27结构方程模型(SEM)PPT课件
结构方程模型(SEM)PPT课件
SEM的特点
• 理论先验性 • 同时处理测量与分析问题 • 以协方差的应用为核心 • 适用大样本分析
SEM的来源
• 心理计量学:
• Spearman认为,人类心智能力测验得分之间的相互关 系,可以被视为是由这些分数背后所具有的一个潜的 共同因素(common factor)的影响结果。
• Thurston认为,在复杂的智力测量背后,应该存在着 不同且独立的一组共同因素,他称之为核心心智能力 (primary mental abilities),由于这一组共同因素的存 在,构成了智力测验得分的复杂关系。研究者必须找 出这些因素,才能利用此一因素结构来对智力测验得 分之间的共变(协方差)关系,得到最理想的解释, 得出最大的解释力。
• 期刊与论文:
• 专门期刊:《结构方程模型》(Structural Equation Modeling )
• 很多社会、心理等变量,均不能准确地及直接地 量度,这包括智力、社会阶层、学习动机等,我 们只好退而求其次,用一些外显指标(observable indicators),去反映这些潜变量。
SEM基本模型
• 测量模型:对于指标与潜变量(例如六个社会经
济指标与社会经济地位)间的关系,通常写成如下 测量方程:
x=Λxξ+δ y=Λyη+ε
• x,y是外源(如六项社经指标)及内生(如中、英、数成 绩)指标。δ,ε是X,Y测量上的误差。
• Λx是x指标与ξ潜变量的关系(如六项社会经济地位指标 与潜社会经济地位的关系)。Λy是y指标与η潜变量的关 系(如中、英、数成绩与学业成就间关系)。
结构方程模型
(Structural Equation Modeling,SEM) –
结构方程模型 结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研 究中的多变量问题, 用来处理复杂的多变量研究数据的探究与分析。 在社会科学及经济、 市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接 观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。 SEM 能够对 抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量 /因变量 预测模型的参数估计。 结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济 学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学 等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型 中的一种特例。 结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量 和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这 些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测 量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜 在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变 量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数 估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但 是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误 差,又可分析潜在变量之间的结构关系。
线性回归分析: 线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只 能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因, 导致出现单项指标与总体出现负相关等无法解释的数据分析结果。 结构方程模型分析: 结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观 测的显在变量, 也可能包含无法直接观测的潜在变量。 结构方程模型可以替代多重回归、 通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标 间的相互关系。
