有机化学烷烃
有机化学-烷烃
500℃
1
2
CH3 CH2
3
4
5
6
CH CH CH2 CH3
CH3 CH2
CH3
3-甲基-4-乙基己烷
若有相同编号, 则小基团先编号
次序规则: 甲基<乙基<丙基<丁基<戊基<己基<异戊基< 异丁基<异丙基
3)书写命名
a.依次写出取代基的位次、名称、主链名称。
b. 按“次序规则”列出取代基 。
c.相同取代基合并表示。
溶剂; • 密度:比水小。
五、烷烃的化学性质
• 烷烃为非极性分子,C-C和C-H的σ键键能较高, 不易极化,故常温下烷烃不活泼。
• 因其稳定而应用:石油醚做溶剂、凡士林做润 滑剂和药膏,石蜡做药物基质。
1. 氧化反应
1)燃烧 :激烈氧化 沼气 例: CH4+2O2 点燃 CO2+2H2O+890kJ.mol-1 沼气、天然气、液化气、汽油、柴油的燃烧均数 烷烃的燃烧
CH3(CH2)6CH3
正辛烷
CH3(CH2)10CH3
正十二烷
CH3 , CH3CH2
甲基
乙基
Methyl Ethyl
(Me)
(Et)
, CH3CH2CH2
丙基
Propyl (Pr)
CH3CHCH3
异丙基
Isopropyl (i-Pr)
丁基
仲丁基
叔丁基
2.系统命名法
1)选择分子中最长的碳链为主链,根据主链 所含碳原子数定为“某烷”,将支链作为取 代基。
1
2
3
4
5
6
CH3 CH2 CH CH CH2 CH3
有机化学之烷烃
仲丁基
sec-butyl S-Bu (secodary)
CH3 CH3CHCH2
CH3 CH3C
CH3
异丁基
isobutyl i-Bu
叔丁基
tert-butyl (tertiary)
t-Bu
19
R (烷基)
中文名
英文名
缩写
CH3(CH2)3CH2
CH3 CH3CHCH2CH2
CH3 CH3CH2C
CH3 CH3 CH3CCH2 CH3
(正)戊基 异戊基 叔戊基
新戊基
n-pentyl n-amyl isopentyl
tert-pentyl
neopentyl
20
烷烃同一碳原子上去掉二个氢原子或 三个氢原子后,分别称为亚基、次基。
C H 2
亚甲基
C H C H 3
亚乙基
C H
3
次甲基
次乙基 21
H H C H 3
H 3 C C C C C H 3
H C H 3 C H 3
伯碳 (一级碳,1°C,primary carbon) 伯氢 1°H 仲碳 (二级碳,2°C,secondary carbon) 仲氢 2°H 叔碳 (三级碳,3°C,tertiary carbon) 叔氢 3°C 季碳 (四级碳,4°C,quaternary carbon)
6
HHH H CCCH
HHH
CH3(CH2)3CH3
CH3CH2CH3
CH3CH2CH2CH2CH3
CH3C(CH3)2CH3
CH3 CH3CCH3
CH3
7
键线式
H、C可省去不写, 其它元素不可省略
端点与拐角线 代表叁键
有机化学—烷烃
例:用衍生命名法给下列烷烃命名
CH3CHCH2CH3 CH3
戊烷
烷烃
同分异构
同分异构的分类
构造异构
碳链异构(正丁烷和异丁烷) 官能团位置异构(1-丁烯和2-丁烯) 官能团异构(乙醇和二甲醚)
互变异构(乙酰乙酸乙酯酮式和烯醇式)
立体异构
构型异构
顺反异构(烯烃) 光学异构(旋光异构)
构象异构(烷烃,环己烷,糖类)
一、烷烃的构造异构 分子构造:分子中原子间互相连接的顺序和方式。
CH4
C2H6
C3H8
C4H10
H
HH
HHH
HHHH
H C HH C C HH C C C HH C C C C H
H 甲烷
HH 乙烷
HHH 丙烷
HHHH 丁烷
第一节 烷烃的命名
一、伯、仲、叔、季碳原子和伯、仲、叔氢原子
1 H(伯氢)
2 H(仲氢)
H3C CH2 CH2 CH3
1 C(伯碳,一级碳) 2 C (仲碳,二级碳)
➢同系列 同系差 同系物 具有同一通式,结构、性质相似,组成上相差一个或若干个CH2 的一系列化合物称为同系列。CH2称为系差,同系列中各化合物 互称为同系物。如甲烷,乙烷,丙烷等都属于烷烃系列,三者彼此 之间互称烷烃同系物。
CH4 甲烷
C2H6 乙烷
C3H7 丙烷
C4H8 丁烷
有机化学课件-第二章-烷烃
CH3 CH CH CH CH2 CH3 CH2 CH3 CH3
CH3
主链
2,4-= 甲基-3-乙基己烷
次序规则
