为( )A.an=8n+5(n∈N*) B.an=8n-5(n∈N*)C.an=8n+5(n≥2) D.⎪⎩⎪⎨⎧∈≥-==),2(58)1(5+nNnnnna5.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= ( )A.40.B.45 C.50 D.55.6.若数列}{n a前8项的值各异,且n8naa=+对任意的*Nn∈都成立,则下列数列中可取遍}{n a前8项值的数列为()A.}{12+ka B.}{13+ka C.}{14+ka D.}{16+ka7.在数列{ an}中,已知an=2,an= an+2n,则a4 +a6 +a8的值为.8.已知数列{ an}满足a1=1 ,an+1=c an+b, 且a2 =3,a4=15,则常数c,b 的值为.9.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= .10.设{}na是首项为1的正项数列,且()011221=+-+++nnnnaanaan(n=1,2,3,…),则它的通项公式是na=________.11. 下面分别是数列{ an}的前n项和an的公式,求数列{ an}的通项公式:(1)Sn=2n2-3n;(2)Sn=3n-212. 已知数列{ an}中a1=1,nn a n n a 11+=+ (1)写出数列的前5项;(2)猜想数列的通项公式.13. 已知数列{ an}满足a1=0,an +1+Sn=n2+2n(n ∈N*),其中Sn 为{ an}的前n 项和,求此数列的通项公式.艳荡芦花湾/s2460/ 奀莒咾14. 已知数列{ an}的通项公式an 与前n 项和公式Sn 之间满足关系Sn=2-3an (1)求a1;(2)求an 与an (n ≥2,n ∈N*)的递推关系; (3)求Sn 与Sn (n ≥2,n ∈N*)的递推关系,第2章 数列 §2.2等差数列、等比数列重难点:理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式,能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. 考纲要求:①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n 项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. ④了解等差数列与一次函数、等比数列与指数函数的关系.经典例题:已知一个数列{an}的各项是1或3.首项为1,且在第k 个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…,记该数列的前n 项的和为Sn . (1)试问第2006个1为该数列的第几项? (2)求a2006;(3)求该数列的前2006项的和S2006;当堂练习:1,…则是该数列的( )A .第6项B .第7项C .第10项D .第11项2.方程2640x x -+=的两根的等比中项是( )A .3B .2± C. D .2 3. 已知12,,,n a a a …为各项都大于零的等比数列,公比1q ≠,则( ) A .1845a a a a +>+ B .1845a a a a +<+C .1845a a a a +=+D .18a a +和45a a +的大小关系不能由已知条件确定4.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( )A .12B .14C .16D .185.若a 、b 、c 成等差数列,b 、c 、d 成等比数列,111,,c d e 成等差数列,则a 、c 、e 成( ) A .等差数列 B .等比数列C .既成等差数列又成等比数列D .以上答案都不是 6.在等差数列{an}中,14812152a a a a a ---+=,则313a a +=( ) A .4 B .4- C .8 D .8-7.两等差数列{an}、{bn}的前n 项和的比'5327n n S n S n +=+,则55a b 的值是( )A .2817B .4825C .5327D .2315 8.{an}是等差数列,10110,0S S ><,则使0n a <的最小的n 值是( ) A .5 B .6 C .7 D .89.{an}是实数构成的等比数列,n S 是其前n 项和,则数列{n S } 中( ) A .任一项均不为0 B .必有一项为0C .至多有一项为0D .或无一项为0,或无穷多项为0 10.某数列既成等差数列也成等比数列,那么该数列一定是( ) A .公差为0的等差数列 B .公比为1的等比数列 C .常数数列1,1,1,… D .以上都不对11.已知等差数列{an}的公差d≠0,且a1、a3、a9成等比数列,则1392410a a a a a a ++++的值是 .12.由正数构成的等比数列{an},若132423249a a a a a a ++=,则23a a += .13.已知数列{an}中,122nn n a a a +=+对任意正整数n 都成立,且712a =,则5a = .14.在等差数列{an}中,若100a =,则有等式()*12121919,n n a a a a a a n n -+++=+++<∈N …… 成立,类比上述性质,相应地:在等比数列{bn}中,若91b =,则有等式 15. 已知数列{2n-1an }的前n 项和96n S n =-. ⑴求数列{an}的通项公式;⑵设2||3log 3nn a b n ⎛⎫=- ⎪⎝⎭,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.16.已知数列{an}是等差数列,且11232,12a a a a =++=. ⑴求数列{an}的通项公式;⑵令()n n n b a x x =∈R ,求数列{bn}前n 项和的公式.17. 甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 请您根据提供的信息说明:⑴第2年养鸡场的个数及全县出产鸡的总只数;⑵到第6年这个县的养鸡业比第1年是扩大了还是 缩小了?请说明理由;⑶哪一年的规模最大?请说明理由.18.已知数列{an}为等差数列,公差0d ≠,{an}的部分项组成的数列12,,,k k k na a a …恰为等比数列,其中1231,5,17k k k ===,求12n k k k +++….第2章 数列 §2.3等差数列、等比数列综合运用1、设{}n a 是等比数列,有下列四个命题:①2{}n a 是等比数列;②1{}n n a a +是等比数列; ③1{}n a 是等比数列;④{lg ||}n a 是等比数列。
2011届高考数学一轮复习精品题集分类汇编之集合(12页)
集合集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.考纲要求:①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.经典例题:若x∈R,则{3,x,x2-2x}中的元素x应满足什么条件?当堂练习1.下面给出的四类对象中,构成集合的是()A.某班个子较高的同学B.长寿的人C的近似值D.倒数等于它本身的数2下面四个命题正确的是()A.10以内的质数集合是{0,3,5,7} B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程2210-+=的解集是{1,1} D.0与{0}表示同一个集合x x3.下面四个命题:(1)集合N中最小的数是1;(2)若 -a∉Z,则a∈Z;(3)所有的正实数组成集合R+;(4)由很小的数可组成集合A ; 其中正确的命题有( )个A .1B .2C .3D .4 4.下面四个命题: (1)零属于空集; (2)方程x2-3x+5=0的解集是空集;(3)方程x2-6x+9=0的解集是单元集; (4)不等式 2 x-6>0的解集是无限集;其中正确的命题有( )个A .1B .2C .3D .4 5. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0x y <>} B . {(x,y)0,0x y <>}C. {(x,y)0,0x y <>} D. {x,y 且0,0x y <>}6.用符号∈或∉填空:0__________{0}, a__________{a}, π__________Q ,21__________Z ,-1__________R ,0__________N , 0Φ.7.由所有偶数组成的集合可表示为{x x =}.8.用列举法表示集合D={2(,)8,,x y y x x N y N=-+∈∈}为 .9.当a 满足 时, 集合A ={30,x x a x N +-<∈}表示单元集.10.对于集合A ={2,4,6}, 若a ∈A ,则6-a ∈A ,那么a 的值是__________.11.数集{0,1,x2-x}中的x 不能取哪些数值?12.已知集合A ={x ∈N|126x -∈N },试用列举法表示集合A .13.已知集合A={2210,,x ax x a R x R++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则11Aa∈-,证明:(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。
2011届高考数学一轮单元达标精品试卷(十一)
2011届高考数学一轮单元达标精品试卷(十一)第十一单元 排列组合、二项式定理(时量:120分钟 150分)一、选择题:本大题共18小题,每小题5分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是A .6810C xB .510C xC .468C xD .611C x6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义n x M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为 A .是偶函数而不是奇函数 B .是奇函数而不是偶函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有A.24种B.36种C.60种D.66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A.8 B.9 C.10 D.11 17.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有A.36种B.42种C.50种D.72种18.若1021022 012100210139 ),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则的值为A.0 B.2 C.-1 D.1答题卡二、填空题:本大题共6小题,每小题4分,共24分.把答案填在横线上.19.某电子器件的电路中,在A,B之间有C,D,E,F四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A,B间电路不通,则焊点脱落的不同情况有种.20.设f(x)=x5-5x4+10x3-10x2+5x+1,则f(x)的反函数f-1(x)=.21.正整数a1a2…a n…a2n-2a2n-1称为凹数,如果a1>a2>…a n,且a2n-1>a2n-2>…>a n,其中a i (i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有个(用数字作答).22.如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4.23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.nn n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++=3.C 46312.C -= 4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为555561010T C x C x==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
2011年高考数学一轮复习资料二
2008年高考数学一轮复习资料二11、题目 高中数学复习专题讲座综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题 高考要求函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样 本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力重难点归纳在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用 综合问题的求解往往需要应用多种知识和技能 因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件 学法指导 怎样学好函数学习函数要重点解决好四个问题 准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念 概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终 数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数 近十年来,高考试题中始终贯穿着函数及其性质这条主线(二)揭示并认识函数与其他数学知识的内在联系 函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容 在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式所谓函数观点,实质是将问题放到动态背景上去加以考虑 高考试题涉及5个方面 (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中(三)把握数形结合的特征和方法函数图像的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图像的平移变换、对称变换(四)认识函数思想的实质,强化应用意识函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决 纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识 典型题例示范讲解例1设f (x )是定义在R 上的偶函数,其图像关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0(1)求f (21)、f (41);(2)证明f (x )是周期函数; (3)记a n =f (2n +n21),求).(ln lim n n a ∞→命题意图 本题主要考查函数概念,图像函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力知识依托 认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)= f (x 1)·f (x 2)找到问题的突破口错解分析 不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形技巧与方法 由f (x 1+x 2)=f (x 1)·f (x 2)变形为()()()()2222x x x x f x f f f =+=⋅是解决问题的关键(1) 解因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=()()()02222x x x x f f f +=≥, x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0∴f (21)=a 21, f (41)=a 41(2)证明 依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ), 即 f (x )=f (2-x ),x ∈R又由f (x )是偶函数知 f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期(3)解 由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n 21)=…… =f (n 21)·f (n 21)·……·f (n21) =[f (n 21)]n =a 21∴f (n21)=a n 21又∵f (x )的一个周期是2 ∴f (2n +n 21)=f (n21),∴a n =f (2n +n 21)=f (n21)=a n 21因此a n =an21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n 例2甲、乙两地相距S 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?