解三角形老师版
九年级数学《解直角三角形-复习课》教案
第28章解直角三角形(单元复习课)教学任务分析问题1:在Rt △ABC 中,∠C=90°则(1)∠A 、∠B 的关系是_________, (2)_____,,的关系是c b a(3)边角关系是________________________________________________________________________________问题2:你能根据上述边角关系得到30°、45°、60°角的三角函数值吗?填写下表。
问题3:同角的三角函数之间有什么关系?互余的两角呢?问题4:锐角的正弦值是怎样随着角度数的变化而变化的?余弦、正切呢?其锐角三角函数值的范围分别是什么? 2、组织交流,总结要点;3、板书教师总结知识结构图(多媒体展示)。
【学生活动】 1、学生反思回顾知识点,回答和完成导学案中的问题及三个表格;2、绘制出自己总结的知识结构图;3、交流展示自己总结的知识结构图及自主学习的成果;4、看听记教师的总结。
用数学的意识。
帮助学生学会用数学的思考方法解决实际问题,引发认知冲突,激发学生学习兴趣。
【媒体应用】1、展示反思回顾的问题;2、展示导学案中提出的问题;3、展示师生共同总结的本章本章要点和本章知识结构图。
活动三 基础训练,查补缺漏: 【基础闯关】1、Rt △ABC 中,∠C=90°若SinA= 时,tanA= 。
2、Rt △ABC 中,∠C=90°,若AC=3BC ,则CosA= 。
3、菱形ABCD 中对角线AC 交BD 于点O ,且AC=8,BD=6,则下列结论中正确的为( )A 、Sin ∠ADB=B 、Cos ∠DAB=C 、tan ∠DBA =D 、tan ∠ADB=4、计算: (1)(2)丨Sin45°- 1丨-【教师活动】 1、操作多媒体出示问题。
2、组织学生交流和点评,得出正确答案。
【学生活动】 1、尝试完成练习,有困难的同学可以合作完成; 2、参与交流展示及点评。
高中数学 第一章 解三角形全套教案 新人教A版必修5
高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高一数学教案解三角形5篇
高一数学教案解三角形5篇等腰三角形,看似简单平常,实则魅力无穷.许多关键问题三角问题与等腰三角形密切相关,形变解题中若能根据题意恰当构造,则可使一些三角问题别开生面地得以解决,更给人一种形象直观、流畅清晰、解法优美之感.今天在这里整理了一些,我们一起来呢吧!高一数学教案解三角形1[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
[教学准备] 学生、老师剪下附页2中的图2。
[教学过程] 一、画一画,说一说1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。
2、教师巡查练习境况。
3、学生展示练习,说一说为什么是锐角、直角、钝角?二、分一分 1、小组活动;把附页2中的图2中的三角形需要进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分后?2、汇报:进行分类的标准和方法。
可以按角来分,可以按边来分。
二、按角分类: 1、观察观察具体来说三角形有什么共同的特点,从而归纳出来三个角都是锐角的'三角形是锐角三角形。
2、观察共同第三类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形3、观测观察第三类三角形有什么互助的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。
三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边,这样三角形的三角形叫等腰三角形,并透露各部分的名称。
2、引导学生发现有的菱形三角形三条边都相等,这样的矩形是等边三角形。
讨论等边三角形是等腰三角形吗?四、填一填:24、25页让学生辨认各种三角形。
五、练一练:第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能重新考虑是一个锐角三角形,必须三个角都是锐角总算是九个锐角三角形。
第2题:在点子图上画作三角形第3题:剪一剪。
六、完成26页实践活动。
[板书设计] 三角形的分类按角分类:按边分类:高一数学教案可解三角形2教学目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;2、了解三角形的高,并能在一般性的三角形中作出中均它们.教学重点:在具体的三角形中作出三角形的低.教学难点:画出钝角三角形的三条高.活动准备:学生预先剪好三种三角形,一副三角板.教学过程:过菱形的一个顶点A,你能画出它的对边BC的垂线吗?试试看,你准行!从而引出新课:1、三角形的高:三角形从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AM是BC边上的高.∵AM是BC边上的高,∴AM⊥BC.做一做:每人准备一个锐角三角形纸片:(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?小组讨论交流.结论:锐角三角形的'三条高在正三角形的内部且交于一点.3、议一议:每人画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,并观察它们有怎样的位置关系?(2)你能折出高德帕伦三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于假脉一点吗?它们所在的直线交于一点吗?小组讨论交流.结论:1、直角三角形的等腰三条高交于直角顶点处.2、钝角三角形的三条高所在直线交于一点,此点在四边形的外部.4、练习:如图,(1)共有___________个直角三角形;(2)高AD、BE、CF相对应的底分别是_______,_____,____;(3)AD=3,BC=6,AB=5,BE=4.则S△ABC=___________,CF=_________,AC=_____________.5、小结:(1)锐角三角形的三条高在三角形的内部且交于一点.(2)直角三角形的三条高交于直角顶点处.(3)钝角三角形的三条高所在直线交于一点,此点在三角形的中间层.作业:P127 1、2、3高一数学教案可解三角形3《三角形中位线》教案一、教学目标:1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算2.掌握添加辅助线解题的技巧.3.提高中学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法探究式自主学习:以学生的自主探究为主,教职员加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准三、教学内容﹑教材重、难点分析:三角形中位线定理的学习是继学习-平行四边形与平行线等分线段定理后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中所位线定理,最后是利用中位线定理解答例一所给的环境问题.在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和也常线段倍分等问题.四、教学内容媒体的选择和设计通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。
中考复习函数专题09 一次函数中的三角形问题(老师版)
专题09 一次函数中的三角形问题知识对接考点一、怎样解直线与坐标轴围成图形的面积问题1.求直线与坐标围成的三角形的面积时,一般将在坐标轴上的其中一边作为底,另一边作为高来求面积专项训练一、单选题1.已知直线1:1l y kx k =++与直线2:(1)2l y k x k =+++,(k 为正整数),记直线1l 和2l 与x 轴围成的三角形面积为k S ,则12310S S S S +++⋅⋅⋅+的值为( ) A .511B .1011C .920D .50101【答案】A 【分析】变形解析式得到两条直线都经过点(1,1)-,即可证出无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-;先求出1y kx k =++与x 轴的交点和(1)2y k x k =+++与x 轴的交点坐标,再根据三角形面积公式求出k S ,求出11112124S =⨯=⨯,21(2S =⨯11)23-,以此类推101(2S =⨯11)1011-,相加后得到11(1)211⨯-. 【详解】解:直线1:1(1)1l y kx k k x =++=++,∴直线1:1l y kx k =++经过点(1,1)-;直线2:(1)2(1)(1)1(1)(1)1l y k x k k x x k x =+++=++++=+++,∴直线2:(1)2l y k x k =+++经过点(1,1)-.∴无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-.直线1:1l y kx k =++与x 轴的交点为1(k k+-,0), 直线2:(1)2l y k x k =+++与x 轴的交点为2(1k k +-+,0), 1121||1212(1)K k k S k k k k ++∴=⨯-+⨯=++, 11112124S ∴=⨯=⨯;123101111[]212231011S S S S ∴+++⋯+=++⋯⨯⨯⨯111111[(1)()()]22231011=-+-+⋯+- 11(1)211=⨯- 110211=⨯ 511=, 故选:A . 【点睛】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0.2.已知2,2a b b a +=≤,那么对于一次函数y ax b =+,给出下列结论:①函数y 一定随x 的增大而增大;①此函数图象与坐标轴所围成的三角形面积最大为43,下列判断正确的是( )A .①正确,①错误B .①错误,①正确C .①,①都正确D .①,①都错误【答案】A 【分析】根据一次函数的性质、配方法即可解决问题; 【详解】 解:2a b +=,2b a ∴=-,2b a ≤,22a a ∴-≤,23a ∴≥, 2y ax a ∴=+-,0a >,y ∴随x 的增大而增大,故①正确,函数图象与坐标轴所围成的三角形面积211||||22b b S b a a==,此函数没有最大值,故①错误, 故选:A . 【点睛】本题考查一次函数的性质,一次函数与坐标轴的交点问题,解题的关键是灵活运用一次函数知识解决问题,属于中考常考题型.3.将一次函数y =2x +4的图象向右平移后所得直线与坐标轴围成的三角形面积是9,则平移距离是( ) A .4 B .5 C .6 D .7【答案】B 【分析】直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案 【详解】设平移的距离为k (k >0),则将一次函数y =2x +4向右平移后所得直线解析式为:y =2(x -k )+4=2x -2k +4. 易求得新直线与坐标轴的交点为(k -2,0)、(0,-2k +4)所以,新直线与坐标轴所围成的三角形的面积为:2?2429k k --+÷=,变形得229k -=(),解得k =5或k =-1(舍去). 故选:B . 【点睛】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键. 4.下列关于一次函数2y x =-+的图象性质的说法中,不正确的是( ) A .直线与x 轴交点的坐标是(0,2) B .与坐标轴围成的三角形面积为2 C .直线经过第一、二、四象限 D .若点(1,)A a -,(1,)B b 在直线上,则a b >【答案】A 【分析】根据一次函数的图像与性质可直接进行排除选项. 【详解】解:由一次函数2y x =-+,可得:10,20k b =-<=>, ①一次函数经过第一、二、四象限,故C 不符合题意; 令x=0时,则y=2,令y=0时,则02x =-+,解得:2x =, ①直线与x 、y 轴的交点坐标为()2,0和()0,2,故A 错误,符合题意; ①直线与坐标轴围成的三角形面积为12222⨯⨯=,故B 正确,不符合题意;①k <0,①y 随x 的增大而减小,①若点(1,)A a -,(1,)B b 在直线上,则a b >,故D 正确,不符合题意; 故选A .【点睛】本题主要考查一次函数的图像与性质,熟练掌握一次函数的图像与性质是解题的关键.5.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP①AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与①AOB 全等,则OD的长为()A.2B.3C.2D.3【答案】D【分析】利用一次函数与坐标轴的交点求出①AOB的两条直角边,并运用勾股定理求出AB.根据已知可得①CAD=①OBA,分别从①ACD=90°或①ADC=90°时,即当①ACD①①BOA时,AD =AB,或①ACD①①BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:①直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,①A(1,0),B(0,2).①OA=1,OB=2.①AB①AP①AB,点C是射线AP上,①①BAC=90°,即①OAB+①CAD=90°,①①OAB+①OBA=90°,①①CAD=①OBA,若以C、D、A为顶点的三角形与①AOB全等,则①ACD=90°或①ADC=90°,即①ACD①①BOA或①ACD①①BAO.如图1所示,当①ACD①①BOA时,①ACD=①AOB=90°,AD=AB,①OD=AD+OA1;如图2所示,当①ACD①①BAO时,①ADC=①AOB=90°,AD=OB=2,①OD=OA+AD=1+2=3.综上所述,OD的长为31.故选:D.【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.6.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.D.12【答案】A【分析】根据题意直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式。
2024年高考数学复习大题全题型专练:专题07 解三角形(解析版)
专题7解三角形一、解答题1.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A,由(1)得2250b c ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B.(1)若23C ,求B ;(2)求222a b c 的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos 2A B A B 化成 cos sin A B B ,再结合π02B ,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B ,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ,即 1sin cos cos sin sin cos cos 2B A B A B A BC ,而π02B ,所以π6B ;(2)由(1)知,sin cos 0BC ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B ,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B B B BB .当且仅当22cos 2B 时取等号,所以222a b c的最小值为5.3.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C .(1)求sin A 的值;(2)若11b ,求ABC 的面积.【答案】(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab以及4a 可解出a ,即可由三角形面积公式in 12s S ab C 求出面积.(1)由于3cos 5C ,0πC ,则4sin 5C.因为4a ,由正弦定理知4sin A C,则sin 45A C .(2)因为4a ,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a ,即26550a a ,解得5a ,而4sin 5C ,11b ,所以ABC 的面积114sin 51122225S ab C .4.(2022·北京·高考真题)在ABC 中,sin 2C C.(1)求C ;(2)若6b ,且ABC 的面积为ABC 的周长.【答案】(1)6 (2)6+【解析】【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.(1)解:因为 0,C ,则sin 0C2sin cos C C C ,可得cos 2C ,因此,6C .(2)解:由三角形的面积公式可得13sin 22ABC S ab C a,解得a .由余弦定理可得2222cos 48362612c a b ab C ,c所以,ABC 的周长为6a b c .5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B.(1)求ABC 的面积;(2)若sin sin A C,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b ac B A C,即可求解.(1)由题意得22221231,,2S a S S,则222123S S S a b c 即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则22cos 3B ,1cos 4ac B ,则12sin 28ABC S ac B ;(2)由正弦定理得:sin sin sin b a c B A C,则229sin sin sin sin sin 423b a c ac B A C A C ,则3sin 2b B ,31sin 22b B .6.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得 sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B ,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C.(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a cb bc a b c a a b c ,化简得:2222a b c ,故原等式成立.7.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB m ,15AD m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20 ,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)【答案】(1)23.3m(2)当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.14【解析】【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD ,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值.(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ,15DH AD 则AE EH ,所以直角ADE 与直角HED △全等所以20ADE HDE在直角HED △中,tan 2015tan 20EH DH90250HDF ADE在直角FHD △中,tan 5015tan 50HF ADsin 20sin 5015tan 20tan 5015cos 20cos50EF EH HFsin 2050sin 20cos50cos 20sin 501515cos 20cos50cos 20cos50sin 70151523.3cos 20cos50cos50(2)设ADE ,902HDF ,则15tan AE ,15tan 902FH 115151515tan 15tan 90215tan 222tan 2EFD S EF DHV 11515tan 22ADE S AD AE V 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADE DEF S S S22512253tan 4tan 42当且当13tan tan ,即tan 时取得等号,此时15tan 158.73AE即当tan 3 时,梯形AEFD 的面积取得最小值2则此时梯形FEBC 的面积有最大值1530255.142所以当8.7AE 时,梯形FEBC 的面积有最大值,最大值为255.148.(2022·全国·模拟预测)在 ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且 sin sin sin 6b a b c A B C S .(1)求角B 的大小;(2)若1a b ,2c b ,求cos A ,cos C 的值.【答案】(1)3(2)17,1114【解析】【分析】(1)由三角形的面积公式结合正弦余弦定理化简即可得到答案;(2)由余弦定理计算即可.(1)由in 12s S ab C ,又 sin sin sin 3sin b a b c A B C ab C ,由0b ,则 sin sin sin 3sin a b c A B C a C .由正弦定理得 3a b c a b c ac ,所以222a c b ac .由余弦定理得2221cos 222a cb ac B ac ac ,因为0B ,所以3B .(2)因为222a c b ac ,1a b ,2c b ,所以 2221212b b b b b ,解得7b ,所以8a ,5c .所以2222227581cos 2707b c a A bc ,22222287511cos 211214a b c C ab .9.(2022·全国·模拟预测)在ABC 中,角A B C ,,的对边长分别为a b c ,,,ABC 的面积为S ,且24cos cos tan S a B ab A B.(1)求角B 的大小;(2)若322AB BC ,,点D 在边AC 上,______,求BD 的长.请在①AD DC ;②DBC DBA ;③BD AC 这三个条件中选择一个,补充在上面的横线上,并完成解答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)π3B (2)答案不唯一,具体见解析【解析】【分析】(1)根据面积公式可得2cos cos cos c B a B b A ,利用正弦定理以及和角关系可得1cos 2B ,进而可求.(2)根据余弦定理可求出AC ,然后在ABD △和在DBC △中分别用余弦定理即可求①.根据面积公式即可求解②③.(1)因为24cos cos tan S a B ab A B ,所以214sin 2cos cos sin cos ac B a B ab A B B,所以22cos cos cos ac B a B ab A ,即2cos cos cos c B a B b A .由正弦定理,得2sin cos sin cos sin cos C B A B B A ,所以 2sin cos sin sin C B A B C .因为 0,πC ,所以sin 0C ,所以1cos 2B.又 0,πB ,所以π3B.(2)若选①.法一:在ABC 中,由余弦定理,得2222233π132cos 222cos 2234AC AB BC AB BC B ,所以ACAD DC 在ABD △中,由余弦定理,得2222cos AB BD DA BD DA ADB ,即2134cos 16BD BD ADB .在DBC △中,由余弦定理,得2222cos BC BD DC BD DC CDB ,即2913cos 416BD CDB .又πADB CDB ,所以cos cos 0ADB CDB .所以29134248BD ,所以374BD .法二:因为AD DC ,所以D 为AC 的中点,所以 12BD BA BC ,所以222124BD BA BC BA BC 19337422cos6044216.所以BD BD 若选②.在ABC 中,ABC ABD CBD S S S ,即1π1π1πsin sin sin 232626BA BC BA BD BD BC ,即1311131222222222BD BD ,解得BD 若选③.在ABC 中,由余弦定理,得2222cos AC AB BC AB BC B2233π13222cos 2234 ,所以AC .因为1sin 2ABC S BA BC B △12ABC S BD AC △,BD 10.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C A B C ,a b .(1)求角B ;(2)若3a ,7b ,D 为AC 边的中点,求BCD △的面积.【答案】(1)23B (2)1538【解析】【分析】(1)根据同角三角函数的关系,结合两角和差的正余弦公式化简即可(2)由余弦定理可得5c ,再根据BCD △的面积为ABC 面积的一半,结合三角形的面积公式求解即可(1)由cos 2cos tan sin C A B C,有tan sin cos 2cos B C C A ,两边同乘cos B 得sin sin cos cos 2cos cos B C B C A B ,故 cos 2cos cos B C A B ,即cos 2cos cos A A B .因为a b ,所以A 为锐角,cos 0A ,所以1cos 2B .又因为 0,B ,所以23B .(2)在ABC 中,由余弦定理2221cos 22a c b B ac ,即2949162c c ,故23400c c ,解得5c 或8c 舍).故11235sin 223BCD ABC S S △△11.(2022·福建·三明一中模拟预测)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos c b a C .(1)求角A ;(2)若M 为BC 的中点,AM ABC 面积的最大值.【答案】(1)π3A 【解析】【分析】(1)解法一:根据正弦定理边化角求解即可;解法二:利用余弦定理将cos C 用边表示再化简即可;(2)解法一:根据基底向量的方法得1()2AM AB AC ,两边平方化简后可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可;解法二:设BM MC m ,再分别在ABM ,ACM △和ABC 中用余弦定理,结合cos cos 0AMB AMC 可得2212b c bc ,再结合基本不等式与面积公式求面积最大值即可(1)解法一:因为22cos c b a C ,由正弦定理得:sin 2sin 2sin cos C B A C ,所以sin 2sin()2sin cos C A C A C 2sin cos 2cos sin 2sin cos 2cos sin A C A C A C A C ,因为sin 0C ,所以12cos 1,cos 2A A,为0πA ,所以π3A .解法二:因为22cos c b a C ,由余弦定理得:222222a b c c b a ab,整理得222bc b c a ,即222a b c bc ,又由余弦定理得2222cos a b c bc A所以12cos 1,cos 2A A,因为0πA ,所以π3A .(2)解法一:因为M 为BC 的中点,所以1()2AM AB AC ,所以222124AM AB AB AC AC ,即22132cos 43c b bc ,即2212b c bc ,而222b c bc ,所以122bc bc 即4bc ,当且仅当2b c 时等号成立所以ABC 的面积为113sin 4222ABC S bc A △即ABC 解法二:设BM MC m ,在ABM 中,由余弦定理得2232cos c m AMB ,①在ACM △中,由余弦定理得2232cos b m AMC ,②因为πAMB AMC ,所以cos cos 0AMB AMC 所以①+②式得22262b c m .