①将单原子取代基按原子序数大小排列,原子序 数大的顺序大,原子序数小的顺序小,有机化合 物中常见的元素其顺序由大到小排列如下:
I>Br>Cl>S>P>O>N>C>D>H
②如果多原子基团的第一个原子相同,则比较与他相连的 其它原子,比较时,按原子序数排列,先比较最大的,仍 相同,在顺序比较居中的、最小的。如果有些基团仍相同, 则沿取代链逐次比较。
烷烃分子之中碳原子为正四面体构型 。甲烷分子 之中,碳
原子位于正四面体构的中心,四个氢原子在四面体的四个顶
点上,四个C-H键长都为0.109nm,所有键角 ∠ H-C-H都是
109.5º
H
CH
H
H
109.5o H
H 0.109nm
H H
甲烷的球棒模型
甲烷的正四面体构型
sp3杂化轨道
杂化就是由若干个不同类型的原子轨道混合起来,重新组 合成数目相等的.能量相同的新轨道的过程。 C的电子构型:1S22S22P2
H-(-CH2-)n-H
或: CnH2n+2
同分异构体——由于分子式相同,但它们的构 造不同(分子中各原子相连的方式和次序不同). 又叫构造异构体。
戊烷可看成是正丁烷和异丁烷上的一个 H被甲基-CH3 取代的产物: (正戊烷,异戊烷,新戊烷)......
烷烃分子中,随着碳原子数的增加,烷烃的构造异 构体的数目也越多. 写出C7H16的同分异构体?
6C
C 2 1 编号错误
(2) 若第一个支链的位置相同,则依次比较第二 、第三个支链的位置,以取代基的系列编号最小( 最低系列原则)为原则。
有机化学烷烃
例:
(正己烷)
(异己烷)
(新己烷)
CH3CH2CH2CH2CH2CH3
CH3CHCH2CH2CH3
CH3
CH3—C—CH2 CH3
CH3
CH3
我国现在使用的有机化合物系统命名法是参考国际纯粹和应用化学联合会(International Union of Pure and Applied Chemistry 简称IUPAC)制定的命名原则,并结合我国的文字特点于1960年制定,1980年由中国化学会加以增减修订的《有机化学命名原则》。
色散力示意图:
烷烃属于非极性分子,分子间只有微弱的色散力,在室温(25℃)和下,
烷烃的状态
C1~C4的烷烃为气态(gas); C5~C16的烷烃为液态(liquid); C17以上的烷烃为固态(solid)。
1、随着碳原子数的递增,沸点依次升高。
1.沸点(boiling point)
有机化学烷烃
分子中只含有碳(carbon)和氢(hydrogen)两种元素的有机化合物叫做碳氢化合物,简称烃。 其它有机化合物可以看作是烃的衍生物,所以烃是有机化合物的“母体”。
烃(hydrocarbon)的定义:
烃
开链烃 (脂肪烃)
例:
戊烷——系统命名
正戊烷——习惯命名
(A)从烷烃的构造式中选取最长的连 续碳链作为主链,支链作为取代基。当含有不止一个相等的最长碳链可供选择时,一般选取包含支链最多的最长碳链作为主链。根据主链所含碳原子数称为“某”烷。
系统命名的基本原则:(支链烷烃)
正确的选择是2,不是1。
例:
问:下列化合物应选择哪条主链?
CH3
正丁烷和异丁烷属于同分异构体。正丁烷和异丁烷这种同分异构体,是由于分子内原子间互相连接的顺序不同造成的(即不同构造(constitution)引起的),称为构造异构体(constitutional isomers) 。
有机化学之第2章_烷烃
三、氢原子反应活性与自由基的稳定性
第八节 过渡态理论
一、碳原子的四面体概念及分子模型 二、碳原子的sp3杂化
三、烷烃分子的形成 四、分子立体结构的表示方法 第四节 烷烃的构象 一、构象(conformation) 二、乙烷的构象 三、正丁烷的构象
一、反应进程的过渡态与能量变化
二、甲烷氯代反应的能量变化 三、过渡态与中间体、反应热与活化能 第九节 甲烷和天然气
1. 燃烧
用途:用作燃料(重要能源之一) 当体积比CH4∶O2(空气)= 1∶2(10)瓦斯爆炸
总目录
2. 控制氧化
R:C20~C30 代替动植物油脂制造肥皂
生产各种含氧衍生物:醇、醛、酸等
总目录
三、热裂 (pyrolysis)反应 (自由基 反应)
1. 热裂:在高温及无氧条件下发生键断裂的分解反 应。
H H C H H
总目录
2. 分子模型 凯库勒模型、斯陶特模型
凯库勒模型 球棒模型
斯陶特模型 比例模型
3. 构型(configuration)
具有一定构造的分子中原子在空间的排列状 况——构型
总目录
思考
(1)为什么碳原子具有四价?
