2017学年七年级数学下月考试卷
2017年5月七年级数学月考试卷(杭州启正中学)
2017年5月七年级数学月考试卷(杭州启正中学)启正中学2016学年第二学期月份教学质量检测七年级数学试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法选取正确答案.1.已知某种植物花粉的直径为00002米,用科学记数法表示该种花粉的直径是()A.米B.米.米D.米2.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9 B..(﹣a2)3= a6 D.(2+1)0=13.要了解全校学生的外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生B.调查七、八、九年级各30名学生.调查全体女生D.调查全体男生4.如图,能判定AB∥D的条是()A.∠=∠DBB.∠D=∠DBA.∠=∠ABDD.∠D=∠ABE.方程的根是()A.﹣1B.2.﹣1或2D.06.下列代数式变形中,是因式分解的是()A.3ab(b﹣2)=3ab2﹣6ab B.4x2﹣12x+3=4x(x﹣3)+3.3x﹣6+6=3(x﹣2)D.﹣4x2+4x﹣1=﹣(2x﹣1)27.若分式方程有增根,则a的值为()A.4 B.2 .1 D.08.计算的结果是()A.﹣2﹣2﹣1 B.2(﹣1)2 .22﹣4﹣2 D.﹣22+4﹣29已知,则f2017化简的结果是()A.B..D.无法确定10 桌上A,B两个大小相同的量杯内分别装有21L,23L的水现在同时对A,B两个量杯注水,注入的水量之比为2:3,接着又同时倒水,倒出的水量之比为2:3,此时A,B两个量杯的水位高度相等,则B 量杯注水前与倒水后相差()A.2L B4L 6L D8L二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条和要填写的内容,尽量完整地填写答案.11.分解因式:(1)=;(2)18x3+24x2+8 x =.12.如果x2﹣4(﹣1)x+16是一个完全平方式,则=.13(1)已知甲队有x人,乙队有人,若从甲队调出10人到乙队,则乙队人数是甲队人数的2倍,调整后两队人数间的数量关系用等式表示为_____ _;(2)已知,则r=________14.四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有组1.两个一模一样的梯形纸片如图(1)摆放,将梯形纸片ABD沿上底AD方向向右平移得到图(2).已知AD=4,B=8,若阴影部分的面积是四边形A′B′D的面积的13 ,则图(2)中平移距离A′A= __________.16已知三个数,x,,z,满足,则的值为__________。
北师大版七年级下册数学第一次月考测试题 (4)
2017-2018学年深圳市七年级(下)第一次月考数学试卷一.选择题(共12小题)1.下列计算正确的是()A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 2.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab3003.计算()﹣1所得结果是()A.﹣2 B.C.D.24.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±205.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.16.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;127.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b88.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.2550249.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.10.已知,则x的值为()A.±1 B.﹣1和2 C.1和2 D.0和﹣111.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()A.1 B.﹣1 C.22001 D.﹣22001二.填空题(共4小题)13.计算:(﹣mn3)2=.14.计算:(﹣ab)2÷a2b=.15.若a m=3,a n=4,则a m+n=.16.已知,那么=.三.解答题(共7小题)17.计算:(1)(15x2y﹣10xy2)÷5xy;(2)(x+2y﹣3)(x﹣2y+3).18.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.19.已知5m=2,5n=4,求52m﹣n和25m+n的值.20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.S乙=(用含a、b的代数式分别表示);(1)S甲=,(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.21.如图,大小两个正方形边长分别为a、b.(1)用含a、b的代数式阴影部分的面积S;(2)如果a+b=9,ab=6,求阴影部分的面积.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案与试题解析一.选择题(共12小题)1.下列计算正确的是()A.b3•b3=2b3B.(a+b)2=a2+b2C.(a5)2=a10D.a﹣(b+c)=a﹣b+c 【解答】解:A、b3•b3=b6,错误;B、(a+b)2=a2+2ab+b2,错误;C、(a5)2=a10,正确;D、a﹣(b+c)=a﹣b﹣c,错误;故选C2.计算a•5ab=()A.5ab B.6a2b C.5a2b D.10ab300【解答】解:a•5ab=5a1+1b=5a2b.故选:C.3.计算()﹣1所得结果是()A.﹣2 B.C.D.2【解答】解:()﹣1==2,故选:D.4.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选B.5.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.6.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5 B.3;5 C.5;3 D.6;12【解答】解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.7.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.8.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.255024【解答】解:由(2n+1)2﹣(2n﹣1)2=8n≤2017,解得n≤252,则在不超过2017的正整数中,所有的“和谐数”之和为32﹣12+52﹣32+ (5052)5032=5052﹣12=255024.故选:D.9.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.【解答】解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选B.10.已知,则x的值为()A.±1 B.﹣1和2 C.1和2 D.0和﹣1【解答】解:由题意得,(1),解得x=﹣1;(2)x﹣1=1,解得x=2;(3),此方程组无解.