命题意图 本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力知识依托 运用建模、函数、数形结合、分类讨论等思想方法错解分析 不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件 技巧与方法 四步法 (1)读题;(2)建模;(3)求解;(4)评价解法一 (1)依题意知,汽车从甲地匀速行驶到乙地所用时间为vS,全程运输成本为y =a ·v S +bv 2·v S =S (va+bv ) ∴所求函数及其定义域为y =S (va+bv ),v ∈(0,c ] (2)依题意知,S 、a 、b 、v 均为正数 ∴S (va+bv )≥2S ab ① 当且仅当va=bv ,即v =b a 时,①式中等号成立若b a ≤c 则当v =b a 时,有y min =2S ab ; 若b a >c ,则当v ∈(0,c ]时,有S (v a +bv )-S (ca+bc ) =S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv ) ∵c -v ≥0,且c >bc 2, ∴a -bcv ≥a -bc 2>0∴S (v a +bv )≥S (ca+bc ),当且仅当v =c 时等号成立, 也即当v =c 时,有y min =S (ca+bc );综上可知,为使全程运输成本y 最小,当b ab ≤c 时,行驶速度应为v =b ab , 当bab>c时行驶速度应为v =c解法二 (1)同解法一(2)∵函数y =S (va+bv ), v ∈(0,+∞), 当x ∈(0,ba)时,y 单调减小, 当x ∈(ba,+∞)时y 单调增加, 当x =b a时y 取得最小值,而全程运输成本函数为y =Sb (v +vb a),v ∈(0,c ]∴当b a ≤c 时,则当v =b a 时,y 最小,若ba >c 时,则当v =c 时,y 最小 结论同上例3 设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4(1)求证 f (x )为奇函数;(2)在区间[-9,9]上,求f (x )的最值 (1)证明 令x =y =0,得f (0)=0令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x ) ∴f (x )是奇函数(2)解 1°,任取实数x 1、x 2∈[-9,9]且x 1<x 2,这时,x 2-x 1>0, f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 1)=-f (x 2-x 1) 因为x >0时f (x )<0,∴f (x 1)-f (x 2)>0 ∴f (x )在[-9,9]上是减函数故f (x )的最大值为f (-9),最小值为f (9)而f (9)=f (3+3+3)=3f (3)=-12,f (-9)=-f (9)=12∴f (x )在区间[-9,9]上的最大值为12,最小值为-12学生巩固练习1函数y=x+a与y=log a x的图像可能是( )2定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图像与f(x)的图像重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是( )A①与④B②与③C①与③D②与④3若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围是____4设a为实数,函数f(x)=x2+|x-a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值5设f(x)=xxx+-++1111(1)证明f(x)在其定义域上的单调性;(2)证明方程f-1(x)=0有惟一解;(3)解不等式f[x(x-21)]216定义在(-1,1)上的函数f(x)满足①对任意x、y∈(-1,1),都有f(x)+f(y)=f(xyyx++1);②当x∈(-1,0)时,有f(x)>0求证21()131()111()51(2fnnfff>+++++7某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖)(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价8已知函数f(x)在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f(1)=0,又g(θ)=sin2θ-m cosθ-2m,θ∈[0,2π],设M={m|g(θ)<0,m∈R},N={m|f[g(θ)]<0},求M ∩N参考答案:1解析分类讨论当a>1时和当0<a<1时答案 C2解析用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3g(b)-g(-a)=g(1)-g(-2)=1-2=-1∴f (a )-f (-b )>g (1)-g (-2)=1-2=-1 又f (b )-f (-a )=f (1)-f (-2)=1+2=3g (a )-g (-b )=g (2)-g (1)=2-1=1,∴f (b )-f (-a )=g (a )-g (-b ) 即①与③成立 答案 C3 解析 设2x =t >0,则原方程可变为t 2+at +a +1=0 ①方程①有两个正实根,则⎪⎩⎪⎨⎧>+=⋅>-=+≥+-=∆0100)1(421212a t t a t t a a解得 a ∈(-1,2-22]答案 (-1,2-22]4 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时f (x )为偶函数;当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1,f (-a )≠f (a ),f (-a )≠-f (a ) 此时函数f (x )既不是奇函数也不是偶函数(2)①当x ≤a 时,函数f (x )=x 2-x +a +1=(x -21)2+a +43,若a ≤21,则函数f (x )在(-∞,a ]上单调递减,从而,函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(-∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ) ②当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43;当a ≤-21时,则函数f (x )在[a ,+∞)上的最小值为f (-21)=43-a ,且f (-21)≤f (a )若a >-21, 则函数f (x )在[a ,+∞)上单调递增,从而,函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1综上,当a ≤-21时,函数f (x )的最小值是43-a , 当-21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a 435 (1)证明 由⎪⎩⎪⎨⎧≠+>+-02011x x x得f (x )的定义域为(-1,1),易判断f (x )在(-1,1)内是减函数(2)证明 ∵f (0)=21,∴f --1(21)=0,即x =21是方程f --1(x )=0的一个解若方程f --1(x )=0还有另一个解x 0≠21,则f --1(x 0)=0, 由反函数的定义知f (0)=x 0≠21,与已知矛盾,故方程f --1(x )=0有惟一解 (3)解 f [x (x -21)]<21,即f [x (x -21)]<f (0).415121041510)21(1)21(1+<<<<-⇒⎪⎪⎩⎪⎪⎨⎧>-<-<-∴x x x x x x 或6 证明 对f (x )+f (y )=f (xyyx ++1)中的x ,y ,令x =y =0,得f (0)=0,再令y =-x ,又得f (x )+f (-x )=f (0)=0,即f (-x )=-f (x ), ∴f (x )在x ∈(-1,1)上是奇函数设-1<x 1<x 2<0,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (21211x x x x --),∵-1<x 1<x 2<0,∴x 1-x 2<0,1-x 1x 2>0 ∴21211x x x x --<0,于是由②知f (21211x x x x --) >0,从而f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在x ∈(-1,0)上是单调递减函数 根据奇函数的图像关于原点对称,知f (x )在x ∈(0,1)上仍是递减函数,且f (x )<02111(1)(2)()[][]131(1)(2)11(1)(2)n n f f f n n n n n n ++==++++--++111112()()()1112112n n f f f n n n n -++==-++-⋅++2111()()()51131f f f n n ∴+++++11111111[()()][()()][()()]()(),23341222f f f f f f f f n n n =-+-++-=-+++ 1101,()0,22f n n <<<++ 时有111()()(),.222f f f n ∴->+故原结论成立7 解 (1)因污水处理水池的长为x 米,则宽为x200米,总造价y =400(2x +2×x 200)+248×x 200×2+80×200=800(x +x324)+1600,由题设条件⎪⎩⎪⎨⎧≤<≤<162000,160x x 解得12 5≤x ≤16,即函数定义域为[12 5,16](2)先研究函数y =f (x )=800(x +x324)+16000在[12 5,16]上的单调性, 对于任意的x 1,x 2∈[12 5,16],不妨设x 1<x 2,则f (x 2)-f (x 1)=800[(x 2-x 1)+324(1211x x -)]=800(x 2-x 1)(1-21324x x ), ∵12 5≤x 1≤x 2≤16∴0<x 1x 2<162<324,∴21324x x >1,即1-21324x x <0 又x 2-x 1>0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1), 故函数y =f (x )在[12 5,16]上是减函数∴当x =16时,y 取得最小值,此时,y min =800(16+16324)+16000=45000(元),16200200=x =12 5(米)综上,当污水处理池的长为16米,宽为12 5米时,总造价最低,最低为45000元 8 解 ∵f (x )是奇函数,且在(0,+∞)上是增函数, ∴f (x )在(-∞,0)上也是增函数又f (1)=0,∴f (-1)=-f (1)=0,从而,当f (x )<0时,有x <-1或0<x <1, 则集合N ={m |f [g (θ)]<θ=}={m |g (θ)<-1或0<g (θ)<1}, ∴M ∩N ={m |g (θ)<-1}由g (θ)<-1,得cos 2θ>m (cos θ-2)+2,θ∈[0,2π], 令x =cos θ,x ∈[0,1]得 x 2>m (x -2)+2,x ∈[0,1], 令① y 1=x 2,x ∈[0,1]及②y 2=m (m -2)+2,显然①为抛物线一段,②是过(2,2)点的直线系, 在同一坐标系内由x ∈[0,1]得y 1>y 2∴m >4-22,故M ∩N ={m |m >4-22}课前后备注12、题目 高中数学复习专题讲座等差数列、等比数列性质的灵活运用 高考要求等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用2 在应用性质时要注意性质的前提条件,有时需要进行适当变形3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解例1已知函数f (x )=412-x (x <-2)(1)求f (x )的反函数f --1(x ); (2)设a 1=1,11+n a =-f--1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m 成立?若存在,求出m 的值;若不存在,说明理由命题意图 本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{21na }为桥梁求a n ,不易突破技巧与方法 (2)问由式子41121+=+nn a a 得22111nn a a -+=4,构造等差数列{21na },从而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想解 (1)设y =412-x ,∵x <-2,∴x =-214y+, 即y =f--1(x )=-214y +(x >0) (2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1,21na =211a +4(n -1)=4n -3,∵a n >0,∴a n(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n , 设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m成立 例2设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0 3,lg3=0 4)命题意图 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力知识依托 本题须利用等比数列通项公式、前n 项和公式合理转化条件,求出a n ;进而利用对数的运算性质明确数列{lg a n }为等差数列,分析该数列项的分布规律从而得解错解分析 题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方技巧与方法 突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n 项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n 是n 的二次函数,也可由函数解析式求最值解法一 设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m 化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3 =(-23lg )·n 2+(2lg2+27lg3)·n可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大解法二 接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg31为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5 5由于n ∈N *,可见数列{lg a n }的前5项和最大例3 等差数列{a n }的前n 项的和为30,前2m 项的和为100,求它的前3m 项的和为_________解法一 将S m =30,S 2m =100代入S n =na 1+2)1(-n n d ,得 11(1)3022(21)21002m m ma d m m ma d -⎧+= ⎪⎪⎨-⎪+=⎪⎩ ① ②2102)13(33,2010,4013212=-+=∴+==d m m ma S m m a m d m 解得 解法二 由]2)13([32)13(33113dm a m d m m ma S m -+=-+=知, 要求S 3m 只需求m [a 1+2)13(dm -],将②-①得ma 1+ 2)13(-m m d =70,∴S 3m =210解法三 由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数)将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法四S 3m =S 2m +a 2m +1+a 2m +2+…+a 3m =S 2m +(a 1+2md )+…+(a m +2md ) =S 2m +(a 1+…+a m )+m ·2md =S 2m +S m +2m 2d由解法一知d =240m,代入得S 3m =210解法五 根据等差数列性质知 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列, 从而有 2(S 2m -S m )=S m +(S 3m -S 2m ) ∴S 3m =3(S 2m -S m )=210解法六 ∵S n =na 1+2)1(-n n d , ∴n S n =a 1+2)1(-n n d ∴点(n , nS n )是直线y =2)1(dx -+a 1上的一串点,由三点(m ,m S m ),(2m , mSm 22),(3m , m S m 33)共线,易得S 3m =3(S 2m -S m )=210解法七 令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70 ∴a 3=70+(70-30)=110 ∴S 3=a 1+a 2+a 3=210 答案 210 学生巩固练习1 等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则lim ∞→n S n 等于( ) 32 B. 32A.