(2)4个C—H键是等同的吗?
总目录
二、碳原子的 sp3 杂化
1. 碳原子的sp3杂化
思考:写出重叠式和交叉式构象的楔形式、锯架式 和纽曼式。
总目录
模型
锯架式
纽曼式
楔形式
模型
锯架式
纽曼式
楔形式
总目录
2. 两种极限构象的位能变化
• 稳定性比较:交叉式>重叠式
总目录
思考
如何分析交叉式构象和重叠式构象的 稳定性?(原子的空间分布、位能)
有机化学烷烃知识
CH4
+
2 O2
CO2
+ 2 H2O
低级的烷烃与一定比例空气的混合物,遇到火花时会
发生爆炸,这就是矿井瓦斯爆炸的原因
3.热裂反应
C1,C2断 裂 1 2 3 4 C2,C3断 裂 C3,C4断 裂
CH3
CH3CH2CH2CH2CH2CH3
·+ CH CH CH CH CH · CH CH · + CH CH CH CH · 2 CH CH CH ·
正丁烷各种构象的能差不大,室温下可迅速转化,正丁烷实际上是 各种构象异构体的混合物,但对位交叉式 (Anti)为优势构象,约占 70%,邻位交叉式(Gauche)约占30%,其他构象所占比例极小。
当正烷烃碳原子数增加时,尽管构象也随之更复 杂,但仍然主要以对位交叉式构象状态存在。所以直 链烷烃绝大多数是锯齿形的。如正戊烷主要以第 1 种构象形式存在,第 3 种为全重叠构象,最不稳定。
纽曼 (Newman)投影式
构象的能量分析
非键合的两原子或基团接近到相当于范氏半径之和时, 二者间以弱的引力相互作用,体系能量较低;如果接近到这 一距离以内,斥力就会急剧增大,体系能量升高。
一些原子或基团的范德华半径(pm) H C N O Cl CH3 120 150 150 140 180 200
CH3-CH
CH-CH3
CH3 CH3
2,5-甲基-3,4二乙基己烷
2,5-2甲基 3,4-2乙基己烷
2 4 5 6 1 例3 CH3-CH-CH2—CH—CH—CH3 2,5-二甲基-3-异丙基己烷 6 5 3 2 1 CH3 CH CH3 2,5-二甲基-4-异丙基己烷 CH3 CH3
CH3
有机化学 烷烃
有机化学烷烃有机化学-烷烃烷烃是有机化合物中最简单的一类化合物,它的分子结构中只包含碳和氢两种元素。
烷烃分子中碳原子通过单键连接,构成一个直链或环状的结构。
本文将从烷烃的概述、命名规则、物理性质和应用等方面进行讨论。
一、概述烷烃是一类饱和的化合物,因为碳原子与氢原子之间只有单键,它们的化学键是非极性的。
根据碳原子的排列方式,烷烃分为直链烷烃和环状烷烃两大类。
直链烷烃的碳原子按照直线排列,而环状烷烃中的碳原子形成一个或多个环状结构。
由于烷烃分子中只有碳和氢原子,它们通常具有较低的化学反应活性。
二、命名规则烷烃的命名根据碳原子数目和结构特征进行。
以直链烷烃为例,根据碳原子数目,我们可以使用以下的命名规则:1. 一碳烷烃:甲烷2. 两碳烷烃:乙烷3. 三碳烷烃:丙烷4. 四碳烷烃:丁烷5. 五碳烷烃:戊烷6. 六碳烷烃:己烷7. 十碳烷烃:癸烷对于直链烷烃,我们可以将数字代表碳原子数目的前缀与“烷”结合来命名。
例如,六个碳原子的直链烷烃称为己烷。
对于环状烷烃,我们使用环状碳原子数目加上“环”作为前缀进行命名。
例如,六个碳原子形成一个环的烷烃称为环己烷。
三、物理性质烷烃通常是无色、无臭的液体或气体,很少有固体存在。
它们的密度较小,不溶于水,而与非极性溶剂如苯和四氯化碳等相溶。
烷烃易挥发,燃烧时释放出大量的热能。
由于烷烃的碳原子之间只有单键,所以它们的沸点和熔点较低。
四、应用烷烃在日常生活和工业生产中具有广泛的应用。
