2018-2019年平顶山市初中分班数学模拟试卷(47)附详细答案

合集下载

平顶山xx中学2018-2019年初一上第三次抽考数学试题及解析

平顶山xx中学2018-2019年初一上第三次抽考数学试题及解析

平顶山 xx 中学 2018-2019 年初一上第三次抽考数学试题及分析七年级数学试卷座号测试时间 :90 分钟试卷总分 :120 分题号 总分分数一、选择(每题3 分,共 30 分)1. 以下各数中,大于- 2 小于 2 的负数是 ()A .- 3B .- 2C .- 1D .02. 用一平面截一个正方体,不可以获得的截面形状是 ()A. 直角三角形B. 等边三角形C.长方形D.六边形3.从多边形一条边上的一点(不是极点 )出发,分别连结这个点和其他各个极点获得8 个三角形, 则这个多边形的边数为 ()A .7B . 8C .9D .104.某种商品每件的标价是 330 元,按标价的八折销售时,仍可赢利10%,则这类商品每件的进价为 ()A .240 元B .250 元C .280 元D .300 元5、假如方程 6x+3a=22 与方程 3x+5=11 的解相同,那么 a=()3 10 3 10A.B.C.-D.-3103106.小强用 8 块棱长为 3cm的小正方体,搭建了一个如下图的积木,以下说法中不正确的选项是()A .从左面看这个积木时 ,看到的图形面积是 27cm 2B . 从正面看这个积木时 ,看到的图形面积是 54cm 2C . 从上边看这个积木时 ,看到的图形面积是45cm 2D .分别从正面、左面、上边看这个积木时,看到的图形面积都是 72cm7、以下变形中,正确的选项是a b A 、若 ac=bc ,那么 a=b 。

B 、若,那么 a=b2ccC、a=b,那么a=b。

D、若 a 2 = b 2那么 a=b8.以下语句正确的选项是 ()A.线段 AB 是点 A 与点 B 的距离B.过n边形的每一个极点有(n -3)条对角线C.各边相等的多边形是正多边形D.两点之间的全部连线中,直线最短2x 1 x 1去分母,获得6x 3 2x 2 6 ,错在()9、将方程 12 3A 、最简公分母找错B、去分母时,漏乘 3 项C、去分母时,分子部分没有加括号 D 、去分母时,各项所乘的数不一样10. 我市为减少雾霾天气采纳了多项举措,如对城区骨干道进行绿化. 现计划把某一段公路的一侧全部栽上银杏树,要求路的两头各栽一棵,而且每两棵树的间隔相等.假如每隔5米栽 1棵,则树苗缺 21 棵;假如每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗x 棵,则依据题意列出方程正确的选项是 ()A.5(x+21 - 1)=6(x - l)B.5(x+21)=6(x - l)C.5(x+21 - 1)=6xD.5(x+21)=6x二、填空(每题 3 分,共 30 分)11.如图,已知线段 AB= 16cm,点 M在 AB 上, AM∶ BM= 1∶ 3, P, Q 分别为 AM, AB 的中点,则 PQ的长为 _____________ .12.如图,将一副直角三角板叠在一同,使直角极点重合于点O,则∠ AOB+∠ DOC=________.13. 当 x ______时,2x 8的值等于-1的倒数414. 9 时 45 分时 , 时钟的时针与分针的夹角是 __________ .15.若(m 2) x m 1m=__________2 0 是一元一次方程,则16. 将一个圆分红四个扇形,它们的圆心角的度数比为2∶4∶5∶ 7,则最大扇形的圆心角是____.17. 有一块棱长为 0.6 米的正方体钢坯,想将他铸造成横截面是0.009 平方米的长方体钢材,锻成的钢的高是 _______ 米18. 一个人从 A 点出发向北偏东 60°的方向走到 B 点,再从 B 点出发向南偏西15°方向走到 C点,那么∠ ABC的度数是 _________.12 1 22 (个)部分;两条直线把一个平面最19.在同一平面上,一条直线把一个平面分红222 2 2 32 3 2多分红 2 4 (个)部分;三条直线把一个平面最多分红 2 7 (个)部分,那么, 8 条直线把一个平面最多分红________个部分 .20. 如下图,把相同大小的黑色棋子摆放在正多边形的边上,依据这样的规律摆下去,则第n(n 是大于0 的整数)个图形需要黑色棋子的个数是__________ .三、解答题(本大题共60 分)21.计算或化简(每题 4 分,共 16 分)计算(1)24 1 1 5 ;(2) 32 1 4 1 1 10.5 ;22 6 12 4 4化简 (1)3x 2 1 22( 3xy x2 ) [2 x2 3(5xy 2x2 ) xy]-3( x - 2x+1) +4;(2) 322.( 10 分)解方程:(1)4 4( x 3) 2(9 x) x 2 2 x 5( 2)x3 3523.(7 分)已知代数式 2 x2 ax y 6 2bx 2 3x 5y 1 的值与字母x 的取值没关,求1 a3 2b2 1 a3 3b2的值?3 424(9 分)如图 ,O 为直线 AB 上一点 ,∠AOC =50° ,OD 均分∠ AOC,∠DOE= 90°(1)请你数一数 ,图中有 _______个小于平角的角;(2)求出∠ BOD 的度数;(3)请经过计算说明 OE 能否均分∠ BOC.列一元一次方程解应用题25.( 10)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000 元,每本印刷费0.5 元;乙厂收费方式:不超出 2000 本时,每本收印刷费 1.5 元;超出 2000 本超出部分每本收印刷费元,若该校印制证书x 本 .0.25(1)若 x 不超出 2000 时,甲厂的收费为元,乙厂的收费为元;(2)若 x 超出 2000 时,甲厂的收费为元,乙厂的收费为元(3)当印制证书 8000 本时应当选择哪个印刷厂更节俭花费?节俭了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?26(8 分)某天上午9 时,李明 , 王华两人从A、 B 两地同时出发,相向而行,上午10 时两人相距55 千米,两人持续行进,到上午12 时,两人又相距55 千米,已知李明每小时比王华多走 2 千米,问:(1)李明、王华两人的速度分别是多少?(2) A、B 两地的距离是多少千米?2016-2017 学年第一学期七年级数学第三次月考试答案一、选择题:1-5:CACAB6-10 : DBBCA二、填空题:11、 6cm12、180 度 13、 -614、22.5 度 15、216、140度 17、2418、45 度 19、3720、n n2三、解答题21、计算( 1)-18( 2)-9.25 化简( 1)2x26x 1(2) 10xy 6x222、( 1) -1( 2)-3423、( 1) -1.25,24、9155 度25(1)0.5x+1000;1.5x(2)0.5x+1000;0.25x+2500(3)甲 5000 乙 4500 乙省 500(4)1000 或 600026(1)李明 :28.5km/h26.5km/h(2)110km。