- C 2D -22 已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________3 等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________4 已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________5 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0 (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由6 已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17(1)求数列{b n }的通项公式;(2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn bT +∞→4lim7 设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2·b 4=a 3,分别求出{a n }及{b n }的前n 项和S 10及T 108 {a n }为等差数列,公差d ≠0,a n ≠0,(n ∈N *),且a k x 2+2a k +1x +a k +2=0(k ∈N *) (1)求证 当k 取不同自然数时,此方程有公共根; (2)若方程不同的根依次为x 1,x 2,…,x n ,…,求证 数列11,,11,1121+++n x x x 为等差数列参考答案:1 解析 利用等比数列和的性质依题意,3231510=S S ,而a 1=-1,故q ≠1, ∴3213232315510-=-=-S S S , 根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列, 且它的公比为q 5,∴q 5=-321,即q =21∴.321lim 1-=-=∞→q a S n n 答案 B2 解析 解出a 、b ,解对数不等式即可 答案 (-∞,8)3 解析 利用S 奇/S 偶=nn 1+得解 答案 第11项a 11=29 4 解法一 赋值法解法二 b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ), y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2答案 25 (1)解 依题意有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a解之得公差d 的取值范围为-724<d <-3 (2)解法一 由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k 为最大值的条件为 a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5 5<k <7因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大 解法二 由d <0得a 1>a 2>…>a 12>a 13,若在1≤k ≤12中有自然数k ,使得a k ≥0,且a k +1<0, 则S k 是S 1,S 2,…,S 12中的最大值由等差数列性质得,当m 、n 、p 、q ∈N *,且m +n =p +q 时,a m +a n =a p +a q 所以有2a 7=a 1+a 13=132S 13<0, ∴a 7<0,a 7+a 6=a 1+a 12=61S 12>0,∴a 6≥-a 7>0, 故在S 1,S 2,…,S 12中S 6最大解法三 依题意得 )(2)212()1(221n n dd n d n n na S n -+-=-+= 222)]245(21[,0,)245(8)]245(21[2dn d d d d n d --∴<----= 最小时,S n 最大; ∵-724<d <-3,∴6<21(5-d24)<6 5从而,在正整数中,当n =6时,[n -21 (5-d24)]2最小,所以S 6最大点评 该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易 第(2)问难度较高,为求{S n }中的最大值S k ,1≤k ≤12,思路之一是知道S k 为最大值的充要条件是a k ≥0且a k +1<0,思路之三是可视S n 为n 的二次函数,借助配方法可求解 它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点 而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解6 解 (1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a d a a a +==3, ∴n b a =a 1·3n -1①又n b a =a 1+(b n -1)d =121a b n +② 由①②得a 1·3n -1=21+n b ·a 1 ∵a 1=2d ≠0,∴b n =2·3n -1-1(2)T n =C 1n b 1+C 2n b 2+…+C nn b n=C 1n (2·30-1)+C 2n ·(2·31-1)+…+C n n (2·3n -1-1) =32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn ) =32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T 7 解 ∵{a n }为等差数列,{b n }为等比数列,∴a 2+a 4=2a 3,b 2·b 4=b 32,已知a 2+a 4=b 3,b 2·b 4=a 3,∴b 3=2a 3,a 3=b 32,得b 3=2b 32,∵b 3≠0,∴b 3=21,a 341 由a 1=1,a 3=41,知{a n }的公差d =-83,∴S 10=10a 1+2910⨯d =855由b 1=1,b 3=21,知{b n }的公比q =22或q =-22,).22(32311)1(,22);22(32311)1(,221011010110-=--=-=+=--==q q b T q q q b T q 时当时当8 证明 (1)∵{a n }是等差数列,∴2a k +1=a k +a k +2, 故方程a k x 2+2a k +1x +a k +2=0可变为(a k x +a k +2)(x +1)=0, ∴当k 取不同自然数时,原方程有一个公共根-1(2)原方程不同的根为x k =kk k k k a da d a a a 2122--=+-=-+ 1,12k k a x d∴=-+ 111111()()1122222k k k k k k a a a a d x x d d d d +++---=---===-++常数11{}.12k x ∴-+是以为公差的等差数列 课前后备注13、题目 高中数学复习专题讲座数列的通项公式与求和的常用方法 高考要求数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法 重难点归纳1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性2 数列{a n }前n 项和S n 与通项a n 的关系式 a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3 求通项常用方法①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1 ③归纳、猜想法4 数列前n 项和常用求法 ①重要公式1+2+…+n =21n (n +1) 12+22+…+n 2=61n (n +1)(2n +1)13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n③裂项求和 将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项1111,!(1)!!,ctg ctg2,(1)1sin 2n n n n ααn n n n α=-⋅=+-=-++11111C C C ,(1)!!(1)!n r r n n n n n n -+=-=-++等④错项相消法 ⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法 典型题例示范讲解例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),(1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有nn c c b c b c +++ 2111=a n +1成立,求lim∞→n nn S S 212+ 命题意图 本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,以及运算能力和综合分析问题的能力知识依托 本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口错解分析本题两问环环相扣,(1)问是基础,但解方程求基本量a 1、b 1、d 、q ,计算不准易出错;(2)问中对条件的正确认识和转化是关键技巧与方法 本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{d n }运用和与通项的关系求出d n ,丝丝入扣解 (1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2, ∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1); 又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q≠1,得q =-2,x →∞∴b n =b ·q n -1=4·(-2)n -1(2)令nnb c =d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *), ∴d n =a n +1-a n =2, ∴n n b c =2,即c n =2·b n =8·(-2)n -1;∴S n =38[1-(-2)n ] ∴2lim ,1)21(2)21()2(1)2(121222212212-=--+-=----=+∞→++n n n n n nn n n S SS S例2设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3; (1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4)(n na T 命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解解 (1)由A n =23(a n -1),可知A n +1=23(a n +1-1), ∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n(2)∵32n +1=3·32n =3·(4-1)2n=3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n ]=4n +3, ∴32n +1∈{b n } 而数32n =(4-1)2n=42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++n n n n n D r r r r , 89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T 例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项(1)写出数列{a n }的前3项(2)求数列{a n }的通项公式(写出推证过程)(3)令b n =)(2111+++n n n n a a a a(n ∈N *),求lim ∞→n (b 1+b 2+b 3+…+b n -n )解析 (1)由题意,当n =1时,有11222S a =+,S 1=a 1, ∴11222a a =+,解得a 1=2 当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6当n =3时,有33222S a =+,S 3=a 1+a 2+a 3, 将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10 故该数列的前3项为2,6,10(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2 下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *) ①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1,将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2), 整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k , 所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立根据①②,上述结论对所有的自然数n ∈N *成立解法二 由题意知n n S a 222=+,(n ∈N *) 整理得,S n =81(a n +2)2, 由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2]整理得(a n +1+a n )(a n +1-a n -4)=0, 由题意知a n +1+a n ≠0,∴a n +1-a n =4,即数列{a n }为等差数列,其中a 1=2,公差d =4∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2解法三 由已知得n n S a 222=+,(n ∈N *) ①, 所以有11222++=+n n S a ②, 由②式得11222++=+-n n n S S S ,整理得S n +1-22·1+n S +2-S n =0, 解得n n S S ±=+21,由于数列{a n }为正项数列,而2,211>+∴=+n n S S S , 因而n n S S +=+21,即{S n }是以21=S 为首项,以2为公差的等差数列所以n S = 2+(n -1) 2=2n ,S n =2n 2,故a n =⎩⎨⎧≥-=-=-)2(,24)1(,21n n S S n n n 即a n =4n -2(n ∈N *)(3)令c n =b n -1,则c n =)2(2111-+++n n n n a a a a1212111[(1)(1)],221212121n n n n n n +-=-+-=--+-+ 1212n n b b b n c c c +++-=+++111111(1)()()1,335212121n n n =-+-++-=--++121()(1) 1.lim lim 21n n n b b b n n →∞→∞∴+++-=-=+ 学生巩固练习设z n =(21i -)n,(n ∈N *),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-z n |,则lim ∞→n S n =_________2 作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________3 数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n -1+1(1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由4 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *) (1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;(3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由 5 设数列{a n }的前n 项和为S n ,且S n =(m +1)-ma n 对任意正整数n 都成立,其中m 为常数,且m <-1(1)求证 {a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足 b 1=31a 1,b n =f (b n -1)(n ≥2,n ∈N *) 试问当m 为何值时,)(3lim )lg (lim 13221n n n n n n b b b b b b a b -∞→∞→+++=⋅ 成立?6 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145 (1)求数列{b n }的通项b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论 设数列{a n }的首项a 1=1,前n 项和S n 满足关系式 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4…)(1)求证 数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (11-n b )(n =2,3,4…),求数列{b n }的通项b n ;(3)求和 b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1参考答案,)22(|)21()21(|||:.1111+++=---=-=n n n n n n i i z z c 设解析 22)22(1221])22(1[2121--=--=+++=∴nn n n c c c S 221222221lim +=+=-=∴∞→n n S 答案 1+22 2 解析 由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a ,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,∴这些圆的周长之和c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2, 面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2答案 