2018届百校联盟高三TOP20四月联考(全国II卷)理数试题(word版)

合集下载

【全国校级联考word】百校联盟2018届高三top20四月联考(全国ii卷)理数试题

【全国校级联考word】百校联盟2018届高三top20四月联考(全国ii卷)理数试题

百校联盟2018届高三TOP20四月联考(全国II 卷)理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}25,30A x x B x x x =<<=-<,则A B ⋃=( ) A .()0,5 B .()2,3 C.()3,5 D .()0,32.已知复数12iz i-=-,则z 的虚部为( ) A .35- B .35i C.15- D .15i -3.已知()(),1,2,4a x b ==-,若()a b b +⊥,则x =( ) A .8 B .10 C.11 D .124.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分.在如图所示的古代正八边形窗花矢量图片中,AB BC =DEFG 中的概率为( )A C. D 5.执行如图所示的程序框图,则输出S 的值为( )A .5B .11 C. 14 D .196.过双曲线2222:10,0()x y E a b a b -=>>的右焦点且垂直于x 轴的直线与双曲线E 交于,A B 两点,与双曲线E的渐近线交于,C D两点,若AB =E 的渐近线方程为( ) A.y = B.y = C.2y x =± D.y =±7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A.212 B.10+212+ D+8.已知()()()211f x x x =++,则不等式()()lg 1f x f <的解集为( )A .()1,10,10⎛⎫-∞⋃+∞ ⎪⎝⎭B .1,1010⎛⎫ ⎪⎝⎭ C.()0,10 D .1,10100⎛⎫⎪⎝⎭9.已知数列{}n a中,117,1n n a a a +=-=+,则30a =( ) A .1028 B .1026 C. 1024 D .102210.已知()10,00x y D x y x t y t ⎧-+>⎫⎧⎪⎪⎪=-<⎨⎨⎬⎪⎪⎪+>⎩⎩⎭,若存在点()00,x y D ∈,使得0033x y -=,则t 的取值范围为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-+∞ ⎪⎝⎭ C. 3,4⎛⎫+∞ ⎪⎝⎭ D .3,4⎛⎫-+∞ ⎪⎝⎭11.已知函数()22cos sin 22f x x x x π=+--,则函数()f x 在3,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点之和为( )A .3πB .4π C. 2π D .32π12.在三棱锥P ABC -中,1,120AB BC CP ABC BCP ===∠=∠=︒,平面PBC 和平面ABC 所成角为120︒,则三棱锥P ABC -外接球的体积为( ) ABD第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数()221,1,log ,1,x x f x x x -+<⎧=⎨≥⎩则()f f= .14.已知()22nx x --的展开式中所有项的系数之和为16,则展开式中含2x 项的系数为 .(用数字 作答).15.抛物线24y x =的焦点为F ,其准线为直线l,过点(M 作直线l 的垂线,垂足为H ,则FMH ∠的 角平分线所在的直线斜率是 .16.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若222sin ,02a b bc A A π=+<<,则tan 4tan A B -的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的前n 项和()*n S n N ∈满足123n n S a a =-,且22a +是13,a a 的等差中项,{}n b 是等差数列,2283,b a b a ==.(1)求数列{}{},n n a b 的通项公式; (2)n n n c a b =,求数列{}n c 的前n 项和n T .18.如图所示,在三棱台111ABC A B C -中,ABC ∆和111A B C ∆均为等边三角形,四边形11BCC B 为直角梯形,1CC ⊥平面ABC ,111112B C CC BC ===,,D E 分别为11,AA CB 的中点.(1)求证://DE 平面ABC ;(2)求二面角11A A E C --的余弦值.19.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线 生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值t ,得到如图所示的频率分布直方图,若20t <,亦则该产品为示合格产品,若2050t ≤<,则该产品为二等品,若50t ≥,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好; (3)从甲生产线的样本中,满足质量指标值t 在[)0,20的产品中随机选出3件,记X 为指标值t 在[)10,20中的件数,求X 的分布列和数学期望•20.已知N 为圆()221:224C x y ++=上一动点,圆心1C 关于y 轴的对称点为2C ,点,M P 分别是线段12,C N C N 上的点,且2220,2MP C N C N C P ⋅==.(1)求点M 的轨迹方程;(2)直线:l y kx m =+与点M 的轨迹Γ只有一个公共点P ,且点P 在第二象限,过坐标原点O 且与l 垂直的直线l '与圆228x y +=相交于,A B 两点,求PAB ∆面积的取值范围.21.已知函数()f x 的导函数为()f x ',且()()()1ln f x f e e x x ef e e '=+--++⎡⎤⎣⎦,其中e 为自然对数的底数. (1)求函数()f x 的最大值; (2)证明 :()221x xf x e x x <-+-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为12x y αα⎧=+⎪⎨=+⎪⎩ (α为参数),直线1:0l x =,直线2:0l x y -=,以原点O 为极点,x 轴正半轴为极轴(取相同的长度单位)建立极坐标系.(1)写出曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长度. 23.选修4-5:不等式选讲 已知()22f x x a x =+--.(1)当2a =-时,求不等式()4f x ≤的解集;(2)若关于x 的不等式()2332f x a x ≥--恒成立,求a 的取值范围.试卷答案一、选择题1-5: ACDCB 6-10: BDBDC 11、12:CA二、填空题13. 0 14. 8- 16.12- 三、解答题17.(1)由题意知,当2n ≥时,11123n n S a a --=-, 又因为123n n S a a =-,且1n n n a S S -=-, 则()132n n a a n -=≥, 所以213213,39a a a a a ===, 又123,2,a a a +成等差数列,则()21822a a a +=+,所以()1112329a a a +=+, 解得19a =, 所以数列{}n a 是以1为首项,3为公比的等比数列,故13n n a -=. 设{}n b 的公差为d ,则113,79b d b d +=+=, 解得11,2d b ==,所以()2111n b n n =+-⨯=+.(2)由(1)得()113n n n n c a b n -==+⋅, 所以()2121334313n n T n -=⨯+⨯+⨯+++⨯, ()2313233343313n n n T n n -=⨯+⨯+⨯++⨯++⨯,两式相减得()23122333313n n n T n --=+++++-+⨯,整理得113424n n n T ⎛⎫=+⨯- ⎪⎝⎭.18.(1)取1BB 的中点F ,连接,EF DF , 则//EF BC ,因为EF ⊄平面ABC ,BC ⊂平面ABC , 所以//EF 平面ABC ,因为三棱台111ABC A B C -中,11//AB A B , 所以//DF AB ,因为DF ⊄平面ABC ,AB ⊂平面ABC ,所以//DF 平面ABC ,因为DF EF F ⋂=,所以平面//DEF 平面ABC , 因为DE ⊂平面DEF ,所以//DE 平面ABC.(2)取BC 的中点O ,连接1,AO OB , 因为1CC ⊥平面ABC ,AO ⊂平面ABC , 所以1CC AO ⊥,因为1,CB AO CB CC C ⊥⋂=,所以AO ⊥平面11BCC B ,所以1AO OB ⊥, 因为11BCC B 为直角梯形, 11112B C CO BC ===, 所以11OCC B 为正方形,所以1OB BC ⊥,所以1,,OB OB OA 两两互相垂直,分别以1,,OB OB OA 为,,x y z 轴建立空间直角坐标系, 因为111112B C CC BC ===,所以(()()()()1111,1,0,0,0,1,0,1,0,0,1,1,0,,,022A B B C C E ⎛⎫--- ⎪⎝⎭,由1112B A BA =,得112A ⎛- ⎝, 所以111311110,,,,,3,,,022222EA EA EC ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪ ⎝⎝⎭⎝, 设平面1AA 的一个法向量为()111,,m x y z =,由10,0,m EA m EA ⎧⋅=⎪⎨⋅=⎪⎩得111110,0,y x y ⎧+=⎪⎨-+=⎪⎩, 令1z =,得(9,m =--,设平面11C A E 的一个法向量为()222,,n x y z =, 由110,0,n EA n EC ⎧⋅=⎪⎨⋅=⎪⎩得22220,0,y x y ⎧+=⎪⎨-=⎪⎩令2x =()3,3,1n =-,所以93cos ,m n m n m n⋅-===⋅ 由图观察可知,平面1AA E 与平面11C A E 所成二面角为钝角,所以其余弦值为.19.(1)由频率分布直方图可知,甲生产线中二等品的概率为()100.0300.0200.0150.65⨯++=, —等品的概率为100.0050.05⨯=,乙生产线中二等品的概率为()100.0200.0350.0250.80⨯++=, 一等品的概率为100.0150.15⨯=,所以两件产品中一件为二等品,一件为一等品的概率为0.650.150.050.80=0.1375⨯+⨯. (2)设两条生产线样本的平均值分别为,x x 甲乙,则50.1150.2250.3350.2450.15550.0527.5x =⨯+⨯+⨯+⨯+⨯+⨯=甲,150.05250.2350.35450.25550.1537.5x =⨯+⨯+⨯+⨯+⨯=乙,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)甲生产线样本质量指标值t 在[)0,10的件数为400.01104⨯⨯=, 质量指标值t 在[)10,20的件数为400.02108⨯⨯=, 由题意可知X 的取值为0,1,2,3;所以()304831241022055C C P X C ====,()21483124812122055C C P X C ====,()124831211228222055C C P X C ====,()03483125614322055C C P X C ====.所以X 的分布列为:X 的数学期望()11228140123255555555E X =⨯+⨯+⨯+⨯=. 20.(1)因为222C N C P =,所以P 为2C N 的中点,因为20MP C N ⋅=,所以2MP C N ⊥,所以点M 在2C N 的垂直平分线上,所以2MN MC =,因为1214MN MC MC MC +=+=>,所以点M 在以12,C C 为焦点的椭圆上,因为2a c ==,所以22b =,所以点M 的轨迹方程为22162x y +=.(2)由22162x y y kx m+==+⎧⎪⎨⎪⎩得,()222316360k x kmx m +++-=,因为直线:l y kx m =+与椭圆Γ相切于点P ,所以()()()()2222264313612620km k m k m ∆=-+-=+-=,即2262m k =+, 解得223,3131km mx y k k -==++, 即点P 的坐标为223,3131kmm k k -⎛⎫ ⎪++⎝⎭,因为点P 在第二象限,所以0,0k m >>,所以m =,所以点P的坐标为, 设直线l '与l 垂直交于点Q ,则PQ 是点P 到直线l '的距离, 设直线l '的方程为1y x k=-,==≤==,当且仅当2213k k=,即2k =时, PQ有最大值,所以142PAB S PQ ∆=⨯⨯≤-, 即PAB ∆面积的取值范围为(4⎤-⎦.21.(1)因为()()()1ln f x f e e x x ef e e '=+--++⎡⎤⎣⎦,所以 ()()11f e e f x x+-'=-,()()()()()1,11,f e f e e e ef e e f e e f e e '=+--++⎧⎪⎨+-'=-⎪⎩解得()()1,2,e f e e f e e -⎧'=⎪⎨⎪=-⎩则()ln 1f x x x =-+, 所以()1xf x x-'=, 令()0f x '>,得01x <<,令()0f x '<得1x >, 所以当1x =时,()()max 10f x f ==.(2)由(1)得()f x 的最大值为0,所以ln 10x x -+≤,即ln 1x x ≤-,从而()ln 1x x x x ≤-,要证22ln 21x x x x x e x x -+<-+-,即2ln 1x x x e x <--,故只需证()211x e x x x -->-,即证()22100x e x x x -+->>成立;令()()2210x h x e x x x =-+-≥则()41x h x e x '=-+,令()()F x h x '=,则()4x F x e '=-,令()0F x '=,得2ln 2x =,因为()F x '单调递增,所以当[]0,2ln 2x ∈时,()0F x '≤,()F x 单调递减,即()h x '单调递减. 当()2ln 2,x ∈+∞时,()0F x '>,()F x 单调递增, 即()h x '单调递增, 因为()2ln 258ln 20h '=-<,()()2020,2810h h e ''=>=-+>, 由零点存在定理可知,[)()120,2ln 2,2ln 2,2x x ∃∈∃∈,使得()()120h x h x ''==, 故当10x x <<或2x x >时,()()0,h x h x '>单调递增;当12x x x <<时,()()0,h x h x '<单调递减,所以()h x 的最小值是()00h =或()2h x .由()20h x '=,得2241x e x =-,()()()222222222221252221x h x e x x x x x x =-+-=-+-=---,因为()22ln 2,2x ∈,所以()20h x >,故当0x >时,()0h x >,所以原不等式成立.22.(1)依题意,曲线()()22:125C x y -+-=,即22240x x y y -+-=,将cos ,sin x y ρθρθ==代入上式得,2cos 4sin ρθθ=+ 因为直线1:0l x =,直线2:0l x y -=,故直线12,l l 的极坐标方程为()()12:,:24l R l R ππθρθρ=∈=∈. (2)设,A B 两点对应的极径分别为12,ρρ, 在2cos 4sin ρθθ=+中, 令2πθ=得,12cos 4sin 4ρθθ=+=,令4πθ=得,22cos 4sin ρθθ=+= 因为244πππ-=,所以AB ==.23.(1)当2a =-时,由()4f x ≤, 得2124x x ---≤,当1x ≤时,由()()2124x x ---≤,得41x -≤≤; 当12x <<时,由()()2124x x ---≤,得12x <<; 当2x ≥时,由()()2124x x ---≤,得24x ≤≤; 综上所述,()4f x ≤的解集为[]4,4-.(2)不等式()2332f x a x ≥--, 即为22423x a x a ++-≥,即关于x 的不等式22243x a x a ++-≥恒成立,而()()2242244x a x x a x a ++-≥+--=+, 当且仅当()()2240x a x +-≤时等号成立,所以243a a +≥, 解得243a a +≥或243a a +≤-,解得413a -≤≤或a ∈∅. 所以a 的取值范围是41,3⎡⎤-⎢⎥⎣⎦.。