2018-2019年平顶山市初中分班数学模拟试卷(44)附详细答案

2018-2019年平顶山市初中分班数学模拟试卷(44)附详细答案

小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。

2018-2019沧州市初中分班数学模拟试卷(47)附详细答案附答案

2018-2019沧州市初中分班数学模拟试卷(47)附详细答案附答案

小升初数学综合模拟试卷47一、填空题:1.102+104+108+116+132-101-103-109-127=______.3.如图,阴影部分的面积是_______.数是______.5.小明有一堆核桃,第一天他卖了这堆核桃的七分之一;第二天他卖了余下核桃的六分之一;第三天他卖了余下核桃的五分之一;第四天他卖了余下核桃的四分之一;第五天他卖了余下核桃的三分之一;第六天他卖了余下核桃的二分之一.这时还剩下30个核桃,那么,第一天和第二天小明卖的核桃总数是_______个.6.六个空瓶可以换一瓶汽水,某班同学喝了213瓶汽水,其中一些是用喝后的空瓶换来的,那么,他们至少要买汽水______瓶.7.如图是6×6的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选8个格点,要求其中任意3个格点都不在一条直线上,并且使这8个点用直线连接后所围成的图形面积尽可能大.那么,所围图形的面积是_______平方厘米.8.甲、乙、丙都在读同一本故事书,书中有100个故事,每人都从某一个故事开始,按顺序往后读,已知甲读了50个故事,乙读了61个故事,丙读了78个故事,那么甲、乙、丙三人共同读过的故事至少有______个.9.甲、乙两厂共同完成了一批机床的生产任务,已知甲厂比乙厂少生______台.10.某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了一分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多______分.二、解答题:1.减数、被减数与差三者之和除以被减数,商是多少?2.把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.3.将1,1,2,2,3,3,4,4这八个数字排成一个八位数,使两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字,两个4之间有四个数字,请找出二个这样的八位数.4.如图,从A至B,步行走粗线道ADB需要35分,坐车走细线道A→C→D→E→B需要22.5分,D →E→B车行驶的距离是D至B步行距离的3倍,A→C→D车行驶的距离是A至D步行距离的5倍,已知车速是步行速度的6倍,那么先从A至D步行,再从D→E→F坐车所需要的总时间是多少分?答案,仅供参考。

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。

平顶山镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各组数中①;②;③;④是方程的解的有()A.1个B.2个C.3个D.4个【答案】B【考点】二元一次方程的解【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

2、(2分)如图,若∠1=∠2,DE∥BC,则下列结论中正确的有()①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC.A. 1个B. 2个C. 3个D. 4个【答案】C【考点】平行线的判定与性质【解析】【解答】解:∵DE∥BC∴∠1=∠DCB,∠AED=∠ACB,因此②正确;∵∠1=∠2∴∠2=∠DCB∴FG∥DC,因此①正确;∴∠BFG=∠BDC,因此⑤正确;∵∠1=∠2,∠2+∠B不一定等于90°,因此④错误;∠ACD不一定等于∠BCD,因此③错误正确的有①②⑤故答案为:C【分析】根据已知DE∥BC可证得∠1=∠DCB,∠AED=∠ACB,可对②作出判断;再根据∠1=∠2,可对①作出判断;由∠2=∠DCB,可对⑤作出判断;③④不能证得,即可得出答案。

3、(2分)若m是9的平方根,n= ,则m、n的关系是()A.m=nB.m=-nC.m=±nD.|m|≠|n|【答案】C【考点】平方根【解析】【解答】因为(±3)2=9,所以m=±3;因为()2=3,所以n=3,所以m=±n故答案为:C【分析】由正数的平方根有两个,可以求得9的平方根,进而求得m的值,根据,可以求得n的值,比较m与n的值即可得到它们的关系。

最新河南省平顶山市2019年最新中招调研数学试卷及答案(精校版)

最新河南省平顶山市2019年最新中招调研数学试卷及答案(精校版)

2019年平顶山中招调研测试(一)九年级数学一、选择题。

(每小题3分,共30分)下列各小题均有四个答案其中只有一个是正确的。

1、下列各数中,绝对值最小的数是( )A 、πB 、21C 、−2D 、−312、下列运算正确的是( )A 、523532a a a =+B 、ab b a b a 33223=÷C 、()222b a b a -=-D 、()3332a a a =+- 3、已知关于x 的一元二次方程0122=+-x kx 有实数根,若k 为非负整数,则k 等于( )A 、0B 、1C 、0,1D 、24、不等式组⎩⎨⎧≥->-02213x x 的解集在数轴上表示为( )5、一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球;随机从中摸出一球,不再放回,充分搅均后再随机摸出一球。

则两次都摸到红球的概率是( )A 、31 B 、32 C 、21 D 、416、如图,BE ∥AF ,点D 是AB 上一点,且DC ⊥BE 于点C ,若∠A=35°,则∠ADC 的度数( ) A 、105° B 、115° C 、125° D 、135°7、如图,在平行四边形ABCD 中,点E 是边AD 上一点,且AE=2ED ,EC 交对角线BD 于点F ,则FC EF 等于( )A 、31B 、21C 、32D 、438、如图,已知AB 是⊙O 直径,BC 是弦,∠ABC=40°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB 为( )A 、20°B 、25°C 、30°D 、35°9、已知一次函数y=(k+1)x+b 的图象与x 轴负半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A 、k>−1,b>0B 、k>−1,b<0C 、k<−1,b>0D 、k<−1,b<010、如图,已知二次函数()02≠++=a c bx ax y 图象与x 轴交于A ,B 两点,对称轴为直线x=2,下列结论:①abc>0; ②4a+b=0;③若点A 坐标为(−1,0),则线段AB=5; ④若点M(x 1,y 1)、N(x 2,y 2)在该函数图象上,且满足0<x 1<1,2<x 2<3,则y 1<y 2其中正确结论的序号为( )A 、①,②B 、②,③C 、③,④D 、②,④二、填空题(本大题共5小题,每小题3分,共15分)11、计算:()02142-+-=。

平顶山市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A. ∠1=90°,∠2=30°,∠3=∠4=60°;B. ∠1=∠3=90°,∠2=∠4=30°C. ∠1=∠3=90°,∠2=∠4=60°;D. ∠1=∠3=90°,∠2=60°,∠4=30°【答案】D【考点】对顶角、邻补角【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故答案为:D【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.2、(2分)下列四种说法:① x=是不等式4x-5>0的解;② x=是不等式4x-5>0的一个解;③ x>是不等式4x-5>0的解集;④ x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【考点】不等式的解及解集【解析】【解答】解:①当x=时,不等式4x-5=0,故原命题错误;②当x=时,不等式4x-5=5>0,故原命题正确;③解不等式4x-5>0得,x>,故原命题正确;④与③矛盾,故错误.故正确的有②和③,故答案为:B.【分析】解不等式4x-5>0 可得x>,不等式的解是解集中的一个,而不等式的解集包含了不等式的所有解,①x=不在x>的范围内;②x=在x>的范围内;③解不等式4x-5>0 可得x>;④x>2中任何一个数都可以使不等式4x-5>0成立,但它并不是所有解的集合。

2019年3月河南省平顶山市叶县中考数学一模试卷(含答案解析)

2019年3月河南省平顶山市叶县中考数学一模试卷(含答案解析)