周长之和233πa ,面积之和9πa 23 解 (1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n , (2)T n =2n +n -1(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6 猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略)4 解 (1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }成等差数列,d =1414--a a =-2,∴a n =10-2n (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n)1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n n n n b b b T n n ;要使T n >32m总成立,需32m<T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为75 解 (1)由已知S n +1=(m +1)-ma n +1 ①, S n =(m +1)-ma n ②, 由①-②,得a n +1=ma n -ma n +1,即(m +1)a n +1=ma n 对任意正整数n 都成立 ∵m 为常数,且m <-1∴11+=+m ma a n n ,即{1+n n a a }为等比数列 (2)当n =1时,a 1=m +1-ma 1,∴a 1=1,从而b 11 由(1)知q =f (m )=1+m m,∴b n =f (b n -1)=111+--n n b b (n ∈N *,且n ≥2)∴1111-+=n n b b ,即1111=--n n b b , ∴{n b 1}为等差数列 ∴nb 1=3+(n -1)=n +2, 21+=∴n b n (n ∈N *) 11(),(lg )[lg ]lg ,lim lim 1211n n n n n n m n m m a b a m n m m -→∞→∞-=∴⋅==++++122311111113()3()1lim lim 344512n n n n b b b b b b n n -→∞→∞+++=-+-++-=++ 而lg 1,10,119m m m m m =∴=∴=++由题意知6 解 (1)设数列{b n }的公差为d ,由题意得 ⎪⎩⎪⎨⎧=-+=1452)110(1010111d b b 解得b 1=1,d =3,∴b n =3n -2(2)由b n =3n -2,知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+231-n)],31log a b n +1=log因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小,取n =1时,有(1+1)>3113+⋅ 取n =2时,有(1+1)(1+41)>3123+⋅…由此推测(1+1)(1+41)…(1+231-n )>313+n ①若①式成立,则由对数函数性质可判定当a >1时,S n >31log a b n +1, ② 当0<a <1时,S n <31log a b n +1,③下面用数学归纳法证明①式(ⅰ)当n =1时,已验证①式成立 (ⅱ)假设当n =k 时(k ≥1),①式成立,即313)2311()411)(11(+>-+++k k那么当n =k +1时,1111(11)(1)(1)(1))2).4323(1)231k k k k ++++>+=+-+-+ 22232(32)(34)(31)2)](31)k k k k k+-+++-=+2940,(32)(31)31k k k k +=>∴+>=++111(11)(1)(1)(1)43231k k ++++>-+ 因而这就是说①式当n =k +1时也成立由(ⅰ)(ⅱ)可知①式对任何正整数n 都成立由此证得 当a >1时,S n >31log a b n +1;当0<a <1时,S n <31log a b n +1 7 解 (1)由S 1=a 1=1,S 2=1+a 2,得3t (1+a 2)-(2t +3)=3t∴a 2=tt a a t t 332,33212+=+ 又3tS n -(2t +3)S n -1=3t , ① 3tS n -1-(2t +3)S n -2=3t ②①-②得3ta n -(2t +3)a n -1=0∴tt a a n n 3321+=-,n =2,3,4…, 所以{a n }是一个首项为1公比为tt 332+的等比数列; (2)由f (t )=t t 332+=t132+,得b n =f (11-n b )=32+b n -1可见{b n }是一个首项为1,公差为32的等差数列于是b n =1+32(n -1)=312+n ; (3)由b n =312+n ,可知{b 2n -1}和{b 2n }是首项分别为1和35,公差均为34的等差数列, 于是b 2n =314+n , ∴b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1 =b 2(b 1-b 3)+b 4(b 3-b 5)+…+b 2n (b 2n -1-b 2n +1) =-34 (b 2+b 4+…+b 2n )=-34·21n (35+314+n )=-94 (2n 2+3n ) 课前后备注14、题目 高中数学复习专题讲座构建数学模型解数列综合题和应用性问题 高考要求纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题 这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度 重难点归纳1 解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题2 纵观近几年高考应用题看,解决一个应用题,重点过三关(1)事理关 需要读懂题意,明确问题的实际背景,即需要一定的阅读能力(2)文理关 需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系 (3)事理关 在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化 构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力 典型题例示范讲解例1从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上41(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?。
2011届高考数学一轮复习精品题集分类汇编之复数(11页)
复数第3章 数系的扩充与复数的引入 §3.1复数的概念重难点:理解复数的基本概念;理解复数相等的充要条件;了解复数的代数表示法及其几何意义. 考纲要求:①理解复数的基本概念. ②理解复数相等的充要条件.③了解复数的代数表示法及其几何意义.经典例题: 若复数1z i =+,求实数,a b 使22(2)az bz a z +=+。
(其中z 为z 的共轭复数).当堂练习: 1.0a =是复数(,)a bia b R +∈为纯虚数的( )A .充分条件 B.必要条件 C.充要条件 D.非充分非必要条件2设1234,23z i z i =-=-+,则12z z -在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.=+-2)3(31i i( )A .i 4341+B .i 4341--C .i2321+D .i2321--4.复数z 满足()1243i Z i +=+,那么Z =( )A .2+iB .2-iC .1+2iD .1-2i5.如果复数212bii -+的实部与虚部互为相反数,那么实数b 等于( )A. 2B.23C.2D.-236.集合{Z ︱Z =Z n i i nn ∈+-,},用列举法表示该集合,这个集合是( )A {0,2,-2} B.{0,2}C.{0,2,-2,2i }D.{0,2,-2,2i ,-2i } 7.设O 是原点,向量,OA OB →→对应的复数分别为23,32i i --+,那么向量BA →对应的复数是( ).55A i -+ .55B i -- .55C i + .55D i -8、复数123,1z i z i =+=-,则12z z z =⋅在复平面内的点位于第( )象限。
A .一 B.二 C.三 D .四 9.复数2(2)(11)()a a a ia R --+--∈不是纯虚数,则有( ).0A a ≠ .2B a ≠ .02C a a ≠≠且 .1D a =-10.设i 为虚数单位,则4(1)i +的值为 ( )A .4 B.-4 C.4i D.-4i11.设i z i C z 2)1(,=-∈且(i 为虚数单位),则z= ;|z|= .12.复数21i +的实部为 ,虚部为 。
「精选」人教版最新高考数学一轮复习经典习题集附参考答案-精选文档
第一章集合与逻辑用语(附参考答案)第1讲 集合的含义与基本关系1.(2011年江西)若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩NC .(∁U M )∪(∁U N )D .(∁U M )∩(∁U N )2.(2011年湖南)设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =( ) A .{1,2,3} B .{1,3,5} C .{1,4,5} D .{2,3,4}3.已知集合A ={1,2a },B ={a ,b },若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B 为( )A.⎩⎨⎧⎭⎬⎫12,1,bB.⎩⎨⎧⎭⎬⎫-1,12 C.⎩⎨⎧⎭⎬⎫1,12 D.⎩⎨⎧⎭⎬⎫-1,12,1 4.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如图K1-1-1所示,则阴影部分所示的集合的元素共有( )图K1-1-1A .3个B .2个C .1个D .无穷多个5.(2011年广东)已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x 、y 为实数,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .36.(2011年湖北)已知U ={y |y =log 2x ,x >1},P =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >2,则∁U P =( ) A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎭⎫0,12 C.()0,+∞D.()-∞,0∪⎣⎡⎭⎫12,+∞ 7.(2011年上海)若全集U =R ,集合A ={x |x ≥1}∪{x |x ≤0},则∁U A =________________.8.(2011年北京)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是____________.9.(2011年安徽合肥一模)A ={1,2,3},B ={x ∈R |x 2-ax +b =0,a ∈A ,b ∈A },求A ∩B =B 的概率.10.(2011届江西赣州联考)已知函数y =ln(2-x )[x -(3m +1)]的定义域为集合A ,集合B =⎩⎨⎧⎭⎬⎫x |x -(m 2+1)x -m <0. (1)当m =3时,求A ∩B ;(2)求使B ⊆A 的实数m 的取值范围.第2讲 命题及其关系、充分条件与必要条件1.(2011年湖南)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.(2010年陕西)“a >0”是“|a |>0”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件 D .既不充分也不必要条件3.a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(a x +b )·(x b -a )为一次函数”的( ) A .充分而不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.(2010年广东)“m <14”是“一元二次方程x 2+x +m =0”有实数解的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件 5.对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“a +5是无理数”是“a 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .46.(2011年山东)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =37.(2010年上海)“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件 8.给定下列命题:①若k >0,则方程x 2+2x -k =0有实数根; ②“若a >b ,则a +c >b +c ”的否命题; ③“矩形的对角线相等”的逆命题;④“若xy =0,则x ,y 中至少有一个为0”的否命题. 其中真命题的序号是________.9.已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),且綈p是綈q的必要不充分条件,求实数m的取值范围.10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.第3讲 简单的逻辑联结词、全称量词与存在量词1.(2011年北京)若p 是真命题,q 是假命题,则( ) A .p ∧q 是真命题 B .p ∨q 是假命题 C .綈p 是真命题 D .綈q 是真命题2.(2010年湖南)下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 3>0 D .∀x ∈R,2x >0 3.下列四个命题中的真命题为( ) A .若sin A =sin B ,则∠A =∠BB .若lg x 2=0,则x =1C .若a >b ,且ab >0,则1a <1bD .若b 2=ac ,则a ,b ,c 成等比数列4.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∃a ∈R ,f (x )是偶函数 B .∃a ∈R ,f (x )是奇函数C .∀a ∈R ,f (x )在(0,+∞)上是增函数D .∀a ∈R ,f (x )在(0,+∞)上是减函数5.(2011年广东揭阳市二模)已知命题p :∃x ∈R ,cos x =54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧綈q 是真命题C .命题綈p ∧q 是真命题D .命题綈p ∧綈q 是假命题6.(2011届广东汕头水平测试)命题“∀x >0,都有x 2-x ≤0”的否定是( ) A .∃x >0,使得x 2-x ≤0 B .∃x >0,使得x 2-x >0 C .∀x >0,都有x 2-x >0 D .∀x ≤0,都有x 2-x >07.如果命题P :∅∈{∅},命题Q :∅⊆{∅},那么下列结论不正确的是( ) A .“P 或Q ”为真 B .“P 且Q ”为假 C .“非P ”为假 D .“非Q ”为假8.(2010年四川)设S 为实数集R 的非空子集.若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集; ②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集. 其中的真命题是________(写出所有真命题的序号).9.设函数f (x )=x 2-2x +m .(1)若∀x ∈[0,3],f (x )≥0恒成立,求m 的取值范围; (2)若∃x ∈[0,3],f (x )≥0成立,求m 的取值范围.10.已知m ∈R ,设命题P :|m -5|≤3;命题Q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使命题“P 或Q ”为真命题的实数的取值范围.第二章 函数第1讲 函数与映射的概念1.下列函数中,与函数y =1x 有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x2.(2010年重庆)函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)3.(2010年广东)函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞) C .[1,+∞) D .[2,+∞)4.给定集合P ={x |0≤x ≤2},Q ={y |0≤y ≤4},下列从P 到Q 的对应关系f 中,不是映射的为( )A .f :x →y =2xB .f :x →y =x 2C .f :x →y =52x D .f :x →y =2x5.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)6.若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是__________. 7.已知函数f (x ),g (x )分别由下表给出:则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________.8.