③在ABC 中,由余弦定理得22242cos m b c bc A ,而π3A ,所以2224m b c bc ,④联立③④得:22222212b c b c bc ,即2212b c bc ,而222b c bc ,所以122bc bc ,即4bc ,当且仅当2b c 时等号成立.所以ABC 的面积为11sin 4222ABC S bc A △ABC 12.(2022·北京市第十二中学三模)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a B A .(1)求角B 的大小;(2)从以下4个条件中选择2个作为已知条件,使三角形存在且唯一确定,并求ABC 的面积.条件①:3a ;条件②:b ;条件③:2cos 3C ;条件④:2c .【答案】(1)6B(2)答案不唯一,见解析【解析】【分析】(1)由正弦定理化简可得出tan B 的值,结合角B 的取值范围可求得角B 的值;(2)选①②,利用余弦定理可判断ABC 不唯一;选①③或②③或③④,利用三角形的内角和定理可判断ABC 唯一,利用正弦定理结合三角形的面积可判断ABC 的面积;选①④,直接判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积;选②④,利用余弦定理可判断ABC 唯一,再利用三角形的面积公式可求得ABC 的面积.(1)解:由cos sin a B A 及正弦定理可得sin cos sin A B A B ,A ∵、 0,B ,则sin 0A ,cos 0 B B ,tanB 6B .(2)解:若选①②,由余弦定理可得2222cos b a c ac B ,即210c ,解得 c ,此时,ABC 不唯一;若选①③,已知3a ,6B,21cos 32C ,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A C B C C由正弦定理sin sin b a B A 可得 92sin sin 11a B b A,所以, 9211sin 32211ABC S ab C △;若选①④,已知3a ,6B,2c ,此时ABC 唯一,1322sin ABC S ac B;若选②③,已知b 6B ,21cos 32C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,sin C, sin sin sin cos cos sin 66A CBC C 由正弦定理sin sin b c B C 可得sin 410sin 3b C c B ,所以,120385sin 29ABC S bc A △;若选②④,已知b 6B,2c ,由余弦定理可得2222cos b a c ac B ,可得240a ,0a ∵,解得a ABC 唯一,1sin2ABC S ac B △若选③④,已知6B ,2c ,231cos 322C,且 0,C ,则25,36C ,所以,5,6B C,则ABC 唯一,5sin 3C, 152sin sin sin cos cos sin 666A CBC C ,由正弦定理sin sin b c B C 可得sin sin 5c B b C ,1sin 210ABC S bc A △.13.(2022·内蒙古·海拉尔第二中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为,,a b c ,且sin cos (cos )sin .232B BC C (1)当π3B,求sin sin C A 的值(2)求B 的最大值.【答案】(1)sin C +sin A =1(2)2π3【解析】【分析】(1)代入π3B ,解得313sin cos 223C C ,对sin sin C A 变形得到1sin sin sin cos 12C A C C ,求出答案;(2)对题干条件两边同乘以2cos2B ,变形得到sin sin sin C A B ,利用正弦定理得到a c ,利用余弦定理和基本不等式求出B 的最大值.(1)由题意得:ππsin coscos )sin 66C C ,1cos 2C C则π31sin sin sin sin sin cos sin cos 1322C A C C C C C C(2)sin cos cos )sin 22B B C C ,两边同乘以2cos 2B 得:22sin cos cos )2sin cos 222B B B C C ,即 sin 1cos cos )sin C B C B ,整理得:sin sin sin C A B ,由正弦定理得:3a cb ,由余弦定理得: 2222222cos 1226ac b ac a c b b B ac ac ac,因为 22143a c acb ,当且仅当ac 时等号成立,此时21cos 162b B ac ,由于 0,πB ,而cos y x 在 0,π上单调递减,故B 的最大值为2π314.(2022·广东·大埔县虎山中学模拟预测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且222ab a b c .(1)求角C ;(2)若△ABC 的面积534S ,且c △ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用余弦定理求得cos C 的值,进而求得角C 的值;(2)依据题给条件得到关于a b ,的方程组,求得+a b 的值,进而求得△ABC 的周长.(1)因为222ab a b c ,由余弦定理,得到2221cos 22a b c C ab ,又0πC ,所以π3C ;(2)因为△ABC 的面积4S ,且c π3C所以有221sin 212S ab C ab a b ,联立22526ab a b ,则6a b ,所以△ABC 的周长为6a b c 15.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C .(1)求角A 的大小;(2)若2B D D C ,2AD ,且AD 平分BAC ,求ABC 的面积.【答案】(1)60A (2)332【解析】【分析】(1)由两角和的正切公式化简后求解(2)由AD 是角平分线得到2c b ,再利用面积公式求解(1)tan tantan tan tan tan 0tan()1tan tan B C B C B C B C B C故tan A 60A ;(2)设BC 边的高为h ,所以11sin 22ABD S AB AD BAD BD h ,11sin 22ABC S AC AD DAC CD h 又AD 是角平分线,所以BAD DAC所以AB BD AC DC,即2c b ,又ABC ABD ACD S S S ,则111sin 602sin 302sin 30222bc c b ,解得b c ,133sin 6022ABC S bc △.16.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,3a ,2b ,sin A m .(1)若ABC 唯一确定,求m 的值;(2)设I 是ABC 的内切圆圆心,r 是ABC 内切圆半径,证明:当21c r 时,IC IA IB .【答案】(1)1(2)证明见解析【解析】【分析】(1)若01m ,根据sin A m ,b a ,可知A 可以为锐角,也可以为钝角,ABC 有两种情况,若1m ,则三角形为直角三角形,ABC 有唯一解.(2)由21c r 可推导出ABC 为直角三角形,故可计算出,,IC IA IB 的值,即得证.(1)设AB 边上的高为c h ,则sin 20c h b A m .当1m 时,由勾股定理,若A 为锐角,则c A 为钝角,则c ABC 存在两种情况,不能被唯一确定.当1m 时,ABC 为直角三角形,其中A 为直角顶点,c 可以唯一确定,即ABC 唯一确定,故m 的值为1.(2)当21c r 时,由余弦定理,22223cos 23a b c r r C ab ,故由同角三角函数的关系可得sin C所以ABC 的面积1sin 2S ab C另一方面, 132S a b c r r r3r r ,两边平方可得 213r r r r ,解得r ,21c r ABC 是以A 为直角顶点的直角三角形.因此有222112922IC,IC22211322IA 2IA ;22211322IB ,IB 所以有IC IA IB 成立.17.(2022·上海市光明中学模拟预测)已知在三角形ABC 中,2a b ,三角形的面积12S .(1)若4b ,求 tan A B ;(2)若3sin 5C ,求sin sin A B ,.【答案】(1)(2)25sin 5A ,sin B 或6205sin 205A ,sin B 【解析】【分析】(1)根据面积公式及4b ,得到3sin 4C ,分C 为锐角和C 为钝角时,求出cos C ,进而求出tan C ,求出 tan A B ;(2)由面积公式求出b a ,分C 为锐角和C 为钝角,由余弦定理和正弦定理求出答案.(1)∵2113sin 2sin 16sin 12sin 224S ab C b C C C 而sin tan()tan(π)tan cos CA B C C C分情况讨论,当C 为锐角时,cos 0cos C C∴tan()A B当C 为钝角时,cos 0cos C Ctan()A B (2)22113sin 2sin 12225S ab C b C b ,因为0b ,所以b a分情况讨论,当C 为锐角时,4cos 0cos 5C C由余弦定理,222cos 366c a b ab C c由正弦定理,10sin sin sin sin sin sin 5a b c A A B C A B ,sin 5B当C 为钝角时,4cos 0cos 5C C ,由余弦定理,222cos 164c a b ab C c由正弦定理,sin sin sin sin a b c A A B C,sin B 18.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c,已知cos sin B b C .(1)求C 的大小;(2)若ABC为锐角三角形且c 22a b 的取值范围.【答案】(1)3C(2)(5,6]【解析】【分析】(1)利用正弦定理边化角,再分析求解即可;(2)22224sin 4sin 3a b A A,再利用三角函数求值域即可.(1)cos sin B b C及正弦定理可得sin sin sin )B C B C A B Ccos sin B C B C ,所以sin sin cos B C B C ,因为B 、(0,)C ,则sin 0Bsin 0C C,则tan C 3C.(2)依题意,ABC为锐角三角形且c2sin sin sin a b c A B C ,所以2sin a A ,2sin 2sin()2sin 3b B A C A,所以222221cos 21cos 234sin 4sin 44322A A a b A A142cos 2222cos 222c 2cos 2222os 23A A A A A2c 42co os 242sin 246s 2cos 2sin 2A A A A A A,由于23A B ,所以022032A A,解得62A ,所以23A ,52666A ,所以푠� 2�∈12,1,所以2sin 2(1,2]6A ,所以2sin 24(5,6]6A.所以22a b 的取值范围是(5,6].19.(2022·辽宁实验中学模拟预测)在① sin sin sin sin A C a b c B C ,② 2222cos 2a b c a c B a,③ sin cos 6a B C B b这三个条件中选一个,补充在下面问题中,并解答.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且__________.(1)求B(2)若b ABC 的平分线交AC 于点D ,且5BD,求ABC 的面积.【答案】(1)=3B【解析】【分析】(1)若选条件①,先用正弦定理将角转化为边的关系,再利用余弦定理即可;若选条件②,先用余弦定理将边转化为角的关系,再利用正弦定理即可;若选条件③,先用三角形的内角之和为 ,再利用正弦定理即可;(2)利用角平分线的性质得到ABC ABD BCD S S S △△△,结合余弦定理和三角形的面积公式即可(1)选择条件①:根据正弦定理,可得:a c abc b c 可得:222a c b ac 根据余弦定理,可得:2221cos 22a cb B ac 0,,=3B B 选择条件②:根据余弦定理,可得:2cos (2)cos =cos 2abC a c B b C a根据正弦定理,可得:(2sin sin )cos sin cos A C B B C整理可得:2sin cos sin()sin A B B C A可得:1cos 2B 0,,=3B B选择条件③:易知:A B C可得:sin cos()6a A B b根据正弦定理,可得:sin sin cos(sin 6A A B B可得:1sin cos()sin 62B B B B整理可得:tan B 0,,=3B B(2)根据题意,可得:ABC ABD BCDS S S △△△可得:1143143sin sin sin 23256256ac a 整理可得:54a c ac 根据余弦定理,可得:2222cosb ac ac ABC可得:2213=a c ac ,即2()313a c ac 可得:225()482080ac ac 解得:4ac 或5225ac (舍)故1=sin 23ABC S ac △20.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos 2B C B C A .(1)求角A 的大小;(2)若a 2bc 的最大值.【答案】(1)3A (2)【解析】【分析】(1)利用两角和的余弦公式、二倍角的余弦公式可得出关于cos A 的方程,结合1cos 1A 可求得cos A 的值,再结合角A 的取值范围可求得角A 的值;(2)由正弦定理结合三角恒等变换化简得出 2b c B ,结合正弦型函数的有界性可求得2b c 的最大值.(1)解:由已知可得 cos 25cos cos sin sin cos 25cos A B C B C A B C 2cos 25cos 2cos 5cos 13A A A A ,即22cos 5cos 20A A ,0A ∵,则1cos 1A ,解得1cos 2A ,因此,3A .(2)解:由正弦定理可得2sin sin sin b c aBC A,所以, 24sin 2sin 4sin 2sin 4sin 2sin 3b c B C B B A B B 4sin sin 5sin B B B B B B,其中 为锐角,且tan,因为3A ,则203B ,23B ,所以,当2B 时,即当2B 时,2b c 取得最大值。
北师版九下数学解直角三角形 说课稿
北师大版九年级下册数学解直角三角形(说课案)一、说教材本节课是《解直角三角形》的第一课时,教学要求:在学生归纳了直角三角形边角关系的基础上,要求学生会运用直角三角形的边角关系,它既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识,另外由于解直角三角形在实际生活中运用比较广泛,所以学生熟练掌握直角三角形的边角关系既是本节课的教学重点和教学难点。
它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。
二、说教学目标由于本节课为第一课时,主要使学生理解直角三角形的边角关系,并能运用这些关系解直角三角形,同时解决与之相关的实际问题。
所以三维目标的知识与技能目标只要体现在:(一)知识与技能目标:弄清楚解直角三角形的含义,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(二)过程与方法目标:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”思想。
(三)情感目标:通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识的意义和作用,体验到学好知识能应用与社会实践,在学习过程中体会探索,发现科学的奥秘和意义。
三、说教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形四、说教法学法本节课采用的是探究式教法,教是为了不教,因此在课堂上更重要的是教师教会学生是如何学习,如何发现问题和解决问题。
本节课通过复习旧知运用新的知识让学生主动探究得出解直角三角形的定义,并通过探讨得出解直角三角形所需的最简条件,归纳解直角三角形的类型,整个教学过程鼓励克服困难与障碍,发展了自己的思维力、观察力和想象力,培养了团结协作精神,使他们的智慧潜能得到充分的发挥。
让每一个学生以研究者的方式研究几何,突出学生在学习中的主作地位。
苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
第11章 三角形 11.1 与三角形有关的线段(简答题)(老师版)
第11章三角形11.1与三角形有关的线段(简答题专练)1.在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为21厘米和12厘米两部分,求△ABC 各边的长.【答案】△ABC 各边的长为14cm 、14cm 、5cm .【解析】【分析】根据题意,画出示意图,利用三角形的中线定义及三角形周长和三角形的三边关系即可求解三角形三边的长,注意不符合题意的要舍去.【详解】如图,设AB =AC =2x cm ,BC =y cm∵BD 是中线∴AD =CD =x cm若AB +AD =21 cm ,BC +CD =12 cm即22112x x x y +=⎧⎨+=⎩解得:=7x ,5y =此时,AB =AC =14 cm ,BC =5 cm若AB +AD =12 cm ,BC +CD =21 cm即21221x x x y +=⎧⎨+=⎩ 解得:=4x ,17y =∵此时AB =AC =8 cm ,BC =17 cm ,AB +AC <BC∴=4x ,17y =不合题意,舍去综上所述,△ABC 各边的长为14cm 、14cm 、5cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系,在解决等腰三角形的相关问题时,由于等腰三角形的特殊性,一般情况下是需要对其进行分类讨论,才能得解,因此熟练掌握有关等腰三角形边的分类讨论及三边关系的确定是解决本题的关键.2.已知 a 、b 、c 分别表示∆ABC 的三条边长,且∆ABC 的周长为 48 .(1)若c 是三边中最长的边,则c 的最小值是 ;(2)若c = 3a ,求证: 6 < a < 8 ;(3)若 a - c = 10 ,求c 的取值范围;(4)若 a 、b 均为整数,c=16,则这样的三角形共有 个.【答案】(1)16;(2)见解析(3)7 < c < 14 ;(4)8【解析】【分析】(1)根据等边三角形的性质即可求解;(2)根据三角形的三边关系列出不等式的即可求解;(3)根据三角形的三边关系列出不等式的即可求解;(4)依次数出可能的三角形的三边,即可判断.【详解】(1)当∆ABC 为等边三角形时,c 取最小值为48÷3=16; (2)∵c = 3a ,a+b+c=48,∴b=48-4a,∵c+a>b,c-a<b即a+3a>48-4a,3a-a<48-4a,解得6 <a< 8 ;(3)∵a -c= 10,a+b+c=48,∴a=c+10,b=38-2c,∵a+c>b,a-c<b即c+10+c>38-2c,c+10-c<38-2c,解得7 <c< 14 ;(4)根据c=16,a+b+c=48,故所以的情况如下:16,16,16;15,16,17;14,16,18;13,16,19;12,16,20;11,16,21;10,16,22;9,16,23;故为8个.,【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边,两边之差小于第三边. 3.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.【答案】3<x≤10.【解析】【分析】根据三角形的三边关系以及周长不超过37cm列出不等式组,求出x的取值范围即可.【详解】解:∵一个三角形的三边长分别是xcm,(x+2)cm,(x+5)cm,它的周长不超过37cm,∴252537 x x xx x x+++⎧⎨++++≤⎩>,解得:3<x≤10.【点睛】本题考查了三角形的三边关系和不等式组的应用,解题的关键是正确列出不等式组.4.如图,已知ABC ∆,按要求作图.(1)过点A 作BC 的垂线段AD ;(2)过C 作AB 、AC 的垂线分别交AB 于点E 、F ;(3)15AB =,7BC =,20AC =,12AD =,求点C 到线段AB 的距离.【答案】(1)详见解析;(2)详见解析;(3)点C 到线段AB 的距离为285. 【解析】【分析】(1)、(2)根据几何语言作图;(3)利用三角形面积公式得到1122AB CE BC AD =,然后把15AB =,7BC =,12AD =代入计算可求出CE .【详解】解:(1)如图,AD 为所作;(2)如图,CE 、CF 为所作;(3)1122ABC S AB CE BC AD ∆==, 71228155BC AD CE AB ⨯∴===, 即点C 到线段AB 的距离为285. 【点睛】本题考查了作图以及三角形高线的定义,熟练掌握面积法求高线是解题关键.5.已知a 、b 、c 为三角形的三边,||||||P a b c b a c a b c =+----+-+.(1)化简P ;(2)计算()P a b c -+.【答案】(1)a b c +-;(2)2222a b c bc --+.【解析】【分析】(1)根据三角形的三边关系即可得到a+b >c ,a+c >b ,根据绝对值的性质即可去掉绝对值符号,从而化简.(2)将P 值代入进行计算即可.【详解】解:(1)由三角形三边关系知a b c +>,a c b +>,故0a b c +->,0b a c --<,0a b c -+>,||||||P a b c b a c a b c ∴=+----+-+a b c b a c a b c =+-+--+-+a b c =+-,(2)()P a b c -+()()a b c a b c =+--+222a ab ac ab b bc ac bc c =-++-+-+-2222a b c bc=--+.【点睛】此题考查三角形三边关系,绝对值,整式的加减,绝对值,解题关键在于灵活运用各计算法则. 6.如图,已知AD,AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠CAB=90°,求:(1)AD的长;(2)△ACE和△ABE的周长的差.【答案】(1)AD的长度为125cm;(2)△ACE和△ABE的周长的差是1cm.【解析】【分析】(1)根据直角三角形的面积计算方法求解即可;(2)先按图写出两个三角形的周长,再作差计算即可.【详解】解:(1)∵∠BAC=90°,AD是边BC上的高,∴12AB•AC=12BC•AD,∴AD=341255AB ACBC⨯==(cm),即AD的长为125cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+CE+AE﹣(AB+BE+AE)=AC﹣AB=4﹣3=1(cm),即△ACE和△ABE的周长的差是1cm.【点睛】本题考查了利用直角三角形的面积计算斜边上的高和三角形的中线等知识,难度不大,属于基础题型.7.如图,点D与点E分别是△ABC的边长BC、AC的中点,△ABC的面积是20cm2.(1)求△ABD与△BEC的面积;(2)△AOE与△BOD的面积相等吗?为什么?【答案】(1)10,10;(2)相等,理由,见解析【解析】【分析】(1)要计算△ABE与△BCE的面积,可设点A到边BC的高为h,则S△ABD=12 BD·h,S△ACD=12CD·h;再根据中点的定义得BD=CD,然后利用等量代换即可得到S△ABD=S△ACD,同理S△ABE=S△BCE,再结合△ABC的面积即可解决;(2)结合上面的推理可得S△ABE=S△ABD,再根据图形可知S△ABE=S△ABO+S△AOE,S△ABD=S△ABO+S△BOD,【详解】(1)可设点A到边BC的高为h,则S△ABD=12BD·h,S△ACD=12CD·h,∵点D是BC边的中点,∴BD=CD.∴S△ABD=S△ACD,同理S △ABE =S △BCE ,∴S △ABD =S △BCE =12S △ABC =12×20=10(cm 2). (2)△AOE 与△BOD 的面积相等,理由如下.根据(1)可得:S △ABE =S △ABD ,∵S △ABE =S △ABO +S △AOE ,S △ABD =S △ABO +S △BOD ,∴S △AOE =S △BOD .【点睛】此题考查中点的定义和三角形面积的计算方法,掌握定义及公式是解题的关键;8.已知三角形三边长为a 、b 、c ,且-+--a b c a b c += 10,求b 的值【答案】b=5【解析】【分析】根据三角形的三边关系得出a+b >c ,a−b <c ,再去绝对值即可.【详解】解:∵a 、b 、c 是三角形的三边长,∴a+b >c ,a−b <c , ∴-+--()210a b c a b c a b c a b c a b c a b c b +=+----=+--++==,∴b=5.【点睛】本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.9.在△ABC 中,AB ﹦9,BC ﹦2,并且AC 为奇数,那么△ABC 的周长为多少?【答案】20【解析】【分析】根据三角形三边关系,找到AC 的取值范围,由AC 为奇数求出AC 长度,即可求出三角形周长.【详解】解:∵AB﹣BC<AC<AB﹢BC,(三角形三边关系)∴9﹣2<AC<9﹢2,即7<AC<11又A C为奇数,∴A C﹦9∴△ABC的周长﹦9+9+2﹦20【点睛】本题考查了三角形的三边关系,三角形的周长,属于简单题,熟悉三边关系是解题关键. 10.满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)△ABC中,∠A=30°,∠C=∠B;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【解析】【分析】根据角的分类对三角形进行分类即可.【详解】(1)∵∠A=30°,∠C=∠B,∠A+∠C+∠B=180°,∴∠C=∠B=75°,∴满足条件的三角形是锐角三角形.(2)∵三个内角的度数之比为1∶2∶3,∴可求得每个内角的度数分别为30°,60°,90°,∴满足条件的三角形是直角三角形.【点睛】本题主要考查了三角形的分类问题.11.如图所示,∠1=∠2=∠3=∠4=24°,根据图形填空:(1)是∠2的3倍的角是_________________(用字母表示)(2)是∠AOD 的12的角有_________个; (3)射线OC 是哪个角的3等分线?又是哪个角的4等分线?【答案】(1)∠A0E 、∠BOC ;(2) 4个;(3)OC 是∠AOE 的3等分线,是∠AOB 的4等分线.【解析】【分析】(1)根据∠1=∠2=∠3=∠4,找出是∠2的3倍的角可以解题;(2)根据∠1=∠2=∠3=∠4,找出图中哪些角是∠AOD 的12, (3)根据∠1=∠2=∠3=∠4,找出射线OC 是哪个角的三等分线、四等分线.【详解】解:(1)1234∠=∠=∠=∠12332AOE ∴∠=∠+∠+∠=∠同理:42332BOC ∴∠=∠+∠+∠=∠(2)4个;(3)∵∠1=∠2=∠3,∴OC 是∠AOE 的三等分线.同理:OC 是∠AOB 的四等分线.【点睛】本题考查了角的度数的计算,考查了角平分线和三等分线的定义,本题中不要漏解是解题的关键.12.如图①,∠AOB=∠COD=90°,OM 平分∠AOC ,ON 平分∠BOD .(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【答案】(1)∠MON=90°;(2)∠MON=90°;(3)∠MON=90°.【解析】【分析】(1)由∠AOB=∠COD=90°,∠BOC=20°,可得∠MOC=∠BON的度数,可得∠MON的度数:(2)同理由∠AOB=∠COD=90°,∠BOC=α,可得∠MOC=∠BON的度数,可得∠MON的度数:(3)由∠AOB=∠COD=90°,∠BOC=α,可得∠AOC=∠BOD=90°+α,∠MOC=∠BON=45°+α可得∠MON 的度数:【详解】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.【点睛】本题主要考查角平分线的性质及角度间的计算.13.如图,在△ABC中,D,E是BC,AC上的点,连接BE,AD,交于点F,问:(1)图中有多少个三角形?并把它们表示出来.(2)△BDF的三个顶点是什么?三条边是什么?(3)以AB为边的三角形有哪些?(4)以F为顶点的三角形有哪些?【答案】答案见解析【解析】试题分析:利用三角形的定义以及三角形有关的角和边概念分别得出即可.试题解析:(1)8个:△ABC,△ABF,△ABE,△ABD,△BDF,△AEF,△ACD,△BCE;(2)三个顶点:B,D,F;三条边:BD,BF,DF;(3)△ABC,△ABF,△ABD,△ABE;(4)△ABF,△BDF,△AEF.【点睛】此题主要考查了三角形有关定义,正确把握相关定义是解题关键.14.木工师傅在做完门框后为防止变形,常像下图中所示的那样,钉上两条斜的木条,即图中的AB,CD 两个木条,这是根据数学上什么原理?【答案】三角形的稳定性【解析】试题分析:用木条固定门框,即是组成三角形,故可用三角形的稳定性解释.如图加上AB,CD两个木条后,可形成两个三角形,防止门框变形.故这种做法根据的是三角形的稳定性.15.如图,ABCD是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.【答案】小明的做法正确,理由见解析.【解析】试题分析:根据三角形的稳定性可得出答案.小明的做法正确,理由:由三角形的稳定性可得出,四边形ABCD不再变形.。