2019年河南省平顶山市叶县中考数学一模试卷(3月份)一.选择题(共10小题,满分30分,每小题3分)1.﹣8的相反数是()A.﹣8 B.C.8 D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.4.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a25.一组数据﹣3,2,2,0,2,1的众数是()A.﹣3 B.2 C.0 D.16.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.7.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>28.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°9.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE 折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C 匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三.解答题(共8小题,满分75分)16.(8分)先化简再求值(a+2b)(a﹣2b)﹣(a﹣b)2+5b(a+b).其中a=2﹣,b=2+.17.(9分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?18.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5cm,AC=12cm时,求线段PC的长.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天; 信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表: 生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 350 3020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元. 信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)有两张完全重合的矩形纸片,将其中一张绕点A 顺时针旋转90°后得到矩形AMEF (如图1),连接BD ,MF ,若BD =16cm ,∠ADB =30°.(1)试探究线段BD 与线段MF 的数量关系和位置关系,并说明理由;(2)把△BCD 与△MEF 剪去,将△ABD 绕点A 顺时针旋转得△AB 1D 1,边AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数; (3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB 时,求平移的距离.23.(11分)在平面直角坐标系xOy 中抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,已知A (﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年河南省平顶山市叶县中考数学一模试卷(3月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.4.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.【分析】众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【解答】解:这组数据中2出现次数最多,有3次,所以众数为2,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数是指一组数据中出现次数最多的数据.6.【分析】利用每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色游泳帽比红色的多1倍,进而分别得出等式即可.【解答】解:设男孩x人,女孩有y人,根据题意得出:,解得:,故选:C.【点评】此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.7.【分析】根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k 的取值范围.【解答】解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.【点评】本题考查了根的判别式,解题的关键是牢记“当△>0时,方程有两个不相等的实数根.8.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.9.【分析】连结EF,作GH⊥x轴于H,根据矩形的性质得AB=OD=OF+FD=3,再根据折叠的性质得BA=BG=3,EA=EG,∠BGE=∠A=90°,而AE=DE,则GE=DE,于是可根据“HL”证明Rt△DEF≌Rt△GEF,得到FD=FG=2,则BF=BG+GF=5,在Rt△OBF中,利用勾股定理计算出OB =2,然后根据△FGH∽△FBO,利用相似比计算出GH=,FH=,则OH=OF﹣HF=,所以G点坐标为(,).【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了坐标与图形的性质和相似三角形的判定与性质.10.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S=PQ•BQ△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ此时S的图象是关于t(2s<t≤4s)的一次函数.△BPQ∵斜率>0∴S △BPQ 随t 的增大而增大,直线由左向右依次上升. ③当P 在DE 上,P 在EC 上时(即4s <t ≤s ) PQ =[CE ﹣(t ﹣4)]•sin45°=﹣t (4s <t ≤s ),BQ =BC ﹣CQ =BC ﹣[CE ﹣(t ﹣4)]•cos45°=﹣(﹣t )=t +S △BPQ =PQ •BQ由于展开二次项系数a =k 1•k 2=•(﹣)•()=﹣抛物线开口向下, 故选:D .【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想. 二.填空题(共5小题,满分15分,每小题3分)11.【分析】根据算术平方根的定义、负整数指数幂计算可得. 【解答】解:原式=2﹣4+4=2,故答案为:2.【点评】本题主要考查实数的运算,解题的关键是熟练掌握算术平方根的定义和负整数指数幂的定义.12.【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y =﹣5x 2先向左平移5个单位长度,再向下平移3个单位长度, ∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y =﹣5(x +5)2﹣3, 即y =﹣5x 2﹣50x ﹣128, 故答案为y =﹣5x 2﹣50x ﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案. 【解答】解:列表如下:积﹣2 ﹣1 2﹣2 2 ﹣4﹣1 2 ﹣22 ﹣4 ﹣2由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠FAD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三.解答题(共8小题,满分75分)16.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=a2﹣4b2﹣(a2﹣2ab+b2)+5ab+5b2=a2﹣4b2﹣a2+2ab﹣b2+5ab+5b2=7ab,当a=2﹣,b=2+时,原式=7×(2﹣)×(2+)=7×(4﹣3)=7.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.17.【分析】(1)利用A类别人数及其百分比可得总人数;(2)总人数减去A、B、D类别人数,求得C的人数即可补全图形;(3)360°×C类别人数所占比例可得;(4)总人数乘以样本中A、B人数占总人数的比例即可.【解答】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.18.【分析】(1)想办法证明OD⊥PD即可.(2)证明△BAD∽△CDP,即可解决问题.(3)利用勾股定理求出BC,BD,CD,再利用(2)中结论即可解决问题.【解答】(1)证明:连接OD.∵∠BAD=∠CAD,∴=,∴∠BOD=∠COD=90°,∵BC∥PA,∴∠ODP=∠BOD=90°,∴OD⊥PA,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴=,∴AB•CP=BD•CD.(3)解:∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,∴BC==13,∴BD=CD=,∵AB•CP=BD•CD.∴PC==.【点评】本题属于圆综合题,考查了切线的判定,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.19.【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【解答】解;如图,点P为所作.【点评】本题考查了作图﹣应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.21.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.∴w=1.5×+2.8×总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.【分析】(1)有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF (如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小.(2)分两种情形讨论①当AK=FK时,②当AF=FK时,根据旋转的性质得出结论.(3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出对应线段成比例,即可得到A2A的大小.【解答】解:(1)结论:BD=MF,BD⊥MF.理由:如图1,延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.又∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)如图2,①当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;②当AF=FK时,∠FAK=(180°﹣∠F)=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)如图3,由题意得矩形PNA2A.设A2A=x,则PN=x,在Rt△A2M2F2中,∵F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=8,∴AF2=8﹣x.∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2•tan30°=8﹣x,∴PD=AD﹣AP=8﹣8+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DPN∽△DAB,∴=,∴=,解得x=12﹣4,即A2A=12﹣4,∴平移的距离是(12﹣4)cm .【点评】本题属于四边形综合题,主要考查了旋转的性质,相似三角形的判定与性质,勾股定理的运用,等腰三角形的性质的运用运用.在利用相似三角形的性质时注意使用相等线段的代换以及注意分类思想的运用.23.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:, 解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD•3=(﹣a2+3a)=﹣(a﹣)2+,∴当a=时,△BDC的面积最大,此时P(,);(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),设N(1,n),则0≤n≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