(2011年广东广州综合测试二)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=pq,例如f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916.其中正确的序号为________(填入所有正确的序号).9.(1)求函数f (x )=lg (x 2-2x )9-x2的定义域; (2)已知函数f (2x)的定义域是[-1,1],求f (log 2x )的定义域.10.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.第2讲 函数的表示法1.设f (x +2)=2x +3,则f (x )=( ) A .2x +1 B .2x -1 C .2x -3 D .2x +72.(2011年浙江)已知f (x )=⎩⎪⎨⎪⎧x 2(x >0),f (x +1)(x ≤0),则f (2)+f (-2)的值为( )A .6B .5C .4D .23.设f ,g 都是由A 到A 的映射,其对应关系如下表(从上到下):则与f [g (1)]值相同的是( A .g [f (1)] B .g [f (2)] C .g [f (3)] D .f [f (4)]4.(2010届广州海珠区第一次测试)直角梯形ABCD 如图K2-2-1(1),动点P 从点B 出发,由B →C →D →A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为f (x ).如果函数y =f (x )的图象如图(2),则△ABC 的面积为( )(1) (2)图K2-2-1A .10B .32C .18D .165.(2011年福建)已知函数f (x )=⎩⎪⎨⎪⎧2x (x >0),x +1 (x ≤0),f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .36.已知f (x )=x +1x -1(x ≠±1),则( )A .f (x )·f (-x )=1B .f (-x )+f (x )=0C .f (x )·f (-x )=-1D .f (-x )+f (x )=17.(2010年陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2 (x <1),x 2+ax (x ≥1),若f [f (0)]=4a ,则实数a =________.8.(2011年广东广州调研)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈(-∞,1),x 2,x ∈[1,+∞).若f (x )>4,则x 的取值范围是____________.9.二次函数f (x )满足f (x +1)-f (x )=2x +3,且f (0)=2. (1)求f (x )的解析式;(2)求f (x )在[-3,4]上的值域;(3)若函数f (x +m )为偶函数,求f [f (m )]的值; (4)求f (x )在[m ,m +2]上的最小值.10.定义:如果函数y =f (x )在定义域内给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.(1)判断函数f (x )=-x 2+4x 在区间[0,9]上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;(2)若函数f (x )=-x 2+mx +1是区间[-1,1]上的平均值函数,试确定实数m 的取值范围.第3讲 函数的奇偶性与周期性1.已知函数f (x )=ax 2+bx +3a +b 是定义域为[a -1,2a ]的偶函数,则a +b 的值是( )A .0 B.13C .1D .-12.(2010年重庆)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称3.(2011年广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数4.(2011年湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -x B.e x +e -x 2 C.e -x -e x 2 D.e x -e -x 25.(2010年山东)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .36.(2011年辽宁)若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1 7.(2011年湖南)已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________.8.函数f (x )对于任意实数x 满足条件f (x +2)f (x )=1,若f (1)=-5,则f (-5)=________.9.已知函数f (x ),当x >0时,f (x )=x 2-2x -1. (1)若f (x )为R 上的奇函数,求f (x )的解析式;(2)若f (x )为R 上的偶函数,能确定f (x )的解析式吗?请说明理由.10.已知定义在R 上的函数f (x )=-2x +a2x +1+b(a ,b 为实常数).(1)当a =b =1时,证明:f (x )不是奇函数; (2)设f (x )是奇函数,求a 与b 的值;(3)当f (x )是奇函数时,证明对任何实数x ,c 都有f (x )<c 2-3c +3成立.第4讲 函数的单调性与最值1.(2011年全国)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1C .y =-x 2+1D .y =2-|x |2.(2011届广东惠州调研)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0.则a 的取值范围是( )A .(3,10)B .(2 2,3)C .(2 2,4)D .(-2,3)3.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)4.(2010年北京)给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.(2011届上海十三校联考)设函数y =f (x )在R 内有定义,对于给定的正数k ,定义函数f k (x )=⎩⎪⎨⎪⎧f (x ) (f (x )≤k ),k (f (x )>k ).取函数f (x )=log 2|x |.当k =12时,函数f k (x )的单调递增区间为________.6.(2011年江苏)函数f (x )=log 5(2x +1)的单调增区间是__________.7.(2011年上海)设g (x )是定义在R 上、以1为周期的函数,若f (x )=x +g (x )在[3,4]上的值域为[-2,5],则f (x )在区间[-10,10]上的值域为____________.8.(2011年北京)已知函数f (x )=⎩⎪⎨⎪⎧2x (x ≥2),(x -1)3 (x <2),若关于x 的方程f (x )=k 有两个不同的实根,则数k 的取值范围是________.9.已知函数f (x )=x 2+ax +4x(x ≠0).(1)若f (x )为奇函数,求a 的值;(2)若f (x )在[3,+∞)上恒大于0,求a 的取值范围.10.(2011年广东广州综合测试)已知函数f (x )=ax 2+bx +c (a ≠0)满足f (0)=0,对于任意x ∈R 都有f (x )≥x ,且f ⎝⎛⎭⎫-12+x =f ⎝⎛⎭⎫-12-x ,令g (x )=f (x )-|λx -1|(λ>0). (1)求函数f (x )的表达式; (2)求函数g (x )的单调区间.第三章 基本初等函数(Ⅰ)第1讲 指数式与指数函数1.(2011年山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 B.33C .1 D. 32.函数y =(a 2-3a +3)a x 是指数函数,则a 的值为( ) A .1或2 B .1C .2D .a >0且a ≠1的所有实数 3.下列函数中值域为正实数的是( ) A .y =-5xB .y =⎝⎛⎭⎫131-xC .y =⎝⎛⎭⎫12x-2 D .y =1-2x4.若函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第二、三、四象限,则一定有( ) A .0<a <1且b >1 B .a >1且b >0 C .0<a <1且b <0 D .a >1且b <05.设函数f (x )=1221(0), (>0)x x x x -⎧-≤⎪⎨⎪⎩若f (x 0)>1,则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)6.已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若p ∧q 为真命题,则实数m 的取值范围是( )A .a ≤23B .0<a <12 C.12<a ≤23 D.12<a <17.方程2x +x 2=3实数解的个数为______. 8.关于x 的不等式2·32x -3x +a 2-a -3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为________________________________________________________________________.9.已知函数f (x )=2x-12x +1.(1)求f (x )的定义域; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数.10.已知函数f (x )是定义在R 上的偶函数,且x ≥0时,f (x )=⎝⎛⎭⎫12x.(1)求f (-1)的值;(2)求函数f (x )的值域A ;(3)设函数g (x )=-x 2+(a -1)x +a 的定义域为集合B ,若A ⊆B ,求实数a 的取值范围.第2讲 对数式与对数函数1.(2010年浙江)已知函数f (x )=log 2(x +1),若f (a )=1,a =( )A .0B .1C .2D .3 2.(2011年北京)如果12log x <12log y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x3.(2010年山东)函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞) 4.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为( )A.2πB.π2 C .π-2 D.π2或2π5.(2011年天津)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b6.(2011年广东佛山质量检测)已知函数f (x )=⎩⎪⎨⎪⎧2x (x ≤0),log 2x (x >0),则f [f (-1)]=( )A .-2B .-1C .1D .27.(2011年辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x (x ≤1),1-log 2x (x >1),则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)8.(2011年湖北)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级.9级地震的最大振幅是5级地震最大振幅的______倍.9.已知函数f (x )=lg(ax 2+2x +1).(1)若f (x )的定义域为R ,求实数a 的范围; (2)若f (x )的值域为R ,求实数a 的范围.10.若方程lg(-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有唯一解,求实数m 的取值范围.第3讲 一次函数、二次函数1.设二次函数f (x )=ax 2+bx +c (a ≠0),如果f (x 1)=f (x 2)(其中x 1≠x 2),则f ⎝⎛⎭⎫x 1+x 22等于( )A .-b 2aB .-ba C .c D.4ac -b 24a2.已知二次函数f (x )的图象如图K3-3-1所示,则其导函数f ′(x )的图象大致形状是( )图K3-3-13.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1) D .(0,1]4.设b >0,二次函数y =ax 2+bx +a 2-1的图象为图K3-3-2所示四个图中的一个,则a 的值为( )图K3-3-2A .1B.-1C.-1-52D.-1+525.函数y =x -2x -1的图象是( )6.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,那么|f (x +1)|<1的解集是( )A .(1,4)B .(-1,2)C .(-∞,1)∪[4,+∞)D .(-∞,-1)∪[2,+∞) 7.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=__________.8.设函数y=x2+(a+2)x+3,x∈[a,b]的图象关于直线x=1对称,则b=______.9.已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.10.定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.(1)判断函数f(x)=x2-2x+2在[1,2]上是否具有“DK”性质,说明理由;(2)若f(x)=x2-ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.第4讲 幂函数1.下列结论中正确的个数有( )①幂函数的图象不可能过第四象限; ②幂函数的图象过定点(0,1)和(1,1);③幂函数y =x α,当α>0时,幂函数是增函数;当α<0时,幂函数是减函数; ④当α=0时,y =x α的图象是一条直线. A .0个 B .1个 C .2个 D .3个2.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,33.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图象可能是 ( )4.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .05.已知函数f (x )=a x ,g (x )=x a ,h (x )=log a x (a >0且a ≠1),在同一直角坐标系中画出其中两个函数在第一象限内的图象,其中正确的是( )6.(2010年安徽)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a7.(2011年广东揭阳一模)已知α∈⎩⎨⎧⎭⎬⎫-1,12,1,2,则使函数y =x α在[0,+∞)上单调递增的所有α值为_______________________________________________.8.请把图K3-4-1所示幂函数图象的代号填入表格内.图K3-4-1①y =x23;②y =x -2;③y =x 12;④y =x -1;⑤y =x 134312-539.将下列各数从小到大排列起来:⎝⎛⎭⎫2313-,⎝⎛⎭⎫3512,323,⎝⎛⎭⎫2512, ⎝⎛⎭⎫3223,⎝⎛⎭⎫560,(-2)3,⎝⎛⎭⎫5313-.10.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时,f (x )是: (1)幂函数;(2)幂函数,且是(0,+∞)上的增函数; (3)正比例函数; (4)反比例函数; (5)二次函数.第5讲 函数的图象1.(2011年安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b ) 2.下列四个函数中,图象如图K3-5-1所示的只能是( )图K3-5-1A .y =x +lg xB .y =x -lg xC .y =-x +lg xD .y =-x -lg x3.(2011年陕西)方程|x |=cos x 在(-∞,+∞)内( ) A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根4.与函数y =0.1lg(2x -1)的图象相同的函数是( )A .y =2x -1⎝⎛⎭⎫x >12B .y =12x -1C .y =12x -1⎝⎛⎭⎫x >12 D .y =⎪⎪⎪⎪12x -1 5.(2011年陕西)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )A BC D 6.方程lg x =sin x 的实根的个数为( )A .1个B .2个C .3个D .4个7.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.有下列函数:①f (x )=sin2x ;②g (x )=x 3;③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④8.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是____.9.(2011年陕西3月模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -2 (x ≤-1),(x -2)(|x |-1) (x >-1),如果方程f (x )=a有四个不同的实数根,求实数a的取值范围.10.