结构方程模型SEM
应用广泛
SEM在心理学、社会学、经济学 等多个领域都有广泛的应用,能 够帮助研究者深入理解各种社会 现象和行为。
局限性
尽管SEM具有许多优点,但它也 有局限性,例如对样本大小和数 据质量的要求较高,以及可能陷 入模型拟合的陷阱。
未来研究方向
提高模型拟合的准确性
未来的研究可以进一步探索如何提 高SEM的模型拟合精度,例如开发 更先进的模型比较和选择方法。
领导风格与员工绩效关系
研究不同领导风格对员工绩效的影响,以及员工个人特质在其中的 作用,为企业选拔和培养优秀领导者提供依据。
组织文化与员工行为关系
分析组织文化对员工行为的影响,以及员工行为对组织绩效的作用, 以帮助企业塑造良好的组织文化。
案例三:心理学研究
人格特质与心理健康关系
通过SEM探究人格特质与心理健康之间的关系,以及环境因素在 其中的作用,为心理辅导和治疗提供依据。
感谢您的观看
THANKS
结构方程模型(SEM)
目录
• 引言 • SEM的基本原理 • SEM的实现步骤 • SEM的优缺点 • SEM的案例分析 • 结论与展望
01
引言
什么是结构方程模型(SEM)
结构方程模型(SEM)是一种多元统计分析方法,用于同时估计多个因果关系和探 索变量之间的关系。
它结合ห้องสมุดไป่ตู้因素分析和因果推理,通过构建理论模型来描述变量之间的结构关系,并 使用统计方法进行模型验证和估计参数。
比较不同模型
可以通过比较不同模型的拟合优度,选择最优的模型。
解释结果
对模型的参数估计结果进行解释,探讨变量之间的关系及其效应大小, 并据此提出相应的建议或策略。
04
SEM的优缺点
结构方程模型讲义
结构方程模型讲义结构方程模型(Structural Equation Modeling,SEM)是一种统计分析方法,多用于研究基于潜变量的复杂系统内在结构的定量关系。
其理论基础源于多元统计分析、因子分析和路径分析,通过建立观察变量与潜变量之间的关系模型,解析出潜变量对观察变量的影响,进而研究变量之间的内在结构关系。
一、SEM的基本概念和特点1.潜变量:潜变量是指无法直接观察或测量的变量,只能通过观察变量来间接反映。
它可以代表一些理论上的构念、心理特质或潜在特征。
2.观察变量:观察变量是可以直接观察和测量的变量,表现为定量或定性的实际测量结果。
3.模型设定:SEM基于研究者对潜变量和观察变量之间关系的理论假设,通过建立潜变量和观察变量之间的关系模型,定量研究变量之间的影响关系。
4.结构关系:SEM通过路径系数来描述潜变量和观察变量之间的关系,并使用结构方程模型来表示这些关系。
路径系数表示了变量之间的直接或间接影响。
二、结构方程模型的步骤1.模型设定:根据研究目的和理论依据,建立潜变量和观察变量之间的关系模型,并确定模型中的指标、因子和路径。
2.数据收集:收集样本数据,并根据所设定的模型变量进行测量,获得观察变量的观测值。
3.模型估计:利用SEM软件,通过最大似然估计等方法求解模型中的参数估计值,包括路径系数、因子载荷和误差项。
4.模型拟合:通过拟合度指标对模型的拟合程度进行评估,检验模型是否与观测数据一致。
如果拟合不理想,可能需要修改或调整模型。
5.结果解释和修正:对模型结果进行解释,解释模型中的路径系数和因子载荷,以及观察变量的解释力。
如果有必要,根据拟合结果调整模型,并进行相应修正。
6.结果验证:通过交叉验证、重测等方法验证模型的鲁棒性和稳定性,确保模型结果的可靠性和稳定性。
结构方程模型的应用领域非常广泛,包括心理学、社会学、教育学、市场营销、财务管理等。
它可以用于研究因果关系、探究复杂系统内在结构、验证理论模型等。
结构方程模型(SEM)
结构方程模型(SEM)结构方程这几年热度不减,有必要研究一下它的R语言实现过程,今天先复习一下结构方程的相关理论,参考吉林大学余翠林的ppt一、为什么使用SEM?1、回归分析有几方面的限制:(1)不允许有多个因变量或输出变量(2)中间变量不能包含在与预测因子一样的单一模型中(3)预测因子假设为没有测量误差(4)预测因子间的多重共线性会妨碍结果解释(5)结构方程模型不受这些方面的限制2、SEM的优点:(1)SEM程序同时提供总体模型检验和独立参数估计检验;(2)回归系数,均值和方差同时被比较,即使多个组间交叉;(3)验证性因子分析模型能净化误差,使得潜变量间的关联估计较少地被测量误差污染;(4)拟合非标准模型的能力,包括灵活处理追踪数据,带自相关误差结构的数据库(时间序列分析),和带非正态分布变量和缺失数据的数据库。