最新苏教版五年级下册数学《三角形的认识》教案
最新苏教版五年级下册数学《三角形的认
识》教案
一、教学目标
1. 了解三角形的定义和特点;
2. 掌握三角形的分类;
3. 能够根据给定条件判断三角形的类型。
二、教学准备
1. 教师:准备投影仪、幻灯片、教学实例;
2. 学生:课本、练册。
三、教学过程
1. 导入新课:
- 引入“三角形”概念,让学生观察周围事物中的三角形;
- 提问学生对三角形的认识,引发学生思考。
2. 三角形的定义和特点:
- 使用幻灯片展示三角形的定义:由三条线段组成的图形叫做三角形;
- 解释三角形的特点:三角形有三个顶点和三条边。
3. 三角形的分类:
- 呈现不同种类的三角形的图片,介绍各种三角形的特点;
- 点名学生回答不同种类的三角形的名称和特点;
- 老师讲解并总结各种三角形的分类。
4. 判断三角形的类型:
- 老师出示随机的三条线段,让学生判断是否可以组成三角形;
- 学生们根据三条线段的长度关系判断三角形的类型,并给出
理由。
5. 拓展练:
- 学生在练册上完成相关练;
- 老师巡视指导、点评。
四、教学总结
1. 复本节课的内容,并强调三角形的定义和特点;
2. 总结三角形的分类和判断方法;
3. 提醒学生在日常生活中多观察和发现三角形。
五、课后作业
完成练册上的相关题目,做好课本知识点的复。
该教案旨在通过引入三角形的概念,让学生了解三角形的定义和特点,并能够准确判断不同类型的三角形。
练习和巩固课堂所学的知识,培养学生观察和推理的能力。
解直角三角形教学设计
解直角三角形教学设计作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
教学设计应该怎么写呢?以下是店铺收集整理的解直角三角形教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
解直角三角形教学设计1教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。
教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。
教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8。
二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积.2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD =,求:(1)弦AB的长;(2)CD的长.解直角三角形教学设计2一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
高中数学 正余弦定理解三角形 教师版
【教师备案】在初中的时候,我们就学过解直角三角形,解直角三角形是怎么回事呢?在直角三角形中,除了告诉我们直角外,还有5个要素,我们发现,如果解这个三角形,把要素都求出来,必须要知道至少2个要素,当然不能为2个角,换言之,解直角三角形就是知二求三的过程.当然,在我们学习了任意角的三角函数之后,我们的视野不能这么小,如果给我们一个一般的三角形,那我们应该如何解这个三角形呢?我们应该至少要知道几个量?我们先来回顾一下初中边和角相关的东西,我们在初中学过尺规作图,而且学过三角形全等的证明(SSS SAS ASA AAS ,,,),只要给出上述条件我们就能把三角形确定,也就是全等. 那么,为什么我们知道2条边1个夹角就能求出其他要素呢?而知道两条边和一边的对角就无法证明三角形全等呢?三角形的边和角之间存在什么关系呢?尺规作图毕竟是定性的感受,在高中阶段,我们可以给出一个严格的证明,就是今天我们要讲的正余弦定理.正余弦定理的本质就是构造边与角之间的关系,由角就可以求出边,由边就可以求出角.下面我们就先来介绍正弦定理.知识切片我会解三角形你会么?在ABC △中的三个内角A ,B ,C 的对边分别用a b c ,,表示: 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即sin sin sin a b cA B C==. 【教师备案】 正弦定理的推导由三角形中的线段关系或者由三角形的外接圆可以直接得到,且2sin sin sin a b cR A B C ===,其中R 为ABC △的外接圆的半径.建议老师用三角形的外接圆给学生证明,因为板块1.4中讲三角形面积的时候还会用到三角形的外接圆,所以不如这时给学生讲了.利用三角形中的线段关系证明正弦定理:①在R t ABC △中(如图),有sin sin a bA B c c==,,因此sin sin a b c A B ==,又因为sin 1C =,所以sin sin sin a b cA B C== ②在锐角ABC △中(如图),作CD AB ⊥于点D ,有sin CDA b =,即sin CD b A =;sin CDB a=,即sin CD a B =,因此 sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a c A C=,因此sin sin sin a b cA B C== ③在钝角ABC △中(如图),作CD AB ⊥,交AB 的延长线于点D ,则sin CDA b =,即sin CD b A =;()sin 180sin CDB B a =-=,即sin CD a B =,因此sin sin b A a B =,即sin sin a b A B =,同理可证sin sin a cA C=,因此sin sin sin a b cA B C== 利用平面几何知识证明正弦定理:如图所示,设O 为ABC △的外接圆的圆心,连BO 并延长交O 于A ',连A C ',则A A '= 或πA A '=-,∴sin sin 2BC a A A A B R '===',即2sin aR A =,同理可证2sin sin b c R B C ==,故有2sin sin sin a b cR A B C=== 当ABC △是钝角三角形时,类似地得出上述结论. 利用向量知识证明正弦定理:①当ABC △是锐角三角形时,过A 点作单位向量i 垂直于AB , 如图,∵AC AB BC =+, ∴()i AC i AB BC i AB i BC i BC ⋅=⋅+=⋅+⋅=⋅, ∴()()cos 90cos 90b A a B -=-,得sin sin b A a B =,1.1正弦定理与其在解三角形中的应用知识点睛iCAc b a DCB A c b aDCB AC B Ac bOA 'C A得sin sin a bA B= ②当ABC △为钝角三角形时,类似地得出上述结论2.利用正弦定理解三角形⑴解三角形:三角形的三个内角和它们的对边分别叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.⑵利用正弦定理可解下列两类型的三角形:①已知三角形的任意两个角与一边,求其它两边和另一角;【教师备案】有了正弦定理之后,我们可以简单的看出,任意的两个角与一边相当于AAS 和ASA 的条件,可以确定所有的角,然后可以确定所有的边,因此,三角形也随之确定.②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角.【教师备案】1.已知三角形的两边和一边的对角,由正弦定理可以求得另一边的对角的正弦值,但是解三角形时,因为在(0,π)内,互补的角的正弦值相等,所以求得另一边所对的角的正弦值之后,可能对应有一个角或两个角,因此无法确定三角形的形状,这就是为什么SSA 无法证明三角形全等的原因.2.利用正弦定理证明三角形中“大边对大角”的结论:①当ABC △为锐角三角形时,若a b >,则sin sin A B >,又π02A B ⎛⎫∈ ⎪⎝⎭,,,正弦函数在此区间内单调递增,故A B >;②当ABC △为钝角三角形时,若A 为钝角,则由πA B +<得,πB A <-,又ππ02A B ⎛⎫-∈ ⎪⎝⎭,,,故由正弦函数的单调性知:()sin sin πsin B A A <-=,从而由正弦定理知:b a <.对直角三角形,此结论显然成立,故综上知,在任意三角形中,均有大边对大角.3.此时,到底取一个角还是取两个角,关键保持一个原则“大边对大角”.具体讨论如下:已知,a b 和角A ,若B 为钝角或直角,则C 至多有一个解; 若B 为锐角,得分情况讨论,如图:无解的情况例如:3460b c B ===︒,,,求C . 由sin sin b c B C=sin 4sin 60sin 13c B C b ︒⇒==>, ∴C 无解,从而满足此条件的三角形不存在.这就是sin c B b >的情况.【教师备案】在讲利用正弦定理解三角形时,对于边角互化和利用边角互化判断三角形形状的题型建议放到同步去讲,本板块只讲利用正弦定理解两种类型三角形,在讲完“已知两角和任一边解三角形”后就可以让学生做例1;在讲“已知两边和其中一边的对角解三角形”时一定要注意三角形的多解问题,具体的多解见考点2的【教师备案】,讲完多解问题后就可以让学生做例2的铺垫以及例2.b sin A<a<b , 两解一解考点1:已知两角和任一边解三角形【例1】 已知两角和任一边解三角形⑴ 已知ABC △中,a b c ,,分别是A B C 、、的对边,3c =,60A =︒,45C =︒, 则a =_______.⑵在ABC △中,30B =︒,45C =︒,1c =,则b =_______;三角形的外接圆半径R =_______. ⑶在ABC △中,已知8a =,60B =,75C =,则b =_______. 【解析】⑴322 ⑵22;22已知30B =,45C =,1c =,由正弦定理得:2sin sin b cR B C==, 所以sin 1sin 302sin sin 452c B b C ⋅===,1122sin sin 4522c R C ====,22R =⑶46由60B =,75C =,知45A =,再由正弦定理有846sin 45sin 60bb =⇒=考点2:已知两边和其中一边的对角解三角形【铺垫】根据下列条件解三角形:①6031A a b ===,,;②3012A a b ===,,;③30610A a c ===,,; ④150105A a c ===,,,其中有唯一解的个数为( ) A .1 B .2 C .3 D .4 【解析】C ①3sin 32b A =<,又31>∵,∴有唯一解;②sin 2sin301b A ==,∴有唯一解;③sin 10sin305610c A ==<<,∴有两解;④有唯一解.【例2】 已知两边和一边对角解三角形⑴在ABC △中,已知4522A a b ===,,,则B =_______.⑵已知ABC △中,a b c ,,分别是A B C 、、的对边,222345a b A ===︒,,, 则B =_______.⑶已知ABC △,三个内角A B C ,,的对边分别记为a b c ,,,若245c x b B ===︒,,,且这个 三角形有两解,求x 的取值范围. ⑷(目标班专用)(2010山东卷理数)在ABC △中,角A B C 、、所对的边分别为a b c 、、,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .【解析】⑴30 根据正弦定理得:sin sin a b A B =,∴sin 2sin 451sin 22b A B a ⋅===,b a <∵,B A <∴, B ∴为锐角,即30B = ⑵60或120经典精讲由正弦定理得,sin 23sin 453sin 222b A B a ===,∵sin b A a b <<,∴这个三角形有两组解,即60B =或120. ⑶ 由正弦定理可得:sin sin c b C B =,解得:2sin 4xC =,由于三角形有两解,又45B =︒, 则45135C <<︒且90C ≠,则2sin 12C <<,即22124x<<,解得222x <<.【点评】 本题的⑶也可用以下方法解,当sin c B b c <<,即sin 2x B x <<时,对应两个C 的值,方程有两组解,解得222x <<.⑷ π6由sin cos 2B B +=平方得12sin cos 2B B +=,即sin 21B =,因为0πB <<,所以π4B =.又因为22a b ==,,所以在ABC △中,由正弦定理得:22sin sin A B =,解得1sin 2A =. 又a b <∵,所以AB <,所以π6A =.【点评】 易错点:忽略a b <A B ⇒<的隐藏条件.多解.【教师备案】在正弦定理中,我们还有两种类型的全等没有讨论,SAS 和SSS 型,正弦定理处理的是对边对角的情形,仅仅用正弦定理是很难把三角形求解出来的,因此,我们需要一个新的工具,能够把边的条件化成角,就是下面所介绍的余弦定理.1.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,即:2222222222cos ,2cos ,2cos .c a b ab C b a c ac B a b c bc A ⎧=+-⎪=+-⎨⎪=+-⎩ 它的变形为:222222222cos ,2cos ,2cos .2a b c C ab a c b B ac b c a A bc ⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩<教师备案> 余弦定理的推导可以由三角形的向量运算直接得到,比如:2222()()2a BC BA AC BA AC BA BA AC AC ==+⋅+=+⋅+()22222cos π2cos c bc A b c bc A b =+-+=-+.也可以通过坐标法及两点距离公式得到.建立合适的坐标系,如图,得()()()cos sin 000A b C b C B a C ,,,,,, 从而有22(cos )(sin )AB c b C a b C ==-+,整理得:2222cos c a b ab C =+-.也可以通过三角形中的线段关系证明:在ABC △中,已知边a b ,及C ∠(为了方便起见,假设C ∠为最大的角),求边c 的长证明:当90C ∠=时,那么222c a b =+1.2余弦定理及其在解三角形中的应用知识点睛bxyB C A (b cosC , b sinC)当90C ∠≠时,如图,无论C ∠为锐角还是为钝角,都过A 点做边BC 的高,交BC (或延长线)于点D ,这时高AD 把ABC △分成两个直角三角形ADB 和ADC , 则sin AD b C =,cos BD a b C =-,在Rt ADB △中,运用勾股定理,得 ()222222sin cos c AD BD b C a b C =+=+-222cos a b ab C =+-2.余弦定理及其变形常用来解决这样两类解三角形的问题: ①已知两边和任意一个内角解三角形; ②已知三角形的三边解三角形.【教师备案】老师在讲完余弦定理后,可以就SSS 和SAS 型的全等证明做个简单讲解,这样子整个讲义的主线就串在一起.然后,可以让学生做【铺垫】,【铺垫】是直接套公式的,做完【铺垫】就可以做例3,例3是灵活的运用余弦定理解三角形,在解题过程中需要转化的;学生在能够灵活运用余弦定理后,就可以讲考点4,用余弦定理判断三角形形状,在三角形中,因为每个角都在()0π,内,所以一个角的正弦不能判断这个角是锐角还是钝角,但是余弦就能很快的判定是锐角还是钝角,在三角形中,当cos 0α>时,α为锐角;当cos 0α<时,α为钝角;当cos 0α=时,α为直角;考点4的【铺垫】是直接根据三角形的三条边判断三角形形状的,老师可以让学生先体会一下怎么样用余弦判定三角形形状,例4是已知三角形形状,求边的取值范围的,在解题过程中要注意用余弦定理和构成三角形的条件.考点3:用余弦定理解三角形【铺垫】⑴在ABC △中,5a =,8b =,60C =︒,则c =_______.⑵在ABC △中,222a b c bc =++,则A 等于( ).A . 60B . 45C .120 D . 30 【解析】⑴ 7 由余弦定理2222cos 25644049c a b ab C =+-=+-=,∴7c =. ⑵C∵2222222()1cos 222b c a b c b c bc A bc bc +-+-++===-∵0180A <<,∴120A =.【例3】 余弦定理解三角形⑴在ABC △中,5a =,8b =,7c =,则sin C =_______.⑵在ABC △中,已知3sin 5A =,sin cos 0A A +<,35a =,5b =,则c =______.⑶在ABC △中,若1378cos 14a b C ===,,,则最大角的余弦是( ). A .15- B .16- C .17- D .18-【解析】⑴32经典精讲abcABCDD cbaCBA由余弦定理2222cos c a b ab C =+-,∴1cos 2C =,3sin 2C =. ⑵∵sin cos 0A A +<,且3sin 5A =,24cos 1sin 5A A =--=-∴,又∵35a =,5b =,2222cos a b c bc A =+-,∴()2224355255c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,即28200c c +-=,解得2c =或10c =-(舍),∴2c = ⑶ C由2222cos c a b ab C =+-,∴3c =,则b a c >>,∴最大角为B ,∴2221cos 27a cb B ac +-==-考点4:用余弦定理判断三角形形状【教师备案】最大角定三角形的形状,由余弦定理易得,较小两边的平方和与最大边的平方的差可以定最大角是锐角、直角或钝角.注意:三角形三边关系应满足的为:较小两边的和大于 第三边.【铺垫】在ABC △中,已知5a =,6b =,7c =,则此三角形是一个 三角形.【解析】锐角三角形 c b a >>∵,∴角C 为最大角,2221cos 025a b c C ab +-==>∴,∴角C 为锐角,∴三角形为锐角三角形 【例4】 判断三角形形状⑴ 若以34x ,,为三边组成一个直角三角形,则x 的值为 . ⑵ 若以34x ,,为三边组成一个锐角三角形,则x 的取值范围为 . ⑶ 若以34x ,,为三边组成一个钝角三角形,则x 的取值范围为 . 【追问】我们还可以考虑,当我们知道三角形两边的情况下,求某一个角的取值范围,例如下面这个问题:已知ABC △中,12AB BC ==,,则C ∠的取值范围是________________⑷ (目标班专用)已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长. 【解析】 ⑴ 5722234x +=或22234x +=.⑵)75依题意有:22217434x x x ⎧<<⎪>⎨⎪+>⎩或22217434x x x ⎧<<⎪⎨⎪+>⎩≤75x <.⑶ (()1757,∪, 解法一:依题意有:22217434x x x⎧<<⎪>⎨⎪+<⎩或22217434x x x ⎧<<⎪⎨⎪+<⎩≤解得57x <<或17x <<.解法二:本题也可以由函数的图象来解决,如图,设圆的半径3OA =, 4OB =,圆上任取一点与O B ,两点构成三角形,从图形上看 出,当圆上的点在点D 和点E 上时,构成直角三角形;当点 在DE 上时,构成锐角三角形;当点在AD 和EG 上时,构成 钝角三角形.由此可以很快得出答案.【追问】π06⎛⎤ ⎥⎝⎦,⑷设三角形三边的长为:()12n n n n *++∈N ,,最大角为α,∴222(1)(2)cos 2(1)n n n n n α++-+=+,∵α是钝角,∴cos 0α<,∴222(1)(2)02(1)n n n n n ++-+<+,2(1)0n n +>∵,∴222(1)(2)0n n n ++-+<∴2230n n --<,∴13n n *-<<∈N ,∵,1n =∴或2. 当1n =时,123,,不能构成三角形的三边,故舍去. 当2n =时,234,,即为所求三边的长.【拓展】⑴钝角三角形的三边分别是12a a a ++,,,其最大角不超过120,求a 的取值范围. ⑵在ABC △中,若三条边是三条连续的正整数,且最大角是最小角的2倍,求ABC △的三条边长.【解析】 ⑴∵钝角三角形的三边分别是12a a a ++,,,∴显然有210a a a +>+>>,设钝角三角形 的最大的(内)角为α,依题意,得90120α<≤,由()()()()()()22212313cos 21212a a a a a a a a a a a α++-+-+-===++,可得13022a a--<≤, 解得332a ⎡⎫∈⎪⎢⎣⎭,⑵设最小内角为θ,三边长为11n n n -+,,,根据正弦定理得:11sin sin 2n n θθ-+=, 112cos n n θ+-=∴,()1cos 21n n θ+=-∴,根据余弦定理得:()()()22211cos 21n n n n n θ++--=+,()()()()2221112121n n n n n n n ++--+=-+∴,解得5n =,从而得ABC △的三条边分别为456,,GFEDCBAO1.正弦定理灵活应用:①2sin a R A =,2sin b R B =,2sin c R C = (其中R 为ABC △的外接圆的半径);②sin2a A R =,sin 2b B R =,sin 2cC R=;③::sin :sin :sin a b c A B C =. 2.正余弦定理的综合应用已知条件 应用定理 一般解法一边和两角(如a B C ,,) 正弦定理 由πA B C ++=,求角A ;由正弦定理求出b 与c .两边和夹角 (如a b C ,,) 余弦定理 正弦定理 由余弦定理求第三边c ;由正弦定理求出小边所对的角(此角一定是锐角);再由πA B C ++=,求剩下的角.三边(a b c ,,) 余弦定理正弦定理由余弦定理求出最大角,然后正弦计算剩余两角. 两边和其中一边的对角 (如a b A ,,) 正弦定理余弦定理 由正弦定理求出角B ;由πA B C ++=,求出角C ;再利用正弦定理或余弦定理求c .【教师备案】本板块主要讲正余弦定理在解三角形中的灵活应用,尤其是正弦定理的灵活运用,根据正弦定理可以得到三角形的边与角之间的关系,可以把角全部换成边,也可以把边全部换成角,【铺垫】就是根据正弦定理把边用角表示,例5是先要根据正弦定理把边角化掉再根据余弦定理解三角形,此类题型不属于边角互化题型,是正弦定理的灵活运用,边角互化的题型是比如“2sin a b A =”类型的,对于这类题我们放到同步去讲;在讲完正余弦定理的灵活运用后就可以让学生体会一下正余弦定理在平面几何中的应用,因为在同步的时候不会讲此类题型,所以在预习的时候可以给学生介绍一下,具体见例6和目标班学案2,而对于三角形中()sin sin A B C +=的应用建议放到同步去讲.【铺垫】在ABC △中,若::1:2:3A B C =,则::a b c =______.【解析】 由已知得306090A B C ===,,,::sin :sin :sin 1:3:2a b c A B C ==∴【例5】 正余弦定理的综合运用⑴在ABC △中,若sin :sin :sin 3:2:4A B C =,则cos C 的值为( )A .14-B .14C .23-D .23⑵在ABC △中,若222sin sin sin A B C +<,则角C 为( )A .锐角B .钝角C .直角D .不确定【追问】在ABC △中,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .等边三角形C .钝角三角形D .等腰直角三角形 ⑶(2010天津理7)在ABC △中,内角A B C ,,的对边分别为a b c ,,,若223a b bc -=,sin 23sin C B =,则A =( )A .30B .60C .120D .1501.3正余弦定理在解三角形中的灵活应用经典精讲知识点睛【解析】⑴A 根据正弦定理sin 2a A R =,sin 2b B R =,sin 2cC R=,sin :sin :sin ::3:2:4A B C a b c ==∴,2223241cos 2324C +-==-⨯⨯∴⑵B222sin sin sin A B C +<∵,∴根据正弦定理得222a b c +<,222cos 02a b c C ab+-=<∴,∴角C 为钝角 【追问】B ⑶A由sin 23sin C B =,根据正弦定理,得23c b =.所以22236a b bc b -==,即227a b =.由余弦定理得2223cos 22b c a A bc +-==.所以30A =︒.【例6】 正余弦定理在平面几何中的应用⑴ 在平行四边形ABCD 中,3AB =,5BC =,6AC =,求BD⑵ 在ABC △中,已知4AB =,7AC =,BC 边上的中线7AD =,那么BC = .⑶ (目标班专用)在ABC △中,已知46AB =6cos ABC ∠=,AC 边上的中线5BD ,求sin A 的值【解析】 ⑴如图,在ABC △中,2222cos AC AB BC AB BC B =+-⋅,即222635235cos B =+-⋅⋅ ①在ABD △中,2222cos BD AB AD AB AD A =+-⋅,即22235235cos BD A =+-⋅⋅ ② ①+②得:()22226235BD +=+,即42BD =【点评】由本题可以得出平行四边形定理:平行四边形的对角线平方之和等于四条边长平方之和⑵ 解法一:如图:设BD x =,则2BC x =,DC x =,∵πADB ADC ∠=-∠,cos cos ADB ADC ∠=-∠∴,由余弦定理,得222222774722772222x x x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⋅⋅⋅⋅,解得92x =,9BC =∴ 解法二:由平行四边形定理得:()2222247781BC =+-=,9BC =∴⑶ 如图:设E 为BC 的中点,连接DE ,则DE AB ∥,且1262DE AB ==BE x =,在BDE △中利用余弦定理可得: 2222cos BD BE ED BE ED BED =+-⋅∠,()()6cos cos πcos πcos BED DEC ABC ABC ∠=-∠=-∠=-∠=∵28266523x =++∴,解得1x =或73x =-(舍),故2BC =,从而222282cos 3AC AB BC AB BC ABC =+-⋅∠=,即DA 72xx745463DCADCB A2213AC =, 又30sin 6ABC ∠=∵,故22123sin 306A =,70sin 14A =∴【教师备案】因为三角形的面积和正余弦定理关系不是特别紧密,而且到本讲结束,三角形的面积公式已经全部讲完,所以把三角形的面积单独做一个板块,老师可以把所有的三角形面积公式给学生讲一下. 