(解析版)平顶山2019~2019学度初一下年末数学试卷.doc

(解析版)平顶山2019~2019学度初一下年末数学试卷.doc

(解析版)平顶山2019~2019学度初一下年末数学试卷【一】选择题〔共9小题,每题3分,总分值27分〕1、以下计算正确的选项是〔〕A、a3+a2=a5B、a3•a2=a6C、〔a3〕2=a9D、a6÷a2=a42、小明上网查得H7N9禽流感病毒的直径大约是0、00000008米,用科学记数法表示为〔〕A、0、8×10﹣7米B、8×10﹣7米C、8×10﹣8米D、8×10﹣9米3、下面有4个汽车标致图案,其中不是轴对称图形的是〔〕A、B、C、D、4、以下每组数分别是三根小木棒的长度,其中能摆成三角形的是〔〕A、3cm;4cm;5cmB、7cm;8cm;15cmC、3cm;12cm;20cmD、5cm;5cm;11cm5、假设x2+mx+9是一个完全平方式,那么m的值是〔〕A、9B、±18C、6D、±66、小狗在如下图的方砖上走来走去,随意停在黑色方砖上的概率为〔〕A、B、C、D、7、如图,FD∥BE,那么∠1+∠2﹣∠3的值为〔〕A、90°B、135°C、150°D、180°8、请仔细观察用直尺和圆规作一个角∠A′O′B′等于角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是〔〕A、SASB、ASAC、AASD、SSS9、如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h随时间t变化的图象大致是〔〕A、B、C、D、【二】填空题〔共7小题,每题3分,总分值21分〕10、计算:〔〕﹣2+〔﹣5〕0=、11、一个袋子中有红球和白球两种,从中摸出红球的概率为、袋子中红球有5个,那么袋子中白球的个数为、12、汽车由平顶山驶往相距约150km的郑州,假设它的平均速度为100km/h、那么汽车距郑州的路程s〔km〕关于行驶时间t〔h〕的函数关系式为、13、如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,假设∠BCE=35°,那么∠A 的度数为度、14、如下图,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,那么DE的长为cm、15、等腰三角形一边长是10cm,一边长是6cm,那么它的周长是cm或cm、16、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,那么图c中的∠CFE的度数是°、【三】解答题〔共7小题,总分值72分〕17、乘法公式的探究及应用、〔1〕如图1,假设大长方形的边长为a,小长方形的边长为b,那么阴影部分的面积是、假设将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,那么它的面积是、有〔1〕可以得到乘法公式、〔3〕假设a=18,b=12,那么请你求出阴影部分的面积、18、先化简,再求值:[〔x+2y〕2﹣〔x+y〕〔x﹣y〕﹣5y2]÷2x,其中x=﹣2,y=、19、如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获【一】【二】三获奖,奖金依次为60、50、40元、〔1〕分别计算获【一】【二】三等奖的概率、老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?20、:如图,AD∥BE,∠1=∠2,求证:∠A=∠E、21、△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D、〔1〕假设△BCD的周长为8,求BC的长、假设∠ABD=∠DBC,求∠A的度数、22、小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合、小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分、设小亮出发x分后行走的路程为y米、图中的折线表示小亮在整个行走过程中y随x的变化关系、〔1〕小亮行走的总路程是米,他途中休息了分、分别求出小亮在休息前和休息后所走的路程段上的步行速度、〔3〕当小颖到达缆车终点时,小亮离缆车终点的路程是多少?23、如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E、〔1〕△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由、如图图2,假设直线AE绕点A旋转到图2所示的位置〔BD<CE〕时,其余条件不变,那么BD与DE、CE的关系如何?〔只须回答结论〕、〔3〕如图图3,假设直线AE绕点A旋转到图3所示的位置〔BD>CE〕时,其余条件不变,那么BD与DE、CE的关系如何?〔只须回答结论〕、河南省平顶山市2018~2018学年度七年级下学期期末数学试卷参考答案与试题解析【一】选择题〔共9小题,每题3分,总分值27分〕1、以下计算正确的选项是〔〕A、a3+a2=a5B、a3•a2=a6C、〔a3〕2=a9D、a6÷a2=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方、分析:根据合并同类项、幂的乘方和同底数幂的乘除法计算判断即可、解答:解:A、a3+a2不是同类项,不能合并,错误;B、a3•a2=a5,错误;C、〔a3〕2=a6,错误;D、a6÷a2=a4,正确;应选D、点评:此题考查了合并同类项,幂的乘方,以及同底数幂的乘除法,熟练掌握运算法那么是解此题的关键、2、小明上网查得H7N9禽流感病毒的直径大约是0、00000008米,用科学记数法表示为〔〕A、0、8×10﹣7米B、8×10﹣7米C、8×10﹣8米D、8×10﹣9米考点:科学记数法—表示较小的数、分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定、解答:解:0、00000008米用科学记数法表示为8×10﹣8米、应选C、点评:此题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定、3、下面有4个汽车标致图案,其中不是轴对称图形的是〔〕A、B、C、D、考点:轴对称图形、专题:几何图形问题、分析:根据轴对称图形的概念结合4个汽车标志图案的形状求解、解答:解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形、第4个不是轴对称图形,是中心对称图形、应选D、点评:此题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合、4、以下每组数分别是三根小木棒的长度,其中能摆成三角形的是〔〕A、3cm;4cm;5cmB、7cm;8cm;15cmC、3cm;12cm;20cmD、5cm;5cm;11cm考点:三角形三边关系、分析:根据在三角形中任意两边之和>第三边,任意两边之差<第三边、解答:解:A、3+4>5能构成三角形,故正确;B、7+8=15,不能构成三角形,故错误;C、3+12=15<20,不能构成三角形,故错误;D、5+5=10<11,不能构成三角形,故错误、应选A、点评:此题利用了三角形中三边的关系求解、5、假设x2+mx+9是一个完全平方式,那么m的值是〔〕A、9B、±18C、6D、±6考点:完全平方式、分析:这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍、解答:解:∵x2+mx+9是一个完全平方式,∴x2+mx+9=〔x±3〕2,∴m=±6,应选:D、点评:此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式、注意积的2倍的符号,避免漏解、6、小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为〔〕A、B、C、D、考点:几何概率、分析:根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,分析题意可得,图中共9个面积相等的正方形,其中有2块黑色的方砖,计算可得答案、解答:解:根据题意,共9个面积相等的正方形,其中有2块黑色的方砖,根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,故其概率为、应选:C、点评:此题主要考查了几何概率求法,用到的知识点为:概率=相应的面积与总面积之比、7、如图,FD∥BE,那么∠1+∠2﹣∠3的值为〔〕A、90°B、135°C、150°D、180°考点:平行线的性质、分析:先根据平行线的性质得出∠2+∠FGB=180°,再由对顶角相等得出∠AGC=∠FGB,故∠2+∠AGC=180°,∠AGC=180°﹣∠2,根据∠1=∠3+∠AGC,可知∠1﹣∠3=∠AGC,进而可得出结论、解答:解:∵DF∥BE,∴∠2+∠FGB=180°,∵∠AGC=∠FGB,∴∠2+∠AGC=180°,∴∠AGC=180°﹣∠2,∵∠1=∠3+∠AGC,∴∠1﹣∠3=∠AGC,∴∠1+∠2﹣∠3=∠AGC+180°﹣∠AGC=180°、应选D、点评:此题考查了三角形外角性质和平行线性质的应用,注意:两直线平行,同旁内角互补、8、请仔细观察用直尺和圆规作一个角∠A′O′B′等于角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是〔〕A、SASB、ASAC、AASD、SSS考点:全等三角形的判定与性质、专题:作图题、分析:根据作图过程,O′C′=OC,O′B′=OB,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据、解答:解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′〔SSS〕、应选D、点评:此题考查基本作图“作一个角等于角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等、从作法中找,根据条件选择判定方法、9、如图,一只蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,那么蚂蚁爬行的高度h 随时间t变化的图象大致是〔〕A、B、C、D、考点:函数的图象、专题:压轴题、分析:从A1到A2蚂蚁是匀速前进,随着时间的增多,爬行的高度也将由0匀速上升,从A2到A3随着时间的增多,高度将不再变化,由此即可求出答案、解答:解:因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度h随时间t变化的图象是B、应选:B、点评:主要考查了函数图象的读图能力、要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际情况采用排除法求解、【二】填空题〔共7小题,每题3分,总分值21分〕10、计算:〔〕﹣2+〔﹣5〕0=5、考点:负整数指数幂;零指数幂、分析:首先利用负整数指数幂的性质和零指数幂的性质进行计算,然后再按照有理数的加法法那么计算即可、解答:解:原式=4+1=5、故答案为:5、点评:此题主要考查的是负整数指数幂的性质和零指数幂的性质,掌握负整数指数幂的性质和零指数幂的性质是解题的关键、11、一个袋子中有红球和白球两种,从中摸出红球的概率为、袋子中红球有5个,那么袋子中白球的个数为20、考点:概率公式、分析:先设袋子中白球的个数为x,然后根据红球的概率公式直接解答即可、解答:解:设袋子中有白球x个,根据题意得:=,解得:x=20,故答案为:20、点评:考查了概率的公式的知识,用到的知识点为:概率=所求情况数与总情况数之比、12、汽车由平顶山驶往相距约150km的郑州,假设它的平均速度为100km/h、那么汽车距郑州的路程s〔km〕关于行驶时间t〔h〕的函数关系式为s=150﹣100t、考点:函数关系式、分析:利用总路程为150km,再利用s=总路程﹣行驶的距离,进而求出即可、解答:解:由题意可得:s=150﹣100t、故答案为:s=150﹣100t、点评:此题主要考查了函数关系式,利用s与行驶路程之间的关系是解题关键、13、如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,假设∠BCE=35°,那么∠A 