所以x=﹣1或2.故选B.11.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【解答】解:a=(﹣)﹣2==;b=(﹣1)﹣1==﹣1;c=(﹣)0=1;∵1>>﹣1,∴即c>a>b.故选C.12.当时,多项式(4x3﹣1997x﹣1994)2001的值为()A.1 B.﹣1 C.22001 D.﹣22001【解答】解:∵x=,可得(2x﹣1)2=1994,原式可化为:[x(4x2﹣4x﹣1993)+(4x2﹣4x﹣1993)﹣1]2001,代入4x2﹣4x﹣1993=0可得:原式=(﹣1)2001=﹣1.故选B.二.填空题(共4小题)13.计算:(﹣mn3)2=m2n6.【解答】解:原式=m2n6故答案为:m2n614.计算:(﹣ab)2÷a2b=b.【解答】解:原式=a2b2÷a2b=b故答案为:b15.若a m=3,a n=4,则a m+n=12.【解答】解:∵a m=3,a n=4,∴a m+n=a m•a n=3×4=12.故答案为:12.16.已知,那么=34.【解答】解:∵x+=6,∴=x2+=(x+)2﹣2=36﹣2=34.故答案为:34.三.解答题(共7小题)17.计算:(1)(15x2y﹣10xy2)÷5xy;(2)(x+2y﹣3)(x﹣2y+3).【解答】解:(1)原式=3x﹣2y(2)原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣918.先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=3619.已知5m=2,5n=4,求52m﹣n和25m+n的值.【解答】解:∵5m=2,5n=4,∴52m﹣n=(5m)2÷5n=22÷4=1;25m+n=52(m+n)=(5m)2×(5n)2=22×42=64.20.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.a+b)(a﹣b),S乙=a2﹣b2(用含a、b的代数式分别表示);(1)S甲=((2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.a+b)(a﹣b);【解答】解:(1)由题可得,S甲=(S乙=a2﹣b2;故答案为:(a+b)(a﹣b);a2﹣b2;(2)∵S甲=S乙;∴a2、b2、(a+b)(a﹣b)的等量关系为:(a+b)(a﹣b)=a2﹣b2;(3)如图①所示,将图丙分成四个长为a,宽为b的小长方形,再拼成如图②所示的正方形.根据图②可得:S大正方形=(a+b)2,S大正方形=(a﹣b)2+4a b,∴(a+b)2=(a﹣b)2+4ab.21.如图,大小两个正方形边长分别为a、b.(1)用含a、b的代数式阴影部分的面积S;(2)如果a+b=9,ab=6,求阴影部分的面积.【解答】解:(1)∵大小两个正方形边长分别为a、b,∴阴影部分的面积为:S=a2+b2﹣a2﹣(a+b)b=a2+b2﹣ab;(2)∵a+b=9,ab=6,∴a2+b2﹣ab=(a+b)2﹣ab=×92﹣×6=.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.【解答】证明:∵∠3=∠4,∴CF∥BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB∥CD,∴∠2=∠EGA.∵∠1=∠2,∴∠1=∠EGA,∴ED∥FB.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达A N之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.【解答】解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(20+t)×1,解得t=10;②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;③当120<t <160时, 3t ﹣360=t +20, 解得t=190>160,(不合题意) 综上所述,当t=10秒或85秒时,两灯的光束互相平行; (3)设A 灯转动时间为t 秒, ∵∠CAN=180°﹣3t , ∴∠BAC=45°﹣(180°﹣3t )=3t ﹣135°, 又∵PQ ∥MN , ∴∠BCA=∠CBD +∠CAN=t +180°﹣3t=180°﹣2t , 而∠ACD=90°, ∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t )=2t ﹣90°, ∴∠BAC :∠BCD=3:2, 即2∠BAC=3∠BCD . 北师大版九年级数学上册期中测试题 一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是 A.23 B.12 C.13 D.49 8.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.5B.4C.342D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________. 12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..则菱形ABCD的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P,再随机摸出一张卡片,其数字记为q,则关于的方程x2+px+q=0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获 胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷(解析版)
2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.的平方根是()A.B.2C.±2D.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣15.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.126.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:.16.已知y=﹣24,则=.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣618.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=,b=,c=.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.2017-2018学年贵州省贵阳三中七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分>在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.的平方根是()A.B.2C.±2D.【分析】首先根据算术平方根的定义化简,然后根据平方根的定义即可得出结果.【解答】解:∵=4,又∵22=4,(﹣2)2=4,∴的平方根为±2;故选:C.【点评】本题主要考查了平方根和算术平方根的定义.解题注意算术平方根和平方根的区别.平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.3.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A.