2020长宁区数学初三二模试题及简要答案
上海市长宁区2019-2020学年中考数学二月模拟试卷含解析
上海市长宁区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求; 乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确2.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°3.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m 1的该市居民家庭按第一档水价交费;②年用水量不超过240m 1的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180m 1之间;④该市居民家庭年用水量的众数约为110m 1.其中合理的是( )A .①③B .①④C .②③D .②④4.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A .2.8×105B .2.8×106C .28×105D .0.28×1075.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )A .B .C .D .6.一元一次不等式组的解集中,整数解的个数是( )A .4B .5C .6D .77.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )A .B .C .D .8.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x ,则该二次函数的对称轴是直线( )A .x=1B .x=49C .x=﹣1D .x=﹣499.已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣510.下列实数中,有理数是( )A .2B .2.1&C .πD .5311.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .3212.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至点M ,则∠BCM 的度数为( )A .40°B .50°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.14.关于 x 的方程 ax=x+2(a ≠1) 的解是________.15.矩形纸片ABCD 中,AB=3cm ,BC=4cm ,现将纸片折叠压平,使A 与C 重合,设折痕为EF ,则重叠部分△AEF 的面积等于_____.16.把多项式9x 3﹣x 分解因式的结果是_____.17.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若BE=3,则折痕AE 的长为____.18.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC ,分别以AB,AC 为直角边,向外作等腰直角三角形ABE 和等腰直角三角形ACD ,∠EAB=∠DAC=90°,连结BD,CE 交于点F ,设AB=m ,BC=n.(1)求证:∠BDA=∠ECA .(2)若m=2,n=3,∠ABC=75°,求BD 的长.(3)当∠ABC=____时,BD 最大,最大值为____(用含m ,n 的代数式表示)(4)试探究线段BF,AE,EF 三者之间的数量关系。
2020届上海市长宁区中考二模数学试卷有答案(加精)
第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,AD第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知第22题图ACDEF GB第23题图备用图圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长宁区第二学期初三数学参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分)7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)O A C BO BA C DBAO解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分)把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分) 21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分)(3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8,∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分) 5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
2020届长宁区初三数学二模试卷含答案
3 - x2020 年长宁区初三数学在线学习效果评估试卷一、选择题1. 下列实数中,无理数是( )A. 0B .C . -3D . 2. 下列单项式中,与 xy 2 是同类项的是( )A. x 2 y B . x 2 y 2 C. 2xy 2 D. 3xy3. 关于反比例函数 y = 2,下列说法不正确的是( )x A. 点(-2, -1)在它的图像上 B . 它的图像在第一、三象限C . 它的图像关于原点中心对称D . y 的值随着 x 的值的增大而减小4. 图 1 是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是( )A . 8、9B . 8、8.5C . 16、8.5D . 16、145. 如果两圆的半径长分别为 5 和 3,圆心距为 7,那么这两个圆的位置关系是( )A. 内切 B . 外离 C . 相交 D . 外切6. 在平行四边形 ABCD 中,E 、F 是对角线 BD 上不同的两点,下列条件中,不能判定四边形 AECF 一定为平行四边形的是( )A. BE =DF B . AE =CF C . AF //CE D . ∠BAE =∠DCF二、填空题7. 计算: (x3 )2 ÷(-x )2 =8. 方程 = 2 的根为9. 不等式组的解集是10. 已知正三角形的边心距为 1,那么它的边长为11. 如果抛物线y = (a -1) x 2 -1 ( a 为常数)不经过第二象限,那么a 的取值范围是 3 912.如果关于x 的多项式x2 - 2x +m 在实数范围内因式分解,那么实数m 的取值范围是13.从1、2、3、4 四个数中任意取两个数相加,其和为偶数的概率是14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8 元,则多3 元;每人出7 元,则差4 元。
2020届长宁区初三二模数学(附解析)
参考答案
一. 选择题
1. B
2. C
3. D
4. A
5. C
6. B
二. 填空题 7. x4 11. a 1 15. 甲
8. x 1
12. m 1
16.
r a
2
r b
3
9. 4 x 6 3
13. 1 3
17. 1
10. 2 3 8x 3 y
14. 7x 4 y 18. 2 3
3
PQ 5 求点 P 的坐标.
25. 已知 AB 是 e O 的一条弦,点 C 在 e O 上,联结 CO 并延长,交弦 AB 于点 D , 且 CD CB . (1)如图 1,如果 BO 平分 ABC ,求证:弧 AB 弧 BC ; (2)如图 2,如果 AO OB ,求 AD : DB 的值; (3)延长线段 AO 交弦 BC 于点 E ,如果△ EOB 是等腰三角形,且 e O 的半径长等于 2, 求弦 BC 的长.
三. 解答题
19. 7 2 . 2
20. x 1.
21.(1) AC 7 ;(2) cot ADO 1 . 2
22.(1) y 10x 20 ;(2) A 、 B 两地之间的距离为 80 千米.
23.(1)证明略;(2)证明略.
24.(1)
y
x2
2x
2,
B(1, 3)
;(2) SV BCD
12. 如果关于 x 的多项式在 x2 2x m 实数范围内能因式分解,那么实数 m 的取值范围是
13. 从 1,2,3,4 四个数中任意取两个数相加,其和为偶数的概率是
14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共
2020年中考数学二模试卷 (含答案解析)(解析版)
2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。
上海市长宁区2020年初三中考数学二模试卷(解析版)
4.如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间
的众数、中位数分别是( )
A. 8 、 9
B. 8 、 8.5
C. 16 、 8.5
D. 16 、14
【答案】A
【解析】
【分析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】众数即出现次数最多的数据,由图中数据知道众数是 8,
由图中知道共有 40 个数据,中位数是从小到大排列,位于中间的两个数的平均数即为中位
数,由图中数据知道是 9;
Байду номын сангаас
故此题选:A.
【点睛】此题考查数据收集,主要是众数,中位数和条形统计图,难度一般.
5.如果两圆的半径长分别为 5 和 3 ,圆心距为 7 ,那么这两个圆的位置关系是( )
A. 内切
B. 外离
∴ BP BO , BQ BC
即 5 5 , BQ 2 5
∴BQ=2, ∵BQ>BO, ∴此情况不符合题意,舍去;
2,如图,同理可得 OP= 2 5 ,
在△BOP 与△BQC 中,
OBP QBC OPB BQC , ∴△BOP ~ △BQC, ∴ BP BO ,
BQ BC 即 5 5 ,
BQ 2 5
C. 相交
D. 外切
【答案】C
【解析】
【分析】
求出两圆半径的和与差,再与圆心距比较大小,根据得出的数量关系判断位置关系.
【详解】由题意得:∵5-3=2,5+3=8,圆心距为 7,
∴2<7<8,
根据两圆相交,圆心距的长度在两圆的半径的差与和之间得:两圆相交,
故此题选:C.
