物理化学简明教程(第四版)第一章 热力学第一定律

合集下载

物理化学第一章热力学第一定律

物理化学第一章热力学第一定律
② 局限性:无法解释微观(原子、分子)体系的行 为,无法预测过程进行的速率和机理。
第二节 热力学基本概念
一、系统与环境(system and surroundings)
系统:人为划定的研究对象。 环境:与体系密切相关的部分。
空气、水蒸气
杯子 水
加热器
系统分类: ① 敞开系统(或开放系统) ② 封闭系统 ③孤立系统(或隔离系统)
Zn(s) + 2HCl(aq) = ZnCl2(aq) + H2(g)
二、系统的性质(properties)
描述系统状态的物理量(体积、压力、温度等)。
① 广度性质:与系统物质的量有关,具有加和性。 (质量、体积、内能)
② 强度性质:取决于自身特性,与系统物质的量无 关,不具有加和性。(温度、压力、密度)
2、化学动力学——化学反应的速率和机理问题。
3、物质结构——物质性质与其结构之间的关系。
化 学
化学热力学基础
第一章 第二章
热力学定律
热 力 学
第三章 化学热力学应用 第四章
化学平衡、 相平衡
第五章 电化学
第七章 表面现象
化学能与热能转 化规律
化学能与电能转 化规律
表面现象知识
第八章 胶体分散系统
胶体知识
物理化学
物理化学
——是研究有关物质化学变化和物理变化之间联系规律的一门学科。 ——是药学专业的基础课。掌握物理化学基本理论、实验方法、基 本技能,初步具有分析、解决与药学实践有关问题的能力,为学习 药剂学、药物分析等后续课程奠定基础。
一、物理化学的研究对象和内容
——从研究物质的物理现象和化学现象的联系入 手,探求化学变化的基本规律,又称理论化学。 1、化学热力学——能量转化及化学变化的方向和限度问题。

物理化学第一章_热力学第一定律

物理化学第一章_热力学第一定律
北纬 W2 =40 °00 ′ 某时气温 t2 =10℃
J=1°50′
W=8° t =-20℃
东经J1 =118°75 ′
北纬 W1 = 32°00 ′ 某时气温 t1 = 30℃
上页 0000--77-2-828
下页
回主目录
返回 2200
标准态
➢规定标准态的必要性:
• 体系的状态函数强烈地依赖于物质所处的状态. • 有关状态函数的计算强烈地依赖于基础的实验数据. • 建立通用的基础热力学数据需要确立公认的物质标
下页
回主目录
返回 1133
由经验可知,一般来说,质量一定的单组分气相 体系,只需要指定两个状态函数就能确定它的状态。 另一个通过近似PV=nRT的关系也就随之而定了,从 而体系的状态也就确定了。
上页 0000--77-2-828
下页
回主目录
返回 1144
状态函数共同性质
(1) 体系的状态一定,状态函数有确定值。
上页 0000--77-2-828
下页
回主目录
返回 1122
四、状态函数与状态性质
1、状态和状态函数
物理性质和化学性质的综合表现就称体系的状态。
描述物质状态的性质叫做状态函数(state function)。
状态函数是相互联系,相互制约,一个状态函 数的改变,也会引起另一个状态函数的改变 。
上页 0000--77-2-828
四、状态函数与状态性质
⑴ 状态函数的数学表达
体系由A态变到B态,Z值改变量
Z ZB ZA
ZB dZ
ZA
对于循环过程 dZ 0
状态函数的微小改变量可以表示为全微分,即偏微分之和
dZ