的度数为55度、考点:平行线的性质、分析:根据平行线的性质可求∠B的度数,根据三角形内角和定理求∠A;或根据平角的定义先求∠ACD的度数,再运用平行线的性质求解、解答:解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°、∵∠ACB=90°,∴∠A=90°﹣35°=55°、〔直角三角形两锐角互余〕故答案为:55、点评:此题考查平行线的性质和三角形内角和定理,属基础题、14、如下图,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,那么DE的长为4cm、考点:角平分线的性质、分析:由进行思考,结合角的平分线的性质可得DE=AD,而AD=AC﹣CD=10﹣6=4cm,即可求解、解答:解:∵∠A=90°,BD是角平分线,DE⊥BC,∴DE=AD〔角的平分线上的点到角的两边的距离相等〕∵AD=AC﹣CD=10﹣6=4cm,∴DE=4cm、故填4、点评:此题主要考查平分线的性质:角的平分线上的点到角的两边的距离相等;题目比较简单,属于基础题、15、等腰三角形一边长是10cm,一边长是6cm,那么它的周长是26cm或22cm、考点:等腰三角形的性质;三角形三边关系、分析:题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形、解答:解:〔1〕当腰是6cm时,周长=6+6+10=22cm;当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm、故填22,26、点评:此题考查了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键、16、如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,那么图c中的∠CFE的度数是105°、考点:翻折变换〔折叠问题〕、分析:根据两条直线平行,内错角相等,那么∠BFE=∠DEF=25°,根据平角定义,那么∠EFC=155°〔图a〕,进一步求得∠BFC=155°﹣25°=130°〔图b〕,进而求得∠CFE=130°﹣25°=105°〔图c〕、解答:解:∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°〔图a〕,∴∠BFC=155°﹣25°=130°〔图b〕,∴∠CFE=130°﹣25°=105°〔图c〕、故答案为:105、点评:此题主要是根据折叠能够发现相等的角,同时运用了平行线的性质和平角定义、【三】解答题〔共7小题,总分值72分〕17、乘法公式的探究及应用、〔1〕如图1,假设大长方形的边长为a,小长方形的边长为b,那么阴影部分的面积是a2﹣b2、假设将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,那么它的面积是〔a+b〕〔a﹣b〕、有〔1〕可以得到乘法公式〔a+b〕〔a﹣b〕=a2﹣b2、〔3〕假设a=18,b=12,那么请你求出阴影部分的面积、考点:平方差公式的几何背景、分析:〔1〕利用正方形的面积公式,图①阴影部分的面积为大正方形的面积﹣小正方形的面积,图②长方形的长为a+b,宽为a﹣b,利用长方形的面积公式可得结论;由〔1〕建立等量关系即可;〔3〕将a=18,b=12,代入〔a+b〕〔a﹣b〕即可、解答:解:〔1〕图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:〔a+b〕〔a﹣b〕,故答案为:a2﹣b2,〔a+b〕〔a﹣b〕;由〔1〕可得:〔a+b〕〔a﹣b〕=a2﹣b2,故答案为:〔a+b〕〔a﹣b〕=a2﹣b2;〔3〕将a=18,b=12,代入得:〔18+12〕〔18﹣12〕=180,所以阴影部分的面积为:180、点评:此题主要考查了平方差公式的推导过程,利用面积建立等量关系是解答此题的关键、18、先化简,再求值:[〔x+2y〕2﹣〔x+y〕〔x﹣y〕﹣5y2]÷2x,其中x=﹣2,y=、考点:整式的混合运算—化简求值、专题:计算题、分析:原式中括号中利用完全平方公式及平方差公式化简,整理后利用多项式除以单项式法那么计算得到最简结果,把x与y的值代入计算即可求出值、解答:解:原式=〔x2+4xy+4y2﹣x2+y2﹣5y2〕÷2x=4xy÷2x=2y,当x=﹣2,y=时,原式=1、点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法那么是解此题的关键、19、如图,超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,指针分别指向红、黄、蓝色区域,分获【一】【二】三获奖,奖金依次为60、50、40元、〔1〕分别计算获【一】二、三等奖的概率、老李一次性购物满了300元,摇奖一次,获奖的概率是多少?请你预测一下老李摇奖结果会有哪几种情况?考点:概率公式、分析:〔1〕找到红色区域的份数占总份数的多少即为获得一等奖的概率;找到黄色和蓝色区域的份数占总份数的多少即为获得【二】三等奖的概率、用有颜色的区域数除以所有扇形的个数即可求得中奖的概率、解答:解:〔1〕整个圆周被分成了16份,红色为1份,∴获得一等奖的概率为:;整个圆周被分成了16份,黄色为2份,∴获得二等奖的概率为:=;整个圆周被分成了16份,蓝色为4份,∴获得三等奖的概率为=;∵共分成了16份,其中有奖的有1+2+4=7份,∴P〔获奖〕=;老李摇奖共有四种结果,一等奖、二等奖、三等奖、不中奖、点评:此题考查了概率公式的应用、注意用到的知识点为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=,难度适中、、20、:如图,AD∥BE,∠1=∠2,求证:∠A=∠E、考点:平行线的判定与性质、专题:证明题、分析:由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论、解答:证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E、点评:此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证、21、△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D、〔1〕假设△BCD的周长为8,求BC的长、假设∠ABD=∠DBC,求∠A的度数、考点:线段垂直平分线的性质;等腰三角形的性质、分析:〔1〕根据线段的垂直平分线的性质证明DA=DB,求出AC+BC,根据AC=5,求出BC的长;设∠A=x°,根据线段的垂直平分线的性质证明DA=DB,得到∠ABD的度数,根据等腰三角形的性质用x表示出∠ACB的度数,根据三角形内角和定理列出方程,解方程得到答案、解答:解:〔1〕∵DE是线段AB的垂直平分线,∴DA=DB,∵△BCD的周长为8,∴AC+BC=8,又AC=5,∴BC=3;设∠A=x°,∵DA=DB,∴∠ABD=x°,∵∠ABD=∠DBC,∴∠DBC=x°,∵AB=AC,∴∠ABC=∠ACB=2x°,那么x+2x+2x=180°,解得x=36°、那么∠A为36°、点评:此题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键、22、小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合、小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分、设小亮出发x分后行走的路程为y米、图中的折线表示小亮在整个行走过程中y随x的变化关系、〔1〕小亮行走的总路程是3600米,他途中休息了20分、分别求出小亮在休息前和休息后所走的路程段上的步行速度、〔3〕当小颖到达缆车终点时,小亮离缆车终点的路程是多少?考点:一次函数的应用、分析:根据图象获取信息:〔1〕小亮到达山顶用时80分钟,中途休息了20分钟,行程为3600米;休息前30分钟行走1950米,休息后30分钟行走〔3600﹣1950〕米、〔3〕求小颖到达缆车终点的时间,计算小亮行走路程,求离缆车终点的路程、解答:解:〔1〕根据图象知:小亮行走的总路程是3600米,他途中休息了20分钟、故答案为3600,20;…小亮休息前的速度为:…小亮休息后的速度为:…〔3〕小颖所用时间:〔分〕…小亮比小颖迟到80﹣50﹣10=20〔分〕…∴小颖到达终点时,小亮离缆车终点的路程为:20×55=1100〔米〕…点评:此题考查一次函数及其图象的应用,从图象中获取相关信息是关键、此题第3问难度较大、23、如图图1,△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E、〔1〕△ABD与△CAE全等吗?BD与DE+CE相等吗?请说明理由、如图图2,假设直线AE绕点A旋转到图2所示的位置〔BD<CE〕时,其余条件不变,那么BD与DE、CE的关系如何?〔只须回答结论〕、〔3〕如图图3,假设直线AE绕点A旋转到图3所示的位置〔BD>CE〕时,其余条件不变,那么BD与DE、CE的关系如何?〔只须回答结论〕、考点:全等三角形的判定与性质、专题:探究型、分析:〔1〕根据条件易证得∠BAD=∠ACE,且根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论、BD=DE+CE、根据全等三角形的判定可证明△ABD≌△CAE,根据各线段的关系即可得结论、〔3〕同上理,BD=DE+CE仍成立、解答:解:证明如下:〔1〕∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE〔AAS〕,∴BD=AE,AD=CE;∵AE=DE+AD,∴BD=DE+CE;DE=BD+CE、∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°,在△ABD和△CAE中,,∴△ABD≌△CAE〔AAS〕,∴BD=AE,AD=CE;∵DE=AE+AD,∴DE=BD+CE;〔3〕结论是:当B、C在AE两侧时,BD=DE+CE;当B、C在AE同侧时,BD=DE﹣CE,DE=BD+CE、点评:此题考查了全等三角形的判定和性质,涉及到直角三角形的性质、余角和补角的性质等知识点,熟练掌握全等三角形的判定方法是解题的关键、。