【点睛】此题考查了圆与圆的位置关系,本题利用两圆相交,圆心距的长度在两圆的半径
上海市长宁区2020年第二学期九年级数学教学质量检测试卷(含答案)
2020届上海市长宁区第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ . 16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,AD第14题图 A BCD EF第15题图 第16题图 D CBA 第18题图ABCD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知第22题图ACDEF GB第23题图备用图圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.参考答案和评分建议O A C BO BA C DBAO一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分)7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分) 将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分)把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x ,⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分)(2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分)整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BGDG BE AD = (2分)∵AG GF BE AD = ∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分)(2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限 由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BOAO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5,∴322=-=AC AO CO (1分) 5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)14AD或综上得65。
2019-2020学年上海市长宁区中考二模数学试卷有标准答案
第二学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点, 那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AC =BD , 下列四个命题中真命题是( ▲ )(A ) 若AB =CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC =∠ACB ,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC ⊥BD 且AO =OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC =15,CD =9,EF =6,∠AFE =50°,则∠ADC 的度数为 ▲ .16.如图,在梯形ABCD 中,AB //CD ,∠C=90°,BC =CD =4,52=AD , 若a AD =,b DC =,用a 、b 表示=DB ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP //AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,D第14题图 A BCDEF第15题图 第16题图 DCBA 第18题图AB CD135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AGGF BEAD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点. (1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.第22题图ACDEFGB第23题图备用图25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.长宁区第二学期初三数学参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) O AC DBO BA C DBAO=2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分)当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分)20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分) 所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分)整理得:0619132=+-x x (2分)解得:1,13621==x x (2分)分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分) 22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分) 代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分)∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGD BD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上 ∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD。
【附5套中考模拟试卷】上海市长宁区2019-2020学年中考二诊数学试题含解析
上海市长宁区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25-的倒数的绝对值是()A.25-B.25C.52-D.522.一个多边形的每一个外角都等于72°,这个多边形是( )A.正三角形B.正方形C.正五边形D.正六边形3.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.244.若实数a,b 满足|a|>|b|,则与实数a,b 对应的点在数轴上的位置可以是()A.B.C.D.5.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元6.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ; ②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1). 乙:①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲乙都对 B .甲乙都不对 C .甲对,乙不对D .甲不对,已对8.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山9.对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤ C .此不等式组有5个整数解 D .此不等式组无解10.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A .极差是3.5B .众数是1.5C .中位数是3D .平均数是311.如图,在ABC V 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .612.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.14.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.15.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)16.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
2020年上海市长宁区中考数学二模试卷 (解析版)
2020年中考数学二模试卷一、选择题(共6个小题)1.下列实数中,无理数是()A.0B.C.﹣3D.2.下列单项式中,与xy2是同类项的是()A.x2y B.x2y2C.2xy2D.3xy3.关于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.它的图象关于原点中心对称D.y的值随着x的值的增大而减小4.如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A.8、9B.8、8.5C.16、8.5D.16、145.如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切6.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 二、填空题7.计算:(x3)2÷(﹣x)2=.8.方程=2的根是.9.不等式组的解集是.10.已知正三角形的边心距为1,那么它的边长为.11.如果抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,那么a的取值范围是.12.如果关于x的多项式x2﹣2x+k在实数范围内能分解因式,那么k的取值范围是.13.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.15.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中的成绩较稳定.16.如图,已知在△ABC中,点D在边AC上,AD=2DC,=,=,那么=.(用含向量,的式子表示)17.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是.18.如图,已知在△ABC中,∠C=90°,BC=2,点D是边BC的中点,∠ABC=∠CAD,将ACD沿直线AD翻折,点C落在点E处,连结BE,那么线段BE的长为.三、解答题19.计算:20.解方程:19.如图,在梯形ABCD中,AD∥BC,AD=2,BC=5,∠BAC=45°,cos∠ACB=(1)求线段AC的长;(2)联结BD,交对角线AC于点O,求∠ADO的余切值.20.如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y (千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,求A、B两地之间的距离.21.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连结BD,交EF于点Q,求证:DQ⋅BC=CE⋅DF.22.如图,在平面直角坐标系xOy中,已知抛物线y=x2+mx+n经过点A(2,﹣2),对称轴是直线x=1,顶点为点B,抛物线与y轴交于点C.(1)求抛物线的表达式和点B的坐标;(2)将上述抛物线向下平移1个单位,平移后的抛物线与x轴正半轴交于点D,求△BCD的面积;(3)如果点P在原抛物线上,且在对称轴的右侧,联结BP交线段OA于点Q,=,求点P的坐标.23.已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD =CB.(1)如图1,如果BO平分∠ABC,求证:AB=BC;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.参考答案一、选择题1.下列实数中,无理数是()A.0B.C.﹣3D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.0是整数,属于有理数;B.是无理数;C.﹣3是整数,属于有理数;D.,是整数,属于有理数.故选:B.2.下列单项式中,与xy2是同类项的是()A.x2y B.x2y2C.2xy2D.3xy【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.解:A.x2y与xy2所含字母的指数不同,所以不是同类项;B.x2y2与xy2所含字母的指数不尽相同,所以不是同类项;C.2xy2与xy2所含字母相同且相同字母的指数也相同的项是同类项;D.3xy与xy2所含字母的指数不尽相同,所以不是同类项.故选:C.3.关于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.它的图象关于原点中心对称D.y的值随着x的值的增大而减小【分析】根据反比例函数y=和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵反比例函数y=,∴当x=﹣2时,y=﹣1,即点(﹣2,﹣1)在它的图象上,故选项A正确;它的图象在第一、三象限,故选项B正确;它的图象关于原点中心对称,故选项C正确;在每个象限内,y的值随着x的值的增大而减小,故选项D不正确;故选:D.4.如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A.8、9B.8、8.5C.16、8.5D.16、14【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;故选:A.5.如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【分析】求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解:设圆心距为d,因为5﹣3=2,3+5=8,圆心距为7cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.6.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OF,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.二、填空题7.计算:(x3)2÷(﹣x)2=x4.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.解:(x3)2÷(﹣x)2=x6÷x2=x4.故答案为:x4.8.方程=2的根是x=﹣1.【分析】此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可.解:两边平方得:3﹣x=4,x=﹣1.检验:当x=﹣1时,原方程的左边=2,右边=2,∴x=﹣1是原方程的根.故答案为:x=﹣1.9.不等式组的解集是﹣≤x≤6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x+4≥0,得:x≥﹣,解不等式x﹣2≤1,得:x≤6,则不等式组的解集为﹣≤x≤6,故答案为:﹣≤x≤6.10.已知正三角形的边心距为1,那么它的边长为2.【分析】根据题意,画出图形作AD⊥BC,BE⊥AC于点D和E,点O即为△ABC的外心,根据特殊角30度即可求出BD的值,进而可得三角形的边长.解:根据题意,画出图形,∵△ABC是正三角形,作AD⊥BC,BE⊥AC于点D和E,∴点O即为△ABC的外心,∴OD=1,∠DBO=30°,∴BD=,∴BC=2BD=2.故答案为:2.11.如果抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,那么a的取值范围是a <1.