以下是几个常见的应用领域:1. 燃料:烷烃是石油和天然气中最主要的成分之一。
甲烷作为天然气的主要组成部分,在家庭中用作燃料,而较长的烷烃则广泛应用于汽车燃料。
2. 溶剂:由于烷烃的非极性特性,它们被广泛用作有机溶剂。
例如,戊烷和己烷常用于清洗和溶解脂肪类物质。
3. 原料:烷烃也是许多合成化学品的重要原料,如塑料、橡胶等。
通过对烷烃的化学变化,可以获得更复杂的有机化合物。
4. 生物医学:在医学领域,烷烃有时被用作麻醉剂和药物载体。
有机化学烷烃
有机化学烷烃有机化学烷烃是一类简单而又重要的有机化合物,其分子结构中只包含碳和氢原子,通过碳碳单键连接构成链状结构。
烷烃可以分为直链烷烃和支链烷烃两大类,它们在化学性质和应用领域上有着各自的特点。
直链烷烃是指碳原子按直线排列连接而成的烷烃分子,最简单的直链烷烃就是甲烷,其分子中只含有一个碳原子和四个氢原子。
直链烷烃的命名遵循一定的规则,以正己烷为例,其中“正”表示直链结构,“己”表示碳原子数为六,“烷”表示为烷烃。
直链烷烃在燃料领域有着重要的应用,如天然气中的甲烷就是一种常见的直链烷烃。
支链烷烃是指碳原子通过支链连接而成的烷烃分子,最简单的支链烷烃为异丙烷,其分子中含有一个主链和一个支链。
支链烷烃的命名也有一定的规则,以异丙烷为例,其中“异”表示支链结构,“丙”表示碳原子数为三,“烷”表示为烷烃。
支链烷烃在化工工业中有着广泛的应用,如异丙醇可以被用作有机合成中的重要原料。
烷烃的物理性质主要取决于其碳原子数和分子结构,一般来说,碳原子数越多,分子越大,沸点和熔点也越高。
此外,直链烷烃的分子间作用力比支链烷烃要强,因此直链烷烃的沸点和熔点通常也比支链烷烃要高。
在有机合成中,烷烃可以作为重要的中间体参与到各种反应中,如裂解反应、氧化反应、还原反应等。
通过烷烃的反应可以制备出各种重要的有机物,如醇、醛、酮等。
此外,烷烃还可以用作燃料,如汽油、柴油等,为人类生活和工业生产提供能源支持。
总的来说,有机化学烷烃是一类简单而又重要的有机化合物,其在化学性质和应用领域上有着广泛的应用。
通过深入研究烷烃的结构和性质,可以更好地理解有机化学的基础知识,并为有机合成和能源开发提供重要的理论基础。
希望未来能有更多的研究能够深入探讨烷烃的新领域,为人类社会的发展做出更大的贡献。
有机化学ppt-烷烃
五、烷烃的化学性质
(一)卤代反应
烷烃分子中的氢原子被卤素原子取代的反应称为卤代反应。 甲烷与氯在紫外光作用下或加热到250℃以上时发生反应, 甲烷中的4个氢可逐步被氯取代,生成4种氯甲烷的混合物。 卤素与烷烃的反应活性顺序为:
F2 >Cl2 >Br2 >I2。
(二)氧化反应
通常把在有机化合物分子中加氧或脱氢的反应称为氧化反应。 反之,脱氧或加氢的反应称为还原反应。烷烃燃烧是激烈氧化反 应,被氧化剂所氧化属于缓慢氧化反应。
石蜡(含20~40个碳原子的高级烷烃的混合物)在特定条 件下得到高级脂肪酸。
RCH2CH2R' + O2
MnO2 107~110℃
RCOOH + R'COOH
六、烷烃的来源和重要的烷烃
烷烃在自然界主要来源于天然气和石油中。
(一)石油醚
由石油分馏而得到,属低级烷烃的混合物。为无色透明液体, 因具有类似乙醚的气味,故称石油醚。
3
2
1
CH3-CH2-CH-CH2-CH3
4CH2-5CH2-C6 H3
4
CH3-CH2-CH2-C
7CH3-C6 H2-C5
(2)编号 从距离支链最近的一端开始,将主链碳原子用阿
拉伯数字依次编号。使支链(取代基)编号的位次最小。若有选
择,应使小的取代基位次以及多个取代基位次和尽可能小。
1 2 34 5 6