平顶山市新初一分班数学试卷含答案

平顶山市新初一分班数学试卷含答案

平顶山市新初一分班数学试卷含答案一、选择题1.一个零件长2毫米,画在设计图上长是20厘米,这幅设计图的比例尺是().A.1:10 B.1:100 C.100:12.下图中正方体的 6 个面分别写着 A、B、C、D、E、F,F相对的面是()。

A.A B.B C.C D.E3.一块长方形绿地,长12 dm,宽是长的23,求这块长方形绿地的面积.正确的算式是( ).A.12×23B.12×(12×23)C.(12+23)×2 D.12×(1-23)4.一个三角形的三个内角度数的比是5∶2∶2这个三角形是()。

A.钝角三角形B.直角三角形C.锐角三角形5.一根绳子剪成2段,第一段长58米,第二段是全长的58。

这两段绳子的长度相比,结果是()。

A.第一段长B.第二段长C.无法比较6.观察立体图形,从右面看到的形状是()A.B.C.7.下面说法错误的是()。

A.在367个同学中至少有2个同学是同年同月同日出生的B.真分数小于1,假分数大于1C.0既不是正数,又不是负数,但它是整数,还是自然数D.三角形的面积一定,底和高成反比例8.如果正方体、圆柱、圆锥的底面积相等,高也相等。

下面说法正确的是()。

A.圆柱的体积比正方体的体积小B.圆柱和正方体的表面积相同C.圆柱的体积是圆锥的13D.圆锥的体积是正方体的139.一种电视机提价110后,又降价110,现价()原价.A.高于B.等于C.低于10.把一张长6cm、宽2cm的长方形纸对折一次后,长与宽的比可能是()和()。

A.6∶1;3∶1 B.3∶1;3∶2 C.3∶2;6∶1 D.3∶1;2∶3二、填空题11.地球的表面积约为五亿一千零七万平方千米,这个数写作(________)平方千米,把它改写成用“万”作单位的数是(________)万平方千米,省略“亿”后面的位数大约是(________)亿平方千米。

十12.()20=6∶5=18÷()=()%=()(填小数)。

平顶山市初中2018-2019学年七年级下学期数学第一次月考试卷

平顶山市初中2018-2019学年七年级下学期数学第一次月考试卷

平顶山市初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOD=70°,则∠BOD的大小为()A. 25°B. 35°C. 45°D. 55°【答案】D【考点】角的平分线,对顶角、邻补角【解析】【解答】解:∵∠EOD=70°,∴∠EOC=180°﹣70°=110°,∵OA平分∠EOC,∴∠AOC= ∠EOC=55°,∴∠BOD=∠AOC=55°;故答案为:D.【分析】根据邻补角的定义得出∠EOC的度数,再根据角平分线的定义得出∠AOC= ∠EOC=55°,根据对顶角相等即可得出答案。

2.(2分)已知且-1<x-y<0,则k的取值范围是()A. -1<k<-B. 0<k<C. 0<k<1D. <k<1【答案】D【考点】解二元一次方程组,解一元一次不等式组【解析】【解答】解:由②-①得:x-y=-2k+1∵-1<x-y<0,∴-1<-2k+1<0,解之:<k<1故答案为:D【分析】观察方程组同一未知数的系数特点及已知条件-1<x-y<0,因此将②-①,求出x-y的值,再整体代入,建立关于k的一元一次不等式组,解不等式组,即可得出结果。

3.(2分)如果方程组的解中与的值相等,那么的值是()A.1B.2C.3D.4【答案】C【考点】解二元一次方程组【解析】【解答】解:∵方程组的解中与的值相等,∴x=y∴3x+7x=10解之:x=1∴y=1∴a+a-1=5解之:a=3故答案为:C【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。