3、结构方程模型最为显著的两个特点是:(1)评价多维的和相互关联的关系;(2)能够发现这些关系中没有察觉到的概念关系,而且能够在评价的过程中解释测量误差。
同时具有联系信息技术吸纳能力:SEM能够反映模型中要素之间的相互影响;吸纳能力概念作为一个重要的模型要素,难以直接度量,结构方程模型技术能够更为充分地体现其蕴含的要素信息和影响作用。
二、SEM的基本思想与方法SEM是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,实际上是一般线性模型的拓展,包括因子模型与结构模型,体现了传统路径分析与因子分析的完美结合。
SEM一般使用最大似然法估计模型(Maxi-Likeliheod,ML) 分析结构方程的路径系数等估计值,因为ML法使得研究者能够基于数据分析的结果对模型进行修正。
1、 SEM术语(1)观测变量可直接测量的变量,通常是指标(2)潜变量潜变量亦称隐变量,是无法直接观测并测量的变量。
潜变量需要通过设计若干指标间接加以测量。
(3)外生变量是指那些在模型或系统中,只起解释变量作用的变量。
SEM模型PPT演示课件
潜变量
显变量
(1)R&D投入经费; (2)企业技术创新能力
(3)质量战略 (4)质量竞争能力 (5)供应链企业间信任 (6)供应链动态能力 (7)员工自我效能感 (8)变革型领导 (9)企业新产品销售收入 (10)企业研发人员数量
低
因变量(校标变量)与自变量
(1)技术创新投入决定技术创新产出 (2)供应链能力信任促进供应链知识分享 (3)供应链善意信任促进供应链内外部整合 (4)企业技术创新能力是决定跨国公司R&D机构与 我国区域创新系统(RIS)互动的重要因素之一
谈(扎根理论、行为事件访谈法等)
4、量表的信度与效度检验
量表的信度:SPSS软件—信度检验模块 量表的效度:三部分—内容效度、判别效度(收敛 效度)和区分效度。SPSS软件—因子分析(探索性
因子分析)模块;AMOS—验证性因子分析。
5、绘制结构方程模型图
可参考的书籍: (1)吴明隆 (2)荣泰生 (3)侯泰杰 (4)邱皓政
9、写出实证分析结论
现场实例
供应链信任、供应链协同与供应链绩效之间关系研 究
(供应链信任对供应链绩效的作用机制研究)
潜变量:供应链信任、供应链协同、供应链绩效 显变量:信任、供应链绩效量表(国内外相关成熟
量表); 供应链协同(均值)——信息共享、同步决策、激励
联盟及流程整合
谢谢!
6、模型拟合优度指标
(1)主要作用:检验数据是否与模型相匹配 (2)拟合优度指标包括:卡方值、df、RMR、GFI、
AGFI等 (3)参考书籍:吴明隆
7、理论假设的验证情况
(1)标准化路径系数 (2)SE数值
(3)CR临界比数值,一般大于2 (4)显著性水平p值
结构方程模式(STRUCTURAL EQUATION MODELING, SEM)-实用PPT
潛在自變項
文化 社會 財務 資本 資本 資本
生活不 學校不 良習性 良行為
潛在依變項
觀察變項 父親
教育
家庭教 育資源
負面文 化資本
母親
家庭社
學業
教育
經地位
成就
全家 收入
反 映 性 指 標
學習 態度
心無 主動 力求 旁騖 複習 甚解
一般分 析能力
數學分 析能力
廣義的結構方程模式
數個測量模式及一個結構模式 變項間關係複雜,模式界定時必須遵循簡約原
SEM可分為下列兩種模式
4
1.測量模式(measurement model):主要描述潛在 變項與觀察變項之關係。 2.結構模式(structural model):主要描述潛在變 數間之因果關係,可以透過路徑分析的概念進行。
Lisrel模式的變項種類
5
◎有四種變項種類2種潛在變項、2種觀察變項。 潛在變項 被假定為因者,稱為潛在自變項(latent independent
描述觀察變項X被潛在自變數(ξ)解釋的係數矩陣(迴歸係數) 描述觀察變項Y被潛在依變數(η)解釋的係數矩陣(迴歸係數) 潛在自變項ξ間的關係
描述結構方程式殘餘誤差ζ之變異數共變數矩陣 觀察變數之x測量誤差之變異數共變數矩陣(X變項殘差) 觀察變數之y測量誤差之變異數共變數矩陣(Y變項殘差)
7 LISREL的分析五個步驟
方程式及測量模式,同時細列出所要估計的 加入觀察指標及各項係數後的因果模式圖
共變數結構模式 (covariance structure model) 潛在變項的平均變異抽取 (average variance extracted) 在0.