环烷烃可按分子中碳环的数目大致分为单环烷烃和多环烷 烃两大类型。
(一)单环烷烃及其命名
单环烷烃的分子通式为CnH2n(n≥3),比同碳原子数的饱和 链烃少两个氢原子,与单烯烃互为同分异构体。常见的环烷烃 有:
环丙烷 环丁烷
有机化学课件-2-烷烃
二、同分异构:
定义:分子式相同而结构(或物理或化学性质)不同的现象; 分类:同分异构可分为构造异构和立体异构;
构造异构:分子式相同而构造式不同(构造是指分子中原子的连 接顺序); 如:CH3CH2OH和CH3OCH3;
构造异构又可分为:碳架异构、碳链异构、官能团异构和位置异 构。
如:环己烷和己烯 (碳架异构)
HHH HH
其立体结构为:
H
C
H
C
C
H
H
H H
C-C(σ键): 154pm,sp3-sp3; C-H(σ键): 110pm,sp3-s; 由于所有C原子都采用sp3杂化,所以所有的键角都约在109.5 0;
为了书写方便,碳链可写成折线式, 如己烷可写成:
碳原子上的氢原子可省略,但也可标出;但若标出某个碳原子 上的氢原子,则必须标齐。
如: CH3(CH2)4CH3 正己烷
3. 带有支链的烷烃;
CH3
末端具有 CH3CH 结构的,加“异”,
CH3
末端具有 CH3 C 结构的,加“新”,
CH3
CH3
如:CH3CH CH2CH3 异戊烷
CH3
CH3 C CH2CH3 新己烷
CH3
普通命名法只能命名结构简单的有机物,局限性大;但名称可 直接反映出有机物的结构。
CH3CH2CH2CH3和CH3CH(CH3)2(碳链异构) CH3CH2OH和CH3OCH3 (官能团异构)、 CH3CH2CH=CH2和CH3CH=CHCH3 (位置异构);
立体异构: 构造式相同而原子在空间的立体位置不同; 可分为: 顺反异构(见第三章“环烷烃”和第六章“烯烃”)
和对映异构(见第四章“对映异构”)。 烷烃只存在构造异构(碳链异构),没有立体异构; 如:
有机化学第2章烷烃
5 6 1 2 3 4
A B
2
甲基
4
乙基 戊烷
2, 4
二甲基己烷
最近原则:起点离支链最近 CH3—CH—CH2—CH2—CH2—CH3 CH3
1 2 3 4 5 6
A 5
甲基己烷
B 2
甲基己烷
最小原则:支链(取代基)所在位置的
数值之和要最小。即当两个 相同支链距离相等时,以支链多的一端开始
从一个交叉式变为另一个交叉式,分子必须克服12.6kJmol-1的能垒, 所以σ键的旋转并不是完全自由的,但常温下分子的动能已足使乙烷分 子的C-C键迅速旋转,由一个交叉式变为另一个交叉式,这种转变每秒 发生的次数高达1011次。温度越高,旋转越快,由于交叉式最稳定,所 以大部分时间以交叉式为主。接近绝对零度时乙烷为晶体,以交叉式为 基本存在形式
三、熔点
除甲烷外,熔点也随分子量的增加而又规律的增加。 含奇数碳原子和偶数碳原子的烷烃分别构成两条熔 点曲线,前上后下,随分子量的增加,逐渐趋近。 在晶体中,分子间的作用力不仅取决于分子的大小, 而且与分子在晶格中的排列情况有关,排列越紧密, 熔点越高,已证明,直链烷烃的碳链在晶体中的排 列状态为锯齿形,但偶数碳原子烷烃中两端的甲基 处于相反的位置,对称性好,排列紧密,色散力就 大,熔点也较高。
⊙思考:若出现同分异构体该怎样命名? 例如:戊烷的三种同分异构体
CH3–CH2–CH2 –CH2– CH3 CH3 CH3–CH–CH2 –CH3 CH3 CH3–C–CH3 CH3
正戊烷
异戊烷
新戊烷
⑶对于有同分异构体烷烃的命名: 通常以“正”、“异”、“新”表示。 ⊙思考:若同分异构体种类较多时该怎样命名?