百校2018届高三第二次联考(理数)

百校2018届高三第二次联考(理数)

广东省百校2018届高三第二次联考数学(理科)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1•复数z满足(z ,则z=()A. —2B. —C. 2D. 12 22•已知A={x|y =log2(3x-1)},B 二{y|x2y2=4},则A B二()1 111A. (0<)B. [-2-)C. H,2]D. (;,2)3 3 3 33.下表是我国某城市在20XX年1月份至10月份各月最低温与最高温(C)的数据一览表椅子该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是()A •最低温与最高温为正相关B.每月最高温与最低温的平均值在前8个月逐月增加C.月温差(最高温减最低温)的最大值出现在1月D . 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大4.已知命题p : x 2是x log 25的必要不充分条件;命题q :若sin x ',贝U32cos2x二sin x,则下列命题为真命题的上()A. p q B . (—p) q C . p 广q)D . (一p)(一q)5.在ABC 中,角A,B,C 的对边分别为a,b,c,若SnA3n ,Bc5、、,且csC=5,6 则a =()A . 2-2B . 3C . 3^2D . 46•某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为A . 8 4,2 2,5B . 6 4,2 4.5C . 6 2 2 2 5D . 8 2,2 2、5―17.将曲线C 1 : y =sin(x)上各点的横坐标缩短到原来的一倍,纵坐标不变,再把得到的62C 2:y = g x ,则g x 在[-二,0]上的单调递增区间是(x -2y-2 _09.设x, y 满足约束条件 x • 2y -6 一 0y -2 <07 A .[-]]7B .[-甸Jt6]A . 7B . 10 B .[丁丐A . [「6 则输出的C . 13D . 1610.函数 f (X )二 2 x - xe 「e x 2+ x _2的部分图象大致是( 曲线向左平移 一个单位长度,得到曲线22y x z=的取值范围是(yA, B 两点,D 为虚轴上的一个端点,且 ABD 为钝角三角形,则此双曲线离心率的取值范围为 ( )A . (1,、.2)B . (、、2, .2 .2)C . (、.2,2)D . (1,、.2) (.2 .2,::)1 x12. 已知函数f (x )=e 2x 二g (x )=:+1 ,若f (m )=g (n )成立,则n-m 的最小值为( )11 A . In2 B . In 2 C .2ln 2D . 2ln 222 第U 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设平面向量 m 与向量n 互相垂直,且m —2n = (11 -2),若m = 5,则n = ________14. 在二项式"』)6的展开式中,其3项为120,则x =——.15.如图,E 是正方体ABCD -A ]BC 1D 1的棱C 1D 1上的一点,且 BD 1 / /平面BQF ,则异面直线BD 1与CE 所成角的余弦值为216.已知点A 是抛物线C:x =2py (p 0)上一点,O 为坐标原点,若A, B 是以点M (0,8) 为圆心,OA 的长为半径的圆与抛物线 C 的两个公共点,且 ABO 为等边三角形,则p 的 值是 __________ .、解答题 (本大题共6小题,共70分■解答应写出文字说明、证明过程或演2 211.过双曲线 笃-当 "(a 0,b 0)的右焦点且垂直于a bx 轴的直线与双曲线交于算步骤.)(一)必考题(60分)17.已知正项数列 & ?满足印=1, a2 - a^a 2^ a n ,,数列:b n ?的前n 项和S n 满足2Sn = n - a n.(1)求数列〔a n !, IbJ 的通项公式;1(2)求数列{}的前n 项和T n.an 1bn18. 唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画,雕塑等工艺美术的特点,在中国文化中占有重要的历史地位, 在陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已由1300多年的历史,制作工艺蛇粉复杂,它的制作过程中必须先后经过两次烧制,当第 一次烧制合格后方可进入第二次烧制,两次烧制过程互相独立, 某陶瓷厂准备仿制甲乙丙三件不同的唐三彩工艺品, 根据该厂全面治污后的技术水平,经过第一次烧制后,甲乙丙三件1 4 3丄,兰,3,经过第二次烧制后,甲乙丙三件工艺品合格的概率依次2 5 54 1 2 5,2,3(1)求第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率; (2)经过前后两次烧制后, 甲乙丙三件工艺品成为合格工艺品的件数为 X ,求随机变量X的数学期望•19•如图,四边形 ABCD 是矩形,AB =3、、3,BC =3,DE =2EC,PE _ 平面 ABCD,PE = 6. (1) 证明:平面PAC —平面PBE ; (2) 求二面角 A -PB -C 的余弦值.2 2 20.已知椭圆C :X2 -y ^=1(a b 0)的长轴长是短轴长的 2. 2倍,且椭圆C 经过点 a b工艺品合格的概率依次为42A(2,).2(1)求椭圆C的方程;(2)设不与坐标轴平行的直线丨交椭圆C于M , N两点,MN| = 2J2,记直线丨在y轴上的截距为m,求m的最大值.221.函数f x ]=x mln(1 x).(1 )当m .0时,讨论f x的单调性;(2)若函数f x有两个极值点x,,x2,且为:::x2,证明:2f (x2) • -捲• 2x, In2 . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.「X = cos日22•在平面直角坐标系xOy中,曲线G的参数方程为G为参数),曲线C2的y = 1 +si n 日X x = 2cos参数方程为(「为参数)畀=s in申(1 )将G,C2的方程化为普通方程,并说明它们分别表示什么曲线;(2)以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,已知直线I的极坐标方程为:-(COST -2sin二)=4,若G上的点P对应的参数为,点Q上在C?,点M为2PQ的中点,求点M到直线I距离的最小值•23.已知f(x)=x—a +x+2a+3 .(1)证明:f x 一2 ;3(2)若f( ) <3,求实数a的取值范围.2数学(理科)参考答案、选择题、填空题三、解答题所以 订,是以1为首项,1为公差的等差数列,当n_2时,b n =S n -S n 」=2n ,当n =1时b =2也满足,所以b n =2n .1 1 111(2)由(1)可知(),a n卅b n2n (n+1) 2 n n +11 11111 1 1 n 所以人兮73)GV(丁百)“冇18.解:分别记甲乙丙第一次烧制后合格为事件A, A, A 3,(1)设事件E 表示第一次烧制后恰好有一件合格, 则 pg J 1 2.1 42 1 125525525550(2)因为每件工艺品经过两次烧制后合格的概率均为 所以随机变量X : B(3,0.4), 所以 E X P=3 0.4 = 1.2.19. ( 1)证明;设BE 交AC 于F ,因为四边形 ABCD 是矩形,AB =3、、3,BC =3,DE =2EC ,CE BC所以CE =寿3,,BC AB1-5: ACBAB6-10: CBDAD 11、 D 12: A13. 514.215.卫5216.—17•解:(1)因为 2 a n a n 二2a n 1-a n 1,所以,a n 1 a na n 1 - a n - 1= 0,因为 a n 10,a n,所以 a n 1 a n = 0,所以 a n 4 ~' a n-1,n又ABC 二BCD ,所以ABC ::BCE, BEC 二ACB ,2JT因为BEC 二ACE 二ACB ACE ,2所以AC _ BE,又PE _平面ABCD .所以AC _ PE,而PE BE = E,所以平面PAC _平面PBE ;(2)建立如图所示的空间直角坐标系,由题意可得A(3, -2. 3,0), B(3,. 3,0), C(0,3,0), P(0,0,6),——J则AB =(0,3 .3,0), BP =(-3,-'、3, \6),CB =(—,3设平面APB的法向量3>/3y1 = 0厲=(捲,比,乙),则——1-3捲- J3y1+ 46/=0=1,即n i =(±,0,1)3设平面BPC的法向量- 3x2 = 0"EM),则_3X2「3y2 危2=0,取X2 =0,% =2, Z i =1,即m = (0^. 2,1)设平面APB与平面BPC所成的二面角为二,则cos日n1n2、、5jr n i - 5厂由图可知二面角为钝角,所以cos= = -—55n20.解:(1)因为 ^2 2b ,所以椭圆的方程为22 2xb =1,a =8,椭圆的方程为y8m 2 二73 ,满足 口2 ::: 1 . 8k 2,8所以m 的最大值为y14 - 7 .把点 A(2,的坐标代入椭圆的方程,得丄丄18b 2 b 2所以(2) 设直线I 的方程为y 二kx m,M (X i ,yJ,N(X 2, y ?),联立方程组 —y 2 -1I 8y = kx m2 2 2得(1 8k )x 16kmx 8m -8 = 0,由 256m 2 -32(m 2 -1)(1 8k 2)0 ,得:::1 8k 2,216km 8m -8所以 x | X 22 , X [ X 22 ,所以MN = J 1+k 2 \&花+x 2)2—4为屜mi)2 4 8m 2 -8 4、2 1 k 2 : 8k 21-m 21 8k 2由4zrv.8k 2,得(8k 2 1)(3-4k 2)令k 21 2m =21当且仅当1 8k 24(k 2 1)二t(t 1)= k 2二 t _ 1,所以 m^-32t2 84t -49,4t-(8t49)4t _21 -14,2,即8^49,4tt =3时,上式取等号, 8此时k 221.解:函数f X 的定义域为(-1,七),f X =21(1 )令g x [=2x 2x m ,开口向上,x - - 为对称轴的抛物线, 当x • _1时,1 1 1①g (-2)m_0,即m_2时,gx_O ,即f x _ 0在(-1」::)上恒成立,J - 2m 1 J - 2m —2 —必2 _ _2 —2—、、1-2m 1,当 X 1 ::: X ::: X 2 时,22即 f x :0,当-1 . x x 1 或 x x 2 时,g x ],0,即 f x 0,11 *, 1~2m 1 T1-2m 「¥ 亠综上,当0 ::: m 时,f x 在(, )上递减,22 2 2 2亠 1 / —2m 1 J 1 —2m 、1在(-1,)和( ,=)上递增,当m 时,在(-1,=)上递增.2 2 2 2 2(2)若函数f X 有两个极值点X j ,X 2且X^ X 2,1 1则必有0 ::: m ::: £,且-1 :::洛 x 2 :: 0,且f x 在x 1, x 2上递减,在(-1,xJ 和(X 2, •::)上递增,则 f (x 2) :: f (0) =0,因为x , ,x 2是方程2x 2 2x ^0的两根,所以 X ! x 2 二-2,x 1x^-m ,即为=-1 - x 2, m = 2为,x 2,2要证 2f (x 2) -为 2x 1 In 2又 2 f (x 2) =2x ; 2mln(1 X 2)=2X ; 4x^21n(1 x 2)-2x | 4(1 x 2)x 2In(1 x 2)-(-1 x 2)2(-1 -x 2)ln 2=1 冷-2(1x 2)ln 2,2x 2 2x m1 ②当0 ::: m 时,2由 g x ] = 2x 2x m ,得 x =-因为 g -1 二 m ・0,所以-r :: x 1 < -1g X :0,即证2x; -4(1 x?)x21n(1 %) -(1 x2)(1 -21 n 2) 0 对--■ x ■■■ 0恒成立,221设」x =2x -4(1 x)xln(1 x) -(1 x)(1 -2ln 2),( x ::: 0)4则」x = -4(1 2x)ln(1 x) -Ine14 当 x ::: 0时,1 2x ■ 0,ln(1 x) ::: 0,ln — • 0 ,故’x 0 ,2e1所以,x 在(-3,0)上递增, J 1 1 1 1 故」x'( — )=2 4 — ln (1 —2ln 2) =0 , 2 4 2 2 2所以 2x ; -4(1 x 2)x 2ln(1 屜)-(1 x 2)(1 -2ln 2) 0 , 所以 2f (X 2)-为2x 1 ln2.22.解:(1) C 1的普通方程为x 2 (y -1)2 =1 , 它表示以(0,1)为圆心,1为半径的圆,2C 2的普通方程为y 2 -1,它表示中心在原点,焦点在 x 轴上的椭圆.41(2 )由已知得 P(0, 2),设 Q(2cos ysi nr),则 M(cos\1si nJ , 2直线l : x -2y -4 =0,点M 至y 直线l 的距离为cos : -sin v - 65 =所以d 兰异翌 =6血7° ,即M 到直线l 的距离的最小值为 6亦_后V555所以f x -2.3a 2 2a 3,a -3,a 2 _2a,a ::: - 3 L 423. (1)证明:因为f X 二而 x +2a 十3 —x +a 2 2x -a+|x + 2a +3 > =a 2 +2a+3 2x 2a 3-x a =(a 1)22 一2 ,3 2丄3 丄3f (_—) =a 2 +— + 2a +_2 2 2(2)因为- 3 -3a v — — a八——吕F ~—4£4〉2- 2r a + 2a + 3 < 3 r a —。