点A B.点B C.点C D.点D【分析】先估算出≈2.236,所以﹣≈﹣2.236,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈2.236,∴﹣≈﹣2.236,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.若x,y为实数,且|x+2|+=0,则的值为()A.2B.﹣2C.1D.﹣1【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,==﹣1.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.12【分析】设AB=5x,AC=3x,则根据勾股定理可求出BC,再由直角△ABC的周长为24可解得x 的值,这样也就得出了BC的值.【解答】解:设AB=5x,AC=3x,则BC==4x,又∵直角△ABC的周长为24,∴5x+3x+4x=24,解得:x=2,∴BC=8.故选:B.【点评】本题考查勾股定理的应用,属于基础题,解答本题的关键先求出BC含x的表达式,然后列出方程解出x.6.端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S(千米)与时间t(小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是()A.景点离小明家180千米B.小明到家的时间为17点C.返程的速度为60千米每小时D.10点至14点,汽车匀速行驶【分析】根据函数图象的纵坐标,可判断A;根据待定系数法,可得返回的函数解析式,根据函数值与自变量的对应关系,可判断B;根据函数图象的纵坐标,可得返回的路程,根据函数图象的横坐标,可得返回的时间,根据路程与时间的关系,可判断C;根据函数图象的纵坐标,可判断D.【解答】解:A、由纵坐标看出景点离小明家180千米,故A正确;B、由纵坐标看出返回时1小时行驶了180﹣120=60千米,180÷60=3,由横坐标看出14+3=17,故B正确;C、由纵坐标看出返回时1小时行驶了180﹣120=60千米,故C正确;D、由纵坐标看出10点至14点,路程不变,汽车没行驶,故D错误;故选:D.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间是解题关键.7.下列说法错误的个数是()①无理数都是无限小数;②的平方根是±2;③﹣9是81的一个平方根;④=()2;⑤与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个【分析】根据无理数、平方根、数轴、二次根式的性质,分别对每一项进行分析即可.【解答】解:①无理数都是无限不循环小数,故本选项错误;②的平方根是±,故本选项错误;③﹣9是81的一个平方根,故本选项正确;④当a≥0时,=()2,故本选项错误;⑤与数轴上的点一一对应的数是实数,故本选项正确;错误的个数是3个,故选:C.【点评】此题考查了实数,用到的知识点是无理数、平方根、数轴、二次根式的性质,关键是熟练掌握有关定义与性质.8.△ABC中,∠A:∠B:∠C=3:5:8,则△ABC是()A.锐角三角形B.直角三角形,且∠C=90°C.直角三角形,且∠B=90°D.直角三角形,且∠A=90°【分析】根据已知条件∠A:∠B:∠C=3:5:8和三角形的内角和即可求得∠C=×180°=90°,于是得到结论.【解答】解:∵∠A:∠B:∠C=3:5:8,∠A+∠B+∠C=180°,∴∠C=×180°=90°∴△ABC是直角三角形,故选:B.【点评】本题考查了三角形的内角和,直角三角形的判定,熟练掌握三角形的内角和定理是解题的关键.9.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选:C.【点评】注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.10.实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用二次根式与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|﹣=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、二次根式与绝对值的性质.此题难度适中,注意=|a|.11.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A.1个B.4个C.7个D.10个【分析】(1)点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;(2)点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可.【解答】解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选:D.【点评】本题主要考查等腰三角形的性质;要注意分点在三角形内部和三角形外部两种情况讨论,思考全面是正确解答本题的关键.12.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.B.C.D.【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【解答】解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选:B.【点评】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形,从而求解.二、填空题(每题题5分,满分20,将答案填在答题纸上)13.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为11或13.【分析】分3是腰长与底边两种情况讨论求解.【解答】解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.14.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【点评】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.15.实数﹣,0,,,0.1010010001…(两个1之间一次多一个0),,中,无理数有:0.1010010001…(两个1之间一次多一个0),,.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001…(两个1之间一次多一个0),,是无理数,故答案为:0.1010010001…(两个1之间一次多一个0),,.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知y=﹣24,则=6.【分析】根据二次根式有意义的条件列出不等式,求出x、y,根据算术平方根的概念计算即可.【解答】解:由题意得,2x+3≤0,﹣3﹣2x≥0,解得,x=﹣,y=﹣24,=6,故答案为:6.【点评】本题考查的是二次根式有意义的条件、算术平方根的计算,掌握二次根式的被开方数是非负数是解题的关键.三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)计算(1)(﹣2)0++(2)(﹣2)×﹣6【分析】(1)直接利用零指数幂的性质以及二次根式的性质化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)(﹣2)0++=1+﹣1+3=4;(2)(﹣2)×﹣6=3﹣6﹣6×=﹣6.