【分析】根据抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限可以确定不等式的开口方向,从而确定a的取值范围.解:∵抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,且该抛物线与y轴交于负半轴,∴a﹣1<0,解得:a<1.故答案为:a<1.12.如果关于x的多项式x2﹣2x+k在实数范围内能分解因式,那么k的取值范围是k≤1.【分析】本题实际上求一元二次方程x2﹣2x+k在实数范围内有实数根时,k的取值范围.所以根据一元二次方程的根的判别式解答即可.解:∵二次三项式x2﹣2x+k在实数范围内能分解因式,∴一元二次方程x2﹣2x+k在实数范围内有实数根,∴△=4﹣4k≥0,解得,k≤1.故答案为:k≤1.13.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是.【分析】列举出所有情况,看和为偶数的情况数占总情况数的多少即可.解:共12种情况,和为偶数的情况数有4种,所以概率为.故答案为.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.【分析】根据“8×人数﹣多出的钱数=物品的价格和7×人数+差的钱数=物品的价格”列方程即可得.解:设共有x人,物品的价格为y元,根据题意,可列方程组为,故答案为:.15.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中甲的成绩较稳定.【分析】利用方差的公式求得乙的方差,与甲的方差比较,方差较小的成绩稳定.解:乙的平均成绩为(7+8+10+6+9)÷5=8,方差为:[(7﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(9﹣8)2]=2,∵甲的方差为1.6,∴甲的方差较小,∴成绩较稳定的是甲,故答案为:甲.16.如图,已知在△ABC中,点D在边AC上,AD=2DC,=,=,那么=﹣+.(用含向量,的式子表示)【分析】利用三角形法则可知:=+,求出即可解决问题.解:∵AD=2DC,∴AD=AC,∴==,∴=+,∴=﹣+,故答案为﹣+.17.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是1.【分析】先根据题意画出图形,连接BD、OD,设AM=x,根据AD2﹣AM2=OD2﹣OM2,列出方程,求出x,再根据OC=OA﹣AM﹣CM计算即可.解:根据题意画图如下:连接BD,与AC交与点M,∵四边形ABCD是菱形,∴∠AMD=∠DMC=90°,∠ACD=∠ACB,CD=CD,AM=CM,∴DM2=AD2﹣AM2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.18.如图,已知在△ABC中,∠C=90°,BC=2,点D是边BC的中点,∠ABC=∠CAD,将ACD沿直线AD翻折,点C落在点E处,连结BE,那么线段BE的长为.【分析】证△ABC∽△DAC,得出AC2=BC×CD=2,AC=,由勾股定理得出AD =,由折叠的性质得ED=CD=1,∠ADE=∠ADC,得出BD=ED,作DF⊥BE于F,则BF=EF,∠BDF=∠EDF,证△BDF∽△DAC,求出BF=,即可得出答案.解:如图所示:∵BC=2,点D是边BC的中点,∴BD=CD=1,∵∠ABC=∠CAD,∠C=∠C,∴△ABC∽△DAC,∴AC:CD=BC:AC,∴AC2=BC×CD=2×1=2,∴AC=,∴AD===,由折叠的性质得:ED=CD=1,∠ADE=∠ADC,∴BD=ED,作DF⊥BE于F,则BF=EF,∠BDF=∠EDF,∴∠BDF+∠ADC=×180°=90°,∵∠ADC+∠DAC=90°,∴∠BDF=∠DAC,又∵∠DFB=∠C=90°,∴△BDF∽△DAC,∴=,即=,∴BF=,∴BE=2BF=;故答案为:.三、解答题19.计算:20.解方程:19.如图,在梯形ABCD中,AD∥BC,AD=2,BC=5,∠BAC=45°,cos∠ACB=(1)求线段AC的长;(2)联结BD,交对角线AC于点O,求∠ADO的余切值.【分析】(1)如图,过点B作BE⊥AC于点E,根据已知条件和cos∠ACB=可得,CE=3,AE=BE=4,进而可求AC的长;(2)结合(1)和AD∥BC,可得=,得AO和OC的长,从而可求OE的长,进而得∠ADO的余切值即为∠BOE的余切值.解:(1)如图,过点B作BE⊥AC于点E,∴∠AEB=90°,∵∠BAC=45°,∴AE=BE,∵cos∠ACB=,即=,∵BC=5,∴CE=3,∴BE==4,∴AE=BE=4,∴AC=AE+EC=4+3=7.答:线段AC的长为7;(2)∵AD∥BC,∴=,∴=,解得AO=2,∴OC=5,∴OE=OC﹣CE=5﹣3=2,∴==,∵∠ADO=∠BOE,∴cot∠ADO=cot∠BOE=.∴∠ADO的余切值即为∠BOE的余切值为.20.如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y (千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,求A、B两地之间的距离.【分析】(1)根据函数图象中的数据,可以求得乙的行驶路程y和行驶时间x(1≤x ≤3)之间的函数解析式;(2)根据函数图象中的数据,可以分别求得甲的速度和乙开始的速度,然后设出A、B 两地之间的距离,再根据甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,可以列出相应的方程,从而可以得到A、B两地之间的距离.解:(1)设乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式为y=kx+b,,解得,,即乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式是y=10x+20;(2)设A、B两地之间的距离为S千米,甲的速度为60÷3=20(千米/时),乙开始的速度为30÷1=30(千米/时),,解得,S=80,答:A、B两地之间的距离是80千米.21.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连结BD,交EF于点Q,求证:DQ⋅BC=CE⋅DF.【分析】(1)作EM⊥BC于点M,可证EM∥AB,可得∠ABE=∠BEM,∠BAC=∠CEM,由角的数量关系可得∠CEM=45°=∠BAC,可证AB=BC,可得结论;(2)通过证明△BCE∽△FDQ,可得,可得结论.【解答】证明:(1)如图,作EM⊥BC于点M,∵四边形ABCD是矩形,∴AB⊥BC,∴EM∥AB,∴∠ABE=∠BEM,∠BAC=∠CEM,∵∠ABE+∠CEF=45°,∴∠BEM+∠CEF=45°,∵BE⊥EF,∴∠CEM=45°=∠BAC,∴∠BAC=∠ACB=45°,∴AB=BC,∴矩形ABCD是正方形;(2)如图,∵∠BEF+∠BCF+∠EFC+∠EBC=360°,∴∠EBC+∠EFC=180°,且∠EFC+∠QFD=180°,∴∠DFQ=∠EBC,∵四边形ABCD是正方形,∴∠ACB=∠BDC=45°,∴△BCE∽△FDQ,∴,∴BC•DQ=CE•DF.22.如图,在平面直角坐标系xOy中,已知抛物线y=x2+mx+n经过点A(2,﹣2),对称轴是直线x=1,顶点为点B,抛物线与y轴交于点C.(1)求抛物线的表达式和点B的坐标;(2)将上述抛物线向下平移1个单位,平移后的抛物线与x轴正半轴交于点D,求△BCD的面积;(3)如果点P在原抛物线上,且在对称轴的右侧,联结BP交线段OA于点Q,=,求点P的坐标.【分析】(1)先根据对称轴求出m,再将点A坐标代入抛物线解析式中求出能,得出抛物线解析式,最后配成顶点式,即可得出结论;(2)先求出点D坐标,进而求出直线CD解析式,得出点E坐标,再用面积公式求解即可得出结论;(3)设出点P坐标,构造出△PMQ∽△PNB,得出=,表示出QM=(a2﹣2a+1),PM=(a﹣1),进而表示出Q(a+,a2﹣a﹣),代入直线OA 中,即可得出结论.解:(1)∵抛物线y=x2+mx+n的对称轴是直线x=1,∴﹣=1,∴m=﹣2,∴抛物线解析式为y=x2﹣2x+n,∵抛物线过点(2,﹣2),∴4﹣2×2+n=﹣2,∴n=﹣2,∴抛物线的解析式为y=x2﹣2x﹣2=(x﹣1)2﹣3,∴顶点B的坐标为(1,﹣3);(2)如图1,由平移知,平移后的抛物线解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∵点D在x正半轴上,∴D(3,0),针对于抛物线y=x2﹣2x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),∴直线CD的解析式为y=x﹣2,记直线CD与直线x=1的交点为E,则E(1,﹣),∴S△BCD=BE•|x D﹣x C|=×|﹣﹣(﹣3)|×3=;(3)如图2,设P(a,a2﹣2a﹣2),过点P作PN垂直于直线x=1于点N过点Q作QM⊥PN于M,∴QM∥NN,∴△PMQ∽△PNB,∴=,∵,∴=,∵PN=a﹣1,BN=a2﹣2a﹣2+3=a2﹣2a+1,∴,∴QM=(a2﹣2a+1),PM=(a﹣1),∴MN=PN﹣PM=(a﹣1),点Q与点B的纵坐标之差的绝对值为(a2﹣2a+1),∴Q(a+,a2﹣a﹣),∵A(2,﹣2),∴直线OA的解析式为y=﹣x,∵点Q在线段OA上,∴a++a2﹣a﹣=0,∴a=﹣3(舍)或a=4,∴P(4,6).23.已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD =CB.(1)如图1,如果BO平分∠ABC,求证:AB=BC;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.【分析】(1)证明△OBA≌△OBC即可解决问题.(2)如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.首先证明∠CDB=∠CBD=75°,解直角三角形求出AD,BD(用a表示)即可解决问题.(3)因为∠OEB=∠C+∠COE>∠OBE,推出OE≠OB,分两种情形:如图3﹣1中,当BO=BE时,如图3﹣2中,当EO=EB时,分别求解即可解决问题.【解答】(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.。
上海市长宁区2019-2020学年中考第二次模拟数学试题含解析
上海市长宁区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .12 2.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④3.下列运算正确的是( )A .5ab ﹣ab=4B .a 6÷a 2=a 4C .112a b ab +=D .(a 2b )3=a 5b 3 4.下列计算正确的是( )A .a 2•a 3=a 5B .2a+a 2=3a 3C .(﹣a 3)3=a 6D .a 2÷a=2 5.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .6 6.要使分式337x x -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73 D .x≠737.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧;其中正确说法的个数为( )A .4B .3C .2D .18.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④ 9.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1m >B .1m <C .m 1≥D .1m £10.下列实数中是无理数的是( )A .227B .2﹣2C .5.15&&D .sin45°11.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .6.7×106B .6.7×10﹣6C .6.7×105D .0.67×10712.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在函数1x y -=中,自变量x 的取值范围是_________. 14.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________. 15.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.16.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=24x(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则OFBEADSSVV的值为_____.17.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.18.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程组:113311x x yx x y⎧+=⎪+⎪⎨⎪-=⎪+⎩20.(6分)如图,AB是⊙O的直径,C、D为⊙O上两点,且»»=AC BD,过点O作OE⊥AC于点E⊙O 的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.21.(6分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方22.(8分)如图,在65形的顶点上.∆,其面积为5,点C在小正方在图中画出以线段AB为底边的等腰CABW,其面积为16,点D和点E均在小正方形的顶点形的顶点上;在图中面出以线段AB为一边的ABDE上;连接CE,并直接写出线段CE的长.23.(8分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?24.(10分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.25.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.26.(12分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:∠CBE=12∠F;(2)若⊙O的半径是23,点D是OC中点,∠CBE=15°,求线段EF的长.27.(12分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.2.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a =1,解得b=-2a , 2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 3.B【解析】【分析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A 项, 根据单项式的减法法则可得:5ab-ab=4ab,故A 项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a b a b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数)(2)幂的乘方:()m n mn a a =(m 、n 都是正整数)(3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n)(5)零次幂:01a =(a≠0)(6) 负整数次幂: 1p p aa-=(a≠0, p 是正整数). 4.A【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】A 、a 2•a 3=a 5,故此选项正确;B 、2a+a 2,无法计算,故此选项错误;C 、(-a 3)3=-a 9,故此选项错误;D 、a 2÷a=a ,故此选项错误;故选A .