2018届广东省百校联盟高三第二次联考数学(理)试题(解析版)

2018届广东省百校联盟高三第二次联考数学(理)试题(解析版)

2018届广东省百校联盟高三第二次联考数学(理)试题一、单选题1.复数z 满足()()11z i i +-=,则z = ( )A.2 B. C. D. 1【答案】A 【解析】由题意可得:1112iz i i ++==-,则:11,22z i z =-∴==本题选择A 选项.2.已知(){}2|log 31A x y x ==-, {}22|4B y x y =+=,则A B ⋂=( )A. 10,3⎛⎫ ⎪⎝⎭B. 12,3⎡⎫-⎪⎢⎣⎭C. 1,23⎛⎤ ⎥⎝⎦D. 1,23⎛⎫⎪⎝⎭ 【答案】C【解析】因为(){}2|l o g31A x y x ==- 1,,3⎛⎫=+∞ ⎪⎝⎭{}22|4B y x y =+=[]12,2,,23A B ⎛⎤=-∴⋂= ⎥⎝⎦,故选C.3.下表是我国某城市在2017年1月份至10月份各月最低温与最高温()C的数据一览表.已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是( )A. 最低温与最高温为正相关B. 每月最高温与最低温的平均值在前8个月逐月增加C. 月温差(最高温减最低温)的最大值出现在1月D. 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大 【答案】B【解析】将最高温度、最低温度、温差列表如图,由表格前两行可知最低温大致随最高温增大而增大, A 正确;由表格可知每月最高温与最低温的平均值在前8个月不是逐月增加, B 错;由表格可知,月温差(最高温减最低温)的最大值出现在1月, C 正确;由表格可知1 月至4 月的月温差(最高温减最低温)相对于7 月至10 月,波动性更大, D 正确,故选B.4.已知命题:2p x >是2log 5x >的必要不充分条件;命题:q 若sin x =,则2cos2sin x x =,则下列命题为真命题的上( )A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】A【解析】由对数的性质可知: 222log 4log 5=<,则命题p 是真命题;由三角函数的性质可知:若sin x = 221sin 33x ⎛== ⎝⎭, 且: 211cos212sin 1233x x =-=-⨯=,命题q 是真命题.则所给的四个复合命题中,只有p q ∧是真命题. 本题选择A 选项.5.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若s i n 3s i n ,5A Bc ==,且5co s 6C =,则a =( )A. B. 3 C. D. 4 【答案】B【解析】由正弦定理结合题意有: 3a b =,不妨设(),30b m a m m ==>,结合余弦定理有: 222222955cos 266a b c m m C ab m +-+-===, 求解关于实数m 的方程可得: 1m =,则: 33a m ==.本题选择B 选项.6.某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A. 8+B. 6+C. 6+D. 8+【答案】C【解析】 由三视图可知,该几何体为放在正方体的四棱锥E ABCD -,如图,正方体的边长为2,该三棱锥底面为正方形,两个侧面为等腰三角形,面积分别为,另两个侧面为,可得这个几何体的表面积为6+ C. 7.将曲线1C : sin 6y x π⎛⎫=- ⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线2C : ()y g x =,则()g x 在[],0π-上的单调递增区间是( ) A. 5,66ππ⎡⎤--⎢⎥⎣⎦ B. 2,36ππ⎡⎤--⎢⎥⎣⎦ C. 2,03π⎡⎤-⎢⎥⎣⎦D. ,6ππ⎡⎤--⎢⎥⎣⎦【答案】B【解析】将曲线1C : sin 6y x π⎛⎫=-⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度可得()522266g x sin x sin x πππ⎡⎤⎛⎫⎛⎫=+-=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令5222262k x k πππππ-≤+≤+,得()236k x k k Z ππππ-≤≤-∈,再令0k =,得236x ππ-≤≤-,则()g x 在[],0π-上的单调递增区间是2,36ππ⎡⎤--⎢⎥⎣⎦,故选B. 8.执行如图所示的程序框图,若输入的4t =,则输出的i =( )A. 7B. 10C. 13D. 16 【答案】D【解析】1i =,1不是质数, 0114S =-=-<; 4i =,4不是质数, 1454S =--=-<; 7i =,7是质数, 5724S =-+=<; 10i =,10不是质数, 21084S =-=-<; 13i =,13是质数, 81354S =-+=<, 16i =,故输出的16i =.选D.9.设,x y 满足约束条件220{260 20x y x y y --≤+-≥-≤,则2y xz x y=-的取值范围是( ) A. 7,12⎡⎤-⎢⎥⎣⎦ B. 72,2⎡⎤-⎢⎥⎣⎦ C. 77,23⎡⎤--⎢⎥⎣⎦ D. 3,12⎡⎤-⎢⎥⎣⎦【答案】A【解析】绘制不等式组表示的平面区域如图所示,考查yx的几何意义: 可行域内的点与坐标原点之间连线的斜率,则1,14y x ⎡⎤∈⎢⎥⎣⎦, 令y t x =,换元可得: 12z t t =-,该函数在区间1,14⎡⎤⎢⎥⎣⎦上单调递增,据此可得: min max 174,21122z z =-=-=-=, 即目标函数的取值范围是7,12⎡⎤-⎢⎥⎣⎦. 本题选择A 选项.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.10.函数()22x xe ef x x x --=+-的部分图象大致是( )A. B. C.D.【答案】D【解析】()()()2,2x xe ef x f x f x x x ---==-∴+- 为奇函数,图象关于原点对称,排除A ;当()0,1x ∈时, ()()()021x xe ef x x x --=<++-,排除B ;当()1,x ∈+∞时,()0f x >,排除C ;故选D.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.过双曲线22221(0,0)x y a b a b -=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点, D 为虚轴上的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为( )A. (B.C.) D. ()⋃+∞【答案】D【解析】由通径公式有: 22b AB a =,不妨设()22,,,,0,b b A c B c D b a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,分类讨论:当2b b a >,即1ba <时, DAB ∠为钝角,此时1e <<当2b b a >,即e >ADB ∠为钝角,此时: 442222220,2b b DA DB c b a b a a ⋅=-+<∴+< ,令22b t a=,据此可得: 2210,1t t t -->∴>,则: e >>本题选择D 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).12.已知函数()()231,ln 42x x f x eg x -==+,若()()f m g n =成立,则n m -的最小值为( ) A.1ln22+ B. ln2 C. 12ln22+ D. 2ln2 【答案】A 【解析】设()231ln 042m nek k -=+=>,则: 143ln ,222k k m n e -=+=,令()14ln 3222k k h k n m e-=-=--,则()141'22k h k e k-=-, 导函数()'h k 单调递增,且1'04h ⎛⎫=⎪⎝⎭, 则函数()14ln 3222k k h k e -=--在区间10,4⎛⎫ ⎪⎝⎭上单调递减,在区间1,4⎛⎫+∞ ⎪⎝⎭上单调递增,结合函数的单调性有: ()min11ln242h k h ⎛⎫⎡⎤==+ ⎪⎣⎦⎝⎭,即n m -的最小值为1ln22+. 本题选择A 选项.二、填空题13.设平面向量m 与向量n互相垂直,且()211,2m n -=- ,若5m =,则n =__________.【答案】5【解析】由平面向量m 与向量n 互相垂直可得0,m n ⋅=所以()2222125,4125mn m n -=∴+=,又5,5m n =∴= ,故答案为5.【方法点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅= ,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, cos a b a b θ⋅= (此时a b ⋅往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b ⋅ ;(3),a b 向量垂直则0a b ⋅= ;(4)求向量ma nb +的模(平方后需求a b ⋅ ).14.在二项式6⎫的展开式中,第3项为120,则x = __________. 【答案】2【解析】结合二项式定理的通项公式有:662166rrrr r r r T CC t--+⎛⎫==,其中0t >,结合题意有:226226120C t-⨯=,计算可得: 24t =,即: 24,2x x =∴=.15.如图, E 是正方体1111ABCD A BC D -的棱11C D 上的一点,且1//BD 平面1BCF ,则异面直线1BD 与CE 所成角的余弦值为__________.【解析】不妨设正方体1111ABCD A BC D -的棱长为2,设11B C BC O ⋂=,如图所示,当点E 为11C D 的中点时, 1BD OE ,则1BD 平面1BCE , 据此可得OEC ∠为直线1BD 与CE 所成的角,在OEC 中,边长: EC OC OE =由余弦定理可得: cosOEC ∠==.即异面直线1BD 与CE点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.已知点A 是抛物线2:2(0)C x py p =>上一点, O 为坐标原点,若,A B 是以点()0,8M 为圆心, OA 的长为半径的圆与抛物线C 的两个公共点,且ABO ∆为等边三角形,则p 的值是__________. 【答案】23【解析】,MA OA =∴ 点A 在线段OM 的中垂线上, 又()0,8M ,所以可设(),4A x ,由0tan30,4x x A ⎫=∴=∴⎪⎭的坐标代入方程22x py =有: 16243p =⨯ 解得: 2.3p =点睛:求抛物线方程时,首先弄清抛物线的对称轴和开口方向,正确地选择抛物线的标准方程.三、解答题17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a , {}n b 的通项公式; (2)求数列11n n a b +⎧⎫⎨⎬⎩⎭ 的前n 项和n T .【答案】(1) n a n =, 2n b n =.(2) ()21n nT n =+.【解析】试题分析:(1)由题意结合所给的递推公式可得数列{}n a 是以1为首项, 1为公差的等差数列,则n a n =,利用前n 项和与通项公式的关系可得{}n b 的通项公式为2n b n =.(2)结合(1)中求得的通项公式裂项求和可得数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和()21n nT n =+.试题解析:(1)因为2211n n n n a a a a +++=-,所以, ()()1110n n n n a a a a +++--=,因为10,0n n a a +>>,所以10n n a a ++≠,所以11n n a a +-=, 所以{}n a 是以1为首项, 1为公差的等差数列, 所以n a n =,当2n ≥时, 12n n n b S S n -=-=,当1n =时12b =也满足,所以2n b n =. (2)由(1)可知()1111112121n na b n n n n +⎛⎫==- ⎪++⎝⎭,所以()111111111222334121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ . 18.唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画,雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已由1300多年的历史,制作工艺蛇粉复杂,它的制作过程中必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程互相独立,某陶瓷厂准备仿制甲乙丙三件不同的唐三彩工艺品,根据该厂全面治污后的技术水平,经过第一次烧制后,甲乙丙三件工艺品合格的概率依次为143,,255,经过第二次烧制后,甲乙丙三件工艺品合格的概率依次为412,,523. (1)求第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率;(2)经过前后两次烧制后,甲乙丙三件工艺品成为合格工艺品的件数为X ,求随机变量X 的数学期望.【答案】(1)1350;(2)1.2. 【解析】试题分析:(1)由题意结合概率公式可得第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率为1350;(2)由题意可得题中的分布列为二项分布,则随机变量X 的数学期望为1.2. 试题解析:分别记甲乙丙第一次烧制后合格为事件123,,A A A , (1)设事件E 表示第一次烧制后恰好有一件合格, 则()1121421131325525525550P E =⨯⨯+⨯⨯+⨯⨯=. (2)因为每件工艺品经过两次烧制后合格的概率均为25p =, 所以随机变量()3,0.4X B ~, 所以()30.4 1.2E X np ==⨯=.19.如图,四边形ABCD 是矩形,3,2,AB BC DE EC PE ===⊥平面,ABCD PE(1)证明:平面PAC ⊥平面PBE ; (2)求二面角A PB C --的余弦值.【答案】(1)证明见解析;(2). 【解析】试题分析:(1)由题意结合题意可证得AC ⊥平面PBE ,结合面面垂直的判断定理可得平面PAC ⊥平面PBE ;(2)建立空间直角坐标系,结合半平面的法向量可得二面角A PB C --的余弦值为. 试题解析:(1)证明;设BE 交AC 于F ,因为四边形ABCD 是矩形,3,2AB BC DE EC ===,所以CE BCCE BC AB==, 又2ABC BCD π∠=∠=,所以,ABC BCE BEC ACB ∆~∆∠=∠,因为2BEC ACE ACB ACE π∠=∠=∠+∠=,所以AC BE ⊥,又PE ⊥平面ABCD .所以AC PE ⊥,而PE BE E ⋂=,所以平面PAC ⊥平面PBE ;(2)建立如图所示的空间直角坐标系,由题意可得()()()(3,,,,A B C P -,则()(,3,,AB BP CB ⎫==-=⎪⎪⎝⎭, 设平面APB 的法向量()1111,,n x y z =,则11110{30x =--+=,取1110,1x y z ===,即1n ⎫=⎪⎪⎝⎭设平面BPC 的法向量()2222,,n x y z =,则222230{30x x =-=,取2110,1x y z ==,即()1n =设平面APB 与平面BPC 所成的二面角为θ,则121212cos cos ,n n n n n n θ⋅===⋅由图可知二面角为钝角,所以cos θ=.20.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的C 经过点2,2A ⎛⎝⎭. (1)求椭圆C 的方程;(2)设不与坐标轴平行的直线l 交椭圆C 于,M N 两点,MN =记直线l 在y 轴上的截距为m ,求m 的最大值.【答案】(1) 2218x y +=.(2)【解析】试题分析:(1)结合题意可求得221,8b a ==,则椭圆的方程为2218x y +=.(2)联立直线方程与椭圆方程,结合韦达定理讨论可得直线l 在y 轴上的截距试题解析:(1)因为a =,所以椭圆的方程为222218x y b b+=,把点2,2A ⎛⎫⎪ ⎪⎝⎭的坐标代入椭圆的方程,得221118b b +=, 所以221,8b a ==,椭圆的方程为2218x y +=. (2)设直线l 的方程为()()1122,,,,y kx m M x y N x y =+,联立方程组22{ 1 8x y y kx m+==+ 得()2221816880k x kmx m +++-=,由()()222256321180m m k --+>,得2218m k <+,所以21212221688,1818km m x x x x k k --+==++,所以MN ==由218k =+()()()2222813441k k m k +-=+, 令221(1)1k t t k t +=>⇒=-,所以223284494t t m t-+-=,249218214m t t ⎛⎫=-+≤- ⎪⎝⎭m ≤当且仅当4984tt =,即8t =时,上式取等号,此时2k =, (2738m -=,满足2218m k <+,所以m21.函数()()2ln 1f x x m x =++ .(1)当0m >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明: ()21122ln2f x x x >-+ . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)结合函数的解析式求导可得()2221x x mf x x ++'=+,分类讨论可得:当102m <<时, ()f x 在1122⎛--- ⎝⎭上递减,在11,2⎛-- ⎝⎭和12⎛⎫-+∞ ⎪ ⎪⎝⎭上递增,当12m ≥时,在()1,-+∞上递增.(2)由题意结合函数的性质可知: 12,x x 是方程2220x x m ++=的两根,结合所给的不等式构造对称差函数()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< ,结合函数的性质和自变量的范围即可证得题中的不等式. 试题解析:函数()f x 的定义域为()()2221,,1x x mf x x++-+∞'=+,(1)令()222g x x x m =++,开口向上, 12x =-为对称轴的抛物线, 当1x >-时, ①11022g m ⎛⎫-=-+≥ ⎪⎝⎭,即12m ≥时, ()0g x ≥,即()0f x '≥在()1,-+∞上恒成立, ②当102m <<时,由()222g x x x m=++,得121122x x =-=-,因为()10g m -=>,所以111122x -<<-<-,当12x x x <<时, ()0g x <,即()0f x '<,当11x x -<<或2x x >时, ()0g x >,即()0f x '>,综上,当102m <<时, ()f x 在1122⎛---+ ⎝⎭上递减,在11,2⎛--- ⎝⎭和12⎛⎫-++∞ ⎪ ⎪⎝⎭上递增,当12m ≥时,在()1,-+∞上递增.(2)若函数()f x 有两个极值点12,x x 且12x x <,则必有102m <<,且121102x x -<<-<<,且()f x 在()12,x x 上递减,在()11,x -和()2,x +∞上递增, 则()()200f x f <=,因为12,x x 是方程2220x x m ++=的两根, 所以12122,2mx x x x +=-=,即12121,2,x x m x x =--=, 要证()21122ln2f x x x >-+又()()()222222122222ln 124ln 1f x x m x x x x x =++=++()()()()()222222222241ln 1121ln2121ln2x x x x x x x x =+++>--++--=+-+,即证()()()()222222241ln 1112ln20x x x x x -++-+->对2102x -<<恒成立, 设()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< 则()()()4412ln 1ln x x x eϕ=-++-' 当102x -<<时, ()4120,ln 10,ln 0x x e+>+,故()0x ϕ'>, 所以()x ϕ在1,02⎛⎫-⎪⎝⎭上递增, 故()()1111124ln 12ln2024222x ϕϕ⎛⎫>=⨯-⨯⨯--=⎪⎝⎭, 所以()()()()222222241ln 1112ln20x x x x x -++-+->, 所以()21122ln2f x x x >-+.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为,{1x cos y sin θθ==+(θ为参数),曲线2C 的参数方程为2,{x cos y sin ϕϕ==(ϕ为参数).(1)将1C , 2C 的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为()cos 2sin 4ρθθ-=.若1C 上的点P 对应的参数为2πθ=,点Q 在2C 上,点M 为PQ 的中点,求点M 到直线l 距离的最小值.【答案】(1)()2211x y +-=表示以()0,1为圆心,1为半径的圆, 2214x y +=表示焦点在x 轴上的椭圆;(2.【解析】试题分析:(1)分别将曲线1C 、2C 的参数方程利用平方法消去参数,即可得到1C , 2C 的方程化为普通方程,进而得到它们分别表示什么曲线;(2)1cos ,1sin 2M ϕϕ⎛⎫+ ⎪⎝⎭,利用点到直线距离公式可得M 到直线l 的距离6d =,利用辅助角公式以及三角函数的有界性可得结果.试题解析:(1)1C 的普通方程为()2211x y +-=,它表示以()0,1为圆心,1为半径的圆,2C 的普通方程为2214x y +=,它表示中心在原点,焦点在x 轴上的椭圆.(2)由已知得()0,2P ,设()2cos ,sin Q ϕϕ,则1cos ,1sin 2M ϕϕ⎛⎫+ ⎪⎝⎭, 直线l : 240x y --=,点M 到直线l的距离d ==所以d ≥=M 到l. 23.已知()223f x x a x a =-+++ .(1)证明: ()2f x ≥; (2)若332f ⎛⎫-< ⎪⎝⎭,求实数a 的取值范围.【答案】(1)见解析;(2) ()1,0-.【解析】试题分析:(1)利用基本不等式求出()f x 的最小值为223a a ++,再利用二次函数配方法可证得结论;(2)分两种情况讨论,分别解关于a 的不等式组,结合一元二次不等式的解法求解不等式组,然后求并集即可得结果.试题解析:(1)证明:因为()222323f x x a x a x a x a =-+++≥++-+而()2222323122x a x a a a a ++-+=++=++≥,所以()2f x ≥.(2)因为222323,33342{ 32222,4a a a f a a a a a ++≥-⎛⎫-=+++= ⎪⎝⎭-<-, 所以23{ 4233a a a ≥-++<或23{ 423a a a <--<,解得10a -<<,所以a 的取值范围是()1,0-.。