參數,以利將來電腦程式的撰寫。 數個測量模式及一個結構模式
结构方程模型ppt课件
变异数萃取量(平均方差抽取量)
平均变异数萃取量 (AVE)= Σ(因素负荷量2)/((Σ因素负荷量)2+ (Σ各测量变项的测量误差)) (Jöreskog and Sörbom , 1996)
AVE是计算潜在变项之各测量变量对该潜在变项 的变异解释力,若AVE愈高,则表示潜在变项有 愈高的信度与收敛效度。 Fornell and Larcker(1981)建议其标准值须大 于0.5。
單向因果關係 X對Y1為直接效果X對Y2為 問接效果Y1為中介變數
回溯因果關係 X與Y互為直接效果, X與Y non-recursive 具有回饋循環效果
循環因果關係 (feedback)
Y1對Y2、Y2 對Y3、Y3對Y1均 為直接效果,Y1、Y2、Y3
為間接循環效果
20
SEM条件
数据符合常态、无遗漏值及例外值(Bentler & Chou, 1987)下,样本比例最小为估计参数的5 倍,10倍则更为适当。
8
结构模式与测量模式
外生观察变量 外生潜在变量 内生潜在变量 内生观察变量
测量残差 因素负荷量 结构参数
因素負荷量 测量残差
e1
x1
Lx1
e2
x2
Lx2 F1满意度 b
e3
x3
Lx3
D Ly1
F2忠誠度 Ly2
Ly3
y1 e4 y2 e5 y3 e6
测量(CFA)模式
结构模式
测量(CFA)模式 9
b43
b41
D4
y4 e10
Ly4
e5 x5
Lx5
F2
e6 x6
Lx6
b42
F4
y5 e11
结构方程课件
一般方程模型
结构方程模型通常包括三个矩阵方程式:
Λx—外生观测变量与外生潜变量直接的关系,是外生观测变 量在外生潜变量上的因子载荷矩阵; Λy—内生观测变量与内生潜变量之间的关系,是内生观测 变量在内生潜变量上的因子载荷矩阵; В—路径系数,表示内生潜变量间的关系; Г—路径系数,表示外生潜变量对内生潜变量的影响; ζ—结构方程的残差项,反映了”在方程中未能被解释的部 分。
系。 (7)变量之间没有任何连接线,表示假定它们之间没有直接联系。
结构方程与回归分析的比较
回归分析有几方面的限制: (1)不允许有多个因变量; (2)假设自变量不存在测量误差; (3)自变量间的多重共线性会妨碍 结果解释; (4)结构方程模型不受这些方面的 限制 。
结构方程模型的四大步骤
1、模型构建 构建研究模型,具体包括:观测变量(指标)与潜变量(因 子)的关系,各潜变量之间的相互关系等 。
2、模型拟合 对模型求解,其中主要对整体模型参数的估计,求得参数 使模型隐含的协方差距阵与样本协方差距阵的“差距”最 小 。并验证各个各拟合指数是否通过。
3、模型评价 (1)检查每条路径系数的显著性;
(2)各参数与预设模型的关系是否合理。 4、模型修正
模型扩展(调整修正指数)或模型限制(调整CR系数)
假设模型与独立模型的卡方差异
非正规拟合指数NNFI 替代性指标 非集中性参数NCP
相对拟合指数CFI
用模型自由度和参数数目调整的NFI
假设模型的卡方值距离中央卡方值分布 的离散程度 假设模型与独立模型的非中央性差异
接受标准
适用情形
越小越好 了解残差特性 <.08 了解残差特性
<2
不受模型复杂程度影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SEM的来源
• 心理计量学:
• Spearman认为,人类心智能力测验得分之间的相互关 系,可以被视为是由这些分数背后所具有的一个潜的 共同因素(common factor)的影响结果。
• Thurston认为,在复杂的智力测量背后,应该存在着 不同且独立的一组共同因素,他称之为核心心智能力 (primary mental abilities),由于这一组共同因素的存 在,构成了智力测验得分的复杂关系。研究者必须找 出这些因素,才能利用此一因素结构来对智力测验得 分之间的共变(协方差)关系,得到最理想的解释, 得出最大的解释力。
SEM发展历史
• 从发展历史来看,结构方程模式的起源甚早,但其核心 概念在1970年代初期才被相关学者专家提出,到了1980 年代末期即有快速的发展。基本上,结构方程模式的概 念与70年代主要高等统计技术的发展(如因素分析)有 着相当密切的关系,随着计算机的普及与功能的不断提 升,一些学者(如Jöreskog, 1973; Keesing, 1972; Wiley, 1973)将因子分析、路径分析等统计概念整合,结合计 算机的分析技术,提出了结构方程模型的初步概念,可 以说是结构方程模型的先驱者。而后Jöreskog与其同事 Sörbom进一步发展矩阵模式的分析技术来处理共变结构 的分析问题,提出测量模型与结构模型的概念,并纳入 其LISREL之中,积极促成了结构方程模式的发展。