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(10分)如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.19.(12分)在Rt△ABC中,∠C=90°,BC=6,AC=8,点D在线段AC上从C向A运动,若设CD=x,△ABD的面积为y.(1)写出y与x的关系式;(2)当x取何值时,y有最大值?最大值是多少?此时点D在什么位置?(3)当△ABD的面积是△ABC面积的一半时,点D在什么位置?【分析】(1)△ABD的面积=AD×BC,把相关数值代入化简即可;(2)由(1)可得x最小时,y最大,易得此时点D的位置;(3)让(1)中的y为10列式求值即可.【解答】解:(1)∵设CD=x,△ABD的面积为y.∴y=AD×BC=×(8﹣x)×6=﹣3x+24;(2)当x=0时,y有最大值,最大值是24,此时点D与点C重合.=×6×8=24(3)∵S△ABC=12时,即y=﹣3x+24=12时,x=4,∴当y=S△ABC即CD=4=AC,此时点D在AC的中点处.【点评】此题主要考查了三角形的面积和一次函数的应用;判断出所求三角形的底边及底边上的高是解决本题的突破点.20.(12分)某商店周年庆,印涮了10000张奖券,其中印有老虎图案的有10张,每张奖金1000元,印有羊图案的有50张,每张奖金100元,印有鸡图案的有100张,每张奖金20元,印有兔子图案的有400张,每张奖金2元,其余印有花朵图案但无奖金.从中任意抽取一张,请解答下列问题:(1)获得1000元奖金的概率是多少?(2)获得奖金的概率是多少?(3)若要使获得2元奖金的概率为,则需要将多少张印有花朵图案的奖券换为印有兔子图案的奖券?【分析】(1)根据10000张奖券中有10张印有老虎图案,每张奖金1000元,再根据概率公式即可得出答案;(2)先求出能获得奖金的奖票张数,再根据概率公式即可得出答案;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据概率公式列出算式,求出x 的值即可得出答案.【解答】解:(1)获得1000元奖金的概率是=;(2)由题意知:能获得奖金的奖票有10+50+100+400=560张获得奖金的概率是=;(3)设需要将x张印有花朵图案的奖券换为印有兔子图案的奖券,根据题意得:=,解得:x=600,答:需要将600张印有花朵图案的奖券换为印有兔子图案的奖券.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.21.(12分)(1)如图1,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.(2)如图2,AB∥CD,AB=CD,BF=DE,求证:∠AEF=∠CFB.【分析】(1)推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.(2)根据平行线的性质、线段间的和差关系证得∠B=∠D、BE=DF;然后由全等三角形的判定定理SAS推知△ABE≌△CDF;最后由全等三角形的对应角相等证得结论;【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.(2)∵AB∥CD(已知),∴∠B=∠D,又∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF,∴在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠A=∠C,∴∠BEA=∠DFC,∴:∠AEF=∠CFB.【点评】本题考查了平行线的性质和判定,平行公理及推论,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)王老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a、b、c与n之间的关系,并用含自然数n的代数式表示:a=n2﹣1,b=2n,c=n2+1.(2)猜想以a、b、c为边的三角形是否为直角三角形?并证明你的猜想?(3)观察下列勾股数:32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,根据规律写出第五组勾股数.【分析】(1)探究规律后,利用规律即可解决问题;(2)根据勾股定理的逆定理证明即可;(3)观察发现第一个数的奇数,另外两个数的底数的和是这个奇数的平方,由此即可解决问题;【解答】解:(1)由题意:a=n2﹣1,b=2n,c=n2+1,故答案为:n2﹣1,2n,n2+1;(2)猜想:以a、b、c为边的三角形是直角三角形.理由:∵a=n2﹣1,b=2n,c=n2+1,∴a2+b2=(n2﹣1)2+4n2=n4+2n2+1=(n2+1)2=c2,∴以a、b、c为边的三角形是直角三角形.(3)观察可知:第五组勾股数为:112+602=612.【点评】本题考查勾股数、规律型问题,解题的关键是学会观察,学会寻找规律,利用规律解决问题.。
重庆市第七十一中学校2017-2018学年七年级下学期第一次月考数学试题
重庆市第七十一中学校2017-2018学年七年级下学期第一次月考数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 在方程3x﹣y=2,,,x2﹣2x﹣3=0中一元一次方程的个数为()A.1个B.2个C.3个D.4个2. 下列方程中,解是x=1的是()D.A.B.C.3. 解方程,去分母正确的是()A.3(x+1)-2x-3=6 B.3(x+1)-2x-3=1C.3(x+1)-(2x-3)=12 D.3(x+1)-(2x-3)=64. 儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍. A.3年后B.3年前C.9年后D.不可能5. 根据“的3倍与5的和比的少2”列出的方程是()A.B.C.D.6. 解方程,得为()A.2 B.4 C.6 D.87. 某牧场,放养的鸵鸟和奶牛一共70只, 已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多( )A.20只B.14只C.15只D.13只8. 若关于的方程是一元一次方程,则= ()A.2 B.1 C.4 D.69. 用一根72cm的铁丝可围成一个长方形,则这个长方形的最大面积是()A.81 B.18 C.324 D.32610. 甲、乙两同学从学校出发到县城去,甲每小时走4千米,乙每小时走6千米,甲先出发1小时,结果乙还比甲早到1小时.若设学校与县城间的距离为s千米,则以下方程正确的是()A.B.D.C.11. 一家商店把某商品按标价的九折出售仍可获利15%,若该商品的进价是35元,若设标价为x元,则可列得方程()A.B.C.D.12. 某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元二、填空题13. 方程的解是___________________________14. 若是关于x的方程的解,则=_________.15. 已知(2-4)2 + =0,则___________.16. 当=___________时,代数式的值是-1.17. 学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调___人到甲队.18. 某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要_____h水池水量达全池的.