物理化学第一章 热力学第一定律3

物理化学第一章 热力学第一定律3

(g,1p0)
(298K, 1p0)
CO2 (g,1p0)
rHm(298K)=-393.5
kJ.mol-1

Hess定律(Hess’s Law)
• 1840年, 盖斯从大量实验数据中总结出著名的Hess定律.
• Hess定律: 化学反应的热效应只与反应的始态和末态有关, 与 反应的具体途径无关. 也称热效应总值一定定律.
• 以HCl水溶液为例: • 反应: HCl(g) →H+(aq, ∞ )+Cl﹣(aq, ∞ ) • solHm(298.15K)=-75.14 • 从离子生成焓求算上述反应的焓变:
kJ.mol-1
• solHm(298.15K)=fHm(H+,aq, ∞)+fHm(Cl﹣,aq, ∞) - fHm(HCl,g)
• 热化学方程式是表示化学反应始末态之间关系的方 程, 它不考虑反应实际上能否进行到底, 只表示反应 前后物质的量的反应热效应之间的关系. • 热化学反应方程式须注明参加反应物质的状态, 温度, 压力和反应进行的各种条件等. • 例: 石墨与氧反应生成二氧化碳的热化学方程式为:
C (石墨,1p0) +O2
• 由物质的燃烧焓可直接求出化学反应的热效应: • rHm0=∑(i cHm,i0)反应物-∑(i cHm,i0)产物 • 其理由可用下图表示. 注意, 相对有机化合物而言, 燃烧产物的能级一般比较低. • 设有反应: A+B=C+D
A+B C+D
cH反<0
rH<0 C+D cH产<0
• 实际上,由石墨和氢气直接化合生成乙烷是非常 困难的,用量热的手段直接测定此反应的热效应 几乎是不可能的,但是,用热化学方法,利用盖 斯定律,可以由其它较容易获得的反应热效应求 出。

第一章:热力学第一定律(物理化学)

第一章:热力学第一定律(物理化学)

We,1 = -p1(V1- V2) =p1(V2 - V1)
功与过程
2.多次等外压压缩 第一步:用 p" 的压力将系统从 V2 压缩到V " ; 第二步:用 p ' 的压力将系统从V " 压缩到V ' ; 第三步:用 p1 的压力将系统从V ' 压缩到 V1 。 We = -p”(V”- V2) +[- p ’(V’ - V”)] + [-p1 (V”- V1)] 整个过程所作的功为三步加和。
系统吸热,Q>0; 功(work)
系统放热,Q<0 。
环境对系统作功,W >0; 系统对环境作功,W<0 。
1. 如图,在绝热盛水容器中,浸入电阻丝,通电一段 时间,通电后水及电阻丝的温度均略有升高,今以电阻 丝为系统------------------------------------- ( ) (A) W =0,Q <0, ΔU <0 (B)W >0, Q <0, ΔU >0 (C) W <0, Q <0, ΔU >0 (D) W >0, Q =0, ΔU >0 若以电阻丝,水以及绝热水槽为系统又如何??
d(U pV )
H U pV
积分式
Qp DH
3.焓(enthalpy)
焓的定义式: 发生微变时:
H U pV
dH d(U pV ) dU pdV Vdp
系统由始态到末态的焓变
DH DU D( pV )
为什么要定义焓? 为了使用方便,因为在等压、不作非膨胀功的条 Q p 容易测定,从而 Qp 件下,焓变等于等压热效应 。 可求其它热力学函数的变化值。 焓是状态函数 定义式中焓由状态函数组成。 焓不是能量 具有能量的单位,但不守恒。

1 物化 第一章热力学第一定律-new

1 物化 第一章热力学第一定律-new
27
三、热力学第一定律的数学表达式 (★)
由能量守恒定律:
某封闭系统,从状态1变为状态2的 过程,系统与环境交换的热能为Q,系统 对环境做的功为W,则引起系统热力学能 的变化值为:
U = U2-U1=Q +W 对于系统的微小变化: dU = dQ + dW
28
说明:(1) W为总功 (2)适用热力学封闭系统 (3)组成恒定的均相封闭系统:
31
二、功与过程
1、不同过程,体积功的具体计算
A 、气体向真空膨胀(自由膨胀)
P外=0 B、等容过程 C、等压过程
W= 0
dV= 0 W=0 P1=P2 =P外=常数 W =-P(V2-V1)
32
2、恒外压的膨胀和压缩过程 3kPa,1m3 膨胀 压缩 1kPa,3m3 TK, n mol
TK, n mol
(3)孤立系统: isolated system
系统与环境之间 既没有物质交换 又没有能量交换
8
几个基本概念
二、系统的性质与状态 1、性质的定义:描述系统(研究对 象)的物理量称为系统的性质 热力学系统的性质指: T、 P、 V、 n、 U、 S 、 H等 2、性质的分类: 广度性质 强度性质
9
几个基本概念
25
热力学第一定律
体系整体运动动能 总能量
体系外力场中势能 体系内部能量的总和
二、热力学能(内能) (internal energy)
体系内部所有质点、所有能量的总和, 包括一切形式的能量 —— 内能U 内能的绝对值无法测量,重要的是变化值
26
热力学第一定律
(2)讨论:
二、内能
● 内能是体系的状态函数, 即:系统状态确定,U具有确定的值。 ● 内能是体系的广度性质 (与n成正比,具有加和性)

物理化学简明教程第四版(印永嘉)

物理化学简明教程第四版(印永嘉)