面积公式:()11111sin sin sin 222224a abcS ah a b c r ab C bc A ac B R ==++====.其中r 为ABC △内切圆半径,R 为外接圆半径.【教师备案】在求三角形的面积时,学生印象最深的就是12a ah ,那这个时候老师就可以根据12a ah 推导其它公式,并且老师可以在这里把三角形的面积公式全部给学生整理一下,但是本讲重点是介绍1sin 2S ab C =类型的三角形面积公式,如果学生的程度很好,老师可以介绍一下“海伦公式”和圆内接四边形面积公式.【选讲】海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=. 【推导】 ()2222222111sin 1cos 12224a b c S ab C ab C ab a b+-==-=- ()()()2222222222221142244a b a b c ab a b c ab a b c =-+-=++---+()()()()()()22221144a b c c a b a b c a b c a c b b c a ⎡⎤⎡⎤=+---=+++-+-+-⎣⎦⎣⎦ 令()12p a b c =++,则()()()S p p a p b p c =---圆内接四边形面积:()()()()S p a p b p c p d =----,其中2a b c dp +++=. 【推导】由()22222cos 2cos πa b ab c d cd θθ+-=+--,可得2222cos 22a b c d ab cdθ+--=+()()222222222sin 1cos 22ab cd a b c d ab cdθθ+-+--=-=+()()()()=22b c d a a c d b a b d c a b c d ab cd++-++-++-++-+1.4三角形的面积知识点睛CB A c b aDC BAπ-θθd cba(){}()11sin sin πsin 22S ab cd ab cd θθθ=+-=+ ()()()()()()()()1=42222b c d a a c d b a b d c a b c d a b c d a b c d a b c d a b c d a b c d p a p b p c p d ++-++-++-++-++++++++++++⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=----【教师备案】老师在讲完三角形的面积后就可以让学生做【铺垫】,【铺垫】是直接利用公式求三角形面积的,例7不能够直接利用公式求三角形面积,需要先看在面积公式中缺少哪些变量,然后再根据题中的已知条件利用正余弦定理求出所需要的变量,最后再利用面积公式就可以了.第三题放了一道关于圆内接四边形面积的题目,供老师选择使用;例8是已知三角形面积解三角形,在解题过程中会用到正余弦定理,对于求面积的最大值的问题建议放到同步,因为在求最大值的问题时大多数要用到均值定理,学生这时候还没学,所以建议以后再讲.【铺垫】 在ABC △中,若5AB =,7BC =,33sin 14B =,求ABC △的面积. 【解析】 ∵5AB =,7BC =,33sin 14B =, 1133153sin 5722144ABCS AB BC B =⋅⋅=⨯⨯⨯=△∴【例7】求面积⑴ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,43460b c B ===︒,,,求ABC S △. ⑵ 已知ABC △,三个内角,,A B C 的对边分别记为a b c ,,,若234a b c ===,,,求ABC S △. ⑶(目标班专用)已知:四边形ABCD 内接于圆O ,四边长依次为2,7,6,9,求圆直径. 【解析】⑴ 分析:三角形的已知条件为常见的SSA 型.根据条件有两种思路求三角形的面积: 11sin sin 22ABC S bc A ac B ∆=⋅=⋅.所以欲求三角形面积需要先求A 或先求a .方法一:由正弦定理知sin sin b cB C =,sin 4sin 601sin 243c B C b ︒===, 因为C 是三角形的一个内角,故30C ︒=或150︒, 又60B ︒=,故30C ︒=.180603090A ︒︒︒︒=--=,从而1832ABC S bc ∆==.方法二:由余弦定理得222cos 2a c bB ac +-=,即24320a a --=.()()480a a +-=.因为0a >,所以8a =.1sin 832ABC S ac B ∆=⋅=.⑵ 要求面积,先求一个角,已知三边,可以用余弦定理求一角:222416911cos 21616a cb B ac +-+-===,经典精讲∴2315sin 1cos 16B B =-=, ∴113153sin 241522164ABC S ac B ∆==⋅⋅⋅=. ⑶85.【铺垫】已知ABC △的三边长分别为a b c ,,,且面积()22214ABC S b c a =+-△,则A 等于( ) A .45 B .30 C .120 D .15【解析】 A()2221112cos cos 442ABC S b c a bc A bc A =+-=⨯=△,又1sin 2ABC S bc A =△∵,sin cos A A =∴,45A =∴【例8】 已知三角形面积解三角形ABC △中,角A B C ,,的对边分别为a b c ,,,22sin 3cos C C =,7c =,又ABC △的面积为332, 求⑴角C 的大小;⑵a b +的值【解析】⑴由已知得()221cos 3cos C C -=,1cos 2C =∴或cos 2C =-(舍), ∴在ABC △中,60C =⑵133sin 22ABC S ab C ==△∵,133sin 6022ab =∴,6ab =∴,又2222cos c a b ab C =+-∵,()22272cos a b ab C =+-∴,227a b ab +-=∴,2213a b +=∴,222255a b a b ab +=++==∴【演练1】 (2010北京卷文理10)在ABC △中,若2π133b c C ==∠=,,,则________a = 【解析】1 方法一: 由余弦定理222cos 2a b c C ab+-=得, 220a a +-=.∵0a >,∴1a =.方法二: 由正弦定理sin sin b c B C =得,1sin 2B =,π6B =或5π6,又因为b c <,即B C <, 所以π6B =,∴2ππππ366A =--=.∴1a b ==.【演练2】 在ABC △中,角A B C ,,的对边分别为a b c ,,,若()222tan 3a c b B ac +-=,则角B 的值为( ).实战演练A .π6 B . π3 C .π6或5π6 D . π3或2π3【解析】D由余弦定理2222cos a c b ac B +-=及()222tan a c b B +-得, sin B =. 所以π3B =或2π3.【演练3】 在ABC △中,已知222sin sin sin sin B C A A C --=,则角B 的大小为( )A .150︒B .30︒C .120︒D .60︒ 【解析】A由222sin sin sin sin B C A A C --及正弦定理可得222b c a --=即得222cos 2a c b B ac +-==,∴150B =︒.【演练4】 在ABC △中,角A B C ,,所对的边分别是a b c ,,,1tan 2A =,cos B = 若ABC △最长的边为1,则最短边的长为( ).A B C D 【解析】D由cos B =B 为锐角,∴1tan 3B =,故()()tan tan πtan C A B A B =--=-+tan tan 11tan tan A BA B+=-=--⋅①, 由①知135C ∠=︒,故c 边最长,即1c =,又tan tan A B >,故b 边最短,∵sin B =,sin C =sin sin b c B C =,∴sin sin c B b C ==【演练5】(2011西城一模文15) 设ABC △的内角A ,B ,C 所对的边长分别为a ,b ,c ,且4cos 5B =,2b =. ⑴ 当30A =︒时,求a 的值;⑵ 当ABC △的面积为3时,求a c +的值.【解析】 ⑴ 因为4cos 5B =,所以3sin 5B =,由正弦定理sin sin a b A B =,可得10sin303a =︒,所以53a =.⑵ 因为ABC △的面积1sin 2S ac B =,3sin 5B =,所以3310ac =,10ac =.由余弦定理2222cos b a c ac B =+-,得222284165a c ac a c =+-=+-,即2220a c +=.所以2()220a c ac +-=,2()40a c +=,所以,a c +=概念要点回顾1.正弦定理公式;余弦定理公式22a b+-= .2.三角形面积公式S=.盲人数学家——欧拉1783年9月18日,法国人蒙高尔费兄弟举行了第二次热气球升空试验。
华东师大版)九年级数学上册《24.4解直角三角形》教学设计
2.提问:“我们已经学习了勾股定理,那么如何利用勾股定理来解决直角三角形中的未知问题呢?”通过这个问题,引发学生对解直角三角形方法的思考。
3.引导学生回顾Βιβλιοθήκη 股定理的内容,为新课的学习做好知识铺垫。
c.正切函数:在直角三角形中,对于角A,正切函数定义为对边与邻边的比值,即tanA =对边/邻边。
2.通过具体实例,讲解如何运用三角函数解决直角三角形中的未知问题,如求角度和边长。
3.结合计算器,让学生学会计算三角函数的值,并解决实际问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何利用三角函数解决实际问题?
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握三角函数的定义和性质,特别是正弦、余弦、正切函数在实际问题中的应用。
2.能够运用勾股定理和三角函数解决直角三角形中的未知角度和边长问题,以及解决一些实际问题。
3.培养学生运用数形结合、分类讨论等数学思想方法分析和解决问题的能力。
(二)教学设想
1.教学导入:通过生活中的实例,如测量旗杆高度、楼间距等,引出解直角三角形的问题,激发学生的学习兴趣,使其认识到数学与现实生活的紧密联系。
4.教学策略:
a.分层教学:针对学生的不同水平,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
b.适时反馈:在教学过程中,及时关注学生的学习情况,给予针对性的指导和鼓励,提高学生的学习信心。
5.教学评价:
a.过程性评价:关注学生在课堂讨论、实践操作等方面的表现,鼓励学生积极参与,培养其探究精神和创新能力。
(新高考)高考二轮精品专题六 三角函数与解三角形 教师版
1.高考对三角函数的考查主要在于三角函数的定义、图象和性质、三角恒等变换,主要考查三角函数图象的变换、三角函数的性质(单调性、奇偶性、周期性、对称性及最值),三角恒等变换通常还与解三角交汇命题.2.解三角形的考查主要在具体面积、角的大小、面积与周长的最值或范围的考查,本部分要求对三角恒等变换公式熟悉.一、三角函数1.公式(1)扇形的弧长和面积公式如果半径为r 的圆的圆心角α所对的弧的长为l ,那么角α的弧度数的绝对值是l rα=.相关公式:①l =|α|r②21122S lr r α==(2)诱导公式:正弦余弦正切α+k ⋅2πsin αcos αtan αα+π―sin α―cos αtan α―α―sin αcos α―tan απ―αsin α―cos α―tan α2πα+cos α―sin α2πα-cos αsin α32πα+―cos αsin α32πα-―cos α―sin α(3)同角三角函数关系式:sin 2α+cos 2α=1,sin tan cos ααα=(4)两角和与差的三角函数:sin(α+β)=sin αcos β+cos αsin βsin(α―β)=sin αcos β―cos αsin βcos(α+β)=cos αcos β―sin αsin βcos(α―β)=cos αcos β+sin αsin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(5)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-(6)降幂公式:21cos 2sin 2αα-=,21cos 2cos 2αα+=2.三角函数性质性质y =sin x ,x ∈Ry =cos x ,x ∈R奇偶性奇函数偶函数单调性在区间()2,222k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z 上是增函数,在区间()32,222k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 上是减函数在区间[―π+2kπ,2kπ](k ∈Z )上是增函数,在区间[2kπ,π+2kπ](k ∈Z )上是减函数最值在()22x k k ππ=+∈Z 时,y max ;在()22x k k ππ=-∈Z 时,y min在x =2kπ(k ∈Z )时,y max ;在x =2kπ+π(k ∈Z )时,y min对称中心(kπ,0)(k ∈Z )(),02k k ππ⎛⎫+∈⎪⎝⎭Z 对称轴()2x k k ππ=+∈Z x =kπ(k ∈Z )正切函数的性质图象特点定义域为{|,}2x x k k ππ≠+∈Z 图象与直线2x k k ππ=+∈Z ,没有交点最小正周期为π在区间,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,上图象完全一样在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是增函数图象在,22k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z ,内是上升的对称中心为,02k k π⎛⎫∈⎪⎝⎭Z ,图象关于点,02k k π⎛⎫∈⎪⎝⎭Z ,成中心对称3.函数y =A sin(ωx +φ)的图象及变换(1)φ对函数y =sin(x +φ)的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A(A >0)对y =A sin(ωx +φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形1.正余弦定理定理正弦定理余弦定理内容(为外接圆半径);;变形形式,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在中,已知,和角时,解得情况如下:为锐角为钝角或直角直角图形关系式解的个数一解两解一解一解上表中为锐角时,,无解.为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos 356πα⎛⎫+= ⎪⎝⎭,则x 0=( )ABCD【答案】C【解析】∵,02πα⎛⎫∈-⎪⎝⎭,∴,636πππα⎛⎫+∈- ⎪⎝⎭,又3cos 65πα⎛⎫+=< ⎪⎝⎭,所以,063ππα⎛⎫+∈- ⎪⎝⎭,所以4sin 65πα⎛⎫+=- ⎪⎝⎭,∴0cos cos cos cos sin sin 666666x ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=-⨯=,故选C .【点评】本题容易忽视6πα+的范围,而导致sin 6πα⎛⎫+⎪⎝⎭出错.2.已知 tan 2θ―4tan θ+1=0,则2cos 4πθ⎛⎫+= ⎪⎝⎭( )A .12B .13C .14D .15【答案】C(70分钟)经典训练题【解析】由 tan 2θ―4tan θ+1=0,可得1tan 4tan θθ+=,所以sin cos 4cos sin θθθθ+=,即22sin cos 4cos sin θθθθ+=⋅,即1cos sin 4θθ⋅=,211cos 2121sin 212sin cos 124cos 422224πθπθθθθ⎛⎫++-⨯⎪--⎛⎫⎝⎭+===== ⎪⎝⎭,故选C .【点评】本题考查同角三角函数的关系、降幂公式、二倍角公式,解答本题的关键是由条件有1tan 4tan θθ+=,从而可得1cos sin 4θθ⋅=,由21cos 21sin 22cos 422πθπθθ⎛⎫++ ⎪-⎛⎫⎝⎭+== ⎪⎝⎭12sin cos 2θθ-=可解,属于中档题.3.已知函数f (x )=2sin(ωx +φ),(0,2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .―2B .2C .―3D .―1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=,∴f (x )=2sin(x +φ),将点,14A π⎛⎫⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考了三角函数图象,以及三角函数的性质和三角函数图象的变换,属于中档题.4.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin C <sin B cos A ,由内角和定理可得sin(A +B)<cos A sin B ,化简可得:sin A cos B <0,∴cos B <0,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.5.(多选)已知函数f(x)=3sin x +sin 3x ,则( )A .f(x)是奇函数B .f(x)是周期函数且最小正周期为2πC .f(x)的值域是[―4,4]D .当x ∈(0,π)时,f(x)>0【答案】ABD【解析】A .f (―x )=3sin(―x )+sin(―3x )=―3sin x ―sin 3x =―f (x ),故f(x)是奇函数,故A 正确;B .因为y =sin x 的最小正周期是2π,y =sin 3x 的最小正周期为23π,二者的“最小公倍数”是2π,故2π是f(x)的最小正周期,故B 正确;C .分析f(x)的最大值,因为3sin x ≤3,sin 3x ≤1,所以f(x)≤4,等号成立的条件是sin x =1和sin 3x =1同时成立,而当sin x =1,即()22x k k ππ=+∈Z 时,()3362x k k ππ=+∈Z ,sin 3x =―1,故C 错误;D .展开整理可得()2()3sin sin cos 2cos sin 2sin 4cos 2f x x x x x x x x =++=+,易知当x ∈(0,π)时,f(x)>0,故D 正确,故选ABD .【点评】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数()f x 为奇函数或偶函数的必要非充分条件;(2)()()f x f x -=-或()()f x f x -=是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.二、解答题.6.已知m =(2sin x ,sin x ―cos x ),n =(3cos x ,sin x +cos x ),函数f(x)=m ⋅n .求函数f(x)的最大值以及取最大值时x 的取值集合.【答案】f(x)的最大值为2,,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【解析】()()()cos sin cos sin cos f x x x x x x x =⋅=+-+m n2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,所以函数f(x)的最大值为2,当2262x k πππ-=+,即,3x k k ππ=+∈Z 取得,即集合为,3x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z .【点评】本题与向量的坐标运算结合,考查三角函数的最值,属于基础题.7.已知函数2()cos 222x x x f x =+-.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围.【答案】(1)[―2,2];(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()2cos 2sin(2224x x x f x x x x π=+-==+,令4U x π=+,∵x ∈[0,π],5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为[―2,2].(2)()2sin()(0)4f x x πωωω=+>,∵f(ωx)=3,2sin(4x πω∴+=,即sin()4x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z ,由于方程f(ωx)=3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin(ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.8.已知函数f(x)=3sin x cos x +cos 2x +1.(1)求f(x)的最小正周期和值域;(2)若对任意x ∈R ,2()()20f x k f x -⋅-≤的恒成立,求实数k 的取值范围.【答案】(1)最小正周期π,值域为15,22⎡⎤⎢⎥⎣⎦;(2)1710k ≥.【解析】(1)f(x)=3sin x cos x +cos 2x +1cos 21133212cos 2sin 222262x x x x x π+⎛⎫=++=++=++ ⎪⎝⎭,∴f(x)的为最小正周期22T ππ==,值域为()15,22f x ⎡⎤∈⎢⎥⎣⎦.(2)记f(x)=t ,则15,22t ⎡⎤∈⎢⎥⎣⎦,由f 2(x)―k ⋅f(x)―2≤0恒成立,知t 2―kt ―2≤0恒成立,即kt ≥t 2―2恒成立,∵t >0,∴222t k t t t-≥=-.∵()2g t t t =-在15,22t ⎡⎤∈⎢⎥⎣⎦时单调递增,max 5541722510g g ⎛⎫==-= ⎪⎝⎭,∴k 的取值范围是1710k ≥.【点评】本题主要考查了三角函数的恒等变换的应用,正弦函数的性质,考查了函数思想,属于中档题.9.△ABC 的内角A ,B ,C 的对边为a ,b ,c ,且3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C .(1)求cos A 的值;(2)若△ABC 的面积为,求a +b +c 的最小值.【答案】(1)13;(2)4+.【解析】(1)由3(sin B +sin C )2―3sin 2(B +C)=8sin B sin C ,∵A +B +C =π,所以228(sin sin )sin sin sin 3B C A B C +=+,由正弦定理可得228()3b c a bc +=+,则22223b c a bc +-=,由余弦定理可得2221cos 23b c a A bc +-==.(2)由1cos 3A =,得sin A =,∵1sin 2ABC S bc A ==△,∴bc =12,由22223b c a bc +-=,得222224216333a b c bc bc bc bc =+-≥-==,∴a ≥4,当且仅当b =c =23时,等号成立.又b +c ≥2bc =43,当且仅当b =c =23时,等号成立.∴a +b +c ≥4+43,当且仅当b =c =23时,等号成立.即a +b +c 的最小值为4+.【点评】求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a +b ,ab ,a 2+b 2之间的等量关系与不等关系,然后利用函数或基本不等式求解.10.设函数f(x)=12cos 2x ―43sin x cos x ―5.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=―5,a =3,求△ABC 周长的取值范围.【答案】(1)π,[―43+1,43+1](2)(3+3,33].【解析】(1)f (x )=12cos 2x ―43sin x cos x ―5=12cos 2x ―23sin 2x ―56cos 221216x x x π⎛⎫=-+=++ ⎪⎝⎭,T π∴=,值域为[―43+1,43+1].(2)由f(A)=―5,可得212cos cos A A A =,因为三角形为锐角△ABCsin A A =,即tan A =,3A π=,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,22sin 2sin()3c C B π==-,所以212sin sin()2(sin sin )32a b c B B B B B π⎡⎤++=++-=++⎢⎥⎣⎦32(sin ))26B B B π==++,因为△ABC 为锐角三角形,所以02B π<<,02C π<<,即022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,所以2363B πππ<+<sin(16B π<+≤,即36B π+<+≤,所以周长的取值范围为区间(3+3,33].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域,求周长的取值范围,是常用解法.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a +b )(sin A ―sin B )=(b +c )sin C .(1)求角A 的大小;(2)若点D 是BC 的中点,且AD =2,求△ABC 的面积的最大值.【答案】(1)23π;(2)23.【解析】(1)由题意得(a +b)(a ―b)=(b +c)c ,∴b 2+c 2―a 2=―bc ,1cos 2A ∴=-,()0,A π∈,23A π∴=.(2)1()2AD AB AC =+u u u r u u u r u u u r ,()()2222211244AD AB AC AB AC AB AC AB AC =++⋅=+-⋅u u u r u u u r u u u r u u u r u u u r ,()1224AB AC AB AC ∴≥⋅-⋅,当且仅当AB =AC 时,等号成立,∴AB ⋅AC ≤8,11sin120822S AB AC =⋅︒≤⨯=故△ABC 的面积的最大值是23.【点评】用三角形中线向量进行转化是解题关键.12.如图,在△ABC 中,AB =2AC ,∠BAC 的角平分线交BC 于点D .(1)求ABD ADCS S △△的值;(2)若AC =1,BD =2,求AD 的长.【答案】(1)2;(2)1.【解析】(1)∵AD 为∠BAC 的角平分线,∴∠BAD =∠CAD ,即sin ∠BAD =sin ∠CAD,∴1sin 21sin 2ABDADC AB AD B AB AD S S AC AD A ACC D ⋅∠∠==⋅V V ,又∵AB =2AC ,∴2ABD ADC S S =△△.(2)由(1)知2ABD ADC S AB S AC ==△△,而1212ABDADC BC h S BC S CDCD h ⋅==⋅△△,2AB BD AC CD ∴==且AC =1,BD =2,∴2AB =,CD =∵∠BAD =∠CAD ,∴cos ∠BAD =cos ∠CAD ,在△ABD 中,22222422cos 2224AB AD BD AD AD BAD AB AD AD AD+-+-+∠===⋅⨯⨯,在△ACD 中,2222211122cos 2212AD AD AC AD CD CAD AC AD AD AD +-++-∠===⋅⨯⨯,∴2212242AD AD AD AD ++=,∴AD =1.【点评】本题考查三角形面积公式和余弦定理的应用,解题的关键在于对角平分线的性质的理解和运用,考查解题和运用能力.13.在ΔABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b +c)(a +b ―c)=3ab .(1)求角C 的值;(2)若c =2,且ΔABC 为锐角三角形,求a +b 的取值范围.【答案】(1)3C π=;(2)(23,4].【解析】(1)由题意知(a +b +c)(a +b ―c)=3ab ,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵C ∈(0,π),∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A B π===a A =,b B =,∴)2sin sin sin sin 3a b A B A A π⎡⎤⎛⎫+=+=+- ⎪⎢⎥⎝⎭⎣⎦2cos 4sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,又∵ΔABC 为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上a +b 的取值范围为(23,4].【点评】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.一、选择题.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“b cos A ―c <0”,是“△ABC 为锐角三角形”的( )条件.A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要【答案】C高频易错题即sin(A +B)=sin A cos B +sin B cos A >sin B cos A ,∴sin A cos B >0,因为sin A >0,∴cos B >0,所以B 为锐角.当B 为锐角时,△ABC 不一定为锐角三角形;当△ABC 为锐角三角形时,B 一定为锐角,所以“b cos A ―c <0”是“△ABC 为锐角三角形”的必要非充分条件,故选C .【点评】判断充分必要条件,一般有三种方法:(1)定义法;(2)集合法;(3)转化法.我们要根据实际情况灵活选择方法,本题选择的是定义法判断充分必要条件.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________.【答案】(22,23)【解析】由sin2sin b a A A=,得4cos b A =,由0290045A A ︒<<︒⇒︒<<︒,01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos A A ︒<<︒⇒<<cos A <<b =4cos A ∈(22,23).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.三、解答题.3.已知a >0,函数()2sin(2)26f x a x a b π=-+++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,―5≤f (x )≤1.(1)求常数a ,b 的值;(2)设()2g x f x π⎛⎫=+ ⎪⎝⎭且lg g (x )>0,求g (x )的单调区间.【答案】(1)2a =,5b =-;(2)递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【解析】(1)由0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦,所以[]2sin(2)2,6a x a a π-+∈-,所以f (x )∈[b ,3a +b],又因为―5≤f (x )≤1,可得531b a b =-⎧⎨+=⎩,解得2a =,5b =-.(2)由(1)得()4sin(2)16f x x π=-+-,则()74sin(214sin(21266g x f x x x πππ⎛⎫=+=-+-=+- ⎪⎝⎭,又由lg g (x )>0,可得g (x )>1,所以4sin(2116x π+->,即1sin(2)62x π+>,所以5222666k x k k πππππ+<+<+∈Z ,,当222662k x k k πππππ+<+≤+∈Z ,时,解得6k x k k πππ<≤+∈Z ,,此时函数g (x )单调递增,即g (x )的递增区间为,6k k k πππ⎛⎫+∈ ⎪⎝⎭Z ,;当5222266k x k k πππππ+<+<+∈Z 时,解得63k x k k ππππ+<<+∈Z ,,此时函数g (x )单调递减,即g (x )的递减区间为,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ,.【点评】本题主要考查了三角函数的图象与性质的综合应用,其中解答中根据三角函数的性质,求得函数的解析式,熟练应用三角函数的性质是解答的关键,着重考查推理与运算能力.一、选择题.1.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则S ABCD 的最大值是()AB.CD .23【答案】A【解析】如图,记∠COP =α,在Rt △OPC 中,2cos OB α=,2sin BC α=,在Rt △OAD中,OA DA BC α===,所以2cos AB OB OA αα=-=,设矩形ABCD 的面积为S,(2cos )2sin S AB BC ααα=⋅=⋅精准预测题24sin cos 2sin 22ααααα==+-)6πα=+,由03πα<<,所以当262ππα+=,即6πα=时,S =,故选A .【点评】本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行求解.2.已知函数()2sin 26f x x π⎛⎫=+⎪⎝⎭,现将()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为( )A .221124x y +=B .sin 3y x π⎛⎫=+⎪⎝⎭C .2sin 43y x π⎛⎫=+⎪⎝⎭D .2sin 3y x π⎛⎫=+⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移12π个单位得2sin 22sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2sin 43y g x x π⎛⎫==+⎪⎝⎭,故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin[ω(x +φ)]=sin(ωx +ωφ),而不是y =sin(ωx +),考查运算求解能力,是基础题.3.(多选)如图是函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象,则下列说法正确的是( )A .ω=2B .,06π⎛⎫-⎪⎝⎭是函数,f (x )的一个对称中心C .23πϕ=D .函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【解析】由题知,A =2,函数f (x )的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==,故A 正确;因为1111112sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11262k ππϕπ+=+,k ∈Z ,解得423k πϕπ=-,k ∈Z ,又|φ|<π,所以23πϕ=,故C 正确;函数()22sin 23f x x π⎛⎫=+⎪⎝⎭,因为22sin 22sin 06633f ππππ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以,06π⎛⎫-⎪⎝⎭不是函数f (x )的一个对称中心,故B 错误;令23222232m x m πππππ+≤+≤+,m ∈Z ,得51212m x mx πππ-≤≤+,m ∈Z ,当m =―1时,1371212x ππ-≤≤-,因为4137,,51212ππππ⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数f (x )在区间4,5ππ⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确,故选ACD .【点评】已知()(sin 0,0)()f x A x A ωϕω+>>=的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由2Tπω=,即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=(或0x ωϕπ+=),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.二、解答题.4.已知函数f(x)=cos(ωx)(ω>0)的最小正周期为π.(1)求ω的值及函数()()0,42g x x f x x ππ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎝⎭⎣⎦,的值域;(2)在△ABC 中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,若0,2A π⎛⎫∈ ⎪⎝⎭,()12f A =-,△ABC 的面积为33,b ―c =2,求a 的值.【答案】(1)ω=2,值域为[―1,2];(2)4.【解析】(1)因为函数f(x)=cos(ωx)的最小正周期为π,由2T ππω==,2ω=,又因为ω>0,所以ω=2.此时f(x)=cos 2x ,则得()2cos 24g x x x π⎛⎫=-- ⎪⎝⎭,即g(x)=3sin 2x ―cos 2x ,即()2sin 26g x x π⎛⎫=-⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以所求函数的值域为[―1,2].(2)由题意得1cos 22A =-,因为0,2A π⎛⎫∈ ⎪⎝⎭,则得2A ∈(0,π),所以223A π=,解得3A π=,因为△ABC 的面积为33,则得1sin 2bc A =,即1sin 23bc π=,即bc =12.又因为b ―c =2,由余弦定理,得a =b 2+c 2―2bc cos A =b 2+c 2―bc =(b ―c )2+bc =22+12=4,所以a =4.【点评】本题考查求三角函数的值域,考查余弦定理解三角形,以及三角形面积公式.三角函数问题中,首先需利用诱导公式、二倍角公式、两角和与差的正弦(余弦)公式化函数为一个角的一个三角函数形式(主要是f(x)=A sin(ωx +ϕ)+k 形式),然后利用正弦函数性质确定求解.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B ―C )=c sin(B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为23,求△ABC 的周长.【答案】(1)3C π=;(2)6+23.【解析】(1)∵a sin(A +B ―C)=c sin(B +C),∴sin A sin(π―2C)=sin C sin A ,∴2sin A sin C cos C =sin C sin A ,∵sin A sin C ≠0,1cos 2C ∴=,0C π<<,3C π∴=.(2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得,c 2=12,c =23,此时周长为6+23.【点评】本题主要考查了三角形的内角和诱导公式在三角化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.6.如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,∠MPN 为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:AD =6米,AE =6米,AP =2米,4MPN π∠=.记∠EPM =θ(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围;(2)求S 的最小值.【答案】(1)4sin cos PM θθ=+,PN =,30arctan 34πθ≤≤-;(2)8(2―1)平方米.【解析】(1)在△PME 中,∠EPM =θ,4PE AE AP =-=米,4PEM π∠=,34PME πθ∠=-,由正弦定理得sin sin PM PEPEM PME=∠∠,所以sin 4sin sin cos PE PEM PM PME θθ⨯∠===∠+;同理在PNE △中,由正弦定理得sin sin PN PEPEN PNE=∠∠,所以sin sin PE PEN PN PNE ⨯∠===∠当M 与E 重合时,θ=0;当N 与D 重合时,tan ∠APD =3,即∠APD =arctan 3,3πarctan 3arctan 344πθπ=--=-,所以30arctan 34πθ≤≤-.(2)△PMN 的面积214sin 2cos sin cos S PM PN MPN θθθ=⨯⨯∠=+481cos 21sin 2cos 21sin 222θθθθ===++++,因为30arctan 34πθ≤≤-,所以当242ππθ+=,即30,arctan 384ππθ⎡⎤=∈-⎢⎥⎣⎦时,S)81=-,所以可视区域△PMN 面积的最小值为8(2―1)平方米.【点评】本题考查解三角形的应用.掌握三角函数的性质是解题关键.解题方法是利用正弦定理或余弦定理求出三角形的边长,面积,利用三角函数的恒等变换化函数为基本三角函数形式,然后由正弦函数性质求最值.7.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若23cos 2A +cos 2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值;(2)若a =3,3A π=,求b +c 的取值范围.【答案】(1)5b =;(2)b +c ∈(3,23].【解析】(1)22223cos cos 223cos 2cos 10A A A A +=+-=Q ,∴21cos 25A =,又∵A 为锐角,1cos 5A =,而a 2=b 2+c 2―2bc cos A ,即2121305b b --=,解得b =5或135b =-(舍去),∴b =5.(2)由正弦定理可得()22sin sin 2sin sin 36b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,203B π<<Q ,∴5666B πππ<+<,∴1sin 126B π⎛⎫<+≤ ⎪⎝⎭,∴b +c ∈(3,23].【点评】本题考查三角函数的恒等变换,三角形的正弦定理和余弦定理的运用,以及运算能力,属于中档题.。
人教版数学九年级下册 28.2.1 解直角三角形 课件(共27张PPT)
学习目标
1.了解并掌握解直角三角形的概念. 2.理解直角三角形中的五个元素之间的联系. 3.学会解直角三角形.
课堂导入
如图是意大利的比萨斜塔,设塔顶中 心点为 B,塔身中心线与垂直中心线 的夹角为∠A,过点 B 向垂直中心线 引垂线,垂足为点 C .在 Rt△ABC 中, ∠C =90°,BC =5.2 m,AB =54.5 m.
解这个直角三角形.
A
2
C
6
B
2.如图,在 Rt△ABC 中,∠C=90°,∠B=35°,
b=20,解这个直角三角形 (结果保留小数点后一位). A
c
b
35°
20
B
a
C
3.在 Rt△ABC 中,∠C=90°,cosA = 13,BC = 5, 试 求AB 的长.
随堂练习
D ∠A≠30° ,AC =2
1.解直角三角形时,已知其中的两个元素中,至少 有一个是边. 2.在解直角三角形时,先画出一个直角三角形,标明 已知元素,然后确定锐角,再确定它的对边和邻边.
直角三角形中的边角关系
如图,在 Rt△ABC 中,∠C =90°,∠A,∠B,∠C
所对的边分别为 a,b,c,那么除直角∠C 外的五个
元素之间有如下关系:
B
1.三边之间的关系:a2 +b2 =c2 (勾股定理) =90°; c a
A bC
B ca A bC
新知探究 知识点2:解直角三角形的基本类型及解法
已知两边解直角三角形的方法
1.已知斜边和一直角边:通常先根据勾股定理求出 另一条直角边,然后利用已知直角边与斜边的比得 到一个锐角的正弦(或余弦)值,求出这个锐角,再 利用直角三角形中的两锐角互余求出另一个锐角. 2.已知两直角边:通常先根据勾股定理求出斜边, 然后利用两条直角边的比得到其中一个锐角的正切 值,求出该锐角,再利用直角三角形中的两锐角互 余求出另一个锐角.
1.4 解直角三角形(教案)-北师大版数九年级下册
第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。
人教A版高中数学必修5教师用书(预学+导学+固学+思学):第一章 解三角形
课程纲要课程类型:基础学科类课程资源:新编主持开发老师:参与开发老师:学习对象:高中一、二年级学生规模预设人学习时限:共36课时场地设备:教学班教室学生基本情况分析班级学生人数上学期测试情况分析优秀良好一般人数百分率人数百分率人数百分率最优学生姓名后进学生姓名特殊学生情况说明姓名情况说明一、课程元素1.课程内容本模块包含解三角形、数列、不等式三章内容.2.课程目标(1)解三角形①通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理;②能初步运用正弦定理、余弦定理解斜三角形;③能够运用正弦定理、余弦定理等知识和方法,解决一些与测量和几何计算有关的实际问题;④能够运用正弦定理、余弦定理解决一些三角恒等式的证明以及三角形中的有关计算问题.(2)数列①通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是特殊的函数;②了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项,能求某些数列的通项公式;③掌握等差数列、等差中项的概念,会用定义判定数列是否为等差数列;④掌握等差数列的通项公式及推导方法,会类比直线、一次函数等有关知识研究等差数列的性质,能运用数列通项公式求有关的量:a1,d,n,a n;⑤掌握等差数列的前n项和公式、通项公式,对于a1、d、n、a n、S n,已知三个量能求另外两个量,能灵活运用公式解决与等差数列有关的综合问题,能构建等差数列模型解决实际问题;⑥掌握等比数列、等比中项的概念,能利用定义判定数列是否为等比数列;⑦掌握等比数列的通项公式及推导方法,能类比指数函数等有关知识研究等比数列的性质,能熟练运用公式求有关的量:a1,q,n,a n ;⑧掌握等比数列的前n项和公式、通项公式,会运用通项公式、前n项和公式,对于a1、q、n、a n、S n,已知三个量能求另外两个量,能灵活运用公式解决与等比数列有关的综合问题,能构建等比数列模型解决实际问题;⑨提高观察、概括、猜想、运算和论证的能力,能通过类比、转化等方法解决有关数列的一些问题.(3)不等式①通过具体情境,感受现实世界和生活中存在着大量的不等关系,了解不等式(组)的实际背景;②理解不等式的性质,能运用不等式的性质证明简单的不等式及解不等式;③经历从实际情景中抽象出一元二次不等式模型的过程,通过图象了解一元二次不等式与相应函数、方程的关系;④会解一元二次不等式,并解决一些实际问题;⑤了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组的解集;⑥能从实际问题中抽象出一些简单的二元线性规划问题,并能加以解决;⑦理解基本不等式,能用基本不等式解决简单的最大(小)值问题;⑧能将实际问题转化为数学问题,建立不等式模型,求解不等式.二、课程实施1.课时安排本模块安排30个课时.(具体见目录)2.学习时间安排学习时间从年月日至年月日.3.教材重难点分析第一章解三角形学习重点:运用正弦定理、余弦定理探求任意三角形的边角关系,解决与之相关的计算问题,运用这两个定理解决一些测量以及几何计算的有关问题.学习难点:两个定理的推导以及运用两个定理解决实际问题.第二章数列学习重点:数列的概念,等差数列、等比数列的通项公式和前n项和公式.学习难点:等差数列、等比数列的通项公式与前n项和公式的推导,以及它们的综合运用.第三章不等式学习重点:一元二次不等式的解法、基本不等式的应用以及简单的线性规划问题.学习难点:不等式的性质及其证明,不等式在实际问题中的应用.三、教学建议“学案导学法”根据不同的学习内容、不同的教学环节,教师可以采用三种不同的组织形式:分组讨论式、学生主讲式与教师主讲式.分组讨论式,把全班同学分成若干学习小组,一般按4至6名学生为一组划分,每个组都要有上中下三个层次的学生,指定其中一人为组长(也可以选举产生或自荐产生,过一段时间后需调换),由他组织学生进行自习讨论、分析讨论等活动,形成结论后推举一位为代表发言,与全班交流,其他人可以补充.各组之间可以采用多种形式的交流、竞赛等.注意:此种组织形式如果组织不当,将导致学生学习成绩两极分化更加严重.为避免这种情况,在采用此种组织形式时,需培养后进生,提高他们的学习成绩,教师要有意识地引导小组其他同学,尽量让他们鼓励后进生积极发言参与讨论或作为本组代表进行展示.学生主讲(教师在旁边指导)式,可由教师指定一人(也可以是几位学生合作,主讲人由学习小组推荐或自荐),先自行学习(与同学讨论及请求老师帮助与指导),然后在班级内主讲,主讲过程中教师要给予必要的指导和帮助.教师主要是利用他的学习活动带动全班学习.注意:此种组织形式如果组织不当,将会把学习成绩较差的、比较内向的学生排斥在外,需要十分重视.因此采用此种组织形式时,教师要有意识地让学习成绩中下的学生参与主讲,要多加鼓励,以提高他们学习积极性.如果是学习成绩较好的学生进行主讲,那么,教师要积极引导学习成绩中下的学生提出点评(教师可以给予提示或帮助).教师主讲式,就是教师主讲,采用设疑、提问、解惑、拓展等手段,引导学生认识、理解、掌握、探索,从而起到能力提升与素质提高的作用.这里的主讲式与原教学大纲时的主讲式是截然不同的,原主讲式近似于“报告式”,这里是“主持讨论式”,任何学生都可以提出不同意见,教师也可以故意设置陷阱,以揭示问题.注意:此种组织形式极易让课堂回归到原来教师一言堂的授课方式,因此,教师务必在问题设置、设疑提问、点拨探究等方面引起充分重视.这三种组织形式可以说是构成“学案导学法”的三个教学元素,教师要根据学习内容、学习时间、学生状态统筹兼顾,灵活安排,进行科学的组合,以充分发挥教学的有效性.四、课程观察安排本模块教学过程中,安排观察课两次,具体如下:课程观察课安排观察课课题实施时间实施班级负责人实施人说明(目的、条件、评估)五、测试与评估本模块结束后,采用书面考试的形式对学生的学习情况进行测试评估,考试时间120分钟,满分150分,题目难度比为容易题∶中档题∶难题=5∶4∶1.由学校统一组织命题,由教研组安排教师统一阅卷,测试成绩达到90分以上的均可获得2学分,对测试达不到标准的学生,给予一次补考机会.六、使用说明(一)构成本书集预、导、固、思四层级于一体,是一本真正意义上的导学案.本书给广大师生提供了一个选择的平台.学校、教师在使用时要根据各个学校的实际情况,其中包括学校课时安排、学生学习基础情况、学生学习态度情况、学校硬件设施情况等,对本导学案所列内容进行有效调整(如取舍、增减、重组等).每个模块都设置了《课程纲要》,目的是让学生能全面了解本模块的知识构成、课程目标、学习重点与难点及大致的学习时间与方法.它包含如下几个部分:课程元素:包括课程内容、课程目标,起到整体“导向”的作用.课程实施:包括课时安排、学习时间安排、教材重难点分析.教学建议:主要介绍“学案导学法”的几种组织形式.每章开始都设置了课标要求、单元结构和教学建议.单元结构以知识分类、知识综合、知识应用、知识拓展等形式描述出了本章的知识结构及与其他知识的联系,形成了完整的知识体系.(二)课时安排本书根据新课程标准与学校的教学实际情况,以方便教师教学与学生学习为目的,进行了科学的课时划分.此外,为方便教师进行每章复习与模块复习,每章结束与模块结束后均设置了复习课及章末测试与模块测试,供教师选择使用.(三)课时结构每课时分四个学习目标进行编写,方便学生自习与讨论.每课时开始,首先安排了《课程学习目标》,给学生指明了通过本课时的学习要达到的目标,让学生明确学习目标,起到“导向”的作用.第一层级为《知识记忆与理解》,包含两个内容:一是《知识体系梳理》,创设一个学生感兴趣又简单的情境,主要是引导学生认真阅读教材,一方面掌握书本基础知识,另一方面掌握“自习方法”,实施“依法自习”;二是《基础学习交流》,主要是引导学生应用教材的基础知识通过分析交流,解决简单的基础问题,初步学会分析与解决问题,是“导思”的初级阶段.第二层级为《思维探究与创新》,包含两个内容:一是《重点难点探究》,主要是根据知识要点,结合近年来高考趋势设计出具有代表性的探究题型,引导学生应用教材知识,通过“方法指导与解析”,解决有关问题,达到能力与技能的提升,起到“基本技能应用”的作用;二是《思维拓展应用》,主要是依据《重点难点探究》中的探究题型,设置了具有互补性、拓展性的问题,供学生讨论训练,达到巩固知识、提升能力的目的,起到“全面提升能力”的作用.第三层级为《技能应用与拓展》,包含两个内容:一是《基础智能检测》,主要是引导学生应用前面所学的基础知识通过智能化、迁移化,解决一些具有灵活性的基础问题;二是《全新视角拓展》,主要是结合近年来的高考真题、改编题或大型考试试题中对本节课相关知识的涉及作分析与讲解.第四层级为《总结评价与反思》,包含两个内容:一是《思维导图构建》,主要是根据学生的学习特点、思维情况、学习效果等方面对重点难点用形象的图形来复述;二是《学习体验分享》,主要是要求学生根据自身对本节课的参与情况、学习效果、学习体会等方面作出一个客观的评价.(四)课时学案的使用方法在进行教学时,教师应根据学校、学生的实际情况对导学案中的有关内容进行必要的选择与增减.对导学案的使用,一般按“自习预习、相互讨论——展示交流、相互补充——点评方法、总结规律——课外练习、反思评价”的循环形式,循序渐进.具体操作模式:要根据班级情况(学生学习基础与人数)确定分成若干学习小组,注意这里说的学习小组与原来班级的行政小组是有区别的,行政小组是属于班级组长管理范畴,各个学科是相同的,是相对固定的,由班主任负责分组;学习小组是由各学科教师根据教学需要而划分的,各个学科可以是不相同的,而且它呈现动态架构形式,一段时间后学科教师应根据小组学习状态进行适当调整.每个组设立一名组长,各组之间学习成绩层次的人数应基本相同.第一环节自习预习、相互讨论在上课前由各小组对学案所列的内容(包括第一、二学习目标的所有内容)进行讨论,共同分析研究,完成所有问题.这项工作都是在课外进行的,时间一般为40~50分钟.教师在课前把学案交给组长,由他组织组员进行自习与讨论.要做到定时间、定地点、定内容,一般分三步进行.第一步:自主学习.根据学案所列的问题,由学生自行阅读教材,完成第一层级学习目标所列的两类问题(允许有些问题不会或解答错误).这一步工作要求学生独立完成,一般限时15~20分钟.学生完成后按要求交给组长,然后交换批改.注意问题:学习自觉性较差的学生可能不会完成任务,基础较差的学生会无法完成任务.采取措施:对学习自觉性较差的学生采取一定的强制手段,规定他们必须完成,给组长以批评教育的权力,教师要加强思想工作;对基础较差的学生,一段时间内可以允许他们只完成部分问题,要求他们先做到认真、自主,然后逐步提高要求,必要时教师可以预先给予适当的辅导.第二步:互相讨论.对第一步中出现的不同意见、第二层级学习目标所列问题,学生在组内展开讨论,形成统一意见,完成任务.这一步一般限时30分钟左右.注意问题:①讨论过程成为学习成绩较好的学生的“主题发言”过程,学习成绩较差与性格内向的学生默不作声,不发表意见.②错误意见或不成熟意见成为学生取笑的对象,久而久之,那些学生就不参加讨论了.采取措施:教师要注意引导学习成绩较好的学生一方面先不要抢着发言,另一方面要启发其他同学发言;对学习成绩较差与性格内向的学生要注意肯定、鼓励、表扬,让他们找到自信,达到踊跃参与的目的.第三步:达成共识.通过前两步的学习,在组内形成统一意见,并选出在课内展示的代表,鼓励组内学生自我推荐.