2019.3平顶山市卫东区中考数学一模试卷含答案解析

2019.3平顶山市卫东区中考数学一模试卷含答案解析

平顶山市卫东区2019年中考一模数学试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣1的相反数是()A.1B.0C.﹣1D.22.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.4.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.据调查,某班30位同学所穿鞋子的尺码如下表所示:则该班这30位同学所穿鞋子尺码的众数是()A.8B.35C.36D.35和366.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.7.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣38.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°9.已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A.B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.=.12.将抛物线y=3x2﹣6x+4先向右平移3个单位,再向上平移2个单位后得到新的抛物线,则新抛物线的顶点坐标是.13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,交BA的延长线于点F,若的长为π,则图中阴影部分的面积为.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A 的对应点是点F,若AB=8,BC=6,则AE的长为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2.17.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连结AC,将△ACE沿AC翻转得到△ACF,直线FC与直线AB相交于点G.(1)求证:FG是⊙O的切线;(2)若B为OG的中点,CE=,求⊙O的半径长;(3)①求证:∠CAG=∠BCG;②若⊙O的面积为4π,GC=2,求GB的长.19.(9分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)20.(9分)在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF 的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.23.(11分)如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2019年河南省平顶山市卫东区中考数学一模试卷(3月份)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣1的相反数是1.故选:A.【点评】本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.2.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.【点评】本题考查了整式的混合运算,熟记法则是解题的关键.5.【分析】根据众数的定义(所有数据中出现次数最多的数据是众数)即可求得.【解答】解:在这一组数据中35与36出现次数最多的,故众数是35或36.故选:D.【点评】此题考查了众数的知识.题目比较简单,注意众数可以不是一个.6.【分析】根据题意可得等量关系:人数×8﹣3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【解答】解:设有x人,物品价值y元,由题意得:,故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.8.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.9.【分析】如图:作DE⊥x轴于点E,灵活运用三角函数解直角三角形来求点D的坐标.【解答】解:∵点A的坐标为(0,3),∴OA=3.又∵∠OAB=60°,∴OB=OA•tan∠OAB=3,∠ABO=30°.∴BD=BC=OA=3.∵根据折叠的性质知∠ABD=∠ABC=60°,∴∠DBE=30°,∴DE=BD=,BE=∴OE=3,∴E(,).故选:A.【点评】本题考查了矩形的性质、坐标与图形性质以及折叠问题.翻折前后对应角相等,对应边相等;注意构造直角三角形利用相应的三角函数值求解.10.【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y==x﹣,(x>5),故选项D正确,故选:D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,写出各段的函数解析式,明确函数的图象,利用数形结合的思想解答.二.填空题(共5小题,满分15分,每小题3分)11.【分析】原式利用负整数指数幂法则,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=2﹣16+3﹣2=﹣13,故答案为:﹣13【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.【分析】先把y=3x2﹣6x+4配方得到y=3(x﹣1)2+1,则抛物线y=3x2﹣6x+4的顶点坐标为(1,1),然后把点(1,1)先向右平移3个单位,再向上平移2个单位即可得到新抛物线的顶点坐标.【解答】解:∵y=3x2﹣6x+4=3(x﹣1)2+1,∴抛物线y=3x2﹣6x+4的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位,再向上平移2个单位得到点的坐标为(4,3),即新抛物线的顶点坐标为(4,3).故答案为(4,3).【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.14.【分析】连结AC,如图,设半径为r,先根据切线的性质得∠ACD=90°,再根据平行四边形的性质得AB∥CD,AD∥BC,则∠CAF=90°,∠1=∠B,∠2=∠3,利用∠B=∠3易得∠1=∠2=45°,则根据弧长公式可得=π,解得r=4,然后根据扇形面积公式,利用S阴影部分=S△ACD ﹣S扇形CAE进行计算即可.【解答】解:连结AC,如图,设半径为r,∵AB的长为半径的圆恰好与CD相切于点C,∴AC⊥CD,∴∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠1=∠B,∠2=∠3,而AB=AC,∴∠B=∠3,∴∠1=∠2=45°,∵的长为π,∴=π,解得r=4,在Rt△ACD中,∵∠2=45°,∴AC=CD=4,∴S阴影部分=S△ACD﹣S扇形CAE=×4×4﹣=8﹣2π,故答案为:8﹣2π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平行四边形的性质和扇形的面积公式.15.【分析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x,在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD==10,∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=4,设AE=EF=x,在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+42,解得x=3,∴AE=3,故答案为3.【点评】本题考查矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三.解答题(共8小题,满分75分)16.【分析】利用完全平方公式、平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2=x2+4xy+4y2﹣4y2+x2﹣2x2=4xy,当x=+2,y=﹣2时,原式=4×(+2)×(﹣2)=4×(3﹣4)=﹣4.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式混合运算顺序和运算法则及完全平方公式、平方差公式.17.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)连接OC,由OA=OC得∠OAC=∠OCA,根据折叠的性质得∠OAC=∠FAC,∠F=∠AEC=90°,则∠OCA=∠FAC,于是可判断OC∥AF,根据平行线的性质得∠OCG=∠F=90°,然后根据切线的性质得直线FC与⊙O相切;(2)首先证明△OBC是等边三角形,在Rt△OCE中,根据OC2=OE2+CE2,构建方程即可解决问题;(3)①根据等角的余角相等证明即可;②利用圆的面积公式求出OB,由△GCB∽△GAC,可得=,由此构建方程即可解决问题;【解答】(1)证明:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,∵△ACE沿AC翻折得到△ACF,∴∠OAC=∠FAC,∠F=∠AEC=90°,∴∠OCA=∠FAC,∴OC∥AF,∴∠OCG=∠F=90°,∴OC⊥FG,∴直线FC与⊙O相切;(2)解:连接BC.∵点B是Rt△OCG斜边的中点,∴CB=OG=OB=OC,∴△OCB是等边三角形,且EC是OB上的高,在Rt△OCE中,∵OC2=OE2+CE2,即OC2=OC2+()2,∴OC=2,即⊙O的半径为2.(3)①∵OC=OB,∴∠CBA=∠OCB,∵∠CAG+∠CBA=90°,∠BCG+∠BCO=90°,∴∠CAG=∠BCG.②∵4π=π•OB2,∴OB=2,由①可知:△GCB∽△GAC,∴=,即=,∴=,解得GB=2.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想思考问题,属于中考压轴题.19.【分析】作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.【解答】解:如图,作BD⊥AC于点D,则∠BAD=60°、∠DBC=53°,设AD=x,在Rt△ABD中,BD=AD tan∠BAD=x,在Rt△BCD中,CD=BD tan∠DBC=x×=x,由AC=AD+CD可得x+x=13,解得:x=﹣3,则BC===x=×(4﹣3)=20﹣5,即BC两地的距离为(20﹣5)千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.【分析】作公路a与公路b的交角AOB的平分线OC,连接MN,作线段MN的中垂直平分线EF,两线的交点就是所求.【解答】解:如图所示,①作公路a与公路b的交角AOB的平分线OC,②连接MN,作线段MN的中垂直平分线EF,EF和OC的交点P就是所求的点.【点评】本题考查了角平分线的性质和线段垂直平分线性质的应用,主要考查学生的动手操作能力和理解能力.21.【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式;(3)根据点(17,340)的坐标利用待定系数法即可求出线段OD的函数关系式,联立两函数关系式求出交点D的坐标,此题得解.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.22.【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题;【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.=•AH•AG=AC2=×(4)2=16.理由:∵S△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC 的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)讨论:当以AB为对角线,利用EA=EB和四边形AFBE为平行四边形得到四边形AFBE为菱形,则点F也在对称轴上,即F点为抛物线的顶点,所以F点坐标为(﹣1,﹣4);当以AB为边时,根据平行四边形的性质得到EF=AB=4,则可确定F的横坐标,然后代入抛物线解析式得到F 点的纵坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,线段MN取最大值,最大值为.(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3).综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)注意分类思想的运用.。

平顶山市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和3【答案】B【考点】解一元一次不等式组,一元一次不等式组的特殊解【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.故答案为:B.【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.2、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A. 46人B. 38人C. 9人D. 7人【答案】D【考点】扇形统计图【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故答案为:D【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.3、(2分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是()A. 该班总人数为50人B. 骑车人数占总人数的20%C. 步行人数为30人D. 乘车人数是骑车人数的2.5倍【答案】C【考点】频数(率)分布直方图,扇形统计图【解析】【解答】解:由条形图中可知乘车的人有25人,骑车的人有10人,在扇形图中分析可知,乘车的占总数的50%,所以总数有25÷50%=50人,所以骑车人数占总人数的20%;步行人数为30%×50=15人;乘车人数是骑车人数的2.5倍.故答案为:C【分析】根据直方图和扇形统计图对应的乘车人数与百分比可得某班的人数,即可判断A,根据扇形统计图可得骑车人数的百分比,即可判断B,根据总人数减去乘车人数再减去骑车人数即可得出步行人数,从而判断C,最后根据直方图的乘车人数与骑车人数即可判断D.4、(2分)下列各数是无理数的为()A. B. C. 4.121121112 D.【答案】B【考点】无理数的认识【解析】【解答】根据无理数的定义可知,只有是无理数,﹣9、4.121121112、都是有理数,故答案为:B.【分析】利用无理数是无限不循环的小数,可解答。