【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键. 5.C【解析】【分析】先根据等腰三角形三线合一知D 为BC 中点,由点E 为AC 的中点知DE 为△ABC 中位线,故△ABC 的周长是△CDE 的周长的两倍,由此可求出BC 的值.【详解】∵AB=AC=15,AD 平分∠BAC ,∴D 为BC 中点,∵点E 为AC 的中点,∴DE 为△ABC 中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理. 6.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.8.D【解析】【分析】根据E 点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E 点有4中情况,分四种情况讨论如下:由AB ∥CD ,可得∠AOC=∠DCE 1=β∵∠AOC=∠BAE1+∠AE 1C ,∴∠AE 1C=β-α过点E 2作AB 的平行线,由AB ∥CD ,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β∴∠AE 2C=α+β由AB ∥CD ,可得∠BOE 3=∠DCE 3=β∵∠BAE 3=∠BOE 3+∠AE 3C ,∴∠AE 3C=α-β由AB ∥CD ,可得∠BAE 4+∠AE 4C+∠DCE 4=360°,∴∠AE 4C=360°-α-β∴∠AEC 的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.9.C【解析】【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根, ∴△=24b ac -=2241[(2)]m -⨯⨯--,解得m≥1,故选C .【点睛】本题考查一元二次方程根的判别式.10.D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.11.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6 700 000=6.7×106,故选:A【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1且x≠﹣1【解析】试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.14.13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.15.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m1.故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.16.1 6【解析】【分析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点A B 、横坐标为a ,则点A 纵坐标为2a ,点B 的纵坐标为24a , ∵BE ∥x 轴,∴点F 纵坐标为24a , ∵点F 是抛物线2y x =上的点,∴点F横坐标为12x a ==, ∵CD x P 轴,∴点D 纵坐标为2a , ∵点D 是抛物线24x y =上的点, ∴点D横坐标为2x a ==,22131,,,244AD a BF a CE a OE a ∴==== ∴1141218362OFB EAD BF OE S S AD CE ⋅⋅==⨯=⋅⋅V V , 故答案为16. 【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键. 17.﹣18【解析】【分析】要求代数式a 3b ﹣2a 2b 2+ab 3的值,而代数式a 3b ﹣2a 2b 2+ab 3恰好可以分解为两个已知条件ab ,(a ﹣b )的乘积,因此可以运用整体的数学思想来解答.【详解】a 3b ﹣2a 2b 2+ab 3=ab (a 2﹣2ab+b 2)=ab (a ﹣b )2,当a ﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18, 故答案为:﹣18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.18.答案不唯一,如:AD【解析】【分析】根据勾股定理求出AD,根据无理数的估算方法解答即可.【详解】由勾股定理得:AD=,34<.故答案为答案不唯一,如:AD.【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么222+=a b c.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.10.5 xy=⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.20.(1)见解析;(2)92 AF=.【解析】【分析】(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵¶¶AC BD=,∴¶¶AD BC=.∴∠GAB=∠B,∵AF是⊙O的切线,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:连接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴22221068 OG BG OB=-=-=,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴AF OB AO OG=.∴66982OB AOAFOG⋅⨯===.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键. 21.(1)2;(22【解析】试题分析:()1点A表示2,向右直爬2个单位到达点B,点B表示的数为22m=-,()2把m的值代入,对式子进行化简即可.试题解析:()1由题意A点和B点的距离为2,其A点的坐标为2,因此B点坐标2 2.m=-()2把m的值代入得:()()016221226m m-++=-+,(01282=-+,211=+,2.=22.(1)见解析;(2)见解析;(3)见解析,5CE=【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE5【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键. 23.(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.24.(1)y=﹣x 2+2x+1;(2)P (2,135+55-;(1)存在,且Q 1(1,0),Q 2(25,0),Q 1(50),Q 450),Q 550).【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x 2+2x+1代入可得:32x =,∴y =;∴P 2.综上所述,P (2,1.(1)存在,且Q 1(1,0),Q 2(20),Q 1(0),Q 4,0),Q 5,0); ①若Q 是直角顶点,由对称性可直接得Q 1(1,0);②若N 是直角顶点,且M 、N 在x 轴上方时;设Q 2(x ,0)(x <1),∴MN=2Q 1O 2=2(1﹣x ),∵△Q 2MN 为等腰直角三角形;∴y=2(1﹣x )即﹣x 2+2x+1=2(1﹣x );∵x <1,∴Q 2(2-,0);由对称性可得Q 10);③若N 是直角顶点,且M 、N 在x 轴下方时;同理设Q 4(x ,y ),(x <1)∴Q 1Q 4=1﹣x ,而Q 4N=2(Q 1Q 4),∵y 为负,∴﹣y=2(1﹣x ),∴﹣(﹣x 2+2x+1)=2(1﹣x ),∵x <1,∴x=∴Q 4(0);由对称性可得Q 5,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.25. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元.【解析】【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )].即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元).答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元.26.(1)详见解析;(1)6-【解析】【分析】(1)连接OE 交DF 于点H ,由切线的性质得出∠F+∠EHF =90∘,由FD ⊥OC 得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF =∠DHO ,从而求得∠F=∠DOH ,依据∠CBE=12∠DOH ,从而即可得证; (1)依据圆周角定理及其推论得出∠F=∠COE =1∠CBE =30°,求出OD 的值,利用锐角三角函数的定义求出OH 的值,进一步求得HE 的值,利用锐角三角函数的定义进一步求得EF 的值.【详解】(1)证明:连接OE 交DF 于点H ,∵EF 是⊙O 的切线,OE 是⊙O 的半径,∴OE ⊥EF .∴∠F+∠EHF =90°.∵FD ⊥OC ,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=12∠DOH,∴12 CBE F ∠=∠(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半径是23,点D是OC中点,∴3OD=.在Rt△ODH中,cos∠DOH=OD OH,∴OH=1.∴232HE=-.在Rt△FEH中,tan=EHFEF∠∴3623EF EH==-【点睛】本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.27.(1)14;(2)34.【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=14,故答案为14;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.。
上海市长宁区中考数学二模试卷(含解析)
中考数学二模试卷、选择题(共6小题,每小题4分,满分24 分)=-B • =3 C• 一= 一D:1 ='=—B . =3 C. —D. 一x+y 7 s-y y 3 yc的解集在数轴上可表示为(K-2<0A. * 百*3-2 -1 0 1 23.在正方形网格中,△ ABC的位置如图所示,贝U cos / B的值为()4. 如图,在四边形ABCD中,动点P从点A开始沿A T B T C^D的路径匀速前进到D为止.5. 已知F为线段AB的黄金分割点,且AF< PB,则()A. AF2=AB?PBB. A B=AP?PBC. P B"=AP?ABD. Ah+BF^A^1 .已知二=匸,那么下列各式中正确的是(y 4y 4A.2.不等式组1S随时间t的变化关系用图象表示正确的是(6. 下列说法中,正确的是()A. —组数据-2,- 1, 0, 1, 1, 2的中位数是0B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式C. 购买一张福利彩票中奖是一个确定事件D. 分别写有三个数字-1, - 2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为二、填空题(本大题共12题,每题4分,满分48分)1 37 .计算:(a s b)= _________ .&在实数范围内分解因式:X2- 3= ______ .9. 已知函数f (x)=丄丄,那么f (〔- 1)= .x10. 已知反比例函数y=—丄的图象经过一、三象限,则实数k的取值范围是x11 .抛物线y= - x2+2x+a的对称轴是 _______ .12. 方程让-1=1的解为___________ .13. 已知关于x的方程x2- 2kx+k=0有两个相等的实数根,那么实数k= ______ .14. 某物流仓储公司用A、B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20千克物品,A型机器人搬运1000千克物品所用时间与B型机器人搬运800千克物品所用时间相等,设A型机器人每小时搬运物品x千克,列出关于x的方程为_____________ 15. 化简:2 - 3(. > ')=AF 1EF// BC, = . , EF=3,则CD的长为BE 317. 在△ ABC中,已知BC=4cm以边AC的中点P为圆心1cm为半径画O P,以边AB的中点Q为圆心x cm长为半径画O Q如果O P与O Q相切,那么x= _________ cm.18. ___________ 如图,在Rt△ ABC中,AB=AC D、E是斜边BC上的两点,且/ DAE=45 .设BE=a, DC=b 那么AB= (用含a、b的式子表示AB).三、解答题:(本大题共7题,满分78分)19. (10 分)计算:(.厂 1 2- | - 3+ T tan45 ° |+ (—)°.20. (1°分)解方程组:々乎.3 K3-xy+x+2y+6=021. (1°分)已知直线y= - x+3与x轴、y轴分别交于A、B两点,设0为坐标原点.(1)求/ ABO勺正切值;(2)如果点A向左平移12个单位到点C,直线I过点C且与直线y= - , x+3平行,求直线I的解析式.22. (1°分)小明在海湾森林公园放风筝•如图所示,小明在A处,风筝飞到C处,此时线长BC为4°米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE (计算结果精确到0.1米,—沁1.732 )23. (12分)如图,在△ ABC中,点P是AC边上的一点,过点P作与BC平行的直线PQ 交AB 于点Q点D在线段BC上,联接AD交线段PQ于点E,且三=三,点G在BC延长线上,/ ACG的平分线交直线PQ于点F.2 求证:PC=PE3 当P是边AC的中点时,求证:四边形AECF是矩形.24. ( 12分)已知△ OAB在直角坐标系中的位置如图,点A在第一象限,点B在x轴正半轴上,OA=OB=6 / AOB=30 .(1)求点A B的坐标;(2)开口向上的抛物线经过原点O和点B,设其顶点为巳当厶OBE 为等腰直角三角形时,求抛物线的解析式;(3)设半径为2的O P与直线OA交于M N两点,已知MN=2—, P ( m 2)( m> 0),求m的值.25. (14分)如图,△ ABC的边AB是O O的直径,点C在O O上,已知AC=6cm BC=8cm 点P、Q分别在边AB BC上,且点P不与点A、B重合,BQ=k?A( k> 0),联接PC PQ(1 )求0 O的半径长;(2)当k=2时,设AP=x,A CPQ的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△ CPQ M^ ABC相似,且/ ACB=/ CPQ 求k 的值.参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1已知’上上,那么下列各式中正确的是( )y 4A. = 1 B •亠=3 C. 1' ' =「D ='s+y 7 x-y s 3 y 4【考点】S1:比例的性质.【分析】根据比例的基本性质(两内项之积等于两外项之积)作出选择.【解答】解:•止= 的两内项是y、3,两外项是x、4,y 434x=—y, y= x, 3y=4x .4 3A、由原式得,4 ( x+y) =7y,即3y=4x,故本选项正确;B由原式得,3 ( x- y) =x,即2x=3y,故本选项错误;C由原式得,10x=3 (x+2y),即6y=7x,故本选项错误;D由原式得,4 ( x- y) =y,即3x=5y,故本选项错误.故选A.【点评】本题考查了比例的基本性质•难度不大,是基础题.(2x+3>l2. 不等式组.