同时对全组成员给出适当评价,并要求组内同学在讨论结束后继续反思讨论的过程与有关结论,对新发现、新问题鼓励组员在课堂展示时发表意见.注意问题:学习成绩较差与性格内向的学生不敢参与课堂展示.采取措施:初期采取一定的强制性措施,教师要动员学习成绩较好的学生帮助其他同学做好展示的准备工作.特别说明:对于一些内容比较少、比较容易的课时,第一环节也可以放在课堂内完成,但这只是在时间上的不同处理,在讨论方法、步骤、注意问题等方面都不能变化.第二环节展示交流、相互补充在课堂上,各组派代表在演示板(黑板、屏幕等)上展示各自的研究成果,组内成员可对此予以补充或说明.课堂展示是“学案导学法”的关键一环,对不同的问题要采用不同的展示形式,这一环节一般分两步进行.第一步:简单展示.第一层级学习目标所列问题一般可采用简单展示法,即由某个小组成员报出答案,教师直接在演示板上显示,其他各组如无异议,就不必议论,教师也只作简单总结或拓展.这段时间一般限制在5~8分钟.第二步:综合展示.第二层级学习目标所列问题一般采用综合展示法,即对某个问题先由某个小组成员展示出他们讨论的结论(课堂内一般是几个组同时进行,同一时间展示出所列的全部问题),组内成员可以补充,教师组织其他各组分别对各个问题的结论进行讨论、批评、修改或提出其他结论与方法,教师对大家所提问题、结论、方法等作出总结或拓展.对具有拓展性的问题可采用启发式展示法,即在教师的启发、点拨、提醒、引导下对问题逐步深入,挖掘规律性的结论.这段时间一般限制在25~30分钟.这一环节的注意问题与采取措施列表如下:注意问题采取措施1.课堂内缺乏组织,整个课采取逐题讨论,逐题总结堂如一盘散沙2.学生发表的意见不全面加强课前准备,预先全面解题,注意引导、启发、点拨3.问题较难,学生发表不出分解问题,对问题做一些铺垫意见4.课堂时间无法控制,造成注意统筹,课前分解好每题的讨论时间,控制使用拖课第三环节点评方法、总结规律教师总结归纳(也可以由学生进行归纳),把讨论得出的结论归纳成一般的理性结论,提炼解题的一般方法.同时对本课时学习情况进行总结,肯定成绩,指出问题及改进要求,安排课后练习、课程评价与下一课时的学习内容.第四环节课外练习、反思评价学生自主完成作业,完成后交由小组交流批改,教师也可以指定此项训练交由教师批改,完成后学生先各自反思本课时的学习过程,总结经验教训,再由小组或教师对每个学生这节课的学习情况(如学习态度、自觉性、创新性、成效性、进步性等)作出一个评价.评价要从鼓励进步的角度出发,作出有利于学生更好地发挥学习积极性的评价.这个环节一般需要一个小时左右.完成这一环节工作后,即转入下一课时的第一个环节,事实上,上一课时的第四环节与下一课时的第一环节是连在一起进行的.知识点新课程标准的要求层次要求领域目标要求正弦定理和余弦定理 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理 2.掌握正弦定理、余弦定理的变形公式 1.通过对三角形边角关系的探究学习,体验数学探究活动的过程,培养探索精神和创新意识 2.通过“应用举例”,提高应用数学知识解决实际问题的能力和实际操作的能力3.通过学习和运用,进一步体会数学的科学价值、应用价值,进而领会数学的人文价值,提高自身修养解三角形 1.能够运用正、余弦定理求解三角形的边、角2.能够运用正、余弦定理解斜三角形(无解型、一解型、两解型) 正、余弦定理在几何问题中的应用 1.能够运用三角形的面积公式计算与面积相关的问题2.能够运用正、余弦定理证明三角恒等式正、余弦定理在实际问题中的应用1.能够运用正、余弦定理解决不能到达位置的距离、高度的测量问题 2.能够运用正、余弦定理解决角度测量问题本章的重点内容主要有:两个定理(正弦定理和余弦定理)、利用两个定理解三角形、三角形的面积公式及其应用、利用两个定理解决一些实际问题等.在教学时应注意以下几点:1.在讲解两个定理时,要引导学生对它们进行全方位地理解,知道定理的来龙去脉,如何应用,应用时应注意的问题等.例如:对于余弦定理,要求学生要掌握它的推导过程(可利用向量来进行证明)、定理及其推论的形式、适用的解三角形的类型等.2.教学过程中要引导学生有意识地总结一些规律方法.例如:利用正弦定理和余弦定理判断三角形形状的方法,一种是将条件中的边全部化为角的正弦或余弦值,然后利用三角变换及三角形内角和定理得到角的关系,从而判断三角形的形状;另一种是将条件中的所有角的三角函数值化为边的关系,通过代数式的运算得出边的关系,从而判断出三角形的形状.3.引导学生多注意一些易错点.例如:当已知两边和其中一边的对角时,若用正弦定理求另一个边所对的角会产生解的不确定性,对于此类问题要通过各种方式提醒学生解题时要加倍小心,以免漏解或多解.4.解三角形实际上是三角函数知识在三角形中的应用,因此三角函数的有关知识,如三角函数的定义,相关公式(同角三角函数基本关系式、诱导公式、两角和与差的三角函数公式、二倍角公式等),三角函数的图象和性质等要求学生必须熟练掌握.第1课时 正 弦 定 理1.掌握正弦定理及其证明过程.2.根据已知三角形的边和角,利用正弦定理解三角形.3.能根据正弦定理及三角变换公式判断三角形的形状.重点:正弦定理在解三角形中的应用.难点:三角形多解情况的判断.古埃及时代,尼罗河经常泛滥,古埃及人为了研究尼罗河水运行的规律,准备测量各种数据.当尼罗河涨水时,古埃及人想测量某处河面的宽度(如图),如果古埃及人通过测量得到了AB的长度,∠BAC,∠ABC的大小,那么就可以求解出河面的宽度CD,古埃及人是如何利用这些数据计算的呢?问题1:在上面的问题中, △ABC的已知元素有∠ABC、∠BAC 和边AB .若AB=2,∠ABC=30°,∠BAC=120°,则BC= 2,CD= .解三角形:已知三角形的几个元素求其他元素的过程.问题2:正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等,即== .问题3:正弦定理的拓展:①a∶b∶c=sin A∶sin B∶sin C ;②设R为△ABC外接圆的半径,则=== 2R .问题4:在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式①a=b sin A ②b sin A<a<b③a≥b a>b解的个数一解两解一解一解正弦定理是由伊朗著名的天文学家阿布尔·威发首先发现与证明的.中亚细亚人阿尔比鲁尼给正弦定理作出了一个证明,也有说正弦定理的证明是13世纪的那希尔丁在《论完全四边形》中首次清楚地论证了正弦定理.他还指出,由球面三角形的三个角,可以求得它的三条边,或由三边去求三个角,也就是正弦定理向球面三角学中的拓展.1.在△ABC中,下列等式总能成立的是().A.a cos C=c cos AB.b sin C=c sin AC.ab sin C=bc sin BD.a sin C=c sin A【解析】根据正弦定理有:=,所以a sin C=c sin A,故选D.【答案】D2.已知△ABC中,a=4,b=5,A=30°.下列对三角形解的情况的判断中,正确的是().A.一解B.两解C.无解D.一解或无解【解析】因为a,b,A的关系满足b sin A<a<b,故有两解.【答案】B3.在△ABC中,已知a=5,c=10,A=30°,则B等于.【解析】根据正弦定理得: sin C===,∴C=45°或135°,故B=105°或15°.【答案】105°或15°4.在△ABC中,已知b=5,B=,tan A=2,求sin A和边a.【解析】因为△ABC中,tan A=2,所以A是锐角,又=2,sin2A+cos2A=1,联立解得sin A=,再由正弦定理得=,代入数据解得a=2.利用正弦定理判断三角形的形状在△ABC中,若sin A=2sin B cos C,且sin2A=sin2B+sin2C,试判断△ABC的形状.【方法指导】先利用正弦定理将“sin2A=sin2B+sin2C”转化为三角形边之间的关系,再结合第一个条件进行转化判断.【解析】在△ABC中,根据正弦定理:===2R,∵sin2A=sin2B+sin2C,∴()2=()2+()2,即a2=b2+c2,∴A=90°,∴B+C=180°-A=90°.由sin A=2sin B cos C,得sin 90°=2sin B cos(90°-B),∴sin2B=.∵B是锐角,∴sin B=,∴B=45°,C=45°.∴△ABC是等腰直角三角形.【小结】(1)判断三角形的形状,可以从三边的关系入手,也可以从三个内角的关系入手.从条件出发,利用正弦定理进行代换、转化,求出边与边的关系或求出角与角的关系,从而作出准确判断.(2)判断三角形的形状,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形等,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.已知两角及其中一角的对边,解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.【方法指导】由A+B+C=180°可求出B,再由=和=,求出a和b.【解析】∵A=45°,C=30°,∴B=180°-(A+C)=105°.由=得a===10.由=得b===20sin 75°,∵sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=,∴b=20×=5+5.【小结】解三角形时,如果已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的另一个角,由正弦定理可计算出三角形的另两边.已知两边及其中一边的对角,解三角形在△ABC中,a=,b=,B=45°.求角A,C和边c.【方法指导】已知两边及其中一边的对角,要根据正弦定理先求解另一角,再求出三角形的另外两个元素.【解析】由正弦定理得=,=,∴sin A=,∴A=60°,C=180°-45°-60°=75°,由正弦定理得:c==.[问题]本题中根据sin A=得出的角A一定是60°吗?[结论]角A不一定是60°,由于a>b,所以角A还可能是120°.于是正确的解答如下:由正弦定理得=,=,∴sin A=.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c==;当A=120°时,C=180°-45°-120°=15°,c==.【小结】已知三角形的两个角求第三个角时注意三角形内角和定理的运用,求边时可用正弦定理的变式,把要求的边用已知条件表示出来再代入计算.已知三角形两边和其中一边的对角解三角形时,首先运用正弦定理求出另一边对角的正弦值,再利用三角形中大边对大角看能否判断所求的这个角是锐角,当已知的角为大边对的角时,则能判断另一边所对的角为锐角;当已知小边对的角时,则不能判断.在△ABC中,若==,则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【解析】由正弦定理得a=2R sin A,b=2R sin B,c=2R sin C(R为△ABC外接圆的半径),∴==,即tan A=tan B=tan C,∴A=B=C.【答案】B在△ABC中,已知a=8,B=60°,C=75°,则A= ,b= ,c= .【解析】A=180°-(B+C)=180°-(60°+75°)=45°.由正弦定理=,得b===4,由=,得c====4(+1).【答案】45°44(+1)在△ABC中,已知a=,c=2,A=60°,求B、C及b的值.【解析】由正弦定理==,得sin C===.。
[初二数学第4讲三角形综合复习]讲义教师版
三角形的定义 ;三角形的三边关系 与三角形有关的线段H 三角形的中线、高线、角平分线 r"三角形的稳定性三角形的内角及内角和三角形的外角与三角联刖卜:相等关系三角形外角的性质0. -------不等关系 多边形的概念多边形的相关概念 [ 凸多边形的概念 '正多边形的概念多边形的对角浅及其计箕公式多边形内角的定义多边形的内角及内角和o/————— — —----------------------------- 多边形内角和公式及其推导过程多边形外角的定义多边形的外角及外角和e ------------------------------------------- 多边形外角和―1读嵌原理锚森何遨• ---------------»考点说明:三角形中与线相关的计算问题,主要包括三角形的三边关系、高线的熟悉、中 线对三角形的面积和周长的影响等.参考课课练套卷中的第1、5、7、14、20题.例L 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个 数是〔 〕多边形及其内角和 类型一:三角形中线的相关计算A.1个 B ・2个 C. 3个D. 4个【答案】C【解析】解:首先可以组合为13, 10, 5; 13, 10, 7: 13, 5, 7; 10, 5, 7.再根据三角形的三边关系,发现其中的13, 5, 7不符合,那么可以画出的三角形有3个.应选:C.例2.一个三角形的两边长为8和10,那么它的最短边a的取值范围是,它的最长边b的取值范惘是【答案】2<a<8, 10<b<18【解析】解:口三角形的三边长分别为8, 10, a,且a是最短边,二10-8VaW8, RP 2<a<8:二三角形的三边长分别为8, 10, b,且b是最长边,二104<8+10,即10W〕V18.故答案为:2VaW8, 10<b<18.例3.不一定在三角形内部的线段是〔〕A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线【答案】C【解析】解:由于在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.应选C.例4.一块三角形的实验田,平均分成四份,由甲、乙、丙、丁四人种植,你有几种方法?〔至少要用三种方法〕.【答案】解:作图如下:【解析】三角形的中线把三角形分成面积相等的两个三角形,先分成两个面积相等的三角形, 进而继续即可.剩下方法可根据此根本图形进行变形.例5.以下说法错误的选项是〔〕A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线【答案】C【解析】解:A、解:A、锐角三角形的三条高线、三条角平分线分别交于一点,故本选项说法正确;B、钝角三角形有两条高线在三角形的外部,故本选项说法正确;C、直角三角形也有三条高线,故本选项说法错误:D、任意三角形都有三条高线、中线、角平分线,故本选项说法正确;应选:C.例6.给出以下命题:二三条线段组成的图形叫三角形;二三角形相邻两边组成的角叫三角形的内角:二三角形的角平分线是射线:二三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;二任何一个三角形都有三条高、三条中线、三条角平分线:二三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有〔〕A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:三条线段首尾顺次相接组成的图形叫三角形,故二错误;三角形的角平分线是线段,故二错误:三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故二错误;所以正确的命题是二、口、共3个.应选C.例7.如图,在二ABC中,D, E分别为BC上两点,且BD=DE=EC,那么图中而积相等的三角形有〔〕对.【答案】A【解析】解:等底同高的三角形的面积相等,所以二二ADE, Z.1EC三个三角形的而积相等,有3对,又二ABE与二<8的面积也相等,有1对,所以共有4对三角形面积相等.故选A.隼类型二:三角形中角的计算k考点说明:在三角形章节,对于角度的计算是非常重要的一个考点,倒角过程中主要用到的知识有:角平分线平分角〔非常重要〕、三角形的内角和、三角形的外角的性质、直角三角形中角的特点〔一个角为90.,两锐角之和为90.〕、高的特点〔得到90.的角和直角三角形〕、两直线平行的性质、对顶角、折卷特征等.其中对直角三角形的判定也是很重要的一个内容.在复习过程中要帮助学生梳理相关知识,这也为倒角的计算提供了思考角度. 参考课课练套卷中的第4、8、9、10、12、15、17、19、23、24、26、27、28、30 题.例1.二ABC中,匚A,匚B,二C三个角的比例如下,其中能说明二ABC是直角三角形的是〔〕A. 2: 3: 4B. 1: 2: 3C. 4: 3: 5D. 1: 2: 2【答案】B【解析】解:A、设三个角分别为2x, 3x, 4x,根据三角形内角和定理得三个角分别为:40.,60.,80.,所以不是直角三角形;B、设三个角分别为x, 2x, 3x,根据三角形内角和定理得三个角分别为:30.,60.,90., 所以是直角三角形;C、设三个角分别为3x, 4x, 5x,根据三角形内角和定理得三个角分别为:45.,60.,75., 所以不是直角三角形:D、设三个角分别为x, 2x, 2x,根据三角形内角和定理得三个角分别为:36.,72% 72., 所以不是直角三角形.应选B.例2.如图:AB二CD,二ABD,二BDC的平分线交于E,试猜测二BED的形状并说明理由.【答案】解:匚BED为直角三角形.理由如下:ZABZCD,二二ABD+二CDB=180.〔两直线平行,同旁内角互补〕,又二二ABD,匚BDC的平分线交于E,二二EBD▲匚ABD,二EDB」二BDC,22二二EBD+二EDB上〔ZABD+ZBDC〕 =ixl80°=90°,二二BED 为直角三角形. 2 2【解析】根据平行线的性质,求出二ABD+二CDB=180.,然后根据角平分线的性质,求二EBD十二EDB的度数,然后根据三角形内角和定理解答.例3.如图,二ABC 中,BD 是二ABC 的角平分线,DE二BC,交AB 于EqA=60.,二BDC=95.,那么二BED的度数是( )A. 35.B. 70°C. 110° D, 130°【答案】C【解析】解:匚二BDC=CA+二ABD, □匚ABD=950 - 60.=35.,二BD 是二ABC 的角平分线,二二ABC=2二ABD=70.,ZDEZBC, □CBED+ZABC=180°, □□BED=180° - 70°=110°,应选C.例4,:如图,二ABC为直角三角形,匚B=90.,假设沿图中虚线剪去二B,那么二1+二2【答案】270【解析】解:匚二ABC为直角三角形,二B=90,二口1=90.+二BNM,匚2=90.+二BMN,二L1+匚2=270,故答案为:270.B Jr c例5.如图,Rt二ABC中,二ACB=90.,匚4=55.,将其折卷,使点A落在边CB上A,处,折痕为CD,那么二ADB=( )【答案】C【解析】解:在Rt匚ABC 中,匚ACB=90.,DA=55% 二二B=180.- 90.- 550=35.,由折叠可得:匚CAD="=55.,又二二CA'D 为二A'BD 的外角,二二CA'D=:B-二A'DB,贝lj二ADB=55.- 35.=20..应选:C.例6.如图,AD是二ABC的角平分线,BE是二ABC的高,ZBAC=40°,那么二AFE的度数为70.,【解析】解:匚AD平分二BAC,匚BAC=40.,□二EAF=200.Z BE ZAC, □匚AEF=90.,□CAFE=90° - 20°=70°.故答案为:70..例7.如图,在直角三角形ABC中,AC壬AB, AD是斜边上的高,DE二AC, DFCAB,垂足分别为E、F,那么图中与DC 〔二C除外〕相等的角的个数是〔〕【答案】A【解析】解:匚AD是斜边BC上的高,DE二AC, DFZAB,二二C+二B=90.,=BDF+二B=90..二BAD+二B=90.,=二C=:BDF=:BAD.二二DAC+二C=90.,二DAC+二ADE=90°, ZZC=ZADE,二图中与二C 〔除之C外〕相等的角的个数是3,应选:A.例8.如图,二ABC 中,二A=40.,匚B=72.,CE 平分二ACB, CDDAB 于D, DFZCE,那么nCDF= 74度.【解析】解:□二A=40.,ZB=72°, □CACB=68°,二CE 平分二ACB, CD匚AB 于D,二匚BCE=34°, ZBCD=90 - 72=18%二DF二CE, aZCDF=90° - 〔34.- 18.〕=740.故答案为:74.例9.如图,把二ABC沿DE折叠,当点A落在四边形BCDE内部时,匚A与二1+二2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出理由是:延长BD和CE交于A",二把二ABC沿DE折叠,当点A落在四边形BCDE内部,二二ADE=CADE,二AED二:AED,二2二ADE=180.-匚1, 2=AED=180.-口2, □□ADE=90.义二1, 口3口=90.-三二2,22二在二ADE 中,二A=180.-〔二AED-匚ADE〕,二二A」二二2,即2二庆=二1+二2.2 2【解析】根据折叠得出二ADE=CADE,二AED=:A,ED,求出2二ADE=180.- Zh2ZAED=180°-匚2 ,推出口ADE=90.-1 H , ZAED=90°-上口2 ,在HADE 中,二A=180.-2 2〔ZAED+ZADE〕,代入求出即可.例10.(1)如图1,点P为二ABC的内角平分线BP与CP的交点,求证:匚BPC=90.总二A:(2)如图2,点P为二ABC内角平分线BP与外角平分线CP的交点,请直接写出二BPC与二A的关系:(3)如图3,点P是二ABC的外角平分线BP与CP的交点,请直接匚BPC与二A的关系.A【答案】证实:(1)二二PBC+二BCP+二BPC=180.,二二BPC=120.,ZZABC+ZACB=60%二BP、CP 是角平分线,□二ABC=2二PBC,匚ACB=2::BCP,二二ABC+二ACB+匚A=180.,口二BPC=9(T+工二A;2(2)匚P总二A,理由如下:二二ABC的内角平分线BP与外角平分线CP交于P,二二PBC」•二ABC,匚PCD=±ACD,2 2二二ACD=CA+二ABC, □PCD=ZPBC+nP,Z— (ZA+ZABC) =::PBC十二P」二ABC+匚P, □二P上二A:2 2 2(3)匚P=90.-!二A,理由如下:2二BP、CP是匚ABC的外角平分线,二匚PBC」(口A+匚人©8),匚PCB」(ZA+DABC),2 2又二二PBC+ 二PCB+ 二P= 180.,二匚P=180°-〔匚PBC+匚PCB〕=180° -—〔二A+匚ACB+I2A+口ABC 〕2=180.W〔180+二A〕2=90° - -ZA.2【解析】〔1〕先根据三角形内角和定理求出二PBC十二PCB的度数,再根据角平分线的性质求出匚ABC+二ACB的度数,由三角形内角和定理即可求出答案.〔2〕根据角平分线的定义WZPBC=—ZABC, ZPCD=—□ ACD,再根据三角形外角性质得二ACD=CA+二ABC,2 2ZPCD=ZPBC+ZP,所以工〔二A+::ABC〕 =::PBC+二P2二ABC+二P,然后整理可得二P八2 2 2二A:〔3〕根据题意得二PBC=[•〔匚A+二ACB〕, 2PCB1〔2A+::ABC〕,由三角形的内角乙乙和定理以及三角形外角的性质,求得二P与二A的关系,从而计算出二P的度数.隼类型三:多边形相关的边、角计算方考点说明:多边形相关的计算问题主要的考查点在于相关公式的理解,包括:多边形内角和公式、多边形外角和公式、多边形的对角线公式及推导.相关的典型题除了对根本的应用公式进行计算外,还包括截角问题、少〔多〕计算角问题、凹多边形的内角和计算等.老师可以提前帮助学生归纳相关题型的典型处理方法.参考课课练套卷中的第2、3、16、18、21、22题.例1.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是〔〕A. 11B. 〔n - 1〕C. 〔n - 2〕D. 〔n - 3〕【答案】C【解析】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是〔11-2〕. 应选C.例2.正多边形的一个内角等于135.,那么该多边形是正〔〕边形.A. 8B. 9C. 10D. 11【答案】A【解析】解:外角是180- 135=45度,360-45=8,那么这个多边形是八边形.应选A.例3.六边形的对角线的条数是〔〕A. 7B. 8C. 9D. 10【答案】C【解析】解:六边形的对角线的条数=6〔67〕=9.应选C.例4.如图,在五边形ABCDE中,二A+二B+二E=a, DP、CP分别平分匚EDC、匚BCD,那么二P 的度数是〔〕A2 2 2 2【答案】A【解析】解:匚五边形的内角和等于540.,r A+ZB+ZE=a,ZnBCD+ZCDE=540°-a,二匚BCD、二CDE的平分线在五边形内相交于点O,二匚PDC十二PCD」?〔OBCD+ZCDE〕 =270°-L,2 2二匚P=180°- 〔270°--a〕 =ia-90°.应选:A.2 2例5.一个多边形切去一个角后,形成的另一个多边形的内角和为1080.,那么原多边形的边数为〔〕A. 7B. 7 或8C. 8 或9D. 7 或8 或9【答案】D【解析】解:设内角和为1080.的多边形的边数是n,那么〔n-2〕-180.=1080.,解得:n=8.那么原多边形的边数为7或8或9.应选:D.例6.小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2260..::求这个多加的外角的度数.二求这个多边形对角线的总条数.【答案】解:匚解:设多边形的边数为n,多加的外角度数为a,贝ij 〔n-2〕・1800=2260.- a,Z2260°=12xl80o+100°,内角和应是1800的倍数,二同学多加的一个外角为100.,二这是12+2=14边形的内角和.二多边形的对角线的条数是14=上3〕=77 〔条〕.即共有77条对角线.【解析】匚根据多边形的内角和公式〔n-2〕-180.可知,多边形的内角和是180.的倍数,然后求出多边形的边数以及多加的外角的度数即可得解:二根据n边形的对角线的条数是n(n-3)2-.例7.小贝在进行多边形内角和的计算时,求得一多边形的内角和为1500.,当她发现错了之后,重新检查,发现少加一个内角,你知道她少加的这个内角是多少度吗?她求的这个多边形是几边形?【答案】解:那么1500+180=*那么边数n=8+2+l=ll:即少加的内角是:(11 -2) X180 - 1500=120°.【解析】n边形的内角和是Gi-2)-180.,多边形的内角一定大于0度,小于180度,因而多边形中,除去一个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大的且最接近的整数就是多边形的边数.例8.如下图五角星,试求匚A+二B+二C+二D+二E.【答案】解:由三角形的外角性质,口1=二8+二D ,Z2=^A+ZC,二2 1+二 2+2E=180.,二二 A+二 B+二 C+二 D+二 E=180°.【解析】根据三角形的一个外角等于与它不相邻的两个内角的和可得二1=DB+::D, Z2=ZA+ZC,然后根据三角形的内角和定理列式计算即可得解.%考点说明:镶嵌问题的本质是对多边形内角和的考查,由于跟实际生活相关,一般会涉及 到镶嵌方案的选择问题,同时对于单一图形的镶嵌和多图形的镶嵌思考的难度是不同的,其 分类讨论思想的应用也是非常典型的.参考课课练套卷中的第6、24题.例1.以下多边形材料中,不能单独用来铺满地面的是〔〕A.三角形B.四边形C.正五边形D.正六边形 【答案】C【解析】解:A 、三角形内角和为180.,能整除360.,能密铺,故此选项不合题意:B 、角形内角和为360.,能整除360.,能密铺,故此选项不合题意:C 、正五边形每个内角是180.- 360.+5=108.,不能整除360.,不能密铺,故此选项合题意:类型四:镶嵌问题D、正六边形每个内角为180.- 360.+6=120.,能整除360.,能密铺,故此选项不合题意:应选:C.例2.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购置的瓷砖形状不可以是〔〕A.正三角形B.长方形C.正八边形D.正六边形【答案】C【解析】解:A、正三角形的内角是60.,6个正三角形可以密铺,故A可以;B、长方形的内角是90.,4个长方形可以密铺,故B可以:C、正八边形的内角是135.,2个正八边形有缝隙,3个正八边形重叠,故C不可以:D、正六边形的内角是120.,3个正六边形可以密铺,故D可以:应选:C.例3.如图的四边形是某地板厂加工地板时剩下的边角余料,用这种四边形的木板可以进行镀嵌吗?请说明理由.【答案】解:能进行镶嵌;理由:由镶嵌的条件知,在一个顶点处各个内角的和为360.时,就能镶嵌.而任意四边形的内角和是360.,只要放在同一顶点的4个内角和为360.,故能进行镶嵌.【解析】由镶嵌的条件知,在一个顶点处各个内角的和为360.时,就能镶嵌.根据任意四边形的内角和是360.,只要放在同一顶点的4个内角和为360.,即可得出答案.例4.一幅图案,在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,那么第三个正多边形的边数是.【答案】12【解析】解:匚正方形和正六边形内角分别为90.、120.,根据平面镶嵌的条件可知第三个正多边形的度数=360.- 90.- 120°=150°,二第三个正多边形的边数是12.例5. 〔1〕一个多边形的内角和等于它的外角和的3倍,那么它是几边形?〔2〕某学校想用地砖铺地,学校已准备了一批完全相同的正n边形[n为〔1〕中的所求值], 如果单独用这种地砖能密铺吗?〔3〕如果不能,请你自己只选用一种同〔2〕边长相同的正方形地砖搭配能密铺吗?如果能, 请你画出一片密铺的示意图.【答案】解:〔1〕设为n边形,由题意得:〔n-2〕 180.=3*360.,二n=8:〔2〕正八边形的每个内角为:180.- 360.+8=135.,不能整除360.,不能密铺;〔3〕所画图形如下:【解析】〔1〕根据多边形的内角和公式及外角的特征计算.〔2〕几何图形镶嵌成平面的关键是:闱绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.〔3〕可选择正四边形进行画图.例6.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠〔在几何里叫做平面镶嵌〕.这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角〔360.〕时,就拼成了一个平而图形.〔1〕请根据以下图形,填写表中空格:正多边形边数正多边形每个内角的度数60°90°120°(180108360n -〔2〕如果只限于用一种正多边形镶嵌, 哪几种正多边形能镶嵌成一个平面图形?【答案】解:〔1〕正三角形每个内角的度数是60., 正四边形每个内角的度数是90% 正五边形每个内角的度数是108., 正六边形每个内角的度数是120.,正n边形每个内角的度数是〔180-2圾〕.. n故答案为:60.,90°, 108°, 120°, 〔180-足处〕.:n〔2〕如限于用一种正多边形镶嵌,那么由一顶点的周围角的和等于360.得正三角形、正四边形〔或正方形〕、正六边形都能镶嵌成一个平面图形.【解析】〔1〕利用正多边形一个内角=180.-刎二一求解即可:〔2〕进行平面镶嵌就是在同n一顶点处的几个多边形的内角和应为360%因此我们只需验证360.是不是上面所给的几个正多边形的一个内角度数的整数倍即可.当堂总结〕本节内容是对三角形章节的综合复习,需要掌握的知识板块有与边相关的计算、与角相关的计算及多边形相关的计算,其中倒角问题是所有问题的重中之重,是贯穿初中整个几何内容的基石.-Jg.________ s6/课后作业〕。