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

安徽省2018届百校联盟TOP20四月联考(全国I卷)数学理

安徽省2018届百校联盟TOP20四月联考(全国I卷)数学理

x y 1 0
9.已知实数
x,
y
满足约束条件
x y 1 2x y
2
0
0
,若
z

mx

y

z
的取值范围为集合
A
,且
A

[1 3
,6] ,
则实数 m 的取值范围是( )
A.[1 , 2] 33
B.[ 11 , 2] 93
C.[ 11 , 1] 93
D.[ 2 ,6] 3
且 x 1时, f (x) 2x x2 x 2 ,若 f (log a 2a) 6(a 0 且 a 1) ,则实数 a 的取值范围是( )
A. (1 ,1) (1,2) 2
B. (0, 1) (2,) 2
C. (0, 1) (1,2) 2
D. (1 ,1) (2,) 2
C. y 2 5 x 5
D. y 5 x 2
7.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )
·1·
A. 8 4 2 8 5
B. 24 4 2
C. 8 20 2
D.28
8.已知定义域为 R 的函数 f (x) 满足 f (2 x) f (x) ,
()
A. 5
B.9
C.11
D.13
6.已知点
F1
,
F2
是双曲线
ቤተ መጻሕፍቲ ባይዱ
C

x2 a
1

y2 a
1(a
0) 的左,右焦点,
点 P 是以 F1, F2 为直径的圆与双曲线 C 的一个交点,若 PF1F2 的面 积为 4,则双曲线 C 的渐近线方程为( )