设a为实数,函数f(x)=x3-x2-x+a.(1)求f(x)的极值;(2)当a在什么范围内取值时,曲线y=f(x)与x轴仅有一个交点.第6讲 函数与方程1.(2011年浙江)设函数f (x )=⎩⎪⎨⎪⎧-x (x ≤0),x 2 (x >0).若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2 2A.(-1,0) 3.设函数f (x )=x 3-4x +3+ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫0,12,⎝⎛⎭⎫12,2内均无零点 B .在区间⎝⎛⎭⎫0,12,⎝⎛⎭⎫12,2内均有零点 C .在区间⎝⎛⎭⎫0,12内无零点,在区间⎝⎛⎭⎫12,2内有零点 D .在区间⎝⎛⎭⎫0,12内有零点,在区间⎝⎛⎭⎫12,2内无零点 4.(2011年陕西)函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点5.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( )A.⎝⎛⎭⎫-34,0B.⎝⎛⎦⎤-34,0C.⎝⎛⎭⎫0,34D.⎣⎡⎭⎫0,34 6.(2011年陕西)设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =______.7.函数f (x )=ln(x +2)-2x的零点所在区间是(n ,n +1),则正整数n =____.8.下面是用区间二分法求方程2sin x +x -1=0在[0,1]内的一个近似解(误差不超过0.001)的算法框图,如图K3-6-1所示,则判断框内空白处应填入____________,才能得到需要的解.图K3-6-1(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围;(2)若方程两根均在区间(0,1)内,求m的范围.10.已知函数f(x)=e x+2x2-3x.(1)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x 的近似值(误差不超过0.2);(2)当x≥1时,若关于x的不等式f(x)≥ax恒成立,试求实数a的取值范围(参考数据e≈2.7,e≈1.6,e0.3≈1.3).第7讲 抽象函数1.(2010年陕西)下列四类函数中,有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数 2.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( )A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 1)<03.已知函数f (x )是定义在R 上的函数且满足f ⎝⎛⎭⎫x +32=-f (x ),若x ∈(0,3)时,f (x )=log 2(3x +1),则f (2 011)=( )A .4B .-2C .2D .log 274.已知定义域为R 的偶函数f (x )的一个单调递增区间是(2,6),那么x 的函数f (2-x )有( )A .对称轴为x =-2,一个递减区间是(4,8)B .对称轴为x =-2,一个递减区间是(0,4)C .对称轴为x =2,一个递增区间是(4,8)D .对称轴为x =2,一个递增区间是(0,4)5.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x +1)为偶函数 6.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)7.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1)-1x 1<0(x 1≠0);⑤f (-x 1)=1f (x 1).当f (x )=2x 时,上述结论中正确结论的序号是________.8.已知y =f (x )是定义在R 上的奇函数,且y =f ⎝⎛⎭⎫x +π2为偶函数,对于函数y =f (x )有下列几种描述:①y =f (x )是周期函数;②x =π是它的一条对称轴;③(-π,0)是它图象的一个对称中心;④当x =π2时,它一定取最大值.其中描述正确的是____________.9.设函数y =f (x )是定义在(0,+∞)上的减函数,并且同时满足下面两个条件: ①对正数x ,y 都有f (xy )=f (x )+f (y );②f ⎝⎛⎭⎫12=1.(1)求f (1)和f (4)的值;(2)求满足f (x )+f (5-x )>-2的x 的取值范围.10.函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.第8讲 函数模型及其应用1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元.一客户购买400吨,单价应该是( )A .820元B .840元C .860元D .880元2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .123.(2011届山东聊城调研)已知某驾驶员喝了m 升酒后,血液中酒精的含量f (x )(毫克/毫升)随时间x (小时)变化的规律近似满足表达式f (x )=⎩⎪⎨⎪⎧5x -2(0≤x ≤1),35·⎝⎛⎭⎫13x(x >1),《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不超过0.02毫克/毫升,此驾驶员至少要过( )小时后才能开车(精确到1小时).( )A .2B .3C .4D .54.进货单价为80元的商品400个,按90元一个可以全部卖出,已知这种商品每涨价1元,其销售量就减少20个,问售价( )元时获得的利润最大?( )A .85B .90C .95D .1005.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为______台.6.(2010年浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月至十月份销售总额至少达7 000万元,则x 的最小值是______.7.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定: ①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款______元.8.(2011届海淀区统测)如图K3-8-1(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K3-8-1(2)(3)所示.图K3-8-1给出以下说法:(1)图(2)的建议是:提高成本,并提高票价;(2)图(2)的建议是:降低成本,并保持票价不变; (3)图(3)的建议是:提高票价,并保持成本不变; (4)图(3)的建议是:提高票价,并降低成本. 其中所有说法正确的序号是________.9.已知某企业原有员工2 000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴0.5万元.据评估,当待岗员工人数x 不超过原有员工1%时,留岗员工每人每年可为企业多创利润⎝⎛⎭⎫1-81100x 万元;当待岗员工人数x 超过原有员工1%时,留岗员工每人每年可为企业多创利润0.959 5万元.为使企业年利润最大,应安排多少员工待岗?10.(2011年湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时).第四章 导数第1讲 导数的意义及运算1.已知函数f (x )=sin x +a 2,则f ′(x )=( ) A .cos x +2a B .cos x C .sin x +2a D .2a2.若f ′(x 0)=2,则lim k →0f (x 0-k )-f (x 0)2k 等于( )A .-1B .-2C .-1 D.123.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,函数y =f (x )在区间[a ,b ]上的图象可能是( )4.(2011年山东)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .155.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-126.(2011年“江南十校”联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.8.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为________,加速度为________.9.(2010年全国)若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,求a 的值.10.已知曲线y=2x2+3.(1)求曲线在点P(1,5)处的切线方程;(2)求曲线过点Q(2,9)的切线方程.第2讲 导数在函数中的应用1.(2011届河北唐山一中统测)若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ′(x )的图象不可能是( )2.(2011年海南海口调研测试)函数y =f (x )在定义域⎝⎛⎭⎫-32,3内可导,其图象如图K4-2-1所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为( )图K4-2-1A.⎣⎡⎦⎤-32,12∪[1,2)B.⎣⎡⎦⎤-1,12∪⎣⎡⎦⎤43,83 C.⎣⎡⎦⎤-13,1∪[2,3) D.⎝⎛⎦⎤-32,-1∪⎣⎡⎦⎤12,43∪⎣⎡⎦⎤83,3 3.已知f (x )=x 3-6x +m (m 是常数)在[-1,1]上的最小值是2,则此函数在[-1,1]上的最大值是( )A .10B .11C .12D .134.(2011年福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .95.(2011年浙江)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( )6.如图K4-2-2为函数f (x )=ax 3+bx 2+cx +d 的图象,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为__________________________________________________.图K4-2-27.(2011年辽宁)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是____________. 8.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m =________,n =________.9.已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.10.(2011年福建)已知a ,b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e)=2(e =2.718 28…是自然对数的底数).(1)求实数b 的值;(2)求函数f (x )的单调区间;(3)当a =1时,是否同时存在实数m 和M (m <M ),使得对每一个t ∈[m ,M ],直线y =t与曲线y =f (x )⎝⎛⎭⎫x ∈⎣⎡⎦⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.第3讲 导数的综合应用1.设f (x )=2x 2-x 3,则f (x )的单调递减区间是( )A.⎝⎛⎭⎫0,43B.⎝⎛⎭⎫43,+∞ C .(-∞,0) D .(-∞,0)和⎝⎛⎭⎫43,+∞2.(2011年江西)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)3.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1)4.某厂生产某种产品x 件的总成本C (x )=1 200+275x 3(万元),又知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为( )元时总利润最大.( )A .10B .25C .30D .405.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件6.(2011年辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)7.(2011年湖南)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时,t 的值为( )A .1 B.12 C.52 D.228.(2010届湖南师大附中调研)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是__________.9.(2011年江西)设f (x )=13x 3+mx 2+nx .(1)如果g (x )=f ′(x )-2x -3在x =-2处取得最小值-5,求f (x )的解析式; (2)如果m +n <10(m ,n ∈N *),f (x )的单调递减区间的长度是正整数,试求m 和n 的值(注:区间(a ,b )的长度为b -a ).10.(2011年福建)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.第五章 不等式第1讲 不等式的概念与性质1.(2011年浙江)若a ,b 为实数,则“0<ab <1”是“b <1a”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b成立的有( )A .1个B .2个C .3个D .4个3.在等比数列{a n }中,a n >0(n ∈N ),公比q ≠1.则( ) A .a 1+a 8>a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8=a 4+a 5 D .不确定4.已知三个不等式:ab >0;bc -ad >0;c a -db>0(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A .0B .1C .2D .35.(2010届湖北八校联考)若a <b <0,则下列不等式中不一定成立的是( ) A.1a >1b B.1a -b >1b C.-a >-b D .|a |>-b6.(2011年湖北黄冈质检)已知x >y >z ,且x +y +z =0,下列不等式中成立的是( ) A .xy >yz B .xz >yz C .xy >xz D .x |y |>z |y |7.若不等式(-1)na <2+(-1)n +1n对于任意正整数n 恒成立,则实数a 的取值范围是( )A.⎣⎡⎭⎫-2,32B.⎝⎛⎦⎤-2,32 C.⎣⎡⎭⎫-3,32 D.⎝⎛⎭⎫-3,32 8.用若干辆载重为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装8吨,则最后一辆汽车不满也不空.则有汽车______辆.9.a >0,b >0,求证⎝⎛⎭⎫a2b 12+⎝⎛⎭⎫b 2a 12≥a12+b 12.10.已知α∈(0,π),比较2sin2α与sin α1-cos α的大小.第2讲 一元二次不等式及其解法1.(2011年福建)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)2.如果kx 2+2kx -(k +2)<0恒成立,则实数k 的取值范围是( ) A .-1≤k ≤0 B .-1≤k <0 C .-1<k ≤0 D .-1<k <03.已知函数f (x )=⎩⎪⎨⎪⎧x +2,(x ≤0),-x +2,(x >0),则不等式f (x )≥x 2的解集是( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]4.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(-∞,1)∪(2,+∞)5.(2011年湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)6.(2010年上海)不等式2-xx +4>0的解集是__________.7.(2011年上海)不等式x +1x≤3的解为____________.8.不等式ax 2+bx +c >0的解集区间为⎝⎛⎭⎫-13,2,对于系数a ,b ,c ,则有如下结论:①a <0;②b >0;③c >0;④a +b +c >0;⑤a -b +c >0,其中正确的结论的序号是_________.9.已知不等式2x +1>1的解集为A ,不等式x 2-(2+a )x +2a <0的解集为B .(1)求集合A 及B ;(2)若A ⊆B ,求实数a 的取值范围.10.已知a ,b ,c ∈R 且a <b <c ,函数f (x )=ax 2+2bx +c 满足f (1)=0,且关于t 的方程f (t )=-a 有实根(其中t ∈R 且t ≠1).(1)求证:a <0,c >0;(2)求证:0≤ba<1.第3讲 算术平均数与几何平均数1.A 为两正数a ,b 的等差中项,G 为a ,b 正的等比中项,则ab 与AG 的大小关系为( ) A .ab ≤AG B .ab ≥AG C .ab >AG D .ab <AG2.(2011年上海)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 3.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.144.(2011年重庆)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+2B .1+3C .3D .45.对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有常数M 中,我们把M 的最大值-1叫做f (x )=x 2+2x 的下确界,则对于a ,b ∈R 且a ,b 不全为0,a 2+b 2(a +b )2的下确界为( )A.12 B .2 C.14D .4 6.(2011年湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2· ⎝⎛⎭⎫1x 2+4y 2的最小值为________. 7.(2011年浙江)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是__________.8.(2011年湖北模拟)设a >0,b >0,称2aba +b为a ,b 的调和平均数.如图K5-3-1,C为线段AB 上的点,且AC =a ,CB =b ,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于D .连接OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段________的长度是a ,b 的几何平均数,线段________的长度是a ,b 的调和平均数.图K5-3-19.已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,求实数m 的取值范围.。