大学有机化学-烷烃
C CH
C(CH3)3
CH CH2
(C) (C) CCH (C) (C)
CH3 C CH3 CH3
(C) (C)
CCH HH
乙炔基
叔丁基
乙烯基
比较 CH CH2 和 (CH3)2CH
的优先次序
9
8
76
54
CH3 CH2 CH CH2 CH2 CH CH2 CH3
CH3
CH3CH22CH1 3 CH3
由此产生的异构体 — 构象异构体
乙烷的构象
H
HH
透 视 式
HH HH
H
H H
重叠式
H
H纽 曼
投
H
H影
H
H
H
HH H
H式
H
H H
交叉式
优势构象
重叠式构象中: 前后两个H原子相距最近,C-H键之
间σ键电子云的斥力最大,所以能量最高。
交叉式构象中: 前后两个H原子相距最远,C-H键之间
σ键电子云的斥力最小,所以能量最低,是优 势构象(最稳定构象)。
取代基位号 2,3,5 取代基位号 2,4,5
98
CH3CH2
CH3 CH2CH3
CH3
CH
7
C6 H2
C5 H2
CH CH
43
C2H2C1H3
( I ) 系列编号:3,4,7-最低系列
12
CH3CH2
CH3 CH2CH3
CH3 C3 H
C4 H2
C5 H2
CH CH
67
C8 H2C9 H3
( II ) 系列编号:3,6,7
H
C CH3 >
有机化学第二章烷烃PPT课件
在硫酸存在下,烷烃发 生磺化反应,生成磺酸。
烷烃的工业应用
燃料
润滑油
烷烃是燃料的主要成分,如汽油、柴 油等。
烷烃可以作为润滑油的成分,起到润 滑和冷却的作用。
化工原料
烷烃可以作为生产醇、醚、酯等化合 物的原料。
04 烷烃的同分异构现象
同分异构体的概念
01
同分异构体是指具有相同分子式 ,但具有不同结构的现象。
和烯烃。
烷基化反应
将一个碳负离子加到另一个碳 基上,生成新的烷烃。
加氢反应
将氢气与不饱和烃反应,生成 饱和烃。
烷烃的分解反应
氧化反应
脱氢反应
水解反应
磺化反应
在氧气存在下,烷烃发 生氧化反应,生成酮、
醛、酸等化合物。
在加热条件下,烷烃发 生脱氢反应,生成烯烃。
在酸性或碱性条件下, 烷烃发生水解反应,生
02
同分异构体可以是碳链异构、官 能团位置异构和官能团异构等。
烷烃的同分异构现象
烷烃的同分异构现象主要表现在碳链 异构上,即相同数目的碳原子通过不 同的方式连接而成。
烷烃的碳链异构可以分为直链烷烃和 支链烷烃两类。
同分异构体的分类
碳链异构
由于碳原子的排列顺序不同而引 起的同分异构现象。
官能团位置异构
烷烃在其他领域的应用
工业润滑油
烷烃具有良好的润滑性能和稳定性,是工业润滑油的重要组分。随着工业技术的发展,对烷烃润滑油的需求也在 不断增加。
高分子材料
烷烃可以作为合成高分子材料的基础原料,如聚乙烯、聚丙烯等塑料,广泛应用于包装、建筑、电子等领域。随 着环保意识的提高,烷烃基高分子材料正朝着可降解、环保的方向发展。
详细描述
有机化学烷烃ppt
hv or CH4 + X2
CH3X + CH2X2 + CHX3 + CX4 + HX
CH4 (过量)+ X2
hv or
CH3X + HX
hv or CH4 + X2(过量)
CX4 + HX
反应速率: F2 > Cl2 > Br2 > I2 (不反应)
碳原子的种类
➢ 分析下列化合物所含碳原子种类
CH3
H3C CH2 CH2 CH2 CH3
H3C CH CH2 CH3
CH3
CH3
H3C CH CH2 C CH3
CH3
不能根据碳原子所连接氢原子的个数来确定碳原子的种类, 如中间体(碳正离子等)。
碳原子的种类
➢ 碳原子种类的扩展
H3C CH2 CH2
第二章 烷烃
§1. 烷烃的命名(普通命名法, IUPAC命名法) §2. 烷烃的结构 §3. 构象和构象异构体 §4. 烷烃的物理性质 §5. 烷烃的化学性质
基本概念
✓ 烃:碳氢化合物(烷烃、烯烃、炔烃、芳烃) ✓ 烷烃的通式:CnH2n+2 石蜡、汽油
(例:CH4, C2H6, C3H8, C4H10, ……)
不同取代基的中英文写作顺序相同
4、若主链两端取代基的种类及位次相同时,要遵守最低序列规则。
最低序列规则:第1个取代基位次号最小的同时要使第2取代基的位次号最小。 若第2个还出现选择性,则位次号加和最小。
课本P39,就编号的优先性,应将第(2)的最低序列规则放到(3)的后面。
§1.2 系统命名法 (IUPAC命名法)
较稳定
CH3
60o