专题06 三角形的面积与周长问题(老师版)
专题06 三角形的面积与周长问题参考答案与试题解析一.选择题(共4小题)1.(2020•黄州区校级三模)已知等腰三角形一腰上的中线长为2,则该三角形面积的最大值是( ) AB .83CD .9【解答】解:建立如图所示的直角坐标系,设(,0)C m 则(,0)B m -,A (0,)n ,11(,)22D m n ,由题意可得2223()()422m n BD =+=, 故223()()434822322323m nm nS mn +===, 当且仅当322m n=即3n m =时取等号 故选:B .【点评】本题主要考查了利用基本不等式求解三角形面积的最值,属于基础试题. 2.(2020春•淮安期末)我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设ABC ∆内角A ,B ,C 所对的边分别为a ,b ,c ,面积S =.若2c =,sin 4sin b C A =,则ABC ∆面积的最大值为( ) A .13B .23C D .43【解答】解:sin4sin b C A =,利用正弦定理4bc a =,由于2c =,整理得2b a =,所以设2222242222202569()9401699()244a abc a a y a b --++--+-=-==, 当2209a =时,2562569436max y ==, 所以125644363S y =⨯=. 故选:D .【点评】本题考查的知识要点:正弦定理,三角形的面积公式,二次函数的性质,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.3.(2021•重庆三模)中国南宋大数学家秦九韶提出了“三斜求积术“,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a 、b 、c ,则三角形的面积S 可由公式S =p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足3a =,5b c +=,则此三角形面积的最大值为() A .32B .3 CD 【解答】解:由3a =,5b c +=,得11()(35)422p a b c =++=⨯+=;所以24(43)(4)(4)S b c =⨯-⨯-- 4[4()16]bc b c =-++24(4)4[()4]2b c bc +=-⨯- 944=⨯9=,当且仅当 2.5b c ==时取等号. 所以3S . 故选:B .【点评】本题考查了三角形的面积公式和基本不等式的应用问题,也考查了运算求解能力,是基础题.4.(2015•湖南一模)若一个三角形某边长为4,周长为10,则此三角形面积的最大值为() A.B .C .92D .3【解答】解:设三角形另外两边分别为a ,b .则410a b ++=,6a b ∴+=.由余弦定理可得:22242cos a b ab C =+-, 216()22cos a b ab ab C ∴=+--,化为10cos abC ab-=, 1sin2S ab C =,∴2222222211(1)[(10)]5255()2520442a b S a b cos C a b ab ab +=-=--=-⨯-=,当且仅当3a b ==时取等号.∴25S .故选:A .【点评】本题考查了三角形的周长及其面积计算公式、余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于难题. 二.填空题(共1小题)5.(2021春•顺德区校级期中)若2AB =,AC =,则三角形ABC 面积ABC S ∆的最大值为【解答】解:如图所示,(1,0)A -,(1,0)B . 设(C x ,)(0)y y ≠. 2AC =,∴化为:22(3)8(0)x y y -+=≠.可知:当且仅当取(3,C ±,三角形ABC 的面积的最大值122=⨯⨯=故答案为:【点评】本题考查了两点之间的距离公式、圆的标准方程、三角形面积的公式,考查了推理能力与计算能力,属于中档题.三.解答题(共20小题) 6.已知在ABC ∆中,2a =,3A π∠=.(1)求面积的最大值; (2)求周长的最大值;(3)若三角形为锐角三角形,求周长的取值范围; (4)求2b c +的取值范围; (5)sin cos BC>C ∠的取值范围. 【解答】解:(1)由余弦定理可得:2222cos a b c bc A =+-,22222cos23b c bc bc bc bc π∴=+--=,当且仅当b c =时取等号,即4bc .11sin 4222ABC S bc A∆∴=⨯⨯=ABC S ∆∴(2)22222222cos ()2()3()32b c b c bc b c bc bc b c π+=+-=+--+-⨯,化为4b c +,当且仅当2b c ==时取等号.246a b c ∴+++=,因此周长的最大值为:6. (3)由正弦定理可得:2sin sin sin sin3a b c A B C π====, 22sin )2[sin()sin ]24sin()36a b c B CC C C ππ∴++=+=-+=++,23C B π+=,0,2C B π<<,∴62C ππ<<,∴2363C πππ<+<,∴sin()16C π<+,()(2a b c ∴++∈+.(4)由正弦定理可得:2sin sin sin sin 3a b c A BC π====,222sin )[sin()2sin ]))3b c B C C C C C Cπθ∴+=+=-+=+=+,其中sin 14θ=,cos θtan θ. 2(0,)3C π∈,2()3C πθ∴+∈+,sin()C θ∴+∈,(2)b c ∴+∈.(5)sin cos B C 23B C π=-, ∴02C π<<,2sin()3C C π->, 化为sin()03C π->,∴32C ππ<<.即(,)32C ππ∈. 【点评】本题考查了正弦定理余弦定理、三角形的周长与面积的最值问题、基本不等式的性质、两角和差公式、三角函数的单调性等基础知识与基本技能,考查了推理能力与计算能力,属于难题.7.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos cos 2cos b A a B c C +=,c(1)若4A π=,求边b 的长;(2)求ABC ∆面积的最大值. (3)求ABC ∆周长的取值范围.【解答】解:(1)由题意可得sin cos sin cos 2sin cos B A A B C C +=, sin()2sin cos A B C C ∴+=,即sin 2sin cos C C C =,又sin 0C ≠,1cos 2C ∴=,又(0,)C π∈,3C π∴=,512B AC ππ∴=--=,又c =,在ABC ∆中,sin sin c bC B=,5sin 12sin sin 3c Bb Cππ∴===; (2)在ABC ∆中,2222cos c a b ab C =+-,且c =3C π=,2232a b ab ab ab ab ∴=+--=(当且仅当a b =时取等号),133sin 24ABC S ab C ∆∴==(当且仅当a b =时取等号),即当ABC ∆为正三角形时,ABC ∆; (3)3c =,3C π=,23A B π∴+=,∴2sin sin sin a b cA B C====,2sin a A ∴=,2sin b B =,22sin 2sin 2sin 2sin())36a b A B A A A ππ+=+=+-=+, 203A π<<,∴5666A πππ<+<, ∴1sin()126A π<+,∴23a b <+,33a b c ∴++.【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式,基本不等式的综合应用,属于基本知识的考查.8.(2021春•瑶海区月考)在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且sinC C a =,b =.(1)求角B ;(2)若2a c +=,求ABC ∆的面积;(3)若ABC ∆为锐角三角形,求ABC ∆周长的取值范围. 【解答】解:(1)因为sinC C a +=,b所以22sin C a +=,所以2222sin 32a C a c a +-+=,可得2232sin a c a C +-=,所以2222232sin sin cos 222a c b a c a C C B ac ac ac c +-+-====, 因为由正弦定理可得sin sin B Cb c=, 所以sin cos BB b=,sin B B =,可得tan B , 由(0,)B π∈,可得3B π=.(2)因为2221cos 22a c b B ac +-==,所以223ac a c =+-,又因为222()24a c a c ac +=++=,可得324ac ac ++=, 所以13ac =,所以111sin 223ABC S ac B ∆==⨯=(3)因为由正弦定理2sin sin sin a b cA B C===, 所以2sin a A =,2sin c C =, 因为23A C π+=,所以22sin 2sin()3sin )36a c A A A A A ππ+=+-==+, 因为ABC ∆为锐角三角形,022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62A ππ<<,可得2363A πππ<+<,所以)(36a c A π+=+∈,,所以ABC ∆周长a b c ++的取值范围是(3,.【点评】本题主要考查了正弦定理,余弦定理,三角形的面积公式,三角函数恒等变换以及正弦函数的性质在解三角形中的综合应用,考查了转化思想和函数思想的应用,属于中档题. 9.在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边.(1)已知2222()sin()()sin()a b A B a b A B +-=-+,试判断该三角形的形状; (2)已知2222sin sin 2cos cos b C c B bc B C +=,试判断该三角形的性状; (3)已知b =cos cos 2B bC a c=-+,求ABC ∆的面积的最大值; (4)已知ABC ∆tan tan tan A B A B --2c =.求22a b +的取值范围.【解答】解:对于(1):2222()sin()()sin()a b A B a b A B -+=+-.2222()(sin cos cos sin )()(sin cos cos sin )a b A B A B a b A B A B ∴-+=+-.整理求得22cos sin sin cos a A B b A B =,即:2222sin cos cos sin A B a sin A A B b sin B==, sin cos sin cos A A B B ∴=, sin2sin2A B ∴=,A B ∴=或2A B π+=ABC ∴∆是等腰△或Rt △.对于(2):由正弦定理,原式化为: 22228sin sin 8sin sin cos cos k B C k B C B C =,sin sin 0B C ≠, sin sin cos cos B C B C ∴=, 即cos()0B C +=,90B C ∴+=︒,90A =︒, 故ABC ∆为直角三角形. 对于(3):由cos cos 2B b C a c =-+得:cos sin cos 2sin sin B BC A C=-+, 即2sin cos cos sin sin cos 0A B B C B C ++=,2sin cos sin()2sin cos sin 0A B B C A B A ∴++=+=,即sin (2cos 1)0A B +=,又0A π<<,sin 0A ∴≠,则1cos 2B =-,13b =,∴由余弦定理2222cos b a c ac B =+-,即22133a c ac ac =++,即133ac,1113sin 223ABC S ac B ∆∴=⨯⨯=(当且仅当ac 时取等号),则ABC ∆.对于(4):tan tan tan A B A B --=,∴tan tan 1tan tan A BA B+=-tan()tan A B C +=-=tan C ∴=C ∠为三角形的内角,则3C π∠=;A ∠与B ∠为锐角,且23A BC ππ∠+∠=-∠=,即23B A π∠=-∠, ∴62A ππ<∠<,∴52666A πππ<∠-<, 2c =,sin C =, ∴由正弦定理sin sin sin a b c A B C ===得:a A =,b B , 2216162168(sin sin )[sin sin()]sin(2)333336a b A B A A A ππ∴+=+=+-=+-,52666A πππ<∠-<, ∴1sin(2)126A π<-,即20168sin(2)83336A π<+-, 则22a b +的范围为20(3,8]. 【点评】此题考查解三角形的应用,利用两角和与差的正弦函数公式,正弦定理,余弦定理,以及两角和与差的正切函数公式,熟练掌握公式及定理是解本题的关键.10.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A =,所以sin A A =, 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =, 可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =,3sin a B=, 所以ABC ∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++=,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.【点评】本题主要考查了正弦定理,余弦定理,三角函数恒等变换以及正切函数的性质在解三角形中的综合应用,考查了转化思想和函数思想的应用,属于中档题.11.(2020秋•浦城县期中)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且2sin()cos cos 2c A a B b A π-=+. (1)求A ;(2)请从问题①②中任选一个作答:①若2a =,且ABC ∆ABC ∆周长的取值范围.②若ABC ∆的面积S ,求bc 的最小值. 【解答】解:(1)因为2sin()cos cos 2c A a B b A π-=+,即2cos cos cos c A a B b A =+,所以2sin cos sin cos sin cos sin()sin C A A B B A A B C =+=+=, 又因为sin 0C ≠, 所以1cos 2A =, 因为(0,)A π∈, 所以3A π=;(2)若选①:则1sin 32S bc A ==,则4bc ,又2222cos b c a bc A +-=,2a =, 所以224b c bc +=+, 所以()24316b c bc +=+, 又2b c +>,所以24b c <+, 则46a b c <++,即ABC ∆的周长取值范围是(4,6];若选②:则1sin 2S bc A ==,所以3a bc =,则2922222cos a b c b c bc A ==+-, 即92222b c b c bc bc =+-, 所以19bc, 当且仅当b c =时,bc 取得最小值19.【点评】本题考查解直角三角形,涉及正弦定理、余弦定理的应用,三角形周长表示,三角形面积公式,基本不等式等知识点,属于中档题.12.(2020•泰安一模)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且28cos 2cos232B CA +-=. (1)求A ;(2)若2a =,且ABC ∆ABC ∆周长的取值范围.【解答】解:(1)28cos 2cos232B CA +-=, 4(1cos())2cos23BC A ∴++-=,整理得24cos 4cos 30A A +-=,解得1322cosA cosA ==-或(舍去),又(0,)3A A ππ∈∴=,(2)由题意知1sin 32ABC S bc A ∆==,4bc ∴,又2222cos b c a bc A +-=,2a =, 224b c bc ∴+=+, 2()4316b c bc ∴+=+,又2b c +>,所以24b c <+,46a b c <++, ,ABC ∴∆周长的取值范围是(4,6].【点评】本题主要考查了二倍角公式,同角基本关系,余弦定理,三角形的面积公式在求解三角形中的应用,属于中档试题.13.(2021•江西模拟)已知函数()sin()(0,0)6f x m x m πωω=+>>只能同时满足下列三个条件中的两个:①函数()f x 的最大值为2;②函数()f x 的图象可由)4y x π=-的图象平移得到;③函数()f x 图象的相邻两条对称轴之间的距离为π. (1)请写出这两个条件的序号,并求出()f x 的解析式;(2)锐角ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c .3A π=,a f =(A ),求ABC ∆周长的取值范围.【解答】解:(1)函数()sin()6f x m x πω=+满足条件为①③,理由如下:由题意可知条件①②互相矛盾, 故③为函数()sin()6f x m x πω=+满足的条件之一.由③可知:2T π=,所以1ω=.故②不合题意.∴函数()sin()6f x m x πω=+满足条件为①③,由①知:2A =.()2sin()6f x x π∴=+.(2)a f =(A )()2sin 232f ππ===,由余弦定理得2242cos 3b c bc π=+-,2()34b c bc ∴+=+,2b c bc +,22()4()4[]3b c b c +-∴+,2()16b c +,04b c ∴<+,当且仅当2b c ==时取等号,b c a +>,2b c ∴+>,24b c ∴<+,46a b c ∴<++,ABC ∴∆周长的取值范围为(4,6].【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,余弦定理的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.14.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (1)求C ;(2)若c =ABC ∆,求ABC ∆的周长;(3)若ABC ∆为锐角三角形且c =22a b +的取值范围.【解答】解:(1)已知等式利用正弦定理化简得:2cos (sin cos sin cos )sin C A B B A C +=, 整理得:2cos sin()sin C A B C +=,sin 0C ≠,1sin()sin cos 2A B C C +=∴=, 又0C π<<,3C π∴=.(2)由余弦定理得221722a b ab =+-, 2()37a b ab ∴+-=,1sin 2S ab C ===6ab ∴=,2()187a b ∴+-=,5a b ∴+=,ABC ∴∆的周长为5+.(3)3C π=,ABC ∆为锐角三角形且c =由三角形是锐角三角形可得0202A B ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即62A ππ<<,由正弦定理得sin sin sin a b cA B C==,sin sin c a A A C ∴=⨯=,2sin()3b B A π==-,2222282811(sin sin )[(1cos2)(1cos2)]3322a b A B A B ∴+=+=-+- 281428144(cos2cos2)[cos2cos(2)33333A B A A π=-+=-+-28141[cos2()cos2(2]332A A A =-+-+28141[cos22]332A A =- 2814sin(2)336A π=+-,62A ππ<<,∴52666A πππ<-<, ∴1sin(2)126A π<-, ∴2235421433a b <+=. 22a b ∴+的取值范围是35(,14]3. 【点评】本题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.15.(2021•南明区校级模拟)在ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABC ∆面积是ADC ∆面积的3倍. (1)求sin sin CB∠∠;(2)若2AD =,1DC =,求BD 和AC 的长. 【解答】解:(1)由ABD ∆面积是ADC ∆面积的2倍, 得11sin 2sin 22AB AD BAD AD AC CAD ⋅⋅∠=⨯⋅⋅∠, 而BAD CAD ∠=∠, 所以2AB AC =,由正弦定理,得sin 2sin C ABB AC∠==∠.(2)根据题意可得,2ABD ADC S S ∆∆=,得2BD DC =, 所以2BD =,在ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠, 2222cos AC AD DC AD DC ADC =+-⋅∠, 2222223218AB AC AD BD DC +=++=,由(1)知2AB AC =,所以AC =.【点评】本题考查正弦定理和余弦定理,解题中需要理清思路,属于中档题.16.已知ABC ∆中,(01)BD BC λλ=<<,3cos 5C =,cos ADC ∠=(1)求CAD ∠的大小;(2)若7AC =,10BD =,求ABC ∆的面积.【解答】解:(1)ACD ∆中,3cos 5C =,cos 10ADC ∠=.4sin 5C ∴=,sin ADC ∠∠.34cos cos()cos()cos cos sin sin 55CAD C ADC C ADC C ADC C ADC π∠=-∠-∠=-∠+∠=-∠+∠=-,4CAD π∴∠=.(2)在ACD ∆中,由正弦定理可得:sin sin sin AD AC DC C ADC CAD ==∠∠,47AD ⨯∴==75DC ==. 114sin 71542225ABC S CA CB C ∆∴==⨯⨯⨯=.【点评】本题考查了正弦定理、和差化积、三角形面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.17.(2019•雨花区校级模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知ABC∆的面积为24sin a A .(1)求sin sin B C(2)若10cos cos 1,B C a =-=ABC ∆的周长【解答】解:(1)由三角形的面积公式可得21sin 24sin ABCa S ac B A∆==, 2sin sin c B A a ∴=,由正弦定理可得2sin sin sin sin C B A A =,sin 0A ≠, 1sin sin 2B C ∴=; (2)10cos cos 1B C =-,1cos cos 10B C ∴=-, 3cos()cos cos sin sin 5B C B C B C ∴+=-=-,3cos 5A ∴=,4sin 5A =,则由21sin 24sin a bc A A =,可得:2516bc =,由2222cos b c a bc A +-=,可得:22318b c +=,23125()788b c ∴+=+=,可得:b c +=∴三角形的周长a b c ++(实际上可解得b =,c 符合三边关系). 【点评】本题考查了三角形的面积公式,两角和的余弦公式,诱导公式,正弦定理,余弦定理在解三角形中的综合应用,考查了学生的运算能力,考查了转化思想,属于中档题. 18.(2020春•顺德区月考)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知sin()sin 2B C a A B c ++=. (1)求A ;(2)求sin sin B C 的取值范围;(3)若ABC ∆8,求a . 【解答】解:(1)ABC ∆中,sin()sina A B c +=2B C+, sin()sin()22Aa C c ππ∴-=-,sin cos 2A a C c ∴=,由正弦定理得sin sin sin cos 2A A C C =, sin cos2A A ∴=,即2sin cos cos 222A A A =; 又(0,)A π∈,cos02A∴≠, 2sin12A ∴=,即1sin 22A =, ∴26A π=, 解得3A π=;(2)2211111sin sin sin sin()cos sin 2cos2sin(2)3244264B C B B B B B B B B ππ=-=+-+=-+, 又2(0,)3B π∈, 2(66B ππ∴-∈-,7)6π,1sin(2)(62B π-∈-,1], sin sin (0B C ∴∈,34).(3)ABC ∆8,∴1sin 2bc A =, 4bc ∴=,⋯① 8a b c ++=,⋯②由余弦定理得:222a b c bc =+-,⋯③由①②③组成方程组,可得:2222222(8)4b c bc a b c a ⎧++=-⎨+=+⎩, 可得:22(8)12a a -=+, 解得:134a =. 