2011届高考数学一轮复习精品题集之导数
导数第3章 导数及其运用 §3.1导数概念及其几何意义重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义.经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数.当堂练习:1、在函数的平均变化率的定义中,自变量的的增量x ∆满足( ) A x ∆>0 B x ∆<0 C x ∆0≠ D x ∆=02、设函数)(x f y =,当自变量x 由0x改变到x x ∆+0时,函数值的改变量是( )A)(0x x f ∆+ Bxx f ∆+)(0 Cxx f ∆)(0 D)()(00x f x x f -∆+3、已知函数12+=x y 的图像上一点(1,2)及邻近一点)2,1(y x ∆+∆+,则x y∆∆等于( ) A 2 B 2x C x ∆+2 D 2+2)(x ∆4、质点运动规律32+=t s ,则在时间)3,3(t ∆+中,相应的平均速度是( )A t ∆+6 Bt t ∆+∆+96 C t ∆+3 D t ∆+95.函数y=f(x)在x=x0处可导是它在x=x0处连续的A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy ),则x y∆∆等于 A .4Δx+2Δx2 B .4+2Δx C .4Δx+Δx2 D .4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y -1=0,则 A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件9.设函数f(x)在x0处可导,则0lim→h hh x f h x )()(00--+等于A .f ′(x0)B .0C .2f ′(x0)D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0lim→∆x xx b x f x a x f ∆∆--∆+)()(=_____.14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t=2,Δt=0.01时,求t s ∆∆.(2)当t=2,Δt=0.001时,求t s∆∆.(3)求质点M 在t=2时的瞬时速度. 16.已知曲线y=2x2上一点A(1,2),求(1)点A 处的切线的斜率.(2)点A 处的切线方程. 17.已知函数f(x)=2 1 0 0x x x ax b x ⎧++≤⎨+>⎩,试a 、b 的值,使f(x)在x=0处可导.18.设f(x)=)()2)(1()()2)(1(n x x x n x x x +⋅⋅⋅++-⋅⋅⋅--,求f ′(1).第3章 导数及其运用重难点:能根据定义求几个简单函数的导数,能利用导数公式表及导数的四则运算法则求简单函数的导数.考纲要求:①能根据导数定义,求函数21,,,y c y x y x y x ====的导数.能利用表1给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.表1:常见基本初等函数的导数公式和常用导数运算公式:()()()10(,;sin cos ;cos sin ;nn c c xnxn N x x x x -*''''==∈==为常数);()()()();ln ;log ;11ln ;log xxxxa a ea x e aa x e xx''''====法则1[]()()()()u x v x u x v x '''±=± 法则2[]()()()()()()u x v x u x v x u x v x '''=+法则3 2()()()()()(()0)()()u x u x v x u x v x v x v x v x '''-=≠⎡⎤⎢⎥⎣⎦经典例题:求曲线y=21x x+在原点处切线的倾斜角. 当堂练习:1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6B.4a3+10a2x -6x5C.10a2x -6x5D.以上都不对2.函数y=3x (x2+2)的导数是( )A.3x2+6B.6x2C.9x2+6D.6x2+63.函数y=(2+x3)2的导数是( )A.6x5+12x2B.4+2x3C.2(2+x3)3D.2(2+x3)· 3x 4.函数y=x -(2x -1)2的导数是( )A.3-4x B.3+4xC.5+8xD.5-8x5.设函数f (x )=ax3+3x2+2,若f'(-1)=4,则a 的值为( )A.319B.316C.313D.3106.函数y=212xx-的导数是( )A.221)1(2xx -+B.22131xx-+ C.222)1(4)1(2x xx --- D.222)1()1(2x x -+7.函数y=8354-+x x 的导数是( )A.3453+xB.0C.243)83()34(5-++x x x D.243)83()34(5-++-x x x8.函数y=x xcos 1-的导数是( )A.xxx x cos 1sin cos 1--- B.2)cos 1(sin cos 1x x x x --- C.2)cos 1(sin cos 1x x x -+- D.2)cos 1(sin cos 1x xx x -+-9.函数f (x )=1213++x x 的导数是 ( )A.23)12(1++x x B.232)12(23+++x x x C.232)12(23++--x x x D.232)12(3++-x x x106.曲线y=-41x3+2x2-6在x=2处的导数为( )A.3B.4C.5D.611.曲线y=x2(x2-1)2+1在点(-1,1)处的切线方程为_________.12.函数y=xsinx -cosx 的导数为_________.13.若f (x )=xcosx+x xsin ,则f'(x )=_________.14.若f (x )=cotx,则f'(x )=_________.15.求曲线y=2x3-3x2+6x -1在x=1及x=-1处两切线的夹角. 16.已知函数f (x )=x2(x -1),若f'(x0)=f (x0),求x0的值.17.已知函数y=x x21322+-,求在x=1时的导数.18.求函数y=x x++-1212的导数.第3章 导数及其运用 §3.3导数在研究函数中的应用重难点:了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值,对多项式函数一般不超过三次;会求闭区间上函数的最大值、最小值,对多项式函数一般不超过三次.考纲要求:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值,对多项式函数一般不超过三次;会求闭区间上函数的最大值、最小值,对多项式函数一般不超过三次. 经典例题:已知函数axx 2)x (f 3+=与cbx)x (g 2+=的图象都过点P )0,2( 且在点P 处有相同的切线. (1) 求实数c ,b ,a 的值;(2) 设函数)x (g )x (f )x (F +=, 求)x (F 的单调区间, 并指出)x (F 在该区间上的单调性. 当堂练习: 1. 函数1x 3x )x (f 23+-=是减函数的区间为 ( )A. (2,)+∞B. (,2)-∞C. (,0)-∞D. (0,2) 2. 函数9x 3axx )x (f 23-++=, 已知)x (f 在3x -=时取得极值, 则=a ( )A. 2B. 3C. 4D. 53. 在函数x 8x y 3-=的图象上, 其切线的倾斜角小于4π的点中, 坐标为整数的点的个数是 ( ) A. 3 B. 2 C. 1 D. 0 4. 函数1axy 2+=的图象与直线x y =相切, 则=a ( )A. 18 B. 41C. 21D. 15. 已知函数mx21x 3)x (f 23+-=(m 为常数) 图象上点A 处的切线与直线03y x =+-的夹角为45, 则点A 的横坐标为 A. 0 B. 1 C. 0或61D. 1或616. 曲线=y x x 32+在2x =处的切线的斜率为 ( )A. 7 B. 6 C. 5 D. 47. 已知某物体的运动方程是+=t S 913t , 则当s 3t =时的瞬时速度是( )A. 10m /s B. C. 4 D. 3m /s8. 函数)(x f =5224+-x x 在区间] ,[32-上的最大值与最小值分别是 ( )A. 5, 4B. 13, 4 C. 68, 4 D. 68, 59. 已知函数y =-x 2-2x +3在区间] ,[2a 上的最大值为433, 则a 等于 ( )A. -23B. 21C. -21D. -21或-2310. 若函数y =x 3-2x 2+mx, 当x =31时, 函数取得极大值, 则m 的值为 ( )A. 3B. 2C. 1D. 3211. 曲线3xy =在点)1,1(处的切线与x 轴、直线2x =所围成的三角形的面积为 .12. 曲线1x x y 3++=在点)3,1(处的切线方程是 .13. 与直线1+-y x =0平行, 且与曲线y =132-x相切的直线方程为 .14. 曲线y =122-+x ax 在点M ),(4321-处的切线的斜率为-1, 则a = .15. 已知函数,a x 9x 3x )x (f 23+++-= (1) 求)x (f 的单调递减区间;(2) 若)x (f 在区间]2,2[ -上的最大值为20, 求它在该区间上的最小值. 16. 已知函数d ax bxx )x (f 23+++=的图象过点P )2,0(, 且在点M ))1(f ,1(--处的切线方程为07y x 6=+-.(1) 求函数)x (f y =的解析式; (2) 求函数)x (f y =的单调区间. 17. 已知函数,bx axy 23+=当1x =时, y 的极值为3.求: (1) a, b 的值; (2) 该函数单调区间.18. 设函数,5x 2x21x )x (f 23+--=若对于任意]2,1[x -∈都有m )x (f <成立, 求实数m 的取值范围.第3章 导数及其运用重难点:会利用导数解决某些实际问题.当堂练习:1.函数y=x3+x 的单调增区间为( )A.(-∞,+∞) B.(0,+∞)C.(-∞,0) D.不存在 2.若函数f(x)=x2+bx+c 的图象的顶点在第四象限,则函数f ′(x)的图象是( )3.右上图是函数y=f(x)的导函数y=f ′(x)的图象,则下面判断正确的是 ( )A.在区间(-2,1)内f(x)是增函数B.在(1,3)内f(x)是减函数C.在(4,5)内f(x)是增函数D.在x=2时f(x)取到极小值 4.下列说法正确的是( )A.函数在闭区间上的极大值一定比极小值大B.函数在闭区间上的最大值一定是极大值C.对于f(x)=x3+px2+2x+1,若|p|<6,则f(x)无极值 D.函数f(x)在区间(a,b)上一定存在最值5.若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a 的取值范围是( ) A.a ≥3 B.a=2 C.a ≤3 D.0<a<36.★若f(x)=ax3+bx2+cx+d(a>0)在R 上是增函数,则( )A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac<0 7.已知函数f(x)=ax3+(2a-1)x2+2,若x=-1是y=f(x)的一个极值点,则a 的值为( )A.2B.-2C.72D.48.在区间(0,+∞)内,函数y=ex-x 是( )A.增函数B.减函数 C.先增后减 D.先减后增9.函数y=f(x)=lnx-x 在区间(0,e ]上的最大值为( )A.1-e B.-1 C.-e D.0 10.函数y=x5-x3-2x ,则下列判断正确的是( )A.在区间(-1,1)内函数为增函数B.在区间(-∞,-1)内函数为减函数C.在区间(-∞,1)内函数为减函数D.在区间(1,+∞)内函数为增函数11.函数f(x)=x3-3x2+7的极大值是 .12.函数y=4x2+x 1的单调增区间为 .13.函数y=3x2-2lnx 的单调减区间为 .14.函数y=x4-8x2+2在[-1,3]上的最大值为 .15.已知函数y=ax 与y=-x b在区间(0,+∞)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.16.当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t 小时后的细菌数量为b(t)=105+104t-103t2. (1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么? 17.已知a 为实数,f(x)=(x2-4)(x-a).(1)求导数f ′(x);(2)若f ′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.18.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但在相同的时间内产量减少3件.在相同的时间内,最低档的产品可生产60件.问在相同的时间内,生产第几档次的产品的总利润最大?有多少元?1、设)(x f 是可导函数,且='=∆-∆-→∆)(,2)()2(lim0000x f xx f x x f x 则 ( )A .21B .-1C .0D .-22、f/(x )是f (x )的导函数,f/(x )的图象如右图所示,则f (x )的图象只可能是( )(A ) (B ) (C ) (D )3、下列函数中,在),0(+∞上为增函数的是( ) A.xy 2sin = B.xxey = C.xx y -=3D.x x y -+=)1ln(4、已知3)2(3123++++=x b bxx y 是R 上的单调增函数,则b 的取值范围是 ( )A. 21>-<b b ,或B. 21≥-≤b b ,或C. 21<<-bD. 21≤≤-b5、已知函数1)(23--+-=x axx x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A.),3[]3,(+∞--∞B.]3,3[-C. ),3()3,(+∞--∞D. )3,3(- 6、下列说法正确的是 ( ) A. 函数在闭区间上的极大值一定比极小值大; B. 函数在闭区间上的最大值一定是极大值; C. 对于12)(23+++=x px x x f ,若6||<p ,则)(x f 无极值;D.函数)(x f 在区间),(b a 上一定存在最值.7、函数223)(abx axx x f +--=在1=x 处有极值10, 则点),(b a 为 ( )A.)3,3(-B.)11,4(-C. )3,3(-或)11,4(-D.不存在8、定义在闭区间],[b a 上的连续函数)(x f y =有唯一的极值点0x x =,且)(0x f y =极小值,则下列说法正确的是A.函数)(x f 有最小值)(0x fB. 函数)(x f 有最小值,但不一定是)(0x fC.函数)(x f 的最大值也可能是)(0x fD. 函数)(x f 不一定有最小值9、函数5123223+--=x x x y 在[0,3]上的最大值和最小值分别是 ( )A. 5,15B. 5,4-C. 5,15-D. 5,16-10、函数x x x x f cos sin cos )(23-+=上最大值等于( )A .274B .278C .2716D .273211、设函数5()ln(23)f x x =-,则f ′1()3=____________________12、函数1032)(23+-=x x x f 的单调递减区间为13、函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是 14、点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2+=x y 的距离的最小值是 15、已知直线1l 为曲线22-+=x xy 在点(0,2)-处的切线,2l 为该曲线的另一条切线,且21l l ⊥ (Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 2l 和x 轴所围成的三角形的面积16、设函数.;11)(R a x ax x f ∈+-=其中(Ⅰ)当时,1=a 求函数满足1)(≤x f 时的x 的集合;(Ⅱ)求a 的取值范围,使f (x )在区间(0,+∞)上是单调减函数17、设函数f(x)=x(x-1)(x-a),(a>1)(Ⅰ)求导数f ' (x); (Ⅱ)若不等式f(x1)+ f(x2)≤0成立,求a 的取值范围18、已知cx bxaxx f +-+=2)(23在2-=x 时有极大值6,在1=x 时有极小值,求c b a ,,的值;并求)(x f 在区间[-3,3]上的最大值和最小值. 