吉林省百校联盟2018届高三TOP20九月联考(全国II卷)数学(理)试题Word版含答案

吉林省百校联盟2018届高三TOP20九月联考(全国II卷)数学(理)试题Word版含答案

百校联盟2018届TOP20九月联考(全国Ⅱ卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|3410A x x x =-+≤,{|B x y ==,则A B = ( )A .3(,1]4B .3,14⎡⎤⎢⎥⎣⎦C .13,34⎡⎤⎢⎥⎣⎦D .13[,)342.已知实数m 、n 满足()(42)35m ni i i +-=+(i 为虚数单位),则在复平面内,复数z m ni =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .181 C .112D .194.已知等差数列{}n a 的前n 项和为n S ,若11927a a =+,则25S =( ) A .1452B .145C .1752D .1755.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后,甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了6.运行如图所示的程序框图,若输入的i a (1,2,i =…,10)分别为1.5、2.6、3.7、4.8、7.2、8.6、9.1、5.3、6.9、7.0,则输出的值为( )A .49B .25C .12D .597.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体的体积为( )A .16(1)3π+ B .8(1)3π+C .4(23)3π+ D .4(2)3π+ 8.已知抛物线C :22(0)y px p =>的焦点F 到其准线l 的距离为2,过焦点且倾斜角为60︒的直线与抛物线交于M ,N 两点,若'MM l ⊥,'NN l ⊥,垂足分别为'M ,'N ,则''M N F ∆的面积为( )A.3B.3C.3D.39.已知7cos()3sin()26ππαα+=+,则tan()12πα+=( ) A.4- B.4C.4-D.410.已知单位向量1e 与2e 的夹角为3π,向量122e e + 与122e e λ+ 的夹角为23π,则λ=( )A .23-B .3-C .3-或23- D .1-或3-11.如图,在长方体1111ABCD A BC D -中,AB ,11BB BC ==,点P 是长方体外的一点,过点P 作直线l ,记直线l 与直线1AC ,BC 的夹角分别为1θ,2θ,若1sin(50)θ-︒2cos(140)θ=︒-,则满足条件的直线l ( )A .有1条B .有2条C .有3条D .有4条12.已知当(1,)x ∈+∞时,关于x 的方程ln (1)1x x k xk+-=-有唯一实数解,则距离k 最近的整数为( ) A .2B .3C .4D .5第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.210(2018)()x y x y +-展开式中56x y 的系数为 .14.函数2()cos sin()2f x x x x π=-++在0,2π⎡⎤⎢⎥⎣⎦上的单调递增区间为 .15.已知实数x ,y 满足20,4,1,x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2y x +的取值范围为 .16.已知双曲线C :22221(0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过点1F 且与双曲线C 的一条渐进线垂直的直线l 与C 的两条渐进线分别交于M ,N 两点,若11||2||NF MF =,则双曲线C 的渐进线方程为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且203SBA AC ⋅+= ,其中S 是ABC ∆的面积,4C π=.(1)求cos B 的值; (2)若24S =,求a 的值.18.如图所示,在已知三棱柱ABF DCE -中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M 在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得//AF 平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.19.已知某产品的历史收益率的频率分布直方图如图所示.(1)试估计该产品收益率的中位数;(2)若该产品的售价x (元)与销量y (万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组x 与y 的对应数据:根据表中数据算出y 关于x 的线性回归方程为 10.0y bx=- ,求b 的值; (3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为X ,求X 的分布列及期望.20.已知等差数列{}n a 的前n 项和为n S ,若14m S -=-,0m S =,214m S +=(2m ≥,且*m N ∈).(1)求数列{}n a 的通项;(2)求数列{}3(6)2n n m a -+⨯的前n 项和.21.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,且过点,A ,B 是椭圆C 上异于长轴端点的两点. (1)求椭圆C 的方程;(2)已知直线l :8x =,且1A A l ⊥,垂足为1A ,1BB l ⊥,垂足为1B ,若(3,0)D ,且11A B D∆的面积是ABD ∆面积的5倍,求ABD ∆面积的最大值. 22.已知函数()(2)x f x x e =-. (1)求函数()f x 的单调递增区间;(2)若2()()2x g x f x e ax =+-,()h x x =,且对于任意的1x ,2(0,)x ∈+∞,都有[][]1122()()()()0g x h x g x h x -->成立,求实数a 的取值范围.百校联盟2018届TOP20九月联考(全国Ⅱ卷)理科数学答案一、选择题1-5:BABDC 6-10:CABBB 11、12:DB二、填空题13.210 14.0,3π⎡⎤⎢⎥⎣⎦ 15.14,55⎡⎤⎢⎥⎣⎦16.y x = 三、解答题17.解:∵203S BA AC ⋅+= ,得13cos 2sin 2bc A bc A =⨯,得sin 3cos A A =, 即222sin 9cos 9(1sin )A A A ==-,所以29sin 10A =,又3(0,4A π∈),∴sin 0A >,故sin 10A =,cos 10A =故cos cos()cos cos sin sin 222B A C A C A C =-+=-+===.(2)24S =,所以sin 48bc A =,得bc =①,由(1)得cos B =,所以sin B = 在ABC ∆中,由正弦定理,得sin sin b c B C =2=②联立①②,解得8b =,c =,则2222cos 72a b c bc A =+-=,所以a = 18.解:(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥,又平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==, ∴ADC ∆为正三角形,GC =∴(0,0,0)G,C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,GC =,设平面CEG 的一个法向量1(,,)n x y z = ,则由10n GE ⋅= ,10n GC ⋅=可得0,0,y z +=⎧⎪=令1y =,则1(0,1,1)n =-,∵(,0)CD = BA = ,且(0,1,0)A -,故2,0)B -,故(BG =,故直线BG 与平面GCE所成角的正弦值为11||sin ||||n BG n BG θ⋅==⋅ .19.解:(1)依题意,设中位数为x ,0.3 2.5(0.2)0.5x +⨯-=,解得0.28x =.(2)25303845521903855x ++++===,7.57.1 6.0 5.6 4.8316.255y ++++===,∴10.0 6.20.138b-== . (3)X 的可能取值为0,1,2,故(0)P X =022325310C C C ==,1123256(1)10C C P X C ===,2023251(2)10C C P X C ===, 故X 的分布列为故6()10105E X =+=. 20.解:(1)由已知得14m m m a S S -=-=,且12214m m m m a a S S ++++=-=, 设数列{}n a 的公差为d ,则由2314m a d +=,∴2d =, 由0m S =,得1(1)202m m ma -+⨯=,即11a m =-,∴1(1)214m a a m m =+-⨯=-=, ∴5m =,故26n a n =-.(2)32(6)252n n n m a n --+⨯=⨯;下面先求{}22n n -⨯的前n 项和n T ,10321222(1)22n n n T n n ---=⨯+⨯++-⨯+⨯…①; 012121222(1)22n n n T n n --=⨯+⨯++-⨯+⨯…②;两式相减得10212222n n n T n ----=+++-⨯…11112(12)1222122n n n n n n -----=-⨯=--⨯-,∴11(1)22n n T n -=-⨯+(*n N ∈). 故{}3(6)2n n m a -+⨯的前n 项和为155(1)22n n --⨯+. 21.解:(1)依题意222221,21231,,c a a b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩解得4,2,a b c =⎧⎪=⎨⎪=⎩故椭圆C 的方程为2211612x y +=. (2)设直线AB 与x 轴相交于点(,0)R r 1|3|||2ABD A B S r y y ∆=-⋅-,111115||2A B D A B S y y ∆=⨯⨯-,由于115A B D ABD S S ∆∆=且11||||A B A B y y y y -=-, 得55|3|r =⨯-,4r =(舍去)或2r =, 即直线AB 经过点(2,0)F ,设11(,)A x y ,22(,)B x y ,AB 的直线方程为:2x my =+,由222,3448,x my x y =+⎧⎨+=⎩即22(34)12360m y my ++-=, 1221234m y y m -+=+,1223634y y m -=+,121||2ABDS y y ∆=-==2123(1)1m =++,令1t ≥,所以212121313ABD t S t t t∆==++, 因为11333()t t t t+=+,所以13t t +在)+∞上单调递增,所以在[1,)t ∈+∞上单调递增,所以134t t+≥,所以3ABD S ∆≤(当且仅当1t ==,即0m =时“=”成立),故ABD S ∆的最大值为3.22.解:(1)依题意,'()(2)(1)x x xf x e x e x e =+-=-,令'()0f x >,解得1x >,故函数()f x 的单调递增区间为(1,)+∞. (2)当11()()0g x h x ->,对任意的2(0,)x ∈+∞,都有22()()0g x h x ->; 当11()()0g x h x -<时,对任意的2(0,)x ∈+∞,都有22()()0g x h x -<;故()()0g x h x ->对(0,)x ∈+∞恒成立,或()()0g x h x -<对(0,)x ∈+∞恒成立, 而()()(1)x g x h x x e ax -=--,设函数()1xp x e ax =--,(0,)x ∈+∞.则()0p x >对(0,)x ∈+∞恒成立,或()0p x <对(0,)x ∈+∞恒成立,'()xp x e a =-,①当1a ≤时,∵(0,)x ∈+∞,∴1xe >,∴'()0p x >恒成立,∴()p x 在(0,)x ∈+∞上单调递增,(0)0p =, 故()0p x >在(0,)+∞上恒成立,符合题意.②当1a >时,令'()0p x =,得ln x a =,令'()0p x <,得0ln x a <<, 故()p x 在(0,ln )a 上单调递减,所以(ln )(0)0p a p <=, 而2()1a p a e a =--,设函数2()1a a e a ϕ=--,(1,)a ∈+∞,则'()2a a e a ϕ=-,令()2a H a e a =-,则'()2a H a e =->((1,)a ∈+∞)恒成立, ∴'()a ϕ在(1,)+∞上单调递增,∴'()'(1)20a e ϕϕ>=->恒成立, ∴()a ϕ在(1,)+∞上单调递增,∴()a ϕ(1)20e ϕ>=->恒成立, 即()0p a >,而(ln )0p a <,不合题意. 综上,故实数a 的取值范围为(,1]-∞.。

【全国校级联考word】百校联盟2018届高三TOP20四月联考(全国II卷)理综生物试题

【全国校级联考word】百校联盟2018届高三TOP20四月联考(全国II卷)理综生物试题

百校联盟2018届高三TOP20四月联考(全国II卷)理综生物试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列相关叙述中,不正确的是A.细胞代谢加快时ATP 与ADP间的转化加快B.细胞分化、衰老、癌变都会导致细胞的形态、结构、功能发生变化C.胰岛素受体和溶菌酶可以在人体的同一细胞中产生D.酶、载体、抗体、激素、神经递质均会与相应的分子发生特异性结合,且发挥作用后即被灭活2.长跑时,人体可通过自身的调节作用,维持内环境的相对稳定状态。

下列叙述不正确的是A.长跑时抗利尿激素分泌增多,下丘脑渴觉中枢兴奋B.长跑时,肌细胞产生乳酸,但血浆pH值不会大幅下降,主要原因是血浆中的缓冲物质与乳酸发生反应C.长跑时皮肤毛细血管舒张,汗腺的分泌增强D.若图中表示机体长跑前后血糖浓度的变化,则bec段血糖浓度下降是因为葡萄糖氧化分解供能加快3.每年的7〜9月为某种苹果果实的成熟期。

研究人员在此期间,每隔10d采摘果实测定其中几种激素的含量,结果见下图;下列叙述错误的是A.成熟期果实体积增大减缓与果实内细胞分裂素含量下降有关B.脱落酸和生长素含量增加有助于果实的成熟C.苹果果实体积增大与赤霉素、脱落酸、细胞分裂素促进细胞的分裂和伸长有关D.在果实成熟过程中激素的种类和浓度不同,可能与基因选择性表达有关4.乙肝病毒是一种约由3200个脱氧核苷酸组成的双链DNA病毒,乙肝病毒可专一性侵染人体的肝细胞,其繁殖过程如图所示。

下列说法正确的是A.①③分别表示转录和逆转录,①与解旋酶、③与DNA聚合酶有关B.②③需要的原料分别是肝细胞内的氨基酸和脱氧核苷酸C.过程③能形成两种碱基对D.人体感染乙肝病毒后,只能引发体液免疫5.朱鹮是瀕危动物,它的食物来源1/3是小鱼,2/3是泥鳅,小鱼和泥鳅仅以水草为食,下列有关分析正确的是A.在食物网中,碳以C02的形式被循环利用B.日照时间的长短能影响朱鹮的繁殖,体现生命活动正常进行离不开信息的作用C.保护野生朱鹮最有效的方式是将其迁入动物园进行保护D.若朱鹮增加15kg体重(千重),则至少消耗水草375kg(干重)6.先天性聋哑有常染色体隐性遗传、常染色体显性遗传和伴X隐性遗传三种遗传方式。

广东省百校联盟2018届高三第二次联考数学(理)试卷(含答案)

广东省百校联盟2018届高三第二次联考数学(理)试卷(含答案)