-
21
热和功
• 热(heat):系统与环境间因温差的存在而传递的能量称为热. 热的符号为Q。
• Q的取号:系统放热为负;系统吸热为正。
• 热量总是从高温物体传至低温物体; • 当系统与环境温度相等时,达热平衡,没有热量的传递。
• 功(work)系统与环境之间传递的除热以外的其它能量都
称为功,用符号W表示。
-
2
系统与环境几个基本Fra bibliotek念• 系统 在科学研究时必须先确定研究对象,把一部分物质与
其余分开,这种分离可以是实际的,也可以是想象的。这种 被划定的研究对象称为系统,亦称为物系或体系。
• 环境 与系统密切相关、有相互作用或影响所能及的部分称为
环境或外界。
• 系统与环境之间的边界可以是实际的,也可以是想象的。
•第一定律是实践总结出的客观规律,它不是定义,也不能加 以证明,只能靠它推出的结论与实践相符来检验。
• 能量守恒与转化定律应用于热力学系统就是热力学第一定律。 • 能量守恒与转化定律的确立,绝不意味着该原理已告完成。
• 能量守恒与转化定律已经成为自然科学的一块基石,重要性 不言而喻,但决不是自然界唯一的法则。
-
29
小结:Δ与δ的差异
Δ,d 均表示变化
Δ表示大的、宏观的变化,例如从状态1变化到状态2,状态函 数的变化。 d表示微小的变化,全微分符号。 Δ、d后面为可以进行全微分的函数,包括所有状态函数。
δ表示微小量,后面为不可以直接进行全微(积)分的函数,包 括过程量,例如Q、W。
-
30
作业
Page 12:习题3;习题6
• 系统经历一过程的状态函数差值,只取决于系统的始末两态。 用数学 语言表达:状态函数在数学上具有全微分的性质,用符 号d表示,如dV、dp。

物理化学:第一章 热力学第一定律

物理化学:第一章    热力学第一定律

始态A
途径I C
B 途径II
终态Y
基本概念
系统的变化过程分为:
A. 单纯p,V,T变化过程(p,V,T change process)
B. 相变化过程(phase transformation process)
C. 化学变化过程(chemical change process)
几种主要的p,V,T变化过程
学上是一次齐函数。(如n,V,U等)
2、强度性质(intensive properties):数值取决于体系自 身的特性,与体系的数量无关。不具有加和性。在数学上是 零次齐函数。(如p,T等)
一种广度性质 =强度性质, 另一种广度性质
如Vm=Vn
,b= m V

基本概念
3. 热力学平衡态(thermodynamical equilibrium state)
dz
(
z x
)
y
dx
( z y
)x
dy
dz 0
③ 状态方程(equation of state)
定义:体系状态函数之间的定量关系式。
理想气体
V= nRT p
基本概念
5. 过程与途径(process and path)
定义:当外界条件改变时,体系的状态随之发生变化,体系 从某一状态变为另一状态成为体系经历了热力学方程,简称 为过程。完整地描述一个过程,应当指明始态、终态,外界 条件及变化的具体步骤,变化的具体步骤称为途径。
特性:a 是状态的单值函数,状态一经确定,状态函数就有 确定的数值,而与体系到达状态前的历史无关。
b 状态变化,函数随之变化,变化取决于体系的始终态, 与途径无关。
c 状态函数的组合仍然是状态函数。 d 状态函数的微小变化,在数学上是全微分。

第一章,热力学第一定律要点

第一章,热力学第一定律要点
②相变化过程:系统相态发生变化的过程。如液体的
蒸发过程、固体的熔化过程、固体的升华过程以及 两种晶体之间相互变化的过程。
③化学变化过程:系统内发生了化学变化的过程。
若已知过程始末态,需计算过程中某些状态 函数的变化,而其进行的条件不明,或计算困难 较大,可设始末态与实际过程相同的假设途径, 经由假设途径的状态函数的变化,即为实际过程
单位:焦耳(J)。
2. 热是途径函数,与某过程经历的具体途径有关,途径不同热
有不同的称呼:
➢显热:单纯升温或降温时,系统所吸收或放出
的热。
➢潜热(相变热):在恒定温度下,物质相变时吸
中状态函数的变化。这种利用“状态函数的变 化仅取决于始末态而与途径无关”的方法,
称为状态函数法。
17
§1.2 热力学第一定律
一、热和功
1.热 定义:由于温度之差而在系统与环境之间
传递的能量称为热量,或简称热(heat)。
符号: 用“Q”表示; Q>0:系统从环境吸收热量, Q<0:系统向环境放出热量。
过程不同的方式 分类
准静态 t>t驰 非准静态 t<t驰 可逆过程 不可逆过程
15
在热力学中可以将常遇到的过程分为三大类: ①简单物理变化(PVT)过程:既无相变也无化
学变化的仅仅是系统的一些状态函数如P、T、V发 生变化的过程。如单组分均相系统发生的等温过程 、等压过程、恒容过程、恒外压过程、等焓过程、 自由膨胀过程、绝热过程、循环过程……。
孤立系统(isolated system) (理想化的系统)
单组分系统
系统 多组分系统
系统
均相系统 多相系统
描述系统需要用到热力学性质,研究系统要涉及状态 和状态变化。