的解集在数轴上可表示为()A. •. *B. ■. C-3 -2-1 0 1 2 -3 -2 -1 0 1 2 -3-2-10 1 2【考点】CB解一元一次不等式组;C4:在数轴上表示不等式的解集【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解答】解:解不等式2x+3 > 1,得:x >- 1,解不等式x-2V 0,得:x v 2,.不等式组的解集为-1 w x v 2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3. 在正方形网格中,△ ABC的位置如图所示,贝U cos / B的值为()IH!J I 4* *1"! "jl *1A. B. —C. —D.—2 2 2 3【考点】T1:锐角三角函数的定义.【分析】作ADL BC,可得AD=BD=5利用勾股定理求得AB,再由余弦函数的定义求解可得.【解答】解:如图,作AD L BC于点D,贝U AD=5 BD=5• AB= j,.:訂=;L「=5 :,••• cos / B=.^= _,AB 刃2 2故选:B.【点评】本题主要考查余弦函数的定义和勾股定理,构建直角三角形是解题的关键.4. 如图,在四边形ABCD中,动点P从点A开始沿A T B T C^D的路径匀速前进到D为止.在这个过程中,△ APD的面积S随时间t的变化关系用图象表示正确的是()【分析】根据点P 的运动过程可知:△ APD 的底边为AD,而且AD 始终不变,点P 到直线AD的距离APD 的高,根据高的变化即可判断 S 与t 的函数图象. 【解答】 解:设点P 到直线AD 的距离为h , •••△ APD 的面积为:-一 ADh ,2当P 在相等AB 运动时,此时h 不断增大, 当P 在线段BC 上运动时, 此时h 不变,当P 在线段CD 上运动时, 此时h 不断减小, 故选(C )【点评】本题考查函数图象, 解题的关键是根据点 P 到直线AD 的距离来判断s 与t 的关系, 本题属于基础题型.5. 已知P 为线段AB 的黄金分割点,且 AP< PB,则( ) A. AF 2=AB?PBB . A B=AP?PBC. P B=AP?ABD. Ah+B 戸=A^ 【考点】S3:黄金分割.【分析】把一条线段分成两部分, 使其中较长的线段为全线段与较短线段的比例中项,这样Or【考点】E7:动点问题的函数图象.的线段分割叫做黄金分割,他们的比值(丄丄)叫做黄金比.2【解答】解:••• P为线段AB的黄金分割点,且AP v PB,••• PB2=AP?AB故选C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.6. 下列说法中,正确的是()A. —组数据-2,- 1, 0, 1, 1, 2的中位数是0B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式C. 购买一张福利彩票中奖是一个确定事件D. 分别写有三个数字-1 , - 2, 4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为.一【考点】X6:列表法与树状图法;V2:全面调查与抽样调查;W4中位数;X1 :随机事件.【分析】根据中位数、全面调查和抽样调查、事件的分类以及概率的求法分别对每一项进行分析,即可得出答案.【解答】解:A、数据-2, - 1, 0, 1, 1, 2的中位数是二丄,故本选项错误;B质检部门要了解一批灯泡的使用寿命,应当采用抽样调查方式,故本选项错误;C购买一张福利彩票中奖是一个不确定事件,故本选项错误;D分别写有三个数字-1 , - 2, 4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为.,故本选项正确;故选D.【点评】此题考查了中位数、全面调查和抽样调查、事件的分类以及概率的求法. 用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.二、填空题(本大题共12题,每题4分,满分48分)1 3 37. 计算:(a - b)3= ab3.【考点】2F:分数指数幕.【分析】根据积的乘方等于乘方的积,可得答案.【解答】解:原式=a二b3=ab3,故答案为:ab3.【点评】本题考查了积的乘方,禾U用积的乘方是解题关键.&在实数范围内分解因式:x2- 3= (x+x -_ ___.【考点】58:实数范围内分解因式;54:因式分解-运用公式法.【分析】把3写成—的平方,然后再利用平方差公式进行分解因式.【解答】解:x2- 3=x2-( . —) 2= (x+ _)( x - _).【点评】本题考查平方差公式分解因式,把3写成—的平方是利用平方差公式的关键.9.已知函数f (x)=——,那么f ( -- 1) = 2+ ;.【考点】E5:函数值;76:分母有理化.【分析】把x= 一 - 1直接代入函数f (x)=八即可求出函数值.【解答】解:因为函数f (x) =■,X所以当x= ■- 1 时,f (x) =「''[.=2+ ■.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2 )函数值是唯一的,而对应的自变量可以是多个.10.已知反比例函数y= 的图象经过一、三象限,则实数k的取值范围是k> 1【考点】G4反比例函数的性质.【分析】根据反比例函数y=—的图象经过一、三象限得出关于k的不等式,求出k的取值范围即可.【解答】解:•••反比例函数y= 的图象经过一、三象限,••• k - 1 > 0,即k > 1.故答案为:k > 1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.11 .抛物线y= - x 2+2x+a 的对称轴是 直线x=1 .【考点】H3:二次函数的性质. 【分析】先根据抛物线的解析式得出 a 、b 的值,再根据二次函数的对称轴方程即可得出结论.【解答】解:•••抛物线的解析式为 y= - x 2+2x+a , ••• a= - 1, b=2,故答案为:x=1【点评】 本题考查的是二次函数的性质,即二次函数 y=ax 2+bx+c (a * 0)的对称轴直线 x=2a12.方程 ——=1的解为 x=2 .【考点】AG 无理方程.【分析】方程两边平方转化为整式方程, 求出整式方程的解得到 x 的值,经检验即可得到无 理方程的解.【解答】 解:方程两边平方得:x -仁1, 解得:x=2,经检验x=2是原方程的解, 故答案为:x=2【点评】 此题考查了无理方程,无理方程注意要检验.13.已知关于x 的方程x 2- 2kx+k=0有两个相等的实数根,那么实数 k= k=0或k=1【考点】AA 根的判别式.【分析】由方程的系数结合根的判别式,即可得出△=4k 2- 4k=0,解之即可得出结论.【解答】 解:T 关于x 的方程x 2- 2kx+k=0有两个相等的实数根, ••△ = (- 2k ) 2 - 4k=4k 2- 4k=0, 解得:k=0或k=1 .•••其对称轴是直线 x=-b------------- =12X(—1).故答案为:k=0或k=1.【点评】本题考查了根的判别式,熟练掌握“当厶=0时,方程有两个相等的实数根”是解题的关键.14•某物流仓储公司用A、B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20千克物品,A型机器人搬运1000千克物品所用时间与B型机器人搬运800千克物品所用时间相等,设A型机器人每小时搬运物品x千克,列出关于x的方程为_匚二=800【考点】B6:由实际问题抽象出分式方程•【分析】根据A、B两种机器人每小时搬运物品间的关系可得出B型机器人每小时搬运物品(x - 20)千克,再根据A型机器人搬运1000千克物品所用时间与B型机器人搬运800千克物品所用时间相等即可列出关于x的分式方程,由此即可得出结论•【解答】解:设A型机器人每小时搬运物品x千克,则B型机器人每小时搬运物品(x-20)千克,•/ A型机器人搬运1000千克物品所用时间与B型机器人搬运800千克物品所用时间相等,...igo o =800x x-20故答案为:L—=丄」x x-20【点评】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x 的分式方程•本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.T 丄T T T T15 .化简:2 - 3 (二一-)=—-13;_ .【考点】LM *平面向量.【分析】根据向量的加减运算法则进行计算即可得解.【解答】解: 2 - - 3 U --;),=2 -】+3 ',=-+3 ' •故答案为:-+3 •【点评】本题考查了平面向量,熟记向量的加减运算法则是解题的关键.EF〃BC -=;,EF=3,则CD 的长为」【考点】S9:相似三角形的判定与性质;L8:菱形的性质.【分析】要求CD的长,只要求出菱形的任意一条边长即可,根据题意可以求得△ AEF^A ABC从而可以求得BC的长,本题得以解决.【解答】解:•••在菱形ABCD中, EF// BC, 丄=—,EF=3,BE 3AE 1•••△AEF^A ABC AB=BC=CD=DA …-,AB 4.「"■• < -,. -• :■,解得,BC=12• CD=12故答案为:12.【点评】本题考查相似三角形的判定与性质、菱形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似解答.17. 在△ ABC中,已知BC=4cm以边AC的中点P为圆心1cm为半径画O P,以边AB的中点Q为圆心x cm长为半径画O Q如果O P与O Q相切,那么x= 1 或3 cm.【考点】MK相切两圆的性质.【分析】根据三角形的中位线的性质得到PQ^BC=2cm①当O P与O Q相外切时,②当O P与O Q相内切时,列方程即可得到结论.【解答】解:I BC=4cm点P是AC的中点,点Q是AB的中点,• PQ=z;BC=2cm①当O P与O Q相外切时,PQ=1+x=2• x=1cm,②当O P与O Q相内切时,PQ=|X- 1|=2 ,••• x=3cm (负值舍去),•••如果O P与O Q相切,那么x=1cm或3cm,故答案为:1或3.【点评】本题考查了相切两圆的性质,三角形的中位线的性质,注意相切两圆的两种情况.18. 如图,在Rt△ ABC中,AB=AC D、E是斜边BC上的两点,且/ DAE=45 .设BE=a, DC=b【考点】KD全等三角形的判定与性质;KW等腰直角三角形.【分析】将厶ADC绕点A顺时针旋转90°后,得到△ AFB只要证明厶FAE^A DAE推出EF=ED / ABF= / C=45 ,由 / EBF= / ABF+ / ABE=90 ,推出ED=EF=J/ + b',可得BC=a+b+ —. ,根据AB=BC?cos45即可解决问题.【解答】解:将△ ADC绕点A顺时针旋转90°后,得到△ AFB.证明:•••△DAC^A FAB•AD=AF / DAC=/ FAB•••/ FAD=90 ,•••/ DAE=45 ,•••/ DAC+/ BAE=Z FAB+Z BAEK FAE=45 ,在厶FAE和△ DAE中,f DA=FA< ZDAE=ZFAE,AE=AE•△FAE^A DAE•EF=ED Z ABF=Z C=45 ,•••/ EBF=Z ABF+Z ABE=90 ,(用含a、b的式子表示AB二ED=EF=,二BC=a+b+ /十才••• AB=BC?cos45 二宁(a+b+故答案为宁(a+b+ 一——)【点评】本题考查旋转变换、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题:(本大题共7题,满分78分)19. (10 分)(2017?长宁区二模)计算:(,)「1- | - 3+ T tan45 ° |+ (—)°,【考点】2C:实数的运算;6E:零指数幕;6F:负整数指数幕;T5:特殊角的三角函数值.【分析】原式利用零指数幕、负整数指数幕法则,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=2 - 3+ _+1= 一.【点评】此题考查了实数的运算,零指数幕、负整数指数幕,以及绝对值,熟练掌握运算法则是解本题的关键.20. (1°分)(2017?长宁区二模)解方程组:【考点】AF:高次方程.【分析】由①得:2x - y=0, 2x+y=0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.由①得:2x- y=0, 2x+y=0,f2z-y=0 f2z+y=0原方程组化为:①,②I 3x -xy+x+2rH6=0 | 3x -xy+x+2rH6=0【解答】解:4x2-y2=0 ①【点评】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组 题的关键.21. ( 10分)(2017?长宁区二模)已知直线 y=- ,_x+3与x 轴、y 轴分别交于 A 、B 两点, 设O 为坐标原点.(1) 求/ ABO 的正切值;(2) 如果点A 向左平移12个单位到点C ,直线I 过点C 且与直线y= - x+3平行,求直线I 的解析式.【考点】FF :两条直线相交或平行问题;Q3:坐标与图形变化-平移;T7:解直角三角形. 【分析】(1)根据已知条件得到 A (6, 0), B (0, 3),求得OA=6 OB=3,根据三角函数 的定义即可得到结论;(2)将点A 向左平移12个单位到点C,于是得到C (- 6, 0),设直线I 的解析式为y=- —x+b ,把C (- 6, 0)代入y= - —x+b 即可得到结论.2 2【解答】 解:(1 )•••直线y=-:x+3与x 轴、y 轴分别交于 A B 两点, ••• A (6, 0), B ( 0, 3), •••OA=6 OB=3 •••/ AOB=90 ,x0A 6 门• tan / ABO —=2;(2)将点A 向左平移12个单位到点C,• C (- 6 , 0),•••直线l 过点C 且与直线y= - . x+3平行, 设直线I 的解析式为y= - ,_ x+b ,把 C (- 6, 0)代入 y= x+b 得 0=— — 川(-6) +b ,(降次)是解此解方程组①得: ,方程组②无解,所以原方程组的解为:2 2b= - 3,•••直线I的解析式为y= -—x - 3.2【点评】本题考查了两直线平行或相交问题,坐标与图形变换-平移,解直角三角形,正确的理解题意是解题的关键.22. (10分)(2017?长宁区二模)小明在海湾森林公园放风筝.如图所示,小明在A处, 风筝飞到C处,此时线长BC为40米,若小明双手牵住绳子的底端B距离地面1.5米,从B处测得C处的仰角为60°,求此时风筝离地面的高度CE (计算结果精确到0.1米,二~1.732 )知 ___________【考点】TA解直角三角形的应用-仰角俯角问题.【分析】过点B作BD丄CE于点D,由锐角三角函数的定义求出CD的长,根据CE=CD+D即可得出结论.【解答】解:过点B作BD丄CE于点D,•/ AB丄AE, DEI AE, BD丄CE•四边形ABDE是矩形,•DE=AB=1.5 米.•/ BC=40米,/ CBD=60 ,•CD=BC?s in60 =40X 一=20 -,•CE=CD+DE=20_+1.5 ~ 20X 1.73+1.5 ~ 36.1 (米).答:此时风筝离地面的高度CE是36.1米.咚 (4)A E【点评】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23. (12分)(2017?长宁区二模)如图,在△ ABC中,点P是AC边上的一点,过点P作与BC平行的直线PQ交AB于点Q,点D在线段BC上,联接AD交线段PQ于点E,且,CD BD 点G在BC延长线上,/ ACG的平分线交直线PQ于点F.(1)求证:PC=PE(2)当P是边AC的中点时,求证:四边形AECF是矩形.【考点】S9:相似三角形的判定与性质;【分析】(1)根据相似三角形的性质得到出丄亠,于是得到结论;CD CD(2)根据平行线的性质得到/ PFC=/ FCG根据角平分线的性质得到/ PCF=/ FCG等量代换得到/ PFC=/ FCG根据等腰三角形的性质得到PF=PC得到PF=PE由已知条件得到AP=CP 推出四边形AECF是平行四边形,于是得到结论.【解答】(1)证明:T PQ// BC,•••△AQ0A ABD △AEP^A ADCLC:矩形的判定.,「二等量代换得到=',推.•座型匹型BD莎而苛’.CD -而,•空座方-而,.CD 石,•PC=PE(2 )• PF// DG•••/ PFC=/ FCG•/ CF平分/ PCG•/ PCF=/ FCG•/ PFC=/ FCG•PF=PC•PF=PE•P是边AC的中点,•AP=CP•四边形AECF是平行四边形,•PQ// CD•/ PEC玄DCE•/ PCE=/ DCE•/ PCE+/ PCF^- (/ PCD/ PCG =90。