广东省百校联盟2018届高三第二次联考数学(理)试题一、单选题1.复数满足()()11z i i +-=,则z = ( )A.2 B.3 C. 2 D. 1【答案】A【解析】由题意可得: 1112i z i i ++==-,则: 2211112,22222z i z ⎛⎫⎛⎫=-∴=+-= ⎪ ⎪⎝⎭⎝⎭. 本题选择A 选项.2.已知(){}2|log 31A x y x ==-, {}22|4B y x y =+=,则A B ⋂=( ) A. 10,3⎛⎫ ⎪⎝⎭ B. 12,3⎡⎫-⎪⎢⎣⎭ C. 1,23⎛⎤ ⎥⎝⎦ D. 1,23⎛⎫⎪⎝⎭【答案】C【解析】因为(){}2|log 31A x y x ==-1,,3⎛⎫=+∞ ⎪⎝⎭{}22|4B y x y =+=[]12,2,,23A B ⎛⎤=-∴⋂= ⎥⎝⎦,故选C.3.下表是我国某城市在2017年1月份至10月份各月最低温与最高温()C o的数据一览表.已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是( ) A. 最低温与最高温为正相关 B. 每月最高温与最低温的平均值在前8个月逐月增加C. 月温差(最高温减最低温)的最大值出现在1月D. 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大 【答案】B【解析】将最高温度、最低温度、温差列表如图,由表格前两行可知最低温大致随最高温增大而增大, A 正确;由表格可知每月最高温与最低温的平均值在前8个月不是逐月增加, B 错;由表格可知,月温差(最高温减最低温)的最大值出现在1月, C 正确;由表格可知1 月至4 月的月温差(最高温减最低温)相对于7 月至10 月,波动性更大, D 正确,故选B. 4.已知命题:2p x >是2log 5x >的必要不充分条件;命题:q 若3sin x =2cos2sin x x =,则下列命题为真命题的上( )A. p q ∧B. ()p q ⌝∧C. ()p q ∧⌝D. ()()p q ⌝∧⌝ 【答案】A【解析】由对数的性质可知: 222log 4log 5=<,则命题p 是真命题;由三角函数的性质可知:若3sin 3x =,则: 2231sin 3x ==⎝⎭, 且: 211cos212sin 1233x x =-=-⨯=,命题q 是真命题.则所给的四个复合命题中,只有p q ∧是真命题.本题选择A 选项.5.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin 3sin ,5A B c ==,且5cos 6C =,则a =( ) A. 22 B. 3 C. 32 D. 4 【答案】B【解析】由正弦定理结合题意有: 3a b =,不妨设(),30b m a m m ==>,结合余弦定理有: 222222955cos 266a b c m m C ab m +-+-===, 求解关于实数m 的方程可得: 1m =,则: 33a m ==.本题选择B 选项.6.某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A. 84225++B. 64245++C. 62225++D. 82225++ 【答案】C【解析】由三视图可知,该几何体为放在正方体的四棱锥E ABCD -,如图,正方体的边长为2,该三棱锥底面为正方形,两个侧面为等腰三角形,面积分别为2,22,5 ,可得这个几何体的表面积为62225+ C. 7.将曲线1C : sin 6y x π⎛⎫=- ⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线2C : ()y g x =,则()g x 在[],0π-上的单调递增区间是( ) A. 5,66ππ⎡⎤--⎢⎥⎣⎦ B. 2,36ππ⎡⎤--⎢⎥⎣⎦ C. 2,03π⎡⎤-⎢⎥⎣⎦D. ,6ππ⎡⎤--⎢⎥⎣⎦【答案】B【解析】将曲线1C : sin 6y x π⎛⎫=-⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度可得()522266g x sin x sin x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令5222262k x k πππππ-≤+≤+,得()236k x k k Z ππππ-≤≤-∈,再令0k =,得236x ππ-≤≤-,则()g x 在[],0π-上的单调递增区间是2,36ππ⎡⎤--⎢⎥⎣⎦,故选B. 8.执行如图所示的程序框图,若输入的4t =,则输出的i =( )A. 7B. 10C. 13D. 16 【答案】D【解析】1i =,1不是质数, 0114S =-=-<; 4i =,4不是质数, 1454S =--=-<; 7i =,7是质数, 5724S =-+=<; 10i =,10不是质数, 21084S =-=-<; 13i =,13是质数, 81354S =-+=<, 16i =,故输出的16i =.选D.9.设,x y 满足约束条件220{260 20x y x y y --≤+-≥-≤,则2y xz x y=-的取值范围是( ) A. 7,12⎡⎤-⎢⎥⎣⎦ B. 72,2⎡⎤-⎢⎥⎣⎦ C. 77,23⎡⎤--⎢⎥⎣⎦D. 3,12⎡⎤-⎢⎥⎣⎦【答案】A【解析】绘制不等式组表示的平面区域如图所示,考查yx的几何意义: 可行域内的点与坐标原点之间连线的斜率,则1,14y x ⎡⎤∈⎢⎥⎣⎦, 令y t x =,换元可得: 12z t t =-,该函数在区间1,14⎡⎤⎢⎥⎣⎦上单调递增,据此可得: min max 174,21122z z =-=-=-=, 即目标函数的取值范围是7,12⎡⎤-⎢⎥⎣⎦. 本题选择A 选项.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.10.函数()22x xe ef x x x --=+-的部分图象大致是( )A. B. C. D.【答案】D【解析】()()()2,2x xe ef x f x f x x x ---==-∴+-Q 为奇函数,图象关于原点对称,排除A ;当()0,1x ∈时, ()()()021x xe ef x x x --=<++-,排除B ;当()1,x ∈+∞时, ()0f x >,排除C ;故选D.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点, D 为虚轴上的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为( )A. (B.C.)2 D. ()⋃+∞【答案】D【解析】由通径公式有: 22b AB a =,不妨设()22,,,,0,b b A c B c D b a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,分类讨论:当2b b a >,即1ba <时, DAB ∠为钝角,此时1e <<当2b b a >,即e >ADB ∠为钝角,此时: 442222220,2b b DA DB c b a b a a ⋅=-+<∴+<u u u v u u u v ,令22b t a=,据此可得: 2210,1t t t -->∴>则: e >本题选择D 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).12.已知函数()()231,ln 42x xf x eg x -==+,若()()f m g n =成立,则n m -的最小值为( )A. 1ln22+B. ln2C. 12ln22+ D. 2ln2【答案】A 【解析】设()231ln 042m nek k -=+=>,则: 143ln ,222k k m n e -=+=, 令()14ln 3222k k h k n m e-=-=--,则()141'22k h k e k-=-, 导函数()'h k 单调递增,且1'04h ⎛⎫=⎪⎝⎭, 则函数()14ln 3222k k h k e-=--在区间10,4⎛⎫ ⎪⎝⎭上单调递减,在区间1,4⎛⎫+∞ ⎪⎝⎭上单调递增, 结合函数的单调性有: ()min11ln242h k h ⎛⎫⎡⎤==+ ⎪⎣⎦⎝⎭,即n m -的最小值为1ln22+. 本题选择A 选项.二、填空题13.设平面向量m v 与向量n v 互相垂直,且()211,2m n -=-v v ,若5m =v ,则n =v__________. 【答案】5【解析】由平面向量m v 与向量n v 互相垂直可得0,m n ⋅=v v 所以()2222125,4125m n m n -=∴+=v vv v,又5,5m n =∴=v v,故答案为5.【方法点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=v v v v ,二是1212a b x x y y ⋅=+vv ,主要应用以下几个方面:(1)求向量的夹角,cos a b a b θ⋅=v v v v (此时a b ⋅v v 往往用坐标形式求解);(2)求投影, a v 在b v 上的投影是a b b⋅v v v ;(3),a bv v 向量垂直则0a b ⋅=vv ;(4)求向量ma nb +vv的模(平方后需求a b ⋅vv ).14.在二项式6⎫的展开式中,第3项为120,则x = __________. 【答案】2【解析】结合二项式定理的通项公式有:()()66216611222rrrrxr r r x T C C t --+-⎛⎫== ⎪⎝⎭,其中20rt =>,结合题意有:()2262262120C t-⨯=,计算可得: 24t =,即: 24,2xx =∴=.15.如图, E 是正方体1111ABCD A B C D -的棱11C D 上的一点,且1//BD 平面1B CF ,则异面直线1BD 与CE 所成角的余弦值为__________.【答案】15 【解析】不妨设正方体1111ABCD A B C D -的棱长为2,设11B C BC O ⋂=,如图所示,当点E为11C D 的中点时, 1BD OE P ,则1BD P 平面1B CE , 据此可得OEC ∠为直线1BD 与CE 所成的角, 在OEC V 中,边长: 5,2,3EC OC OE ===, 由余弦定理可得: 15cos 5235OEC ∠==⨯. 即异面直线1BD 与CE 所成角的余弦值为155.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.已知点A 是抛物线2:2(0)C x py p =>上一点, O 为坐标原点,若,A B 是以点()0,8M 为圆心, OA 的长为半径的圆与抛物线C 的两个公共点,且ABO ∆为等边三角形,则p 的值是__________. 【答案】23【解析】,MA OA =∴Q 点A 在线段OM 的中垂线上, 又()0,8M ,所以可设(),4A x ,由0tan30,4x x A ⎫=∴=∴⎪⎭的坐标代入方程22x py =有: 16243p =⨯ 解得: 2.3p = 点睛:求抛物线方程时,首先弄清抛物线的对称轴和开口方向,正确地选择抛物线的标准方程.三、解答题17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a , {}n b 的通项公式; (2)求数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1) n a n =, 2n b n =.(2) ()21n nT n =+.【解析】试题分析:(1)由题意结合所给的递推公式可得数列{}n a 是以1为首项, 1为公差的等差数列,则n a n =,利用前n 项和与通项公式的关系可得{}n b 的通项公式为2n b n =.(2)结合(1)中求得的通项公式裂项求和可得数列11n n a b +⎧⎫⎨⎬⎩⎭ 的前n 项和()21n nT n =+. 