三、解答题19. 解下列方程:(1)4+3=2(-1)+1 (2)20. 解下列方程:(1) . (2)21. 解方程:x﹣=解:去分母,得6x﹣3x+1=4﹣2x+4…①即﹣3x+1=﹣2x+8…②移项,得﹣3x+2x=8﹣1…③合并同类项,得﹣x=7…④∴x=﹣7…⑤上述解方程的过程中,是否有错误?答:;如果有错误,则错在步.如果上述解方程有错误,请你给出正确的解题过程.22. 某城市与省会城市相距390千米,客车与轿车分别从该城市和省会城市同时出发,相向而行.已知客车每小时行80千米,轿车每小时行100千米,问经过多少小时后,客车与轿车相距30千米.23. 已知,,求当x取何值时,的值比的值小1?24. 某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了西红柿和豆角共40品名西红柿豆角1.2 1.6批发价(单位:元/千克)零售价(单位:元/千1.82.5克)25. 如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(,x为自然数),十位上的数字为y,求y与x的函数关系式.26. 某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?。
福建省福州市七年级下学期数学第二次月考试卷
福建省福州市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分) (2016七下·滨州期中) 下列各式正确的是()A . =3B . (﹣)2=16C . =±3D . =﹣42. (2分)下列各式中计算正确的是()A . =-9B .C .D .3. (2分)如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D4. (2分) a和b是两个连续的整数,a˂˂b,那么a和b分别是()A . 3和4B . 2和3C . 1和2D . 不能确定5. (2分)化简:(a+1)2-(a-1)2=()A . 2B . 4C . 4aD . 2a2+26. (2分)设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为()A . M<NB . M>NC . M=ND . 不能确定7. (2分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°8. (2分) (2017九上·南漳期末) △ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A . ∠BAE=60°B . AC=AFC . EF=BCD . ∠BAF=60°9. (2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A . 70°B . 55°C . 50°D . 40°10. (2分)乘积等于m2-n2的式子是()A . (m-n)2B . (m-n)(-m-n)C . (n -m)(-m-n)D . (m+n)(-m+n)11. (2分)(2017·磴口模拟) 4的平方根是()A . 4B . 2C . ﹣2D . 2和﹣212. (2分)如果一个图形绕着一个点至少需要旋转72°才能与它本身重合,则下列说法正确的是()A . 这个图形一定是中心对称图形B . 这个图形可能是中心对称图形C . 这个图形旋转216°后能与它本身重合D . 以上都不对13. (2分)(2017·长春) 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A . 3a+2bB . 3a+4bC . 6a+2bD . 6a+4b二、填空题 (共9题;共9分)14. (1分) (2015七下·无锡期中) 已知方程组的解满足x﹣y=2,则k的值是________.15. (1分) (2019八上·平川期中) 的算术平方根是________ ,的相反数是________,-的倒数是________.16. (1分) (2017七下·简阳期中) 若a>b,则 ________ (用“>“或“<“填空)17. (1分)计算am•a3•________=a3m+3 .18. (1分) (2017八上·滕州期末) 的平方根是________;的值是________.19. (1分) (2017八上·江阴开学考) 已知m>0,并且使得x2+2(m﹣2)x+16是完全平方式,则m的值为________.20. (1分)(2017·顺德模拟) 如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是________.21. (1分)如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD=________22. (1分)(2019·平谷模拟) 如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________.三、解答题 (共4题;共67分)23. (40分) (2019七下·郑州开学考) 计算:(1)−14−(−2)2+(0. 125)100×(−8)101(2) (−1)2016÷(−3)−2−(−2)× +(−2)−2(3) [(2x+y)2−(2x+y)(2x−y)]÷2y(4)24. (10分) (2017八下·高阳期末) 计算(1)(2)25. (10分)小明准备用一段长40米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)求出a的取值范围.(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.26. (7分) (2020七上·温州期末) 如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
七年级下第一次月考试卷--数学(解析版) (8)
七年级(下)第一次月考数学试卷一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=34.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.16.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是,结论是.10.(3分)|3.14﹣π|=,﹣8的立方根为.11.(3分)﹣1的相反数是,的平方根是.12.(3分)已知实数a在数轴上的位置如图,则化简|1﹣a|+的结果为.13.(3分)如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于度.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (),∴=(两直线平行,内错角相等),=∠CAD ().∵(已知),∴,即AD平分∠BAC ().16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.2016-2017学年云南省曲靖市宣威市七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:【解答】解:A、9是81的算术平方根,即=9,错误;B、5是(﹣5)2的算术平方根,即=5,正确;C、±6是36的平方根,即±=±6,错误;D、﹣2是4的负平方根,即﹣=﹣2,错误,故选:B.2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°【解答】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=3【解答】解:A、原式=2,错误;B、原式=﹣3,正确;C、原式=|﹣4|=4,错误;D、原式为最简结果,错误,故选:B.4.