[试卷合集3套]上海市长宁区2020届中考二轮总复习数学能力测试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.4【答案】A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.2.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°【答案】B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.3.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .12【答案】C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC , 设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.4.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为()A.B.2 C.D.【答案】D【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=118,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.5.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3【答案】D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-【答案】B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【答案】D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质:当k >0,b >0时,图像过一二三象限,y 随x 增大而增大;当k >0,b <0时,图像过一三四象限,y 随x 增大而增大;当k <0,b >0时,图像过一二四象限,y 随x 增大而减小;当k <0,b <0,图像过二三四象限,y 随x 增大而减小. 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( )A .13BCD .3【答案】B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在Rt △ABC 中∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c=3a ,设a=x,则即=4. 故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.10.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A.12B.24C.14D.13【答案】D【解析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题(本题包括8个小题)11.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.【答案】y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=10∵点P(3a ,a)是反比例函y=k x (k>0)与O 的一个交点, ∴3a 2=k. 22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12, 则反比例函数的解析式是:y=12x . 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键. 12.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d =R ﹣r =5﹣2=1cm ,故答案为1.【点睛】 此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.13.如图,在平面直角坐标系中,已知点A (﹣4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.【答案】(1645,125) (806845,125) 【解析】利用勾股定理列式求出AB 的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】∵点A (﹣4,0),B (0,3),∴OA=4,OB=3,∴AB=2243+=5, ∴第(2)个三角形的直角顶点的坐标是(445,125); ∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125), ∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125). 故答案为:(1645,125);(806845,125) 【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环. 14.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.【答案】65°【解析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵m ∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.15.计算1x x +﹣11x +的结果为_____. 【答案】11x x -+. 【解析】根据同分母分式加减运算法则化简即可.【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】 本题考查了分式的加减运算,熟记运算法则是解题的关键.16.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m .【答案】30【解析】分析:首先连接AO ,求出AB 的长度是多少;然后求出扇形的弧长弧BC 为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可. 详解:如图1,连接AO ,∵AB=AC ,点O 是BC 的中点,∴AO ⊥BC ,又∵90BAC ∠=︒,∴45ABO ACO ∠=∠=︒, ∴22()AB OB m ==,∴弧BC 的长为:90π4222π180=⨯⨯=(m), ∴将剪下的扇形围成的圆锥的半径是:22π2π2÷=,∴22(42)(2)30().m -=30点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键. 17.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.【答案】1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC =100°.若∠1=34°,则∠2=_____°.【答案】46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a ∥b ,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°.三、解答题(本题包括8个小题)19.△ABC 在平面直角坐标系中的位置如图所示.画出△ABC 关于y 轴对称的△A 1B 1C 1;将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.【答案】(1)见解析;(2)见解析,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l :x =1,见解析.【解析】(1)根据轴对称图形的性质,找出A 、B 、C 的对称点A 1、B 1、C 1,画出图形即可;(2)根据平移的性质,△ABC 向右平移6个单位,A 、B 、C 三点的横坐标加6,纵坐标不变; (1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l :x=1.【详解】(1)由图知,A (0,4),B (﹣2,2),C (﹣1,1),∴点A 、B 、C 关于y 轴对称的对称点为A 1(0,4)、B 1(2,2)、C 1(1,1),连接A 1B 1,A 1C 1,B 1C 1,得△A 1B 1C 1;(2)∵△ABC 向右平移6个单位,∴A 、B 、C 三点的横坐标加6,纵坐标不变,作出△A 2B 2C 2,A 2(6,4),B 2(4,2),C 2(5,1);(1)△A 1B 1C 1和△A 2B 2C 2是轴对称图形,对称轴为图中直线l :x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.已知m 是关于x 的方程2450x x -=+的一个根,则228m m +=__【答案】10【解析】利用一元二次方程的解的定义得到245m m +=,再把228m m + 变形为()224m m +,然后利用整体代入的方法计算 .【详解】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,()2228242510m m m m ∴+=+=⨯=.故答案为 10 .【点睛】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 . 21.某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m 、200m 、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .【答案】(1)25;(1)35 ;(3)310; 【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P 1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P 1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P 1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P 1==. 故答案为. 考点:列表法与树状图法.22.在连接A 、B 两市的公路之间有一个机场C ,机场大巴由A 市驶向机场C ,货车由B 市驶向A 市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C 的路程y (km )与出发时间x (h )之间的函数关系图象.直接写出连接A 、B 两市公路的路程以及货车由B 市到达A 市所需时间.求机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式.求机场大巴与货车相遇地到机场C 的路程.【答案】(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】(1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n , 得:103460,3m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:6020m n =⎧⎨=-⎩, ∴线段ED 对应的函数表达式为146020().33y x x =-≤≤解方程组80606020,y xy x=-+⎧⎨=-⎩得471007xy⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C的路程为1007km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.23.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?【答案】(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x件,则第二批衬衫是2x件.由题意可得:2880013200102x x-=,解得120x=,经检验120x=是原方程的根.(2)设每件衬衫的标价至少是a元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a⨯-+-⨯-+⨯-≥⨯解得:35052500a≥,所以,150a≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用2、一元一次不等式的应用.24.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.25.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.【答案】(1)证明参见解析;(2)半径长为154,AE =6. 【解析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362 AE x=-.∴363285xx-=,解得x=54,则3x=154,AE=6×54-32=6,∴⊙O的半径长为154,AE=6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.26.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(3取1.732)【答案】不需要改道行驶【解析】解:过点A作AH⊥CF交CF于点H,由图可知,∵∠ACH=75°-15°=60°,∴()1.732AH AC sin60125125108.252=⋅︒==⨯=米. ∵AH >100米,∴消防车不需要改道行驶.过点A 作AH ⊥CF 交CF 于点H ,应用三角函数求出AH 的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各曲线中表示y是x的函数的是()A.B.C.D.【答案】D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H【答案】C【解析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵91016∴310<4,∵10,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.4.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.56【答案】B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算.5.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.6.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【答案】C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.7.