试题解析:(1)因为2211n n n n a a a a +++=-,所以, ()()1110n n n n a a a a +++--=,因为10,0n n a a +>>,所以10n n a a ++≠,所以11n n a a +-=, 所以{}n a 是以1为首项, 1为公差的等差数列, 所以n a n =,当2n ≥时, 12n n n b S S n -=-=,当1n =时12b =也满足,所以2n b n =. (2)由(1)可知()1111112121n na b n n n n +⎛⎫==- ⎪++⎝⎭,所以()111111111222334121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L . 18.唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画,雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已由1300多年的历史,制作工艺蛇粉复杂,它的制作过程中必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程互相独立,某陶瓷厂准备仿制甲乙丙三件不同的唐三彩工艺品,根据该厂全面治污后的技术水平,经过第一次烧制后,甲乙丙三件工艺品合格的概率依次为143,,255,经过第二次烧制后,甲乙丙三件工艺品合格的概率依次为412,,523. (1)求第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率;(2)经过前后两次烧制后,甲乙丙三件工艺品成为合格工艺品的件数为X ,求随机变量X 的数学期望.【答案】(1)1350;(2)1.2. 【解析】试题分析:(1)由题意结合概率公式可得第一次烧制后甲乙丙三件中恰有一件工艺品合格的概率为1350; (2)由题意可得题中的分布列为二项分布,则随机变量X 的数学期望为1.2. 试题解析:分别记甲乙丙第一次烧制后合格为事件123,,A A A , (1)设事件E 表示第一次烧制后恰好有一件合格, 则()1121421131325525525550P E =⨯⨯+⨯⨯+⨯⨯=. (2)因为每件工艺品经过两次烧制后合格的概率均为25p =, 所以随机变量()3,0.4X B ~, 所以()30.4 1.2E X np ==⨯=.19.如图,四边形ABCD 是矩形, 33,3,2,AB BC DE EC PE ===⊥平面,6ABCD PE =.(1)证明:平面PAC ⊥平面PBE ; (2)求二面角A PB C --的余弦值.【答案】(1)证明见解析;(2) 55-. 【解析】试题分析:(1)由题意结合题意可证得AC ⊥平面PBE ,结合面面垂直的判断定理可得平面PAC ⊥平面PBE ;(2)建立空间直角坐标系,结合半平面的法向量可得二面角A PB C --的余弦值为5. 试题解析:(1)证明;设BE 交AC 于F ,因为四边形ABCD 是矩形, 33,3,2AB BC DE EC ===, 所以3,CE BCCE BC AB==, 又2ABC BCD π∠=∠=,所以,ABC BCE BEC ACB ∆~∆∠=∠,因为2BEC ACE ACB ACE π∠=∠=∠+∠=,所以AC BE ⊥,又PE ⊥平面ABCD .所以AC PE ⊥,而PE BE E ⋂=,所以平面PAC ⊥平面PBE ;(2)建立如图所示的空间直角坐标系,由题意可得()()()()3,23,0,3,3,0,0,3,0,0,0,6A B C P -,则()()60,33,0,3,3,6,,0,13AB BP CB ⎛⎫==--= ⎪ ⎪⎝⎭u u u v u u u v u u u v ,设平面APB 的法向量()1111,,n x y z =u v,则1111330{3360y x y z =--+=,取1116,0,1x y z ===,即16,0,1n ⎛⎫= ⎪ ⎪⎝⎭u v 设平面BPC 的法向量()2222,,n x y z =u u v,则222230{3360x x y z =--+=,取2110,2,1x y z ===,即()10,2,1n =u v设平面APB 与平面BPC 所成的二面角为θ,则1212125cos cos ,n n n n n n θ⋅===⋅u v u u vu v u u v u v u u v 由图可知二面角为钝角,所以5cos 5θ=-.20.已知椭圆2222:1(0)x y C a b a b +=>>的长轴长是短轴长的22且椭圆C 经过点22,2A ⎛⎫⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设不与坐标轴平行的直线l 交椭圆C 于,M N 两点, 22MN =l 在y 轴上的截距为m ,求m 的最大值.【答案】(1) 2218x y +=.(2)【解析】试题分析:(1)结合题意可求得221,8b a ==,则椭圆的方程为2218x y +=.(2)联立直线方程与椭圆方程,结合韦达定理讨论可得直线l 在y轴上的截距的最大值为试题解析:(1)因为a =,所以椭圆的方程为222218x y b b+=,把点A ⎛⎝⎭的坐标代入椭圆的方程,得221118b b +=, 所以221,8b a ==,椭圆的方程为2218x y +=. (2)设直线l 的方程为()()1122,,,,y kx m M x y N x y =+,联立方程组22{ 1 8x y y kx m+==+ 得()2221816880k x kmx m +++-=,由()()222256321180m m k --+>,得2218m k <+,所以21212221688,1818km m x x x x k k --+==++,所以MN ====()()()2222813441k k m k +-=+, 令221(1)1k t t k t +=>⇒=-,所以223284494t t m t-+-=,249218214m t t ⎛⎫=-+≤- ⎪⎝⎭m ≤当且仅当4984t t=,即8t =时,上式取等号,此时2k =(2738m -=,满足2218m k <+,所以m21.函数()()2ln 1f x x m x =++ .(1)当0m >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点12,x x ,且12x x <,证明: ()21122ln2f x x x >-+ . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)结合函数的解析式求导可得()2221x x mf x x ++'=+,分类讨论可得:当102m <<时, ()f x在112222⎛⎫---+ ⎪ ⎪⎝⎭上递减,在11,2⎛-- ⎝⎭和12⎛⎫-++∞ ⎪ ⎪⎝⎭上递增,当12m ≥时,在()1,-+∞上递增. (2)由题意结合函数的性质可知: 12,x x 是方程2220x x m ++=的两根,结合所给的不等式构造对称差函数()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< ,结合函数的性质和自变量的范围即可证得题中的不等式. 试题解析:函数()f x 的定义域为()()2221,,1x x mf x x++-+∞'=+,(1)令()222g x x x m =++,开口向上, 12x =-为对称轴的抛物线, 当1x >-时, ①11022g m ⎛⎫-=-+≥ ⎪⎝⎭,即12m ≥时, ()0g x ≥,即()0f x '≥在()1,-+∞上恒成立,②当102m <<时,由()222g x x x m =++,得121122x x =-=-+,因为()10g m -=>,所以111122x -<<-<-,当12x x x <<时, ()0g x <,即()0f x '<,当11x x -<<或2x x >时, ()0g x >,即()0f x '>,综上,当102m <<时, ()f x 在1122⎛--+ ⎝⎭上递减,在11,2⎛--- ⎝⎭和12⎛⎫-+∞ ⎪ ⎪⎝⎭上递增,当12m ≥时,在()1,-+∞上递增. (2)若函数()f x 有两个极值点12,x x 且12x x <, 则必有102m <<,且121102x x -<<-<<,且()f x 在()12,x x 上递减,在()11,x -和()2,x +∞上递增,则()()200f x f <=,因为12,x x 是方程2220x x m ++=的两根,所以12122,2mx x x x +=-=,即12121,2,x x m x x =--=, 要证()21122ln2f x x x >-+又()()()222222122222ln 124ln 1f x x m x x x x x =++=++()()()()()222222222241ln 1121ln2121ln2x x x x x x x x =+++>--++--=+-+,即证()()()()222222241ln 1112ln20x x x x x -++-+->对2102x -<<恒成立, 设()()()()()21241ln 1112ln2,(0)2x x x x x x x ϕ=-++-+--<< 则()()()4412ln 1ln x x x eϕ=-++-' 当102x -<<时, ()4120,ln 10,ln 0x x e +>+,故()0x ϕ'>,所以()x ϕ在1,02⎛⎫-⎪⎝⎭上递增, 故()()1111124ln 12ln2024222x ϕϕ⎛⎫>=⨯-⨯⨯--=⎪⎝⎭, 所以()()()()222222241ln 1112ln20x x x x x -++-+->, 所以()21122ln2f x x x >-+.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为,{1x cos y sin θθ==+(θ为参数),曲线2C 的参数方程为2,{ x cos y sin ϕϕ==(ϕ为参数).(1)将1C , 2C 的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为()cos 2sin 4ρθθ-=.若1C 上的点P 对应的参数为2πθ=,点Q 在2C 上,点M 为PQ 的中点,求点M 到直线l 距离的最小值.【答案】(1)()2211x y +-=表示以()0,1为圆心,1为半径的圆, 2214x y +=表示焦点在x 轴上的椭圆;(2.【解析】试题分析:(1)分别将曲线1C 、2C 的参数方程利用平方法消去参数,即可得到1C , 2C 的方程化为普通方程,进而得到它们分别表示什么曲线;(2)1cos ,1sin 2M ϕϕ⎛⎫+⎪⎝⎭,利用点到直线距离公式可得M 到直线l的距离d =,利用辅助角公式以及三角函数的有界性可得结果.试题解析:(1)1C 的普通方程为()2211x y +-=,它表示以()0,1为圆心,1为半径的圆,2C 的普通方程为2214x y +=,它表示中心在原点,焦点在x 轴上的椭圆.(2)由已知得()0,2P ,设()2cos ,sin Q ϕϕ,则1cos ,1sin 2M ϕϕ⎛⎫+ ⎪⎝⎭, 直线l : 240x y --=,点M 到直线l的距离d ==所以5d ≥=,即M 到l. 23.已知()223f x x a x a =-+++ . (1)证明: ()2f x ≥; (2)若332f ⎛⎫-< ⎪⎝⎭,求实数a 的取值范围. 【答案】(1)见解析;(2) ()1,0-.【解析】试题分析:(1)利用基本不等式求出()f x 的最小值为223a a ++,再利用二次函数配方法可证得结论;(2)分两种情况讨论,分别解关于a 的不等式组,结合一元二次不等式的解法求解不等式组,然后求并集即可得结果.试题解析:(1)证明:因为()222323f x x a x a x a x a =-+++≥++-+ 而()2222323122x a x a a a a ++-+=++=++≥,所以()2f x ≥.(2)因为222323,33342{32222,4a a a f a a a a a ++≥-⎛⎫-=+++= ⎪⎝⎭-<-, 所以23{ 4233a a a ≥-++<或23{ 423a a a <--<,解得10a -<<,所以a 的取值范围是()1,0-.。