平顶山镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

平顶山镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC中,相互平行的线段有()A. 4组B. 3组C. 2组D. 1组【答案】B【考点】平行线的判定【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);则AE∥CD,∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.故答案为:C.【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE 是内错角,内错角相等,两直线平行;2、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A. 150°B. 135°C. 120°D. 90°【答案】D【考点】对顶角、邻补角,平行线的性质,三角形内角和定理【解析】【解答】解:连接BD,∵BC⊥CD,∴∠C=90∘,∴∠CBD+∠CDB=180∘−90∘=90∘∵AB∥DE,∴∠ABD+∠EDB=180∘,∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘故选D.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.3、(2分)下列命题是假命题的是()A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行【答案】B【考点】命题与定理【解析】【解答】解:A.对顶角相等是真命题,故本选项正确,A不符合题意;B.两直线平行,同旁内角互补,故本选项错误,B符合题意;C.平行于同一条直线的两条直线平行是真命题,故本选项正确,C不符合题意;D.同位角相等,两直线平行是真命题,故本选项正确,D不符合题意.故答案为:B.【分析】本题是让选假命题,也就是在题设的条件下得到错误的结论. 两直线平行同旁内角互补而不是相等.4、(2分)下列方程组中,是二元一次方程组的是()A. B. C. D.【答案】C【考点】二元一次方程组的定义【解析】【解答】解:A、与是分式,故该选项错误;B、有三个未知数,故该选项错误;C、符合二元一次方程组的定义;D、第一个方程中的xy是二次的,故该选项错误.故答案为:C.【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷47
一、填空题:
1.102+104+108+116+132-101-103-109-127=______.
3.如图,阴影部分的面积是_______.
数是______.5.小明有一堆核桃,第一天他卖了这堆核桃的七分之一;第二天他卖了余下核桃的六分之一;第三天他卖了余下核桃的五分之一;第四天他卖了余下核桃的四分之一;第五天他卖了余下核桃的三分之一;第六天他卖了余下核桃的二分之一.这时还剩下30个核桃,那么,第一天和第二天小明卖的核桃总数是_______个.
6.六个空瓶可以换一瓶汽水,某班同学喝了213瓶汽水,其中一些是用喝后的空瓶换来的,那么,他们至少要买汽水______瓶.
7.如图是6×6的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选8个格点,要求其中任意3个格点都不在一条直线上,并且使这8个点用直线连接后所围成的图形面积尽可能大.那么,所围图形的面积是_______平方厘米.
8.甲、乙、丙都在读同一本故事书,书中有100个故事,每人都从某一个故事开始,按顺序往后读,已知甲读了50个故事,乙读了61个故事,丙读了78个故事,那么甲、乙、丙三人共同读过的故事至少有______个.
9.甲、乙两厂共同完成了一批机床的生产任务,已知甲厂比乙厂少生
______台.
10.某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了一分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多______分.
二、解答题:
1.减数、被减数与差三者之和除以被减数,商是多少?
2.把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.
3.将1,1,2,2,3,3,4,4这八个数字排成一个八位数,使两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字,两个4之间有四个数字,请找出二个这样的八位数.4.如图,从A至B,步行走粗线道ADB需要35分,坐车走细线道A→C→D→E→B需要22.5分,D →E→B车行驶的距离是D至B步行距离的3倍,A→C→D车行驶的距离是A至D步行距离的5倍,已知车速是步行速度的6倍,那么先从A至D步行,再从D→E→F坐车所需要的总时间是多少分?
答案,仅供参考。

一、填空题:
1.122
2.389.5
3. 如图,左边和右边正方形的空白部分恰好组成了一个边长是1的正方形,所以,阴影部分的面积是整个图形的面积,去掉一个边长是1的正方形面积,即:4×1-1×1=3.
4.3294
列出下式计算:
5.60
把核桃总数当作整体1,那么
6.178
喝完213瓶汽水,由于213÷6=35…3拿这些空瓶可换回35瓶汽水,也相当于退回35瓶汽水,实际上只要买213-35=178(瓶)汽水就可以.
7.34
如图,为了使8个点所围成的面积最大,8个点应尽量放在正方形的边和顶点的地方.我们选取的8个点所围成的面积是:
6×6-0.5×4=34(平方厘米).
8.11
要想三人共同读过的故事尽量地少,就要设想甲读了前50个故事,丙读了后78个故事,他俩读了(50+78)-100=28(个)相同的故事,这28个
个故事之前,所以,乙应读后61个故事,才与这28个故事的重叠最少,这样,三人共同读的故事有:28-(78-61)=11(个)
事实上,只需考虑“61在23到50里的最少重叠部分”,即:
(61+50)-100=11(个).
9.200
份由甲厂完成,乙厂完成剩下的13份,所以,甲厂比乙厂少做1份.题中又告诉我们,甲厂比乙厂少生产8台机床,这就是说,1份是8台机床,总任务25份是:8×25=200(台)机床.
10.(10.5)
前六人平均分=前十人平均分+3,这说明在计算前十人平均分时,前六人共多出3×6=18(分),来弥补后四人的分数.因此后四人的平均分比前十人平均分少18÷4=4.5分,即:后四人平均分=前十人平均分-4.5…①,当后四人调整为二等奖,这样二等奖共有20+4=24(人),平均每人提高了1分,也就由调整进来的四人来供给,每人平均供给24÷4=6(分),因此,四人平均分=(原来二等奖平均分)+6,与前面①式比较,原来一等奖平均分比原来二等奖平均分多4.5+6=10.5(分)
二、解答题:
1.2
2.40、63、65、99和44、45、78、105.
因为40=2×2×2×5,44=2×2×11,45=3×3×5,63=3×3×7,65=5×13,78=2×3×13,99=3×3×11,105=3×5×7,所以2×2×2×5×3×3×11×5×13×3×3×7=2×2×11×2×3×13×3×3×5×3×5×7
即:40×99×65×63=44×78×45×105因此分成40、63、65、99和44、45、78、105两组.
3.41312432和23421314
从“两个4之间有四个数字”这一条件入手,写成4______4,在两个4之间显然不能放两个3;若放两个2,则两个2之间就没有合适的数了,所以只能放两个1,写成41_1_4,进一步排出两个3的位置:4131—43,最后按要求放2,得到41312432,反过来,还可以得到另一个八位数:23421314.
4. 如果A→C→D车行驶距离是A至D步行距离的3倍,那么车行驶时间是35÷6×3=17.5(分),22.5-7.5=5(分),是A至D步行距离5-3=
2
至D步行时间是5÷2×6=15(分)、D→E→B车行驶时间是:22.5-12.5=10(分).从A至D 步行,再从D→E→B坐车所需时间是:15+10=25(分).。

相关文档
最新文档