大学物理化学 第一章 热力学第一定律 学习指导

大学物理化学 第一章 热力学第一定律 学习指导
11.根据可逆过程特征,指出哪些过程为可逆过程?
(1)在室温和101.325 kPa下,液态水蒸发为同温同压的水蒸气;
(2)在373.15 K和101.325 kPa下,液态水蒸发为同温同压的水蒸气;
(3)水在冰点时凝结成同温同压的冰;
(4)在等温等压下两种气体混合。
12.理想气体从同一状态出发,经绝招可逆压缩或等温可逆压缩到一固定的体积哪一种压缩过程所需的功大?为什么?如果是膨胀,情况又将如何?
(7)因为Qp= ΔH,QV= ΔU,所以Qp与QV都是状态函数。
(8)在101.325kPa下,1mol l00℃的水等温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU= 0。
(9)反应3O2 2O3在等温等压下进行,O2,O3可视为理想气体,由于理想气体的热力学能和焓只与温度有关,因此该过程的ΔH= 0,ΔU= 0。
解:PbO(s)标准摩尔生成热为下列反应的标准摩尔焓变
Pb(s)+ 1/2O2(g) PbO(s)
Pb(s),O2(g)及PbO(s)的摩尔质量分别为207、32、239g·mol-1。
=(0.218239-0.134207-0.50.90032)Jmol-1K-1
=9.964Jmol-1K-1
三、
解:(1)等压反应
Q(1)=rH(1) = 2fHm(CO2) + 2fHm(CO) = -2393.5 + 2110.5 = -566.0 kJ
rU(1) =rH-nRT= -566.0 - (-18.31298)10-3= -563.5
W(1)= 2.5 kJ
(2)绝热等容反应,Q(2) =W(2) =U(2) = 0。设计过程如下

第1章热力学第一定律物理化学

第1章热力学第一定律物理化学
例 理想气体的p、V、T、n都可称为状态函数。
11
特性: 状态函数在数学上具有全微分的性质。
状态函数有特征 状态一定值一定 殊途同归变化等 周而复始变化零
12
问题: 体系的同一状态能否具有不同的体积? 体系的不同状态能否具有相同的体积? 体系的状态改变了,是否其所有的状态性质都要发生变 化? 体系的某一个状态函数改变了,是否其状态必定发生变 化?
30
解:根据
T2
T2
HQp dH CpdTmC dT
T1
T1
mC(T2T1)
T2 = 351.7K 设每天蒸发出x克水恰能维持体温不变,则
x △VHm = Qp 2406x = 10460×103
x = 4327g
31
四、理想气体的热力学能和焓
32
结果:V p ΔT水=0 Q =0 W=0 ΔU=0 结论:U = f ( T ) H = f ( T )
2.0 7 81 03 J
42
由式(1-24)可得
T2
U2 nCV,mdTnCV,m(T2 T1)
T1
1mol 38.314J.mol1.K1 (373.15273.15)K 2
1.2 4 71 03 J
计算结果说明 什么?
根据热力学第一定律,有
W2 = △U2- Q2
1.2 4 71 03 J
40
根据热力学第一定律,有 W1 = △U1- Q1 = 0
由式(1-25)可得
T2
H1 nCp,mdTnCp,m(T2 T1)
T1
1mol 58.314J.mol1.K1 (373.15273.15)K 2
2.0 7 81 03 J

物理化学第一章热力学第一定律讲解

物理化学第一章热力学第一定律讲解
热交换为Q,功交换为W,则系统的热力学能的变化为:
U U2 U1 QW 对于微小变化 dU Q W
热力学能的单位: J
热力学能是状态函数,用符号U 表示,它的绝对值尚 无法测定,只能求出它的变化值。
热力学第一定律的文字表述
热力学第一定律是能量守恒与转化定律在热现象领域 内所具有的特殊形式,说明热力学能、热和功之间可以相 互转化,但总的能量不变。
U U (T , p,n)
若是 n 有定值的封闭系统,则对于微小变化
dU