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【答案】B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90A∠=,45∠=,E∠=,90C∠+∠等于()∠=,则12D30A.150B.180C.210D.270【答案】C【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-=309018090210++-=,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°【答案】B 【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B .【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0【答案】A【解析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k+k 2=0,解得:k =﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题(本题包括8个小题)11.函数32xyx=-中,自变量x的取值范围是______【答案】x≠1【解析】解:∵32xyx=-有意义,∴x-1≠0,∴x≠1;故答案是:x≠1.12.如图,已知AB∥CD,α∠=____________【答案】85°.【解析】如图,过F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°−∠ABF+∠C=180°−120°+25°=85°故答案为85°.13.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.【答案】8112- 【解析】结合图形发现计算方法:11111=1-+=1-22244; ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式=12551-=256256=8112- 故答案为:8112-【点睛】 此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.14.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.【答案】 (-1,0)【解析】根据已知条件由图中可以得到B 1所在的正方形的对角线长为2,B 2所在的正方形的对角线长为(2)2,B 3所在的正方形的对角线长为(2)3;B 4所在的正方形的对角线长为(2)4;B 5所在的正方形的对角线长为(2)5;可推出B 6所在的正方形的对角线长为(2)6=1.又因为B 6在x 轴负半轴,所以B 6(-1,0).解:如图所示∵正方形OBB 1C ,∴OB 12,B 1所在的象限为第一象限;∴OB 2=2)2,B 2在x 轴正半轴;∴OB 3=(2)3,B 3所在的象限为第四象限;∴OB 4=(2)4,B 4在y 轴负半轴;∴OB 5=(2)5,B 5所在的象限为第三象限;∴OB 6=(2)6=1,B 6在x 轴负半轴.∴B 6(-1,0).故答案为(-1,0).15.关于x 的方程1101ax x +-=-有增根,则a =______. 【答案】-1【解析】根据分式方程11ax x +--1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.16.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.【答案】1.1【解析】求出EC ,根据菱形的性质得出AD ∥BC ,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD 是菱形,∴AD ∥BC ,∴△DEF ∽△CEB ,∴DF DE BC CE=, ∴132DF =, ∴DF=1.1,故答案为1.1.。
上海市长宁区2020年九年级下学期中考数学二模试卷(PDF,含答案)
第1页
12. 如果关于 x 的多项式 x2 − 2x + m 在实数范围内因式分解,那么实数 m 的取值范围是____________
13. 从 1、2、3、4 四个数中任意取两个数相加,其和为偶数的概率是____________ 14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈
2020 年长宁区初三数学在线学习效果评估试卷
一、选择题
1. 下列实数中,无理数是( )
A. 0
B. 3
C. −3
D. 9
2. 下列单项式中,与 xy 2 是同类项的是( )
A. x2 y
B. x2 y2
C. 2xy2
D. 3xy
3. 关于反比例函数 y = 2 ,下列说法不正确的是( ) x
A. 点 (−2, −1) 在它的图像上
24. 如图 7,在平面直角坐标系 xOy 中,已知抛物线 y = x2 + mx + n 经过点 A(2, −2) ,对称轴是直线 x = 1 ,
顶点为点 B,抛物线与 y 轴交于点 C. (1)求抛物线的表达式和点 B 的坐标;
(2)将上述抛物线向下平移 1 个单位,平移后的抛物线与 x 轴正半轴交于点 D,求 BCD 的面积; (3)如果点 P 在原抛物线上,且在对称轴的右侧,联结 BP 交线段 OA 于点 Q, BQ = 1 ,求点 P 的坐标.
第3页
23. 如图 6,已知四边形 ABCD 是矩形,点 E 在对角线 AC 上,点 F 在边 CD 上(点 F 与点 C、D 不重合),
BE ⊥ EF ,且∠ABE+∠CEF=45°.
(1)求证:四边形 ABCD 是正方形;
2020届长宁区初三二模数学Word版(附解析)
17. 1
10. 2 3 8x 3 y
14. 7x 4 y 18. 2 3
3
三. 解答题
72
19.
.
2
20. x 1.
21.(1) AC 7 ;(2) cot ADO 1 . 2
22.(1) y 10x 20 ;(2) A 、 B 两地之间的距离为 80 千米.
23.(1)证明略;(2)证明略.
........................ 优质文档..........................
........................ 优质文档..........................
2020 上海市长宁区初三二模数学试卷
2020.05
一. 选择题
1. 下列实数中,无理数的是( )
四边形 AECF 一定为平行四边形的是( )
A. BE DF
B. AE CF
C. AF ∥ CE
D. BAE DCF
二. 填空题 7. 计算: (x3 )2 (x)2
8. 方程 3 x 2 的根为
3x 4 0
9.
不等式组
1 2
x
2
1
的解集是Байду номын сангаас
10. 已知正三角形的边心距为 1,那么它的边长为
uuur BD
rr (用含向量 a 、 b 的式子表示)
17. 如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”, 已知圆的半径长为 5,这个圆的一个联络四边形是边长为 2 5 的菱形,那么这个菱形不在圆 上的顶点与圆心的距离是 18. 如图,已知在△ ABC 中,C 90 ,BC 2 ,点 D 是边 BC 的中点,ABC CAD , 将△ ACD 沿直线 AD 翻折,点 C 落在点 E 处,联结 BE ,那么线段 BE 的长为
上海市长宁区2019-2020学年中考数学第二次调研试卷含解析
上海市长宁区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .2.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( ) A .这组数据的平均数是6,中位数是6 B .这组数据的平均数是6,中位数是7 C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是73.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定4.已知一元二次方程2310x x --= 的两个实数根分别是 x 1 、 x 2 则 x 12 x 2 + x 1 x 22 的值为( ) A .-6B .- 3C .3D .65.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A .56B .58C .63D .726.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .16或177.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( ) A .4B .6C .16πD .88.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c9.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移52个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移72个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′10.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣211.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣712.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.14.1-12的倒数是_____________.15.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .16.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.17.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为_____.18.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO 交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.(1)如图1,当0<t<2时,求证:DF∥CB;(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的58倍时,直接写出此时点E的坐标.20.(6分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .21.(6分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?22.(8分)解不等式组11232x x --≤,并将它的解集在数轴上表示出来.23.(8分)先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1.24.(10分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50 优m51-100 良44101-150 轻度污染n151-200 中度污染 4201-300 重度污染 2300以上严重污染 2(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?25.(10分)如图,分别以线段AB两端点A,B为圆心,以大于12AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.26.(12分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,商品名称甲乙进价(元/件)80 100 售价(元/件)160 240设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.27.(12分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额20元15元10元5元获奖人数商家甲超市 5 10 15 20乙超市 2 3 20 25(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.2.C【解析】【分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是:034667957++++++=,中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.3.B【解析】【分析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.4.B【解析】【分析】根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.【详解】根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2ba =-,x1•x2ca =.5.B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.考点:规律题6.D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想7.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.8.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.9.B【解析】∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3),因此将抛物线C向右平移4个单位.故选B.10.A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得﹣4<﹣2<0<3∴各数中,最小的数是﹣4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小11.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14=,故选B.12.B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.14.2 3 -【解析】先把带分数化成假分数可得:13122-=-,然后根据倒数的概念可得:32-的倒数是23-,故答案为:23-.15.1 3【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为26=13.故答案为13.点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.16.A,18, 1【解析】【分析】A 、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;B 、分别得到前后面,上下面,左右面的面积,相加即可求解.【详解】A 、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵小明用18个边长为1的小正方体搭成了一个几何体,∴小亮至少还需36-18=18个小立方体,B 、表面积为:2×(8+8+7)=1.故答案是:A ,18,1.【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.17.1【解析】【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.18.【解析】【分析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高. 【详解】圆心角为120°,半径为6cm的扇形的弧长为1206180π⨯=4πcm∴圆锥的底面半径为2,cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=12∠PBO,∠ODF=12∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=12∠ABO,∠CDQ=12∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可.