【点评】本题考查了三角恒等变换应用问题,也考查了正弦、余弦定理的应用问题,是中档题.19.(2020•海安市校级模拟)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知tan A ,tan B ,tan C 成等差数列,cos Acos B 成等比数列. (1)求A 的值;(2)若ABC ∆的面积为1,求c 的值.【解答】解:(1)tan A ,tan B ,tan C 成等差数列,可得2tan tan tan B A C =+, 而tan tan tan tan()tan tan 1A BC A B A B -=-+=-,所以tan 2tan B A =,①又cos Acos B 成等比数列,可得cos cos cos cos()sin sin cos cos A B C A B A B A B ==-+=-, 即sin sin 2cos cos A B A B =,可得tan tan 2A B =,② 联立①②解得tan 1A =(负的舍去), 可得锐角4A π=;(2)由(1)可得tan 2tan 2B A ==,tan 3C =, 由sin tan 2cos BB B==,22sin cos 1B B +=,B 为锐角,解得sin B =,同理可得sin C =由正弦定理可得sin sin c B b C ===, 又ABC ∆的面积为1,可得211222sin 12232bc A c ==,解得c【点评】本题考查等差数列和等比数列的中项性质,三角形的正弦定理、面积公式的运用,考查三角函数的同角公式、两角和的余弦、正切公式,考查化简运算能力,属于中档题. 20.(2013秋•崇川区校级期中)锐角三角形ABC 中,角A ,B ,C 所对应的边长分别为a ,b ,c .已知(2,)m c a b =-,(cos ,cos )n B C=,且||||m n m n +=-.又b =(1)求三角形ABC 的面积S 的最大值; (2)求三角形ABC 的周长l 的取值范围. 【解答】解:(1)(2,)m c a b =-,(cos ,cos )n B C =,且||||m n m n +=-,∴0m n =,(2)cos cos 0c a B b C ∴-+=,(sin 2sin )cos sin cos 0C A B B C ∴-+=, 2sin cos sin()0A B B C ∴-++=,1cos 2B ∴=, 60B ∴=︒,b =2232a c ac ac ac ∴=+--,3ac ∴,133sin 24S ac B ∴==,即三角形ABC 的面积S ;(2)l a b c a c =+++, 223a c ac =+-,222()3()3()34a c a c ac a c +∴=+-+-, 23a c ∴+,a cb +>=∴23a c <+,33l ∴.【点评】本题考查平面向量的综合,考查余弦定理,考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.21.已知直角三角形的周长为4.求这个直角三角形面积的最大值.并求此时各边的长. 【解答】解:直角三角形的两直角边为a 、b ,斜边为c ,面积为S ,周长4L =,由于42a b ab ++=+(当且仅当a b =时取等号)∴422ab -.211(421222S ab ∴=-=-∴这个直角三角形面积的最大值为12-,各边的长为4a b ==-4c =.【点评】利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.22.(2020秋•驻马店期末)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin sin sin )sin a A c C C b B +=+. (1)求B ;(2)若AC 边上的中线BD 的长为2,求ABC ∆面积的最大值.【解答】解:(1)因为sin sin sin )sin a A c C C b B +=+,由正弦定理得,222sin a c B b +=+,∴222sin 2cos a c b B ac B +-==,cos B B =,即tan B , 因为B 为三角形内角,所以3B π=,;(2)如图延长BD 到E ,使得BD DE =,则BE BA BC =+,则1()2BD BA BC =+,∴2221(2)44BD BA BC BA BC =++⋅=, 即2214(2cos60)4a c ac =++︒,22162a c ac ac ∴+=-,当且仅当a c =时取等号,解得,163ac,ABC ∆面积1163sin 234S ac B ==⨯=【点评】本题主要考查了正弦定理,余弦定理,三角形的面积公式及向量数量积的性质的综合应用,属于中档题.23.(2020•黑龙江二模)ABC ∆中,三个内角A ,B ,C 所对的边分别为a ,b ,c .且sin()A C +=.(1)若2sin cos()cos 22AB C π-=,求角C 的大小.(2)若AC 边上的中线BM 的长为2,求ABC ∆面积的最大值.【解答】解:(1)由于sin()A C +, 可得:22213sin 2sin ac B B a cb =+-, 所以2222a c b ac +-=,可得cos B =, 所以由(0,)B π∈,可得6B π=, 由2sin cos()cos 22A B C π-=,可得1cos sin sin 2A B C +=, 可得:11cos sin 22A C +=, 可得5sin 1cos()6C C π=+-,可得sin()13C π+=, 因为(0,)C π∈,可得(33C ππ+∈,4)3π,可得32C ππ+=, 可得6C π=.(2)延长BM 到D ,使得BM MD =,连接AD ,在ABD ∆中,有AB c =,AD a =,56BAD π∠=, 由余弦定理可得223162()2a c ac =+--,即2216a c =+, 可得22162a c ac =+,可得32163ac -a c ==可得ABC ∆的面积111sin 843222S ac B ac ==⨯⨯-,当且仅当a c ==即ABC ∆面积的最大值是8-【点评】本题主要考查了三角形的面积公式,余弦定理,三角函数恒等变换的应用,基本不等式在解三角形中的应用,考查了计算能力和转化思想,考查了数形结合思想的应用,属于中档题.24.在ABC ∆中,C ∠2222sin()c A B =-.(1)求角C ;(2)若1c =,且AC 边上的中线BD,求ABC ∆的面积.【解答】解:(1)在ABC ∆中,2222sin()c A B -=-,∴222sin )2sin sin()A B C A B -=-.∴2sin )(sin sin )2sin sin()A B A B C A B +-=-. ∴232sin cos 2cos sin 2sin sin()2222AB A B A B A BC A B +-+-=-.∴2)sin()2sin sin()A B A B C A B +-=-.sin C ∴. C 是锐角,3C π∴=.(2)设CD AD x ==,BC y =,在ABC ∆中,由余弦定理得22142x y xy =+-,在BCD ∆中,由余弦定理得2213x y xy =+-. 联立方程组222242113x y xy x y xy⎧+-=⎪⎨+-=⎪⎩,解得x y ==.即AC =,BC =. 11sin 22ABC S AC BC C ∆∴=== 【点评】本题考查了正弦定理,余弦定理,三角函数的恒等变换,属于中档题.25.(2021•江苏模拟)在ABC ∆中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,b =. (Ⅰ)若2cos cos 3A C =,求ABC ∆的面积;(Ⅱ)试问111a c +=能否成立?若能成立,求此时ABC ∆的周长;若不能成立,请说明理由.【解答】解:(Ⅰ)由23B π=,可得3A C π+=,所以cos()cos cos sin sin A C A C A C +=-,即1cos cos sin sin 2A C A C =-, 又因为2cos cos 3A C =,所以1sin sin 6A C =,因为sin sin a c A C ===所以,a A c C ==,所以11sin 4sin sin sin 426ABC S A C B A B C ∆=⋅⋅⋅==⨯= (Ⅱ)假设111a c+=能成立,所以a c ac +=, 由余弦定理,2222cos b a c ac B =+-,所以226a c ac =++,所以2()6a c ac +-=,故2()60ac ac --=,解得3ac =或2ac =-(舍),此时3a c ac +==,不满足2a c ac +,所以假设不成立,故111a c+=不成立. 【点评】本题考查了解三角形的综合应用,主要考查了正弦定理和余弦定理的应用,解三角形的基本策略是:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”,属于中档题.。
专题09 等腰三角形中易漏解或多解得问题(老师版)
专题9等腰三角形中易漏解或多解得问题►易错点一求长度时忽略三边关系例题:已知一个等腰三角形的两边长是3cm 和7cm ,则它的周长为()A .13cmB .17cmC .13或17cmD .10cm 【答案】B【解析】【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm .故选B .【变式训练】1.等腰三角形的两边长分别为4厘米和9厘米,则这个三角形的周长为()A .22厘米B .17厘米C .13厘米D .17厘米或22厘米【答案】A【解析】【详解】解:若4厘米为腰长,9厘米为底边长,由于4+4<9,则三角形不存在;若9厘米为腰长,则符合三角形的两边之和大于第三边,所以这个三角形的周长为9+9+4=22(厘米).故选A .2.已知实数x ,y 满足2|5|(10)0-+=x y ,则以x ,y 的值为两边长的等腰三角形的周长是()A .20B .25C .20或25D .以上答案均不对【答案】B【解析】【分析】先根据非负数的性质列式求出x 、y 的值,再分5是腰长与底边两种情况讨论求解即可.【详解】解:2|5|(10)0x y -+-=,|5|0x -≥,2(100)y -≥∴x −5=0,y −10=0,解得x =5,y =10,当5是腰长时,三角形的三边分别为5、5、10,∵5+5=10,∴不能组成三角形;当5是底边时,三角形的三边分别为5、10、10,能组成三角形,周长=5+10+10=25,所以,三角形的周长为25,故选:B .【点睛】本题考查了三角形的三边关系,等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0,求出x 、y 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.3.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是__.【答案】15【解析】【详解】解:∵等腰三角形的一边长为3,另一边长为6,∴有两种情况:①6为底,3为腰,而3+3=6,那么应舍去;②3为底,6为腰,那么6+6+3=15,∴该三角形的周长是15.故答案为15.【点睛】本题考查了等腰三角形的性质,三角形三边的关系,要解本题,应分为两种情况:(1)3为底;(2)6为底,还要注意是否符合三角形三边的关系.4.(1)等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.(2)已知一个等腰三角形的三边长分别为21,1,32x x x -+-,求这个等腰三角形的周长.【答案】(1)8,8,11或者10,10,7;(2)周长为7或者10【解析】【分析】(1)根据等腰三角形的性质,列出方程求解,注意分类讨论.(2)分三种情况,进行讨论,结合三角形三边关系得出答案.【详解】()1设腰长为2x ,底为y ,根据题意得:①21512x x x y +=⎧⎨+=⎩解得:5,7x y ==∴三边为10,10,7②21215x x x y +=⎧⎨+=⎩解得:4,11x y ==∴三边为8,8,11故本题答案为:8,8,11或者10,10,7()2①当211x x -=+时,解2x =,此时3,3,4,能构成三角形.此时周长为10②当2132x x -=-时,解1x =,此时1,2,1不能构成三角形.③当132x x +=-,解得32x =,此时552,,22,能构成三角形,周长为=7综上,三角形的周长为7或者10.【点睛】本题考查等腰三角形性质,以及三角形三边关系,属于基础提高题.►易错点二当腰和底不明求角度时没有分类讨论例题:若等腰三角形的一个角等于80°,则其顶角的度数为()A .80°B .20°C .100°D .80°或20°【答案】D【解析】【分析】根据等腰三角形的一个角是80°,分两种情况考虑这个角为顶角与底角解答即可.【详解】解:∵等腰三角形的一个角是80°,分两种情况考虑,当80°的角为底角时,顶角为180°-160°=20°,当80°的角为顶角时,顶角为80°,∴该等腰三角形的顶角是80°或20°.故答案选:D .【点睛】本题考查了等腰三角形的性质,三角形内角和,解题的关键是熟练地掌握等腰三角形的性质.【变式训练】1.已知等腰三角形的一个内角是72°,那么这个等腰三角形的顶角是______度.【答案】72或36【解析】【分析】本题应分底角为72°、顶角为72°这两种情况,分别计算每种情况下等腰三角形是否存在.【详解】解∶①当72°角是顶角时,顶角为72°,②当72°角是底角时,顶角=180°-72°×2=36°,综上顶角为72°或36°.故答案为:72或36.【点睛】本题考查等腰三角形的性质,,树立分类讨论思想,培养学生全面思考问题的数学素养,在计算等腰三角形有关边、角的问题时,要注意利用分类讨论的思想进行全面讨论是解题的关键.2.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.【答案】25°或40°或10°【解析】【详解】【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=12(180°-100°)=40°,②AB=AD,此时∠ADB=12(180°-∠A)=12(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=12(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=12(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.3.如图,直线a,b交于点O,∠α=40°,点A是直线a上的一个定点,点B在直线b上运动,且始终位于直线a的上方,若以点O,A,B为顶点的三角形是等腰三角形,则∠OAB=_________°.【答案】40或70或100【解析】【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.【详解】解:要使△OAB为等腰三角形分三种情况讨论:①当OB 1=AB 1时,∠OAB =∠α=40°;②当OA =AB 2时,∠OAB =180°-2×40°=100°;③当OA =OB 3时,∠OAB =∠OBA =12(180°-40°)=70°;故答案为:40或70或100.【点睛】本题考查了等腰三角形的判定和性质,熟练掌握等腰三角形的判定定理是解题的关键.►易错点三三角形的形状不明时与高结合没有分类讨论例题:若等腰三角形一腰上的高与另一腰的夹角为50︒,则这个等腰三角形的底角的度数为()A .20︒B .50︒或70︒C .70︒D .20︒或70︒【答案】D【解析】【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】(1)当这个三角形是锐角三角形时,如图所示:∵高与另一腰的夹角为50°,即50ABD ∠=︒,∴顶角905040A ∠=︒-︒=︒,∵A ABC CB =∠∠,()118040702ABC ACB ∴∠=∠=︒-︒=︒;(2)当这个三角形是钝角三角形时,如图所示:∵∠ABD =50°,BD ⊥CD ,∴∠BAD =90°-50°=40°,∵ABC C ∠=∠,40ABC C ∠+∠=︒,∴140202ABC C ∠=∠=⨯︒=︒;综上所述,这个等腰三角形的底角的度数为70°或20°.故选:D .【点睛】本题考查了等腰三角形的性质及三角形内角和定理,三角形外角的性质,等腰三角形的高线,可能在三角形的内部,边上、外部几种不同情况,因此遇到与等腰三角形的高有关的计算时应分类讨论.【变式训练】1.若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角的度数为____【答案】60°或120°【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【详解】解:当高在三角形内部时(如图1),∵30,90ABD ADB ∠=︒∠=︒,∴60A ∠=︒,即顶角是60°;当高在三角形外部时(如图2),∵30,90ABD ADB ∠=︒∠=︒,∴60DAB ∠=︒,∴120CAB ∠=︒,即顶角是120°.故答案为:60或120.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.2.若等腰三角形一腰上的高与另一腰的夹角为56°,则这个等腰三角形底角度数是_______.【答案】73︒或17︒【解析】【分析】在等腰ABC ∆中,AB AC =,BD 为腰AC 上的高,56ABD ∠=︒,讨论:当BD 在ABC ∆内部时,如图1,先计算出34BAD ∠=︒,再根据等腰三角形的性质和三角形内角和可计算出ACB ∠;当BD 在ABC ∆外部时,如图2,先计算出34BAD ∠=︒,再根据等腰三角形的性质和三角形外角性质可计算出ACB ∠.【详解】解:在等腰ABC ∆中,AB AC =,BD 为腰AC 上的高,56ABD ∠=︒,当BD 在ABC ∆内部时,如图1,BD Q 为高,90ADB ∴∠=︒,905634BAD ∴∠=︒-︒=︒,AB AC =,1(18034)732ABC ACB ∴∠=∠=︒-︒=︒;当BD 在ABC ∆外部时,如图2,BD Q 为高,90ADB ∴∠=︒,905634BAD ∴∠=︒-︒=︒,AB AC =,ABC ACB ∴∠=∠,而BAD ABC ACB ∠=∠+∠,1172ACB BAD ∴∠==︒,综上所述,这个等腰三角形底角的度数为73︒或17︒.故答案为:73︒或17︒.【点睛】本题考查了等腰三角形的性质,熟悉相关性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在ABC ∆中,A ∠、B ∠、C ∠所对的边长分别是a 、b 、c .满足b A c C a =+cos cos2.则B A sin sin +的最大值是 A 、22B 、1C 、2D 、 122+答案:C2.若a, b, c 是三角形ABC 的角A 、B 、C 所对的三边,向量)sin ,sin sin (C B b A a m -=,),1(c b n +-=,若n m ⊥,则三角形ABC 为( )三角形。
A. 锐角B. 直角C. 钝角D. 不能确定 答案 C错误!未指定书签。
3.(2013年高考陕西卷)设△ABC 的内角A , B , C 所对的边分别为a , b ,c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A4. (2011浙江文)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B += ( )(A)- 12 (B) 12(C) -1 (D) 15.(2011重庆)若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则c o s B =( D )A .154 B .34 C .31516 D .11166.(2012年上海卷理)在ABC ∆中,若C B A 222sin sin sin <+,则A B C ∆的形状是(C )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 7. (2012年高考陕西卷理科9) 在ABC ∆中,角,,A B C 所对边的长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )(A )32 (B ) 22 (C ) 12 (D ) 12- 8.(2013年高考辽宁卷)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3π C .23π D .56π 【答案】A错误!未指定书签。
9.(2013年高考课标Ⅱ卷(文))△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=错误!未找到引用源。
,C=错误!未找到引用源。
,则△ABC 的面积为( ) A .2错误!未找到引用源。
+2B .错误!未找到引用源。
+1C .2错误!未找到10.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.解:14-因为2sin 3sin B C =,所以23b c =,解得32c b =,2a c =.所以2221cos 24b c a A bc +-==-.11.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab acaa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即11.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .12.(2012年浙江理)在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=____--16____.13.在△ABC 中,AB=2,AC=6,BC=1+3,AD 为边BC 上的高,则AD 的长是 。
答案 3 14.(2011安徽理)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________【解析】设三角形的三边长分别为4,,4a a a -+,最大角为θ,由余弦定理得,则10a =,所以三边长为6,10,14.△ABC 的面积为1610sin1201532S =⨯⨯⨯=. 15. (2011全国新课标卷理)在ABC V 中,60,3B AC ==,则2AB BC +的最大值为 。
解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒= 022sin 2sin(120)3cos sin sin sin AB ACAB C A A A C B==⇒==-=+; 2AB BC ∴+=3cos 5sin 28sin()27sin()A A A A ϕϕ+=+=+,故最大值是2716. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .17 、已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.18.(青岛一模)在ABC ∆中,c b a ,,分别是C B A ∠∠∠,,的对边长,已知A A cos 3sin 2=.(Ⅰ)若mbc b c a -=-222,求实数m 的值;(Ⅱ)若3=a ,求ABC ∆面积的最大值.解:(Ⅰ) 由A A cos 3sin 2=两边平方得:A A cos 3sin 22=即0)2)(cos 1cos 2(=+-A A 解得: 21cos =A ……3分 而mbc b c a -=-222可以变形为22222mbc a c b =-+即212cos ==m A ,所以1m = (Ⅱ)由(Ⅰ)知 21cos =A ,则23sin =A …7分又212222=-+bc a c b ………8分 所以22222a bc a c b bc -≥-+=即2a bc ≤…………10分故433232sin 22=⋅≤=∆a A bc S ABC………12分 19.(2009广东地区高三模拟)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c =7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积. (1) 解:∵A +B +C =180°由272cos 2cos 4272cos 2sin 422=-=-+C C C B A 得 …………1分 ∴27)1cos 2(2cos 142=--+⋅C C ………………3分整理,得01cos 4cos 42=+-C C …………4分 解 得:21cos =C ……5分∵︒<<︒1800C ∴C=60°……6分(2)解:由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab …………7分∴ab b a 3)(72-+=………8分 由条件a+b=5得 7=25-3ab …… 9分 ab=6……10分∴23323621sin 21=⨯⨯==∆C ab S ABC …………12分 20. (2011江西文) 在ABC ∆中,C B A ,,的对边分别是c b a ,,,C b B c A a cos cos cos 3+=.(1)求A cos 的值;(2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=正弦定理得: )sin(cos sin cos sin cos sin 3C B C B B C A A +=+= 及:A A A sin cos sin 3=所以31cos =A 。
(2)由332cos cos =+C B 332cos )cos(=+--C C A π展开易得: 36sin 3sin 2cos =⇒=+C C C 正弦定理:23sin sin =⇒=c C c A a 21. (2011江西)在△ABC 中,角C B A ,,的对边分别是c b a ,,,已知2sin 1cos sin CC C -=+.(1)求C sin 的值;(2)若8)(422-+=+b a b a ,求边c 的值.解:(1)已知2sin 1cos sin CC C -=+ 2sin 2sin 2cos 2sin 2cos 2cos 2sin22222C C C C C C C -+=-+∴ 整理即有:012sin 22cos 22sin 02sin 2sin 22cos 2sin 22=⎪⎭⎫ ⎝⎛+-⇒=+-C C C C C C C 又C 为ABC ∆中的角,02sin ≠∴C412sin 2cos 2cos 2sin 2412cos 2sin 212cos 2sin 222=++-⇒=⎪⎭⎫ ⎝⎛-⇒=-∴C C C C C CC C 43sin 432cos 2sin 2=⇒=∴C C C(2)()8422-+=+b a b a()()2,2022044442222==⇒=-+-⇒=++--+∴b a b a b a b a又47sin 1cos 2=-=C C ,17cos 222-=-+=∴C ab b a c 22. (2011山东文)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(Ⅰ)求sin sin C A的值;(Ⅱ)若cosB=14,5b ABC 的周长为,求的长.【解析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cos C 2c-a =cos B b=2sin sin sin C AB -,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin C A =2.(2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a,由余弦定理得:2222cos b c a ac B =+-,即22221(53)(2)44a a a a -=+-⨯,解得a=1,所以b=2.23.(2012年高考新课标全国卷理科17)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--=(1)求A (2)若2a =,ABC ∆的面积为3;求,b c 。