SEM基本模型
• 简单来说,SEM可分测量方程 (measurement equation)和结构方程 (structural equation)两部分。
• 测量方程描述潜变量与指标之间的关系, 如家庭收入指标等社会经济地位的关系、 三科成绩与学业成就的关系。而结构方程 则描述潜变量之间的关系,如社会经济地 位与学业成就的关系。
为什么要采用SEM
• 差不多所有心理、教育、社会研究中涉及的变量 (如智力、学习动机、家庭社会经济地位)均难 以直接准确测量(latent variable),我们只好退而 求其次,用一些外显指标(observable indicators)去 间接地测量这些潜变量。结构方程模型能同时处 理潜变量及其指标。
• 例如:我们以学生父母教育程度、父母职业及其 收入(共六个外显变量),作为学生家庭社会经济 地位(潜变量)的指标,我们又以学生中、英、数 三科成绩(三个外显变量),作为学业成就(潜变量) 的指标。
SEM的特点
• 理论先验性 • 同时处理测量与分析问题 • 以协方差的应用为核心 • 适用大样本分析
• 期刊与论文:
• 专门期刊:《结构方程模型》(Structural Equation Modeling )
• 论文:见诸于国内外许多一流期刊
SEM概述
• 很多社会、心理等变量,均不能准确地及直接地 量度,这包括智力、社会阶层、学习动机等,我 们只好退而求其次,用一些外显指标(observable indicators),去反映这些潜变量。
SEM发展现状
• 软件包:
• LISREL(Jöreskog & Sörbom, 1989, 1996) • AMOS(Arbuckle,1997) • EQS(Bentler,1985,1995) • MPLUS(Muthén & Muthén, 1998) • CALIS(Hartmann,1992) • RAMONA(Browne,Mels,& Cowan,1994)等 。
• SEM提供一个处理(自变量)测量误差的方法, 采用多个指标去反映潜变量,也令估计整个模型 因子间关系,较传统回归方法更为准确合理。
• 结构方程模型可用以比较不同的模型(拟合优 度)。
SEM的来源
• 从统计学与方法学的发展脉络来看,结构 方程模式并不是一个崭新的技术,而是因 子分析(factor analysis)与路径分析(path analysis)两种在社会与行为科学非常重要 的统计技术的结合体。相对于这两大分析 技术的发展轨迹,Kaplan(2000)指出 SEM的历史根源系来自两个重要的计量学 科:心理计量学与经济计量学,这两个学 术领域对于SEM的发展有着重要的影响。
SEM基本模型
• 测量模型:对于指标与潜变量(例如六个社会经
济指标与社会经济地位)间的关系,通常写成如下 测量方程:
x=Λxξ+δ y=Λyη+ε
• x,y是外源(如六项社经指标)及内生(如中、英、数成 绩)指标。δ,ε是X,Y测量上的误差。
• Λx是x指标与ξ潜变量的关系(如六项社会经济地位指标 与潜社会经济地位的关系)。Λy是y指标与η潜变量的关 系(如中、英、数成绩与学业成就间关系)。
SEM的来源
• 经济计量学:
• Haavelmo在1943年利用一系列的联立方程式 (simultaneous equation)来探讨经济学变量的 相互关系 ,是为经济计量学中的联立方程模 型。
• 联立方程模型分析虽然可以用来探讨复杂变量 的关系,对于总体经济现象的解释有其效力, 但是它所遭到的最大批评在于无法针对特定的 经济现象进行精确有效的时间序列性预测。
Measurement Model
测量模型
12
1
11
21
X1
X2
1
2
31 41
X3
X4
3
4
2
52
62
X5
X6
5
6
72 82
X7
X8
7
8
SEM路径图常用图标的含义• 圆或椭圆表示 Nhomakorabea变量或 因子
• 正方形或长方形表示观 测变量或指标
结构方程模型(SEM)
什么是SEM
• 结构方程模型(Structural Equation Modeling,简 称SEM)是一门基于统计分析技术的研究方法学 (statistical methodology),用以处理复杂的多变 量研究数据的探究与分析。
• 在社会科学以及经济、管理、市场等研究领域, 有时需要处理多个原因、多个结果的关系,或者 会碰到不可直接观测的变量(即潜变量),这些 都是传统的统计方法不好解决的问题。20世纪80 年代以来,结构方程分析迅速发展,弥补了传统 统计方法的不足,成为多元统计分析的重要工具。