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选:D.5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.1【解答】解:数轴上正方形的对角线长为:=,由图中可知1和A之间的距离为.∴点A表示的数是1﹣.故选:D.6.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个【解答】解:有理数有:﹣、﹣3.14,、0、,共5个,故选:D.7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)故选:B.8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定【解答】解:∵∠1与∠2是两条直线被第三条直线所截的同位角,两条直线不一定平行,∴∠2不能确定.故选:D.二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.【解答】解:等角的补角相等的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.故答案为如果两个角都是某一个角的补角,那么这两个角相等.10.(3分)|3.14﹣π|= π﹣3.14 ,﹣8的立方根为 ﹣2 . 【解答】解:|3.14﹣π|=π﹣3.14,﹣8的立方根为﹣2, 故答案为:π﹣3.14,﹣2.11.(3分)﹣1的相反数是 1﹣ ,的平方根是 ±2 . 【解答】解:﹣1的相反数是 1﹣,的平方根是±2,故答案为:1﹣,±2.12.(3分)已知实数a 在数轴上的位置如图,则化简|1﹣a |+的结果为 1﹣2a .【解答】解:由数轴可得出:﹣1<a <0, ∴|1﹣a |+=1﹣a ﹣a=1﹣2a .故答案为:1﹣2a .13.(3分)如图,将直角三角形ABC 沿AB 方向平移AD 长的距离得到直角三角形DEF ,已知BE=5,EF=8,CG=3.则图中阴影部分面积.【解答】解:∵RT △ABC 沿AB 的方向平移AD 距离得△DEF , ∴△DEF ≌△ABC , ∴EF=BC=8,S △DEF =S △ABC , ∴S △ABC ﹣S △DBG =S △DEF ﹣S △DBG , ∴S 四边形ACGD =S 梯形BEFG , ∵CG=3,∴BG=BC﹣CG=8﹣3=5,=(BG+EF)•BE=(5+8)×5=.∴S梯形BEFG故答案为:.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于130度.【解答】解:∵m∥n,∠1=40°,∴∠3=∠1=40°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣40°=50°,∴∠2=180°﹣∠4=180°﹣50°=130°.故答案为:130.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (平面内,垂直于同一条直线的两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),∠E=∠CAD (两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC (角平分线定义).【解答】证明:∵AD⊥B C,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF,(平面内,垂直于同一条直线的两直线平行)∴∠AGE=∠DAB,∠E=∠DAC,∵AE=AG,∴∠E=∠AGE,∴∠DAB=∠DAC,即AD平分∠BAC.故答案为:平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.【解答】解:(1)4x2﹣49=0x2=,解得:x=±;(2)27(x+1)3=﹣64(x+1)3=﹣,x+1=﹣,解得:x=﹣17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.【解答】证明:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.【解答】解:∵OE平分∠BOD,∴∠DOE=∠EOB,又∵∠AOD:∠DOE=4:1,∴∠DOE=30°,∴∠COB=120°,又∵OF平分∠COB,∴∠COF=60°,又∵∠AOC=∠DOE+∠EOB=60°,∴∠AOF=∠COF+∠AOC,=60°+60°,=120°.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.【解答】解:(1)如图所示;=3×4﹣×2×4﹣×2×3﹣×2×1(2)由图可知,S△DEF=12﹣4﹣3﹣1=4.。
2017年七年级数学下第一次月考试卷(西安有答案)
2017年七年级数学下第一次月考试卷(西安有答案)2016-2017学年度第二学期第一次月考七年级数学试题一.选择题(共10小题,满分30分,每小题3分) 1.计算10�2的结果是()A.�20 B. C.�100 D. 2.计算(�a3)2的结果是() A.a6 B.�a6 C.a5 D.�a5 3.下列计算正确的是() A.2a+3a=6a B.a2•a3=a6 C.a8÷a4=a2 D.(�2a3)2=4a6 4.下列能平方差公式计算的式子是() A.(a�b)(b�a) B.(�x+1)(x�1) C.(�a�1)(a+1) D.(�x�y)(�x+y) 5.在天文学上,计算星球之问的距离通常用“光年”作单位,1光年即光在一年内通过的路程.已知光的速度是3×105km/s,一年约为3×107s,则1光年约等于() A.9×1012km B.6×1035km C.6×1012km D.9×1035km 6.若x2+6x+m2是一个完全平方式,则m的值为() A.3 B.9 C.±3 D.±9 7.若□×3xy=3x2y,则□内应填的单项式是() A.xy B.x C.3xy D.3x 8.已知am=3,an=2,那么am+n+2的值为() A.8 B.7 C.6a2 D.6+a2 9.对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2�b2,根据这个定义,代数式(x+y)☆y可以化简为() A.xy+y2 B.xy�y2 C.x2+2xy D.x2 10.为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A.增加6m2 B.减少6m2 C.增加9m2 D.减少9m2 二.填空题(共6小题,满分18分,每小题3分) 11.用科学记数法表示�0.00012= . 12.若|a+3|+(b-2)2 =0,则(a+b)2017= . 13.若(x+m)(x+3)中不含x的一次项,则m的值为. 14.340 430 (填“>”“<”或“=”) 15.若x2�y2=12,x+y=6,则x�y= . 16.下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.(a+b)=a+b (a+b)2=a2+2ab+b2 (a+b)3=a3+3a2b+3ab2+b3 则(a+b)6=a6+6a5b+15a4b2+ a3b3+15a2b4+6ab5+b6.三.解答题(共6道题,满分72分) 17.(18分)计算:①(�2x)(4x2�2x+1)②(6a3�4a2+2a)÷2a③ a4 +(a2)4 -(a2)2 ④⑤(2a+b)2 ⑥(3x+7y)(3x-7y)18(8分)利用公式计算:①103×97 ② 20152�2014×2016.19(10分)先化简,再求值:①(x+1)(x�1)�(x�2)2,其中x= .②[(x+y)2�y(2x+y)�8xy]÷2x,其中x=2,.21.(9分)已知:,求①( )2 , ② ,③22.(8分)已知3×9m×27m=321,求m的值.23.(9分)如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=13 BC,现打算在阴影部分种植一片草坪,求这片草坪的面积。