U T
p
dT


U p
T
dp
如果是 U U (T ,V )
dU


U T
V
dT


U V
T
dV

U T
V


U T
V2 )
p2
O V1
p1V2
p2V2
V2 V
一次等外压压缩
p2

p1
p1


V2
V2

p
p1
p1V1
V1 p1V2
阴影面积代表We',1 p2
O
V1
p2V2
V2 V
2. 多次恒压压缩
现在,国际单位制中已不用 cal,热功当量这个词将逐渐被 废除。
§1.4 热力学第一定律
能量守恒定律 到1850年,科学界公认能量守恒定律是自然界的普
遍规律之一。能量守恒与转化定律可表述为:
自然界的一切物质都具有能量,能量有各种不同形 式,能够从一种形式转化为另一种形式,但在转化过 程中,能量的总值不变。

物理化学简明教程-课件

物理化学简明教程-课件

数值还原
物理化学简明教程-课件
4
状态性质
强度性质 与系统中物质的量无关
无加和性
温度 T总=T1=T2=… 压力 p总=p1=p2=… 密度ρ总=ρ1=ρ2=…
容量性质(广度性质) 与系统中物质的量有关
有加和性
体积 V总=V1+V2+… 质量 m总= m1+m2 +… 内能 U总=U1+U2+…
一种容量性质 另一种容量性质
是假象的。如刚性壁,活动壁,绝热壁,半透壁等;
3. 系统可以是多种多样的:单组分,多组分,固体,液 体,气体,化学反应系统,单相,多相,双相。
如图,判定下列为何种系统?
电阻丝+电池 密闭系统

密闭系统
电阻丝
密闭系统
电阻丝+电池 隔绝系统
+水
物理化学简明教程-课件
3
(2) 状态和状态性质
若一系统,其各项性质均具有确定的数值,则称该 系统处于一定的状态。
单相体系 物理化学简明教程-课件
7
(4) 热力学平衡
如果系统与环境之间没有任何物质和能量交换,系 统中各个状态性质又均不随时间而变化,则称系统处于 热力学平衡状态。
1 热平衡 2 力学平衡 3 化学平衡
T1 = T2 = Ti p1 = p2 = pi A+BC+D
4 相平衡 H2O(l) H2O(s)
P1V1T1
P2V2T1
物理化学简P明2V教1程T-课2件
9
合 肥 治 癫 痫 病到哪 家医院 ,靠谱 铁岭市哪家医院治癫痫病好 青岛专科癫痫病医院,医院怎么选择 廊坊市癫痫专业医院地址 治癫痫病巴彦淖尔哪家医院好 北京看癫痫病挂什么科 癫痫的治疗应该怎样用药 癫痫病发病症状 贵州治疗癫痫重点医院 宝鸡市权威的三甲癫痫病医院是哪家 南阳市看癫痫病去哪家中医医院 患癫痫两年了,想知道癫痫能治好吗 治癫痫哪家医院强 癫痫病药物治疗方法 十岁的小男孩患有癫痫,请问要怎么 治疗癫 痫? 癫痫病哪些药物能用 得了抽搐应该怎么治疗效果好 需要多少钱可以治好癫痫病 大的癫痫病医院是哪家 广西哪能治好癫痫病,哪家医院好 癫痫病是怎么引起的? 婴儿癫痫能不能治疗 贵港癫痫病正规医院,去哪找 右侧颞叶癲痫严重吗 温州癫痫病医院 宁夏癫痫病治疗偏方好吗 怎么判断是否患有癫痫病 治好癫癫痫的偏方 湖北到哪治疗癫痫 小儿癫痫病有哪些典型症状? 昭通市哪家医院治癫痫病好 患者癫痫大发作该如何护理 哪家医院可以治好癫痫病呢 得了癫痫病还能正常工作吗 我同事突然晕倒,嘴里吐白沫,他这 是怎么 了? 治疗癫痫病偏方法 金华癫痫病治疗的费用 邢台可以治好癫痫病的医院在哪 宁夏癫痫到哪里治疗好 无锡癫痫病医院 武汉能治好癫痫的专科医院是哪家 癫痫治疗正规医院 癫痫医院哪家效果好 陕西治疗羊癫疯中医偏方 遗传癫痫该怎样治疗呢 滨州羊羔疯医院有哪些 青岛癫痫病治好要多少钱 癫痫病治疗主要怎么治 常见的癫痫病诱因有哪些 锦州癫痫病好的医院,在哪里