有机化学烷烃课件
四、烷基
烷烃分子中消除一个氢原子后所剩原子团称烷基。此“基”具“一 价”涵义。常用R-代表烷基。烷基的名称由相应的烷烃而得。
1.一价基 烷烃分子中消除一个氢原子后所形成的烷基,称一价基。
例如: CH4
-H
-CH3
甲基
CH3CH3
-H
-CH2CH3
乙基
链端碳-H -CH2CH2CH3 丙基
CH3CH2CH3
只与二个碳原子相连的称为仲(或二级)碳原子,常以2°表示; 只与三个碳原子相连的称为叔(或三级)碳原子,常以3°表示; 只与四个碳原子相连的称为季(或四级)碳原子,常以4°表示。
如:
1°
1°CH3
4°
2°
3° 1°
CH3—C—CH2—CH—CH3
1°CH3 1°CH3
与伯、仲、叔碳原子相连的氢原子分别称为伯、仲、叔氢原子。不同 类型的氢原子在同一反应中的反应活性不同。
HHHH
分子式相同而结构不同的化合物称为同分异构体(简称异构体)。 这种现象称为同分异构现象。
分子式相同,而构造不同的化合物称为构造异构体。烷烃的构造异构是因 碳干排列不同而产生,所以,这种异构又称碳干异构。
同分异构现象是有机化合物中存在的普遍现象。随着化合物分子中 碳原子数目的增加,同分异构体的数目亦增多。
C2H6
C3H8
C4H10
在烷烃分子中,所含碳原子和氢原子的数量,呈现一定的规律,即每
增加一个C 原子,就相应地增加两个H 原子。
烷烃通式:CnH2n+2
具有同一通式,在组成上相差一个或多个CH2的一系列化合物称为同系列。 同系列中的各化合物互称同系物。相邻的同系物在组成上相差一个CH2。其 中CH2 称为同系列的系差。
有机化学-烷烃全面剖析
若主链上有几种取代基时,应按“次序规则”,较优基团后列出。
CH2-CH2-CH-CH3
单击此处添加正文。
单击此处添加正文。
列在后面的是较优基团
CH3
CH2-CH-CH3
CH3
CH-CH3
CH3
单击此处添加正文。
单击此处添加正文。
一、C原子的四面体概念
第三节 烷烃的构型
构型 (Configuration) : 具有一定构造的分子中原子在空间的排列状况。
CH3CH2CH2CH2-
丁基
i-Pr-
(CH3)2CH-
异丙基
n-Pr-
CH3CH2CH2-
丙基
Et-
CH3CH2-
乙基
Me-
CH3-
甲基
tert-butyl
sec-butyl
isobutyl
n-butyl
i-propyl
n-propyl
ethyl
methyl
常见的烷基
1. 烷基的命名
英文中把词尾“-ane”改为“-yl”
旋转度数
乙烷分子的位能曲线图
乙烷的构象的稳定性:交叉式>重叠式
交叉式转变为重叠式,需吸收12.5kJ/mol的能量。
室温时分子的热运动可产生83.6kJ/mol的能量,在常温下各种构象之间迅速互变。
二、正丁烷的构象
60°
120°
240°
180°
300°
300°
360°
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
Ⅵ
Ⅶ
E1 :14.6kJ/mol E2 E3
添加标题
三、烷烃分子的形成
+ + 6 sp3-sp3 sp3
有机化学 烷烃
3
5
2
4
3
2
1
C H
C H
C H C H
3
C H C H C H
2 2
C H C H
3
C H C H
3
C H
3
C H 3 2 , 3 , 5 - 三 甲 基 - 4 - 丙 基 庚 烷
六个碳的主链上有四个取代基
六个碳的主链上有两个取代基
主链选最长;侧链当作基;编号近侧链;基位注在前。 (6)若在主链的等距离两端同时遇到取代基且多 于两个时,则要比较第二个取代基的位次大小,依 次类推(使取代基位次之和最小)。 6 5 4 3 2 1 CH3 CH CH2 CH CH CH3
戊烷C6H14有3个构造异构体
• 戊烷可看成是正丁烷和异丁烷上的一个 H被甲基-CH3 取代的产物。
随着碳原子数的增加,异构体的数目增加很快
• • • • • •
己烷C6H14有5个构造异构体, 庚烷C7H16有9个构造异构体, 辛烷C8H18有18个构造异构体. C10H22有75个构造异构体. C13H28有802个构造异构体, C25H52有3679个构造异构体…
对简单烷基可以用普通命名法:烷变基
CH3
甲基 Methyl (Me)
CH3CH2
乙基 Ethyl (Et)
CH3CH2CH2
(正)丙基 Propyl (Pr)