【详解】(1)证明:如图1.∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),∴∠AOB=90°.∵DP⊥AB于点P,∴∠DPB=90°,∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,∴∠PBO+∠PDO=180°,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠PBO,∠ODF=12∠PDO,∴∠CBO+∠ODF=12(∠PBO+∠PDO)=90°,∵在△FDO中,∠OFD+∠ODF=90°,∴∠CBO=∠DFO,∴DF∥CB.(2)直线DF与CB的位置关系是:DF⊥CB,证明:延长DF交CB于点Q,如图2,∵在△ABO中,∠AOB=90°,∴∠BAO+∠ABO=90°,∵在△APD中,∠APD=90°,∴∠PAD+∠PDA=90°,∴∠ABO=∠PDA,∵BC平分∠ABO,DF平分∠PDO,∴∠CBO=12∠ABO,∠CDQ=12∠PDO,∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,∴∠CDQ+∠DCQ=90°,∴在△QCD中,∠CQD=90°,∴DF⊥CB.(3)解:过M作MN⊥y轴于N,∵M(4,-1),∴MN=4,ON=1,当E在y轴的正半轴上时,如图3,∵△MCE的面积等于△BCO面积的58倍时,∴12×2×OE+12×(2+4)×1-12×4×(1+OE)=58×12×2×4,解得:OE=72,当E在y轴的负半轴上时,如图4,1 2×(2+4)×1+12×(OE-1)×4-12×2×OE=58×12×2×4,解得:OE=32,即E的坐标是(0,72)或(0,-32).【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.20.见解析【解析】【分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF ,又AB=AC ,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC ,∴FC=2BF .【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.21.(1)6;(2)126y x =-;259524y x =-;(3)10或15413; 【解析】【分析】(1)根据图象变化确定a 秒时,P 点位置,利用面积求a ;(2)P 、Q 两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒; (3)以(2)为基础可知,两个点相距3cm 分为相遇前相距或相遇后相距,因此由(2)可列方程.【详解】(1)由图象可知,当点P 在BC 上运动时,△APD 的面积保持不变,则a 秒时,点P 在AB 上. 110302AP ⨯=, ∴AP=6,则a=6;(2)由(1)6秒后点P 变速,则点P 已行的路程为y 1=6+2(x ﹣6)=2x ﹣6,∵Q 点路程总长为34cm ,第6秒时已经走12cm ,故点Q 还剩的路程为y 2=34﹣12﹣5595(6)424x x -=-; (3)当P 、Q 两点相遇前相距3cm 时,59524x -﹣(2x ﹣6)=3,解得x=10, 当P 、Q 两点相遇后相距3cm 时,(2x ﹣6)﹣(59524x -)=3,解得x=15413, ∴当x=10或15413时,P 、Q 两点相距3cm 【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系.列函数关系式时,要考虑到时间x 的连续性才能直接列出函数关系式.22.x≤1,解集表示在数轴上见解析【解析】【分析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】去分母,得:3x ﹣2(x ﹣1)≤3,去括号,得:3x ﹣2x+2≤3,移项,得:3x ﹣2x≤3﹣2,合并同类项,得:x≤1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集. 23.15. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.24. (1)m=20,n=8;55;(2) 答案见解析.【解析】【分析】(1)由A 占25%,即可求得m 的值,继而求得n 的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.【详解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8, ∴空气质量等级为“良”的天数占:4480×100%=55%. 故答案为20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天), 答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:【点睛】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键. 25.(1)四边形ACBD 是菱形;理由见解析;(2)证明见解析.【解析】【分析】(1)根据题意得出AC BC BD AD ===,即可得出结论;(2)先证明四边形BEDM 是平行四边形,再由菱形的性质得出90BMD ∠=︒,证明四边形ACBD 是矩形,得出对角线相等ME BD =,即可得出结论.【详解】(1)解:四边形ACBD 是菱形;理由如下:根据题意得:AC=BC=BD=AD ,∴四边形ACBD 是菱形(四条边相等的四边形是菱形);(2)证明:∵DE ∥AB ,BE ∥CD ,∴四边形BEDM 是平行四边形,∵四边形ACBD 是菱形,∴AB ⊥CD ,∴∠BMD=90°,∴四边形ACBD 是矩形,∴ME=BD ,∵AD=BD ,∴ME=AD .【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.26.(1)y=﹣60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大【解析】分析:(1)根据总利润=(甲的售价-甲的进价)×购进甲的数量+(乙的售价-乙的进价)×购进乙的数量代入列关系式,并化简即可;(2)根据总成本≤18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50<a<70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论.详解:(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,则y与x的函数关系式为:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y随x的增大而减小,∴当x=100时,y有最大值,y大=﹣60×100+28000=22000,∴若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,②当a=60时,a﹣60=0,y=28000,即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,③当60<a<70时,a﹣60>0,y随x的增大而增大,∴当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大.点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润×数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.27.(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4)3 10.【解析】【分析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=.【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.。
2020上海市长宁区中考二模数学数学试卷
16. 如图 2,已知在 ABC 中,点 D 在边 AC 上, AD 2DC , AB a ,
A
AC b ,那么 BD ▲ .(用含向量 a 、 b 的式子表示)
D 17.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是
该圆的“联络四边形”.已知圆的半径长为 5 ,这个圆的一个联络 四边形是边长为 2 5 的菱形,那么这个菱形不在圆上的顶点与圆
图5
如图 6,已知四边形 ABCD 是矩形,点 E 在对角线 AC 上,点 F 在边 CD 上(点 F 与点 C 、 D
不重合), BE EF ,且 ABE CEF 45 .
A
D
E
(1)求证:四边形 ABCD 是正方形;
F
(2)联结 BD ,交 EF 于点 Q,求证: DQ BC CE DF .
2020 年长宁区初三数学在线学习效果评估试卷
(考试时间:100 分钟 满分:150 分)
考生注意: 1.本试卷含三个大题,共 25 题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试 卷上答题一律无效. 2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.
已知 AB 是⊙ O 的一条弦,点 C 在⊙ O 上,联结 CO 并延长,交弦 AB 于点 D ,且 CD CB , (1)如图 8,如果 BO 平分 ABC ,求证: AB BC ;
(2)如图 9,如果 AO OB ,求 AD : DB 的值;
(3)延长线段 AO 交弦 BC 于点 E ,如果 EOB 是等腰三角形,且⊙ O 的半径长等于 2 ,
3.关于反比例函数
y
2 x
,下列说法不.正.确.的是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020上海市长宁区初三二模数学试卷
一. 选择题
1. 下列实数中,无理数的是( )
A. 0
B. C. 3
D.
2. 下列单项式中,与2xy 是同类项的是( )
A. 2x y
B. 22x y
C. 22xy
D. 3xy
3. 关于反比例函数2y x
,下列说法不正确的是( ) A. 点(2,1) 在它的图像上 B. 它的图像在第一、三象限
C. 它的图像关于原点中心对称
D. y 的值随着x 的值的增大而减小
4. 如图是关于某班同学一周体育锻炼情况的统计图,
那么该班学生这一周参加体育锻炼时间的众数、中
位数分别是( )
A. 8、9
B. 8、8.5
C. 16、8.5
D. 16、14
5. 如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是( )
A. 内切
B. 外离
C. 相交
D. 外切
6. 在平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能判定 四边形AECF 一定为平行四边形的是( )
A. BE DF
B. AE CF
C. AF ∥CE
D. BAE DCF
二. 填空题
7. 计算:322()()x x
8.
2 的根为
9. 不等式组3401212
x x 的解集是 10. 已知正三角形的边心距为1,那么它的边长为
11. 如果抛物线2(1)1y a x (a 为常数)不经过第二象限,那么a 的取值范围是
12. 如果关于x 的多项式在22x x m 实数范围内能因式分解,那么实数m 的取值范围是
13. 从1,2,3,4四个数中任意取两个数相加,其和为偶数的概率是
14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共 买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个 人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问人数、物品的价 格各是多少?”,如果设共有x 人,物品的价格为y 元,那么根据题意可列出方程组为
15. 已知甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为
1.6,乙的成绩(环)为7、8、10、6、9,那么这两位运动员中 的成绩较稳定 (填“甲”或“乙”) 16. 如图,已知在△ABC 中,点D 在边AC 上,2AD DC ,AB a ,AC b ,那么 BD (用含向量a 、b 的式子表示)
17. 如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,
已知圆的半径长为5,这个圆的一个联络四边形是边长为的菱形,那么这个菱形不在圆 上的顶点与圆心的距离是
18. 如图,已知在△ABC 中,90C ,2BC ,点D 是边BC 的中点,ABC CAD , 将△ACD 沿直线AD 翻折,点C 落在点E 处,联结BE ,那么线段BE 的长为
三. 解答题
19. 110221)1) .
20. 解方程:
261393
x x x x .
21. 如图,在梯形ABCD 中,AD ∥BC ,2AD ,5BC ,45BAC ,3cos 5
ACB
. (1)求线段AC 的长;
(2)联结BD ,交对角线AC 于点O ,求ADO 的余切值.
22. 如图反映了甲、乙两名自行车爱好者同时骑车从A 地到B 地进行训练时行驶路程y (千米)和行驶时间x (小时)之间关系的部分图像,根据图像提供的信息,解答下列问题:
(1)求乙的行驶路程y 和行驶时间x (13x )之间的函数解析式;
(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,求A 、B 两地之间的距离.
23. 如图,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),BE EF ,且45ABE CEF .
(1)求证:四边形ABCD 是正方形;
(2)联结BD ,交EF 于点Q ,求证:DQ BC CE DF .
24. 如图,在平面直角坐标系xOy 中,已知抛物线2y x mx n 经过点(2,2)A ,对称轴是直线1x ,顶点为点B ,抛物线与y 轴交于点C .
(1)求抛物线的表达式和点B 的坐标;
(2)将上述抛物线向下平移1个单位,平移后的抛物线与x 轴正半轴交于点D ,求 △BCD 的面积;
(3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,15
BQ PQ , 求点P 的坐标.
25. 已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D , 且CD CB .
(1)如图1,如果BO 平分ABC ,求证:弧AB 弧BC ;
(2)如图2,如果AO OB ,求:AD DB 的值;
(3)延长线段AO 交弦BC 于点E ,如果△EOB 是等腰三角形,且O 的半径长等于2,求弦BC 的长.
长宁二模参考答案
一. 选择题
1. B
2. C
3. D
4. A
5. C
6. B
二. 填空题
7. 4x 8. 1x 9. 463
x 10. 11. 1a 12. 1m 13. 13 14. 8374x y x y
15. 甲 16. 23a b 17. 1 18.
三. 解答题
19. 2
. 20. 1x .
21.(1)7AC ;(2)1cot 2
ADO . 22.(1)1020y x ;(2)A 、B 两地之间的距离为80千米.
23.(1)证明略;(2)证明略.
24.(1)222y x x ,(1,3)B ;(2)52
BCD S ;(3)(4,6)P .
25.(1)证明略;(2)::3AD DB ;(3)1BC 或。