19、设函数Rx x x x f ∈+-=,56)(3(Ⅰ)求)(x f 的单调区间和极值;(Ⅱ)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围.(Ⅲ)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.1.已知命题甲:)(0='x f ,命题乙:点x 是可导函数)(x f 的极值点,则甲是乙的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分而不必要条件 2、已知椭圆的焦点为()11,0F -和()21,0F ,点P 在椭圆上的一点,且12F F 是12PF PF 和的等差中项,则该椭圆的方程为( )A 、221169xy+= B 、2211612xy+= C 、22143xy+= D 、22134xy+=3、已知4||=AB ,点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ,则||PA 的最大值和最小值分别是 ( )A .5、3 B .10、2 C .5、1 D .6、44、椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为( )A、2 B 、34 C、2 D 、125.双曲线x2-ay2=1的焦点坐标是A .(a +1, 0) , (-a +1, 0) B .(a -1, 0), (-a -1, 0)C .(-aa 1+, 0),(a a 1+, 0)D .(-a a 1-, 0), (aa 1-, 0)6、若双曲线22221xy ab-=与()222210xy a b ab-=->>的离心率分别为12,e e ,则当,a b 变化时,2212e e +的最小值是A. B .4 C. D .37.曲线y=x3+x-2在点P0处的切线平行于直线y=4x-1,则P0的坐标可能是( )A.(0,1)B.(1,0)C.(-1,0)D.(1,4)8. 函数xaxx f 1)(2-=在区间),0(+∞上单调递增,那么实数a 的取值范围是( )A .0≥aB .0>aC .0≤aD .0<a9、方程x3-6x2+9x -10=0的实根个数是 ( )A 、3 B 、2 C 、1 D 、0 10.已知函数f(x)的导函数)('x f 的图像如左图所示,那么函数f(x)的图像最有可能的是( )11.命题2,3xRx ∀∈-的否命题是.12.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的 条件。
2011届高考数学第一轮复习精品试题:圆锥曲线
2011届高考数学第一轮复习精品试题:圆锥曲线第2章 圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用.§2.1-2椭圆重难点:建立并掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.经典例题:已知A 、B 为椭圆22a x +22925a y =1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.当堂练习:1.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线c a x 2=和定点F(c ,0)的距离之比为a c的点的轨迹是椭圆C .到定点F(-c ,0)和定直线c a x 2-=的距离之比为a c (a>c>0)的点的轨迹 是左半个椭圆D .到定直线c a x 2=和定点F(c ,0)的距离之比为c a(a>c>0)的点的轨迹是椭圆 2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x yD .161022=+y x3.若方程x2+ky2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)4.设定点F1(0,-3)、F2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有 ( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( )A .41B .22C .42D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离( )A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为k1(01≠k ),直线OP 的斜率为k2,则k1k2的值为( )A .2B .-2C .21D .-2111.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________.13.已知()y x P ,是椭圆12514422=+y x 上的点,则y x +的取值范围是________________ .14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________.15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与x 轴、y 轴交于M 、N 两点. (1)若0=⋅PB PA ,求P 点坐标; (2)求直线AB 的方程(用0,y x 表示);(3)求△MON 面积的最小值.(O 为原点)17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.18.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.第2章 圆锥曲线与方程 §2.3双曲线重难点:建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.经典例题:已知不论b 取何实数,直线y=kx+b 与双曲线1222=-y x 总有公共点,试求实数k 的取值范围.当堂练习:1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是 ( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( )A .4B .22C .8D .与m 有关4能是A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为( )A .23B .3C .34D . 36.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( ) A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有( )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,则2ABF ∆(F2为右焦点)的周长是( )A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L的条数共有 ( ) A .4条 B .3条 C .2条 D .1条10.给出下列曲线:①4x+2y -1=0; ②x2+y2=3; ③1222=+y x ④1222=-y x ,其中与直线y=-2x -3有交点的所有曲线是( )A .①③B .②④C .①②③D .②③④11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).17.已知动点P 与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-13.(1)求动点P 的轨迹方程;(2)设M(0,-1),若斜率为k(k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA|=|MB|,试求k 的取值范围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).第2章 圆锥曲线与方程 §2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图, 直线y=21x 与抛物线y=81x2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时, 求ΔOPQ 面积的最大值.当堂练习:1.抛物线22x y =的焦点坐标是 ( )A .)0,1(B .)0,41(C .)81,0(D .)41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( )A .y x 82=B .y x 42= C .y x 42-= D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .y x 292-=或x y 342= B .xy 292-=或y x 342= C .y x 342=D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CFBF AF ,, 成等差数列,则 ( )A .321,,x x x 成等差数列B .231,,x x x 成等差数列C .321,,y y y 成等差数列D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp 11+ ( )A .a 2B .a21 C .a 4 D .a410.若AB 为抛物线y2=2px (p>0)的动弦,且|AB|=a (a>2p),则AB 的中点M 到y 轴的最近距离是 ( )A .21aB .21pC .21a +21pD .21a -21p11.抛物线xy =2上到其准线和顶点距离相等的点的坐标为 ______________.12.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ___________.13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值范围是 .14.对于顶点在原点的抛物线,给出下列条件; (1)焦点在y 轴上; (2)焦点在x 轴上;(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5; (5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y2=10x 的条件是(要求填写合适条件的序号) ______.15.已知点A (2,8),B (x1,y1),C (x2,y2)在抛物线px y 22=上,△ABC 的重心与此抛物线的焦点F 重合(如图)(1)写出该抛物线的方程和焦点F 的坐标;(2)求线段BC中点M的坐标;(3)求BC所在直线的方程.16.已知抛物线y=ax2-1上恒有关于直线x+y=0对称的相异两点,求a的取值范围.17.抛物线x2=4y 的焦点为F ,过点(0,-1)作直线L 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形FARB ,试求动点R 的轨迹方程.18.已知抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C在点M 的法线.(1)若C 在点M 的法线的斜率为21-,求点M 的坐标(x0,y0);(2)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.第2章 圆锥曲线与方程 §2.5圆锥曲线单元测试1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是( )A 、21B 、33C 、23D 、32)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为( ) A 、1,1- B 、2,2- C 、1 D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为( )(A )10 (B )20 (C )241(D ) 4144)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) (A )3(B )11(C )22(D )107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A )222=-y x (B )222=-x y (C )422=-y x 或422=-x y (D )222=-y x 或222=-x y 8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为( )(A )6 (B )8 (C )10 (D )129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为( )(A )28 (B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,则双曲线的离心率为( )(A )3(B )26(C )36(D )3311)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q +等于( )(A )2a (B )12a (C )4a (D )4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x13)与椭圆22143x y +=具有相同的离心率且过点(2,14)离心率35=e ,一条准线为3=x 的椭圆的标准方程是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学章节训练题 15《向量2》
时量:60分钟 满分:80分 班级: 姓名: 计分:
个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)
一、选择题:本大题共5小题,每小题5分,满分25分.
1. 如图,在平行四边形ABCD 中,下列结论中错误的是( )
A . =
B .=+
C . B
D AD AB =- D . 0=+CB AD
2.已知a 、b 均为单位向量,它们的夹角为60°,那么||a b += ( )
A .3
B .2
C .4 D
3. 若(1,2)a =,(3,4)b =-,则1[2(28)4(42)]12
a b a b --+=( ) A.(5,0) B.(5,-10) C.(4,-2) D.(-4,2)
4. 在平行四边形ABCD 中,若BC BA BC AB +=+,则必有( )
A.ABCD 是菱形
B.ABCD 是矩形
C.ABCD 是正方形
D.以上皆错
5. 3,4a b ==,向量34a b +与34a b -的位置关系为( )
A.垂直
B.平行
C.夹角为3π
D.不平行也不垂直
二、填空题:本大题共3小题,每小题5分,满分15分.
6. 已知向量,满足1,4a b ==,且2a b =,则与的夹角为 .
7. 已知向量),cos ,(sin ),4,3(αα==且∥,则αtan = .
8. 已知i 、j 为互相垂直的单位向量,2a i j =-,b i j λ=+,且a 与b 的夹角为锐角,则实数λ的取值范围是 .
三、解答题:本大题共3小题,满分40分,第9小题12分,第10、11小题各14分. 解答须写出文字说明、证明过程或演算步骤.
9. 已知向量2123e e a -=,214e e b +=,其中)0,1(1=e ,)1,0(2=e ,
求(1)a b +; (2)与的夹角的余弦值.
10.已知 |a |=1,|b |=2,
(1)若a //b ,求b a ⋅;(2)若a ,b 的夹角为135°,求 |a +b | .
11. 已知向量=(sin θ,1),=(1,cos θ),22π
π
θ-<<.
(1)若⊥,求θ;(2)求|+|的最大值.
高三数学章节训练题15《向量2》答案
1~5 CDBBA
6. 60
7. 34
8. ),2()2,(21---∞
9. 解:(1)12323(1,0)2(0,1)(3,2)a e e =-=-=-,1244(1,0)(0,1)(4,1)b e e =+=+=,
43(2)110a b =⨯+-⨯=,27a b +=+
(2)cos ,13a b
a b a b ===⋅⋅10. 解:(I )∵a //b ,
①若a ,b 共向,则b a ⋅=|a |•|b |=2 ②若a ,b 异向,则b a ⋅=-|a |•|b |=-2
(II )∵a ,b 的夹角为135°, ∴b a ⋅=|a |•|b |•cos135°=-1
∴|a +b |2=(a +b )2 =a 2+b 2+2a b =1+2-2=1, ∴||1a b += 11. 解:(1),a b ⊥⇒0a b =⇒sin cos 0θθ+=4π
θ⇒=-
(2)(sin 1,cos 1)a b θθ+=++=
===
当sin()4πθ+
=1时a b +有最大值,此时4πθ=,1=.。