物理化学第1章 热力学第一定律及其应用

物理化学第1章 热力学第一定律及其应用
U Q W 40.69kJ 3.1kJ 37.59kJ (2)
Q U W U H=40.69kJ
37.59kJ
§2.6 理想气体的热力学能和焓
一、理想气体U
理想气体有两个基本特点:a 分子本身不占有体积 b分子间没有相互作用力
理气内能只是温度的函数,即 U =f (T )
具体写成数学式为:
功可以分为:
体积功:本教材又称膨胀功 定义——由于系统体积变化而与环境交换的功 We
非体积功:也称非膨胀功,其他功 指体积功以外的功 Wf 热力学中一般不考虑非膨胀功
四、数学表达式
设想系统由状态(1)变到状态(2),系统与环
境的热交换为Q,功交换为W,则系统的热力学能的变
化为:
U U2 U1 QW
二、内能(热力学能)
1.定义:指系统内部能量的总和, 包括分子运动的平动能、 分子之间相互作用的位能、 分子内部的所有能量 符号:U
系统总能量通常(E )有三部分组成:
(1)系统整体运动的动能
(2)系统在外力场中的位能 (3)内能
热力学中一般只考虑静止的系统,无整体运动,不考虑 外力场的作用,所以只注意内能
对于微小变化
dU Q W
说明:(1)W指的是总功,包括We、Wf (2)适用范围:封闭体系 、孤立体系 (没有物质交换的体系)
§2.4 体积功 W Fdl
一、体积功的计算 pi > pe We FedlFe AAdlpedV
公式说明:
(1)不管体系是膨胀还是压缩,体积功都用-p外dV表示; (2)不用-pdV表示;p指内部压力, p外指外压,也不能用-p外V、 -Vdp外表示。
§2.3 热力学的一些基本概念
一、系统与环境

物理化学简明教程第四版课件07-1

物理化学简明教程第四版课件07-1

∆U = 0
从Gay-Lussac-Joule 实验得到: 理想气体在自由膨胀中温度不变,热力学能不变 理想气体的热力学能和焓仅是温度的函数 设理想气体的热力学能是 T , V 的函数
U = U (T , V )
从Joule实验得 所以 因为
dV ≠ 0
§1.1
热力学的研究对象
局限性: 局限性: 不知道反应的机理、速率和微观性 质,只讲可能性,不讲现实性。
§1.2
几个基本概念
(1)体系和环境 )
体系(System)
被划定的研究对象,亦称为物 系或系统。
环境(surroundings)
体系以外并与体系有相互作用 的部分。
§1.2 几个基本概念
体系分为三类: 1.敞开体系(open system) 体系与环境之间既有物质交换,又有能量交换。
∆U = Q + W
dU = δ Q + δ W = δ Q + δ We + δ Wf
对于恒容而无非体积功的过程,
dV = 0,
δ Wf = 0
dU = δQ − Pe dV
dU = δ QV
∆U =Qv
等容且不做非膨胀功的条件下,系统的热 力学能的变化等于等容热效应
对于恒压而无非体积功的过程, P1=P2=Pe=常数
能量守恒—— ——热力学第一定律 §1.3 能量守恒——热力学第一定律 1 热和功的概念
热(heat):系统与环境之间因温差而传递的能量 称为热,用符号Q 表示。 Q的取号: 系统吸热,Q>0 系统放热,Q<0
热的本质是分子无规则运动强度的一种体现 计算热一定要与系统与环境之间发生热交换 的过程联系在一起,系统内部的能量交换不可能 是热。

物理化学 1第一章 热力学第一定律

物理化学 1第一章  热力学第一定律

第一章热力学第一定律内容提要1、热力学热力学(thermodynamics)是研究热、功、能相互转换过程中所遵循的规律的科学。

它研究物理变化和化学变化过程中所发生的能量效应、方向和限度。

热力学第一定律是能量守恒与转化定律在热现象领域内所具有的特殊形式,阐明了内能、热、功之间的相互转化和定量关系;热力学第二定律解决在一定条件下化学变化或物理变化的方向和限度问题;热力学第三定律是关于低温现象的定律。