2018年5月最新优质市级模拟试卷快递:百校联盟2018届高三TOP20四月联考(全国Ⅰ卷)理数试题(解析版)

2018年5月最新优质市级模拟试卷快递:百校联盟2018届高三TOP20四月联考(全国Ⅰ卷)理数试题(解析版)

1.D【解析】分析:化简集合A与集合B,然后求二者的并集.详解:由题意可得:,∴故选:D点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.点睛:复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.3.C【解析】分析:由题意,明确与具体的关系,即可得到的值.详解:,学科#网∴,∴故选:C点睛:本题考查了平面向量的加减及数乘运算,解题的关键把多个向量的关系转化为两个变量的关系即可,类似“减元”思想.4.D【解析】分析:利用新定义明确的的范围,再由几何概型公式求概率即可.详解:当时,,所以,所以当即时,,当即时,,所以当时,,故所求的概率故选:D点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.点睛:本题主要考查流程图知识与程序运行等知识,意在考查学生的分析问题和计算求解能力.6.C【解析】分析:利用双曲线定义及勾股定理布列方程,由面积值,即可求出的值,进而求出双曲线的渐近线方程.详解:由点P是以为直径的圆与双曲线的一个交点,可得,设,则,所以的面积为,所以双曲线C的渐近线方程为故选:C点睛:本题考查了双曲线的定义及简单的几何性质,本题解题的关键是利用,的关系整体代换得到的等量关系.7.A【解析】分析:由三视图可得该几何体为三棱柱,分别计算各面的面积即可.详解:由三视图可知,该几何体的下底面长为4,宽为2的矩形,左右两个侧面为底边为2,高为的三角形,前后两个侧面是底边为4,高为的平行四边形,所以该几何体的表面积为:.故选:A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.点睛:对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.9.A【解析】分析:先作出可行域,明确最值在顶点处取到,把问题转化为不等式组的问题.详解:作出不等式组表示的平面区域如图中阴影部分所示,其中的最值一定在顶点处取到,所以,解得:故选:A点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.学#科网点睛:裂项抵消法是一种常见的求和方法,其适用题型主要有:(1)已知数列的通项公式为,求前项和:;(2)已知数列的通项公式为,求前项和:;(3)已知数列的通项公式为,求前项和:.11.B【解析】分析:直线与的图象有3个交点即直线与的图象相切(如图所示),利用故选:B点睛:本题考查了导数的几何意义,是一道易错题,在本题中要明确A是定值并不是变量,所以我们是判断A在不在选项的范围内,而不是求A的范围.12.C【解析】分析:外接球体积最小即球的半径,利用均值不等式有,从而得到外接球体积的最小值.详解:由得△ABD≌△ACD,所以AC⊥CD,所以AD中点O为三棱锥A外接球的球心,其球的半径,所以三棱锥A外接球的体积故选:C点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.13.1【解析】分析:由分段函数具体化,从而解得实数的值.详解:∵,∴由得,即所以.故答案为:1点睛:本题考查了分段函数的简单应用,解题关键明确的范围,从而得到具体的方程,解之即可.学科.网点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.15.【解析】分析:由是椭圆上关于原点对称的两点,易知斜率之积为定值,结合均值不等式即可建立关于的不等式,从而得到椭圆的离心率的取值范围.详解:不妨设椭圆C的方程为,,则,所以,,两式相减得,所以,所以直线斜率的绝对值之和为,由题意得,,所以=4,即,所以,所以.故答案为:点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.17.(Ⅰ) ;(Ⅱ) .【解析】分析:(1)由,可知,从而得到数列的通项公式;(2),利用错位相加法求出数列的前项和.详解:(Ⅰ)由,得,代入得,即,所以数列是公差为3的等差数列,又,所以,即,所以,所以.(Ⅱ) 由得,所以,,两式相减得所以.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 18.(Ⅰ),该店的外卖订单数为193份;(Ⅱ)见解析.学科……网所以的分布列为.点睛:本题主要考查线性回归方程,属于中档题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.(Ⅰ)见解析;(Ⅱ) 或.(Ⅱ)由,,可得,所以,又平面,故以为坐标原点,直线分别为轴建立如图所示的空间直角坐标系,则,,,设,则,,所以,,.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20.(Ⅰ) ;(Ⅱ).学&*1科网【解析】分析:(1)由题意利用抛物线定义得到动圆圆心轨迹的方程;(2)与联立得,,利用韦达定理表示,因为点关于直线对称,设直线方程为,同样可得,从而得到根据直线与抛物线相交限制m的取值范围,利用单调性求范围即可.详解:(Ⅰ)圆化为标准方程为,因为点关于直线对称,设直线方程为,与联立得,,由,得,设,中点则,因为点也在直线上,所以,所以,代入得,②由①②得,实数的取值范围为.又,所以,因为,所以,所以,所以的取值范围是.点睛:在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.21.(Ⅰ) ;(Ⅱ)见解析.学*科*网所以,解得.(Ⅱ) ,,若,是增函数,最多有一个实根,最多有一个极值点,不满足题意,所以,由题意知,两式相减得,由,设,则,要证,即证时,恒成立,即恒成立,即恒成立,设,则,所以在上是增函数,所以,所以时,恒成立,即.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 22.(Ⅰ) ;(Ⅱ)2.把,代入得直线的极坐标方程为.(Ⅱ)曲线的普通方程为,所以曲线是以为圆心且经过原点的圆,因为直线过圆心,所以,所以,,所以(当且仅当时取等号),故的最大值为4.点睛:本题主要考查参数方程、极坐标方程、直角坐标方程之间的转化,基本不等式及其应用等知识,意在考查学生的转化能力和计算求解能力.学科&网23.(Ⅰ);(Ⅱ)见解析.点睛:绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百校联盟2018届高三TOP20四月联考(全国II 卷)理数试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}(){}25,30Ax x B x x x =<<=-<,则A B ⋃=( )A .()0,5B .()2,3 C.()3,5 D .()0,3 2.已知复数12i z i-=-,则z 的虚部为( )A .35-B .35iC.15-D .15i-3.已知()(),1,2,4a x b==-,若()ab b+⊥,则x=( )A .8B .10 C.11 D .124.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他活动的民间艺术,在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是各种民俗活动的重要组成部分.在如图所示的古代正八边形窗花矢量图片中,22A B B C=,则向正八边形窗花矢量图片中任投一点,落在正方形D E F G 中的概率为( )A .2212- B .2214- C.212- D .214-5.执行如图所示的程序框图,则输出S 的值为( )A .5B .11 C. 14 D .19 6.过双曲线2222:10,0()x y Ea b ab-=>>的右焦点且垂直于x 轴的直线与双曲线E 交于,A B 两点,与双曲线E的渐近线交于,C D 两点,若32A B C D=,则双曲线E 的渐近线方程为( )A .2yx=±B .3yx=±C.2y x=± D .23yx=±7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .21+3+422 B .310422++ C.21422+ D .213422++8.已知()()()211f x x x =++,则不等式()()lg 1f x f <的解集为( )A .()1,10,10⎛⎫-∞⋃+∞ ⎪⎝⎭B .1,1010⎛⎫⎪⎝⎭C.()0,10 D .1,10100⎛⎫⎪⎝⎭9.已知数列{}n a 中,117,221n n n a a a a +=-+=+,则30a =( )A .1028B .1026 C. 1024 D .102210.已知()10,00x y D x y x t y t ⎧-+>⎫⎧⎪⎪⎪=-<⎨⎨⎬⎪⎪⎪+>⎩⎩⎭,若存在点()00,x y D∈,使得0033x y -=,则t 的取值范围为( )A .1,2⎛⎫+∞⎪⎝⎭B .1,2⎛⎫-+∞ ⎪⎝⎭C. 3,4⎛⎫+∞⎪⎝⎭D .3,4⎛⎫-+∞ ⎪⎝⎭11.已知函数()22co s sin 22f x x x xπ=+--,则函数()f x 在3,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点之和为( )A .3πB .4π C. 2π D .32π12.在三棱锥PA B C-中,1,120A BB C C P A B C B C P ===∠=∠=︒,平面P B C 和平面A B C 所成角为120︒,则三棱锥P A B C-外接球的体积为( )A .13136πB .13106πC.13133πD .13103π第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数()221,1,lo g ,1,x x f x x x -+<⎧=⎨≥⎩则()()2ff = .14.已知()22nx x --的展开式中所有项的系数之和为16,则展开式中含2x 项的系数为 .(用数字 作答).15.抛物线24y x=的焦点为F ,其准线为直线l ,过点()5,25M作直线l 的垂线,垂足为H,则FM H ∠的角平分线所在的直线斜率是 .16.已知A B C ∆的内角,,A B C 的对边分别为,,a b c ,若222sin ,02a b b c A A π=+<<,则tan4tan A B-的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的前n 项和()*n S n N∈满足123nn Sa a =-,且22a +是13,a a 的等差中项,{}nb 是等差数列,2283,b a b a ==.(1)求数列{}{},n n a b 的通项公式; (2)nn nc a b =,求数列{}n c 的前n 项和n T .18.如图所示,在三棱台111A B CA B C -中,A B C ∆和111A B C ∆均为等边三角形,四边形11B C C B 为直角梯形,1C C ⊥平面A B C ,111112B C C C B C ===,,D E分别为11,A A C B 的中点.(1)求证://D E平面A B C ;(2)求二面角11A A E C --的余弦值.19.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值t ,得到如图所示的频率分布直方图,若20t <,亦则该产品为示合格产品,若2050t ≤<,则该产品为二等品,若50t≥,则该产品为一等品.(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好; (3)从甲生产线的样本中,满足质量指标值t 在[)0,20的产品中随机选出3件,记X 为指标值t 在[)10,20中的件数,求X 的分布列和数学期望• 20.已知N 为圆()221:224C xy++=上一动点,圆心1C 关于y 轴的对称点为2C ,点,MP分别是线段12,C N C N上的点,且2220,2M PC N C N C P⋅==.(1)求点M 的轨迹方程; (2)直线:l y kx m=+与点M 的轨迹Γ只有一个公共点P ,且点P 在第二象限,过坐标原点O 且与l 垂直的直线l '与圆228x y +=相交于,A B 两点,求PAB ∆面积的取值范围.21.已知函数()f x 的导函数为()f x ',且()()()1l nf xf ee x x ef e e '=+--++⎡⎤⎣⎦,其中e 为自然对数的底数.(1)求函数()f x 的最大值; (2)证明 :()221xx f x exx <-+-.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为15c o s 25sin x y αα⎧=+⎪⎨=+⎪⎩ (α为参数),直线1:0l x=,直线2:0l x y -=,以原点O 为极点,x 轴正半轴为极轴(取相同的长度单位)建立极坐标系.(1)写出曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段A B 的长度.23.选修4-5:不等式选讲 已知()22f x x a x =+--.(1)当2a=-时,求不等式()4f x ≤的解集;(2)若关于x 的不等式()2332f x ax≥--恒成立,求a 的取值范围.试卷答案一、选择题1-5: ACDCB 6-10: BDBDC 11、12:CA二、填空题13. 0 14. 8- 15.5516.12-三、解答题17.(1)由题意知,当2n≥时,11123n n S a a --=-,又因为123n n S a a =-,且1n n n a S S -=-,则()132nn a a n -=≥,所以213213,39a a a a a ===,又123,2,a a a +成等差数列,则()21822a a a +=+,所以()1112329a a a +=+, 解得19a =,所以数列{}n a 是以1为首项,3为公比的等比数列,故13n n a -=.设{}n b 的公差为d ,则113,79b d b d +=+=,解得11,2d b ==,所以()2111nb n n =+-⨯=+.(2)由(1)得()113n n n n c a b n -==+⋅,所以()2121334313n nT n -=⨯+⨯+⨯+++⨯,()2313233343313n nn T n n -=⨯+⨯+⨯++⨯++⨯,两式相减得()23122333313n nn T n --=+++++-+⨯,整理得113424nnn T ⎛⎫=+⨯-⎪⎝⎭.18.(1)取1B B 的中点F ,连接,E F D F , 则//E FB C ,因为E F ⊄平面A B C ,B C ⊂平面A B C ,所以//E F平面A B C ,因为三棱台111A B C A B C -中,11//A BA B ,所以//D F A B ,因为D F ⊄平面A B C ,AB ⊂平面A B C ,所以//D F 平面A B C ,因为D FEF F⋂=,所以平面//D E F平面A B C , 因为D E⊂平面D EF ,所以//D E平面A B C .(2)取B C 的中点O ,连接1,A O O B , 因为1C C ⊥平面A B C ,A O⊂平面A B C ,所以1C C A O⊥,因为1,C B A O C B C C C⊥⋂=,所以A O⊥平面11B C C B ,所以1A OO B ⊥,因为11B C C B 为直角梯形,11112B C C O B C ===,所以11O C C B 为正方形,所以1O B B C⊥,所以1,,O B O B O A 两两互相垂直,分别以1,,O B O B O A 为,,x y z 轴建立空间直角坐标系, 因为111112B C C C B C ===,所以()()()()()11110,0,3,1,0,0,0,1,0,1,0,0,1,1,0,,,022A B B C C E ⎛⎫--- ⎪⎝⎭,由1112B A B A=,得113,1,22A ⎛⎫-⎪⎪⎝⎭,所以111311110,,,,,3,,,0222222E A E A E C ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,设平面1A A 的一个法向量为()111,,m x y z =,由10,0,m E A m E A ⎧⋅=⎪⎨⋅=⎪⎩ 得1111130,230,y z x y z ⎧+=⎪⎨-+=⎪⎩,令13z =,得()9,3,3m=--,设平面11C A E 的一个法向量为()222,,n x y z =,由110,0,n E A n E C ⎧⋅=⎪⎨⋅=⎪⎩得222230,0,y z x y ⎧+=⎪⎨-=⎪⎩令23x =,得()3,3,1n=-,所以9333313217c o s,217793m n m n m n⋅---===-⋅⋅由图观察可知,平面1A A E 与平面11C A E 所成二面角为钝角,所以其余弦值为13217217-.19.(1)由频率分布直方图可知,甲生产线中二等品的概率为()100.0300.0200.0150.65⨯++=,—等品的概率为100.0050.05⨯=,乙生产线中二等品的概率为()100.0200.0350.0250.80⨯++=,一等品的概率为100.0150.15⨯=,所以两件产品中一件为二等品,一件为一等品的概率为0.650.150.050.80=0.1375⨯+⨯. (2)设两条生产线样本的平均值分别为,x x 甲乙,则50.1150.2250.3350.2450.15550.0527.5x =⨯+⨯+⨯+⨯+⨯+⨯=甲,150.05250.2350.35450.25550.1537.5x =⨯+⨯+⨯+⨯+⨯=乙,由频率分布直方图可知,甲生产线的数据较为分散,乙生产线的数据较为集中,所以甲生产线的数据方差大于乙生产线的数据方差,所以乙生产线更好.(3)甲生产线样本质量指标值t 在[)0,10的件数为400.01104⨯⨯=,质量指标值t 在[)10,20的件数为400.02108⨯⨯=,由题意可知X 的取值为0,1,2,3; 所以()34831241022055C C P XC ====,()21483124812122055C C P X C ====,()124831211228222055C C P X C ====,()03483125614322055C C P X C ====.所以X 的分布列为:X的数学期望()11228140123255555555E X =⨯+⨯+⨯+⨯=.20.(1)因为222C NC P=,所以P 为2C N 的中点,因为20M PC N ⋅=,所以2M PC N⊥,所以点M 在2C N的垂直平分线上,所以2M N M C =,因为121264M N M C M C M C +=+=>,所以点M 在以12,C C 为焦点的椭圆上,因为6,2ac ==,所以22b =,所以点M 的轨迹方程为22162xy+=.(2)由22162x y y k x m +==+⎧⎪⎨⎪⎩得,()222316360k x km x m +++-=,因为直线:l y kx m=+与椭圆Γ相切于点P ,所以()()()()2222264313612620km kmkm∆=-+-=+-=,即2262mk=+,解得223,3131km m xy kk-==++,即点P 的坐标为223,3131k m mkk-⎛⎫⎪++⎝⎭,因为点P 在第二象限,所以0,0k m >>,所以262mk=+,所以点P 的坐标为22322,3131k kk⎛⎫-⎪⎪++⎝⎭,设直线l '与l 垂直交于点Q ,则P Q是点P 到直线l '的距离,设直线l '的方程为1yxk=-,则2221322313111k kkk P Q k-⨯+++=+4222222222134142334k kkkk==≤+++++226231==-+,当且仅当2213k k=,即233k =时,P Q有最大值62-,所以1424342P A BS P Q ∆=⨯⨯≤-,即PAB ∆面积的取值范围为(0,434⎤-⎦.21.(1)因为()()()1ln f x fe e x x ef e e'=+--++⎡⎤⎣⎦,所以 ()()11fe ef x x+-'=-,()()()()()1,11,f e f e e e e f e e f e e f e e '=+--++⎧⎪⎨+-'=-⎪⎩解得()()1,2,e f e e f e e -⎧'=⎪⎨⎪=-⎩则()ln 1f x x x =-+,所以()1x f x x-'=,令()0f x '>,得01x <<,令()0f x '<得1x >,所以当1x =时,()()m a x10fx f ==.(2)由(1)得()f x 的最大值为0, 所以ln 10x x -+≤,即ln 1x x ≤-,从而()ln 1x x x x ≤-,要证22ln 21xx x x x e x x -+<-+-,即2ln1xx x e x <--,故只需证()211xe x x x -->-, 即证()22100xe x x x -+->>成立; 令()()2210x h x e x x x =-+-≥ 则()41x h x e x '=-+, 令()()F x h x '=,则()4x F x e '=-,令()0F x '=,得2ln 2x =,因为()F x '单调递增,所以当[]0,2ln 2x ∈时,()0F x '≤,()F x 单调递减,即()h x '单调递减. 当()2ln 2,x ∈+∞时,()0F x '>,()F x 单调递增, 即()h x '单调递增, 因为()2ln 258ln 20h '=-<,()()2020,2810h h e ''=>=-+>,由零点存在定理可知,[)()120,2ln 2,2ln 2,2x x ∃∈∃∈,使得()()120h x h x ''==, 故当10x x <<或2x x >时,()()0,h x h x '>单调递增; 当12x x x <<时,()()0,h x h x '<单调递减,所以()h x 的最小值是()00h =或()2h x . 由()20h x '=,得2241x e x =-, ()()()222222222221252221x h x e x x x x x x =-+-=-+-=---, 因为()22ln 2,2x ∈,所以()20h x >, 故当0x >时,()0h x >,所以原不等式成立.22.(1)依题意,曲线()()22:125C xy -+-=,即22240x x y y -+-=, 将co s ,sin x y ρθρθ==代入上式得,2co s 4sin ρθθ=+ 因为直线1:0l x =,直线2:0l x y -=,故直线12,l l 的极坐标方程为()()12:,:24l R l R ππθρθρ=∈=∈.(2)设,A B 两点对应的极径分别为12,ρρ, 在2co s 4sin ρθθ=+中,令2πθ=得,12co s 4sin 4ρθθ=+=, 令4πθ=得,22c o s 4s in 32ρθθ=+=, 因为244πππ-=, 所以2212122c o s104A B πρρρρ=+-=. 23.(1)当2a=-时,由()4f x ≤, 得2124x x ---≤, 当1x ≤时,由()()2124x x ---≤,得41x -≤≤; 当12x <<时,由()()2124x x ---≤,得12x <<; 当2x ≥时,由()()2124x x ---≤,得24x ≤≤; 综上所述,()4f x ≤的解集为[]4,4-.(2)不等式()2332f x a x ≥--, 即为22423x a x a ++-≥,即关于x 的不等式22243x a x a ++-≥恒成立,而()()2242244x a x x a x a ++-≥+--=+, 当且仅当()()2240xa x +-≤时等号成立,所以243a a +≥, 解得243a a +≥或243a a +≤-, 解得413a -≤≤或a ∈∅.所以a 的取值范围是41,3⎡⎤-⎢⎥⎣⎦.。

相关文档
最新文档