人教版数学七年级下册第三次月考试卷含答案
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
十堰市XX中学七年级下第一次月考数学试卷(A)含答案解析
2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和12.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.816.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.67.(3分)的算术平方根是()A.±9 B.±3 C.9 D.38.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣711.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3D.4二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=度.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=.17.(3分)已知2x+1的平方根是±5,则x=.18.(3分)已知2a﹣1的立方根是3,则a=.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E()∵AE平分∠BAD(已知)∴∠1=∠2()∴∠1=∠E()∵∠CFE=∠E(已知)∴∠1=∠∴AB∥CD()22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.2016-2017学年湖北省十堰市XX中学七年级(下)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12小题,共36.0分)1.(3分)平方根等于本身的有()A.0 B.1 C.0,±1 D.0 和1【解答】解:0的平方根是0,1的平方根是±1,﹣1没有平方根,故选:A.2.(3分)一副三角板按如图方式摆放,如果∠2=18°,则∠1=()A.18°B.54°C.72°D.70°【解答】解:由题意得:∠1和∠2互为余角,又∵∠2=18°,∴∠1=90°﹣18°=72°.故选:C.3.(3分)下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,内错角相等C.两个锐角的和是锐角D.互补的角是邻补角【解答】解:A、相等的角是对顶角,错误;B、两直线平行,内错角相等,故此选项正确;C、两个锐角的和不一定是锐角,故此选项错误;D、互补的角不一定是邻补角,故此选项错误.故选:B.4.(3分)下列图形中,∠1与∠2是对顶角的是()A.B. C.D.【解答】解:根据对顶角的定义可知,C选项∠1与∠2是对顶角,故选:C.5.(3分)如果=3,那么(m+n)2等于()A.3 B.9 C.27 D.81【解答】解:∵=3,∴m+n=32,即m+n=9,∴(m+n)2=81.故选:D.6.(3分)若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3 B.4 C.5 D.6【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线a的距离≤PA,即点P到直线a的距离不大于5.故选:D.7.(3分)的算术平方根是()A.±9 B.±3 C.9 D.3【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故选:D.8.(3分)下列各数,﹣0.333…,3.14,,0.1010010001…中,无理数的个数有()个.A..1 个B.2 个C..3 个D..4 个【解答】解:∵在、﹣0.333…、3.14、、0.1010010001…中,无限循环小数有:、﹣0.333…;有限小数有:3.14;无限不循环小数有:、0.1010010001…,∴和010********…为无理数.故选:B.9.(3分)如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.【解答】解:根据同位角定义可得A、B、D是同位角,故选:C.10.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7【解答】解:∵|a|=4,,且a+b<0,∴a=﹣4,a=﹣3;a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.11.(3分)在﹣2,﹣,﹣3,﹣π这四个数中,最大的数是()A.﹣2 B.﹣C.﹣3D.﹣π【解答】解:∵|﹣2|=2,|﹣|=≈1.73,|﹣3|=3≈3.3,|﹣π|=π≈3.14,∴3.3>3.14>2>1.73,即3>π>2>,∴﹣3<﹣π<﹣2<﹣,则这四个数中,最大的是﹣.故选:B.12.(3分)下列条件中,能说明AD∥BC的条件有()个①∠1=∠4 ②∠2=∠3 ③∠1+∠2=∠3+∠4④∠A+∠C=180°⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°.A.1 B.2 C.3 D.4【解答】解:①∠1=∠4,可得AB∥DC,错误;②∠2=∠3,可得AD∥BC,正确;③∠1+∠2=∠3+∠4,不能判断AD∥BC,错误;④∠A+∠C=180°,不能判断AD∥BC,错误;⑤∠A+∠ABC=180°,可得AD∥BC,正确;⑥∠A+∠ADC=180°,可得AB∥DC,错误;故选:B.二、填空题(本大题共8小题,共24.0分)13.(3分)如图,已知a∥b,∠1=45°,则∠2=45°.【解答】解:∵a∥b,∠1=45°,∴∠2=∠1=45°.故答案为:45°.14.(3分)已知a、b为两个连续的整数,且a>>b,则a+b=11.【解答】解:∵a、b为两个连续的整数,且a>>b,∴>>,∴a=6,b=5,∴a+b=11.故答案为:11.15.(3分)如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF= 30度.【解答】解:∵∠AED与∠AEC是邻补角,∠AEC=120°,∴∠AED=180°﹣120°=60°,∵FE⊥AB,∴∠AEF=90°,∴∠DEF=90°﹣∠AED=30°.16.(3分)如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=130°.【解答】解:如图,∵AB∥CD,∴∠3=∠2=25°.又∵AC平分∠DAB,∴∠1=∠3=25°.∵∠D+∠1+∠2=180°,∴∠D=130°.故答案是:130°.17.(3分)已知2x+1的平方根是±5,则x=12.