2、体系与环境体系(system)是指将一部分物质从其余的物质之中划分出来作为研究的对象;环境(surroundings)是指体系之外与体系密切相关的部分。

根据体系与环境之间能量传递和物质交换的不同,体系可以分为三种:(1)隔离体系是指体系与环境之间既无物质的交换,也无能量的传递,又称孤立体系。

(2)敞开体系是指体系与环境之间既有物质的交换,又有能量的传递,又称开放体系。

(3)封闭体系是指体系与环境之间没有物质的交换,但有能量的传递。

3、体系的性质体系的性质分为广度性质与强度性质两类。

广度性质是指数值的大小与体系中所含物质的量成正比的体系性质,如体积、质量、热容、内能、吉布斯能、熵等。

广度性质具有加和性。

强度性质是指仅取决于体系的特征而与体系所含物质的量无关的体系性质,如温度、压力、密度、粘度等。

强度性质不具有加和性。

体系的某一广度性质除以另一广度性质得一强度性质,体系的某一广度性质乘以另一强度性质得一广度性质。

4、热力学平衡态热力学平衡态同时存在下列平衡:(1)热平衡:体系中温度处处相等。

(2)力学平衡:体系各部分之间及体系与环境之间没有不平衡的力存在。

(3)相平衡:体系中各相的组成和数量不随时间而变。

(4)化学平衡:体系中发生的化学反应达到平衡,体系的组成不随时间而变。

5、状态函数(state function )状态函数是指由体系的状态所确定的体系的各种热力学性质。

它具有下列特性:(1)状态函数是体系状态的单值函数,与体系到达此状态前的历史无关。

物理化学第一章热力学第一定律

物理化学第一章热力学第一定律

常用的热量单位是卡(cal):
热力学所采用的热功当量为:
1
2
3
4
5
01
等压过程和焓
02
若体系经历一等压过程,且不作有用功,由热力学第一定律:
03
U=Q+W=Q-∫p外dV
04
等压过程: p外=p2=p1
05
U=Q-p1or2(V2-V1)
06
对上式进行改写:
07
(U2-U1)=Q-(p2V2-p1V1)
理想气体的微观模型: 满足以下两个条件的体系为理想气体.
. 分子之间没有作用力, 分子间不存在作用势能;
. 分子的体积可以忽略不计, 可视为数学上的点.
热力学定义: 满足理想气体状态方程的体系. 方程为:
pV = nRT
式中n为体系所含物质的量,R为气体常数: R=8.314 J/mol.K.
08
(U2+p2V2)-(U1+p1V1)=Qp (1)
第二节 焓 (enthalpy)
上式的左边全是状态函数,而右边为过程量Q,对于等压过程,式中括号中的量总是一起出现,故可定义: H≡U+pV (2) H称为焓(enthalpy)。 因为H是状态函数的组合,所以H必为状态函数。 把H代入(1)式,可得: H=Qp (3) 上式物理含义是: 无有用功的等压过程热效应等于体系的焓变。
第一节 热力学第一定律
1
热力学第一定律(first law of thermodynamics)
2
自然界的能量既不能创生,也不会消灭.
3
热力学第一定律即为: 能量守恒原理.
4
更广泛地可定义为: 物质不灭定律.
5
第一定律可表述为: 第一类永动机不可能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)热力学第一定律的数学表达式
• ΔU=Q+W
• dU=δQ+δW
§1.4 体积功
• (1)体积功 • 因系统体积变化而引起的系统与环境间 交换的功称为体积功。
• • • • • • •
δW=–ƒ外dl =– p 外 · Adl =–p外dV 注意: 无论膨胀或压缩 均用此式计算体积功 功为途经有关。
图1.3 体积功
功与途经有关的例子
• 1.气体向真空膨胀, W=0
• 2.气体在恒定外压的情况下膨胀
W dV p ( V V ) 2 1 外 外 p
V 1
V 2
pV work (
点击园柱播放
)
3 可逆膨胀
W dV ( p dp ) dV dV 外 p p
(3)可逆相变的体积功
• 可逆相变时,恒温恒压,故
W d V d V p V 外 p p
• 对于液气相变,ΔV=V(g)—V(1)≈ V(g)
第一章
热力学第一定律
§1.1 热力学的研究对象
• • (1) 研究过程的能量效应; • (2) 判断某一热力学过程在一定条件下 是否可能进行。
§1.2 几个基本概念
• (1)系统和环境
系统可分为三种
敞开系统,有能量 和物质交换; 密闭系统,有能量 交换,无物质的交换; 隔绝系统,既无能 量,又无物质交换。
V 1 V 1 V 1 V 2 V 2 V 2
• 理想气体膨胀,则有p=nRT/V
V V nRT 2 dV 2 W dV nRT nRT ln V V 1 1 V V V 1 V 2
p 1 nRT ln p 2
( 1 . 8 )
(2)可逆过程与不可逆过程
U U d U T V d d T V V T
1 . 2
• U的单位是焦耳,J。为容量函数。
(2) 功和热的概念
• 由于系统与环境之间的温度差而造成的能Байду номын сангаас传 递称为“热”;用符号Q来表示,根据IUPAC 的建议系统吸热为正值,而系统放热为负值。 • 除了热以外,在系统与环境之间其它形式的能 量传递统称为“功”。符号W来表示,以系统 对环境作功为负值,而以环境对系统作功为正 值。
几种主要的 p,V,T 变化过程
• ① 定温过程 • 若过程的始态,终态的温度相等,且过程中的温 度等于环境的温度,即Tl=T2=T环,叫定温过程. • ② 定压过程 • 若过程的始态,终态的压力相等,且过程中的压 力恒定等于环境的压力,即p1=p2=pex,叫定压过程。 • ③ 定容过程 • 系统的状态变化过程中体积保持恒定,V1=V2, 为定容过程. • ④ 绝热过程 • 与环境间而无热的交换,即Q=0,叫绝热过程.
(4) 热力学平衡
• 如果系统与环境之间没有任何物质和能 量交换,系统中各个状态性质又均不随 时间而变化,则称系统处于热力学平衡 态。包括四个平衡: • 1.热平衡。系统各个部分之间没有温度 差; • 2.机械平衡, 压力相同; • 3.化学平衡; • 4.相平衡。
§1.3 能量守恒——热力学第一定律
• (1) 热力学能(内能)的概念 • 系统内部的能量叫做“热力学能”或者 “内能”,用符号U来表示。 • 热力学能U包括了系统中一切形式的能量, 如分子的移动能、转动能、振动能、电 子运动能及原子核内的能等等,但系统 整体的动能和位能不包括在内。 • 热力学能是状态函数。
• ΔU=UB-UA • U=f(T,V)
例题1
• 在25℃时,2mol H2的体积为15dm3,此气体(1) 在定温条件下(即始态和终态的温度相同),反 抗外压为105Pa时膨胀到体积为50dm3;(2)在定 温下,可逆膨胀到体积为50dm3。试计算两种 膨胀过程的功。 • 解 (1)此过程的p外恒定为105Pa而始终不变, 所以是一恒外压不可逆过程,应当用(1.6) :
• ⑤ 循环过程 • 系统由始态经一连串过程又回复到始态的过程叫循 环过程。 • 循环过程中,所有的状态函数的改变量均为零 • ΔT = 0, ΔU = 0 等. • ⑥ 对抗恒定外压过程 • 系统在体积膨胀的过程中所对抗的环境的压力, • ⑦ 自由膨胀过程 (向真空膨胀) • 如图l—1所示,左球内充有气体, • 右球内呈真空,活塞打开后.气体 • 向右球膨胀,叫自由膨胀过程 • (或叫向真空膨胀过程).
5 3 W p ( V V ) [ 1 0 ( 5 0 1 5 ) 1 0 ] J 3 5 0 0 J 21 外