CH3CHCH3
异丙基
Isopropyl (i-Pr)
CH3 CH3
CH3CH2CH2CH2— CH3CHCH2CH3 CH3CHCH2— CH3-C— CH3
3、系统命名原则 1)选主链(母体)和取代基
•选择主链 ——把构造式中连续的最长碳链作为母体
有机化学烷烃
有机化学烷烃有机化学烷烃是一类由碳(C)和氢(H)组成的有机化合物。
它们由单个碳-碳键组成,是最简单的烃类化合物。
本文将介绍烷烃的结构特点、物理性质、反应性质以及应用领域。
一、结构特点烷烃的一般分子式为CnH2n+2,其中n为非负整数。
烷烃的碳原子是通过碳-碳单键相连的,每个碳原子还与四个氢原子相连,因此烷烃分子呈现出直链状的形式。
烷烃可以分为直链烷烃和支链烷烃两种。
1. 直链烷烃直链烷烃的碳原子按照直线排列,如甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)等。
直链烷烃的分子结构简单,化学性质相对较为稳定。
2. 支链烷烃支链烷烃的碳原子不按照直线排列,其中至少有一个碳原子与其他碳原子相连。
支链烷烃的分子结构复杂,化学性质较直链烷烃更活泼。
二、物理性质烷烃是无色无味的气体或液体,随着碳原子数的增加,烷烃的物理性质也会发生改变。
1. 融点和沸点直链烷烃的融点和沸点随着碳原子数的增加而增加,这是由于分子量的增加使得分子间的相互作用力增强所导致的。
支链烷烃由于分子构型的不规则性,分子间相互作用力较弱,因此其融点和沸点相对较低。
2. 密度和溶解度直链烷烃的密度随着碳原子数的增加而增大,而支链烷烃的密度略低于直链烷烃。
烷烃是非极性分子,通常在非极性溶剂中溶解度较高。
三、反应性质烷烃作为有机化合物,在一定条件下会参与一系列反应。
1. 燃烧烷烃是一种良好的燃料,能够与氧气发生剧烈的燃烧反应,产生二氧化碳和水。
该反应可释放出大量的能量,是烷烃被广泛应用于火力发电、加热等领域的原因之一。
2. 卤素代替反应烷烃可以与卤素(如氯、溴)发生取代反应,生成相应的卤素烃。
该反应常用于实验室中合成有机化合物。
3. 氧化反应烷烃可以与氧气发生氧化反应,生成相应的醇或醛。
氧化反应常见的有催化剂氧化和氧气燃烧。
4. 裂解反应在高温下,烷烃可以发生裂解反应,产生较短链的烃类化合物,如乙烯、丙烯等。
裂解反应是烷烃在石油炼制过程中的重要反应,可用于生产燃料和化工原料。
有机化学烷烃知识
引言概述:有机化学烷烃是一类重要的有机化合物,具有简单的化学结构和广泛的应用。
烷烃是碳氢化合物,其分子由碳、氢原子组成。
在本文中,将详细介绍有机化学烷烃的概念、结构、性质以及常见的应用。
正文内容:一、烷烃的概念与分类1.定义及基本结构:烷烃是一类仅由碳和氢原子组成的有机化合物,其分子由碳原子通过单键相连而成。
2.分类:根据碳原子的连接方式,烷烃可分为直链烷烃、支链烷烃和环烷烃三类。
二、烷烃的物理性质1.沸点与熔点:烷烃的沸点和熔点随碳原子数的增加而增加。
直链烷烃的沸点和熔点一般高于相同碳原子数的支链烷烃。
2.密度:烷烃的密度一般较小,随着碳原子数的增加,密度逐渐增加。
3.溶解性:烷烃一般不溶于水,但可以溶于非极性溶剂。
三、烷烃的化学性质1.燃烧性质:烷烃是易燃物质,可以通过燃烧产生大量热能。
2.氧化性质:烷烃可以通过氧化反应得到相应的醇、酮等官能团。
3.卤素取代反应:烷烃可以与卤素发生取代反应,相应的卤代烷烃。
4.加成反应:烷烃可以通过加成反应相应的烯烃或环烷烃。
四、烷烃的应用1.燃料:由于烷烃易于燃烧,因此广泛用作燃料,如汽油、柴油和天然气等。
2.溶剂:烷烃可以作为有机溶剂,常用于涂料、清洁剂等领域。
3.化学原料:烷烃是许多化学合成的重要原料,可制备醇类、酮类、醚类等有机化合物。
4.制冷剂:一些烷烃具有较低的沸点,被用作制冷剂,如氟利昂等。
5.生物医药:部分烷烃可以作为药物的活性部分,如烷烃类抗生素等。
五、烷烃的环境影响和安全性1.燃烧产生的污染物:烷烃的燃烧会产生二氧化碳和氮氧化物等温室气体和大气污染物。
2.化学品的安全性:某些烷烃具有易燃、爆炸性和刺激性等危险特性,需要妥善存储和使用。
总结:有机化学烷烃是碳氢化合物的重要代表,具有简单的结构和广泛的应用。
本文详细介绍了烷烃的概念与分类、物理性质、化学性质以及常见的应用。
同时,也指出了烷烃在环境和安全方面的相关问题。
研究和应用烷烃化合物对于理解有机化学的基本原理和推动现代科技发展具有重要意义。