(2)此过程为理想气体定温可逆过程,故:
V 5 0 2 W n R T l n 2 8 . 3 1 4 2 9 8 l n J 5 9 6 6 J V 1 5 1
(2) 状态和状态性质(状态函数)
• 状态(State) 热力学系统所指的状态,是由系 统的性质所确定的。这些性质是指化学成分, 数量,形态(固,液,气),p,T,V等。 • 反之,当系统的状态一旦被确定以后,那么它 的各项性质就会有一个确定的值。 • 状态函数:描述系统状态的宏观性质(如p,T, V 等)称为状态函数。
• 某过程进行之后系统恢复原状的同时, 环境也能恢复原状而未留下任何永久性 的变化,则该过程称为“热力学可逆过 程”。 • 如果系统发生了某一过程之后,在使系 统恢复原状的同时,环境中必定会留下 某种永久性变化,即环境没有完全复原, 则此过程称为“热力学不可逆过程”。
热力学可逆过程有以下特征
• 1.可逆过程进行时,系统始终无限接近 于平衡态。可以说,可逆过程是由一系 列连续的、渐变的平衡态所构成的; • 2.可逆过程进行时,过程的推动力与 阻力只相差无穷小; • 3. 系统进行可逆过程时,完成任一有 限量变化均需无限长时间; • 4.在定温的可逆过程中,系统对环境 所作之功为最大功;环境对系统所作之 功为最小功。
相关文档
最新文档