【解答】解:∵2x+1的平方根是±5,∴2x+1=25.解得:x=12.故答案为:12.18.(3分)已知2a﹣1的立方根是3,则a=14.【解答】解:∵2a﹣1的立方根是3,∴2a﹣1=33,∴2a=28,解得a=14.故答案为:14.19.(3分)如图所示,AB∥CD,若∠B=120°,∠C=35°,则∠E=95°.【解答】解:过点E作EF∥AB,∵AB∥CD,EF∥AB,∴∠B+∠BEF=180°,∠FEC=∠C=35°,∵∠B=120°,∴∠BEF=60°,∴∠E=∠BEF+∠FEC=60°+35°=95°.故答案为:95°.20.(3分)用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2= 65°.【解答】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,由翻折的性质得,∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65°.四、解答题(本大题共4小题,共36分)21.(9分)如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.∵AD∥BC(已知)∴∠2=∠E(两直线平行,内错角相等)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∴∠1=∠E(等量代换)∵∠CFE=∠E(已知)∴∠1=∠CFE∴AB∥CD(同位角相等,两直线平行)【解答】证明:∵AD∥B C(已知),∴∠2=∠E(两直线平行,内错角相等),∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠1=∠E(等量代换),∵∠CFE=∠E(已知),∴∠1=∠CFE,∴AB∥CD(同位角相等,两直线平行),故答案为:两直线平行,内错角相等,角平分线的定义,等量代换,CFE,同位角相等,两直线平行.22.(9分)观察下列等式:①;②;③….(1)请写出第④个式子;(2)请将猜想到的规律用含n(n≥1)的式子表示出来.【解答】解:(1)由规律可得,第④个式子为:=5;(2)由规律可得,第n个式子为:=(n+1).23.(9分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.【解答】答:能辨认∠1=∠2证明:∵∠A=104°﹣∠2,∠ABC=76°+∠2,∴∠A+∠ABC=104°﹣∠2+76°+∠2=180°,∴AD∥BC,∴∠1=∠DBC,∵BD⊥DC,EF⊥DC,∴BD∥EF,∴∠2=∠DBC,则∠1=∠2.24.(9分)数学老师在课堂上提出一个问题:“通过探究知道:≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用﹣1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)的小数部分是a,的整数部分是b,求a+b﹣的值.(2)已知8+=x+y,其中x是一个整数,0<y<1,求3x+(y﹣)2015的值.【解答】解:(1)∵4<5<9,36<37<49,∴2<<3,6<<7.∴a=﹣2,b=6.∴a+b﹣=﹣2+6﹣=4.(2)∵1<<2,∴9<8+<10,∴x=9.∵y=8+﹣x.∴y﹣=8﹣x=﹣1.∴原式=3×9﹣1=26.。
2017-2018学年重庆市七年级下数学第一次月考试卷(含答案)
尾相接,不能做成三角形框架的是( )8A.x与y都是变量,x是自变量,y是因变量 B.所挂物体为6 kg,弹簧长度为11 cm8. 在下列条件:①A B C ∠+∠=∠;②::1:2:3A B C ∠∠∠=;③1123A B C ∠=∠=∠;④2A B C ∠=∠=∠;⑤12A B C ∠=∠=∠中,能确定ABC △为直角三角形的条件是( )A .5个B .4个C .3个D .2个9. 若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定10. 如图,直线a ∥b ∥c ,直角三角板的直角顶点落在直线b 上,若∠1=38°,则∠2等于( )A .38°B .42°C .52°D .62°11. 端午节三天假期的某一天,小明全家上午8时自架小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S (千米)与时间t (小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是( )A .景点离小明家180千米B .小明到家的时间为17点C .返程的速度为60千米每小时D .10点至14点,汽车匀速行驶12. 下列说法正确的是( )①若直线AB 与CD 没有交点,则AB CD ∥;②平行于同一条直线的两条直线平行;③不相等的角一定不是对顶角;④过一点有且只有一条直线与已知直线平行;⑤过直线外一点作直线的垂线段,叫做点到直线的距离。
A .①③④B .③⑤C .②③D .②④二.填空题:(每小题4分,共32分)13. 人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为________ m 14. 如图,已知∠1=∠2,则图中互相平行的线段是 ______________.15. 用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.16. 如图:AD∥BC,∠DAC=60°,∠ACF=25°,∠EFC=145°,∠B=54°,则∠BEF= °.17. 如图所示是关于变量x ,y 的程序计算,若开始输入的x 值为6,则最后输出因变量y 的值为___________.18. 若2(1)|2|0a b -+-=,则以a 、b 为边长的等腰三角形的周长是 。
2017初一下数学第一次月考试题(含答案)
2017学年七年级下学期第一次统测 数学试卷 (本次数学测试时间为90分钟,满分为150分) 一、选择题 (每小题4分,共48分) 1. 下列运算正确的是( ) A.933a a a =• B.633a a a =+ C.633a a a =• D 532)(a a = 2.下列等式中,成立的是 ( ) A.222)(b a b a +=+ B.222)(b a b a -=- C.()2222b ab a b a +-=- D.22))((b a b a b a -=-+- 3. 下列各式中不能用平方差公式计算的是( ) A 、(-x +y )(-x -y ) B 、(a -2b )(2b+a ) C 、(a -b )(a +b )(a 2+b 2) D 、(a +b -c )(a +b -c ) 4.2)5.0(--的值是( ) A 、0.5 B 、4 C 、-4 D 、0.25 5. 某种原子的直径为0.000 000 000 2米,用科学记数法表示为( ) A .10102.0-⨯ B. 10101-⨯ C. 10102-⨯ D. 10101.0-⨯ 6.如果( ) ×23262b a b a -=,则( )应填的代数式是 A. 23ab - B. ab 3- C. ab 3 D. 23ab 7.下列计算正确的是 ( ) A 、()110-=- B 、()111=-- C 、3322a a =- D 、()()122=-÷-a a 8.1)1)(21)(21)(2(2842++++…(232+1)+1 的个位数字为( ) A .2 B.4 C.6 D.8 9.若()()232y y y my n +-=++,则m 、n 的值分别为( ).A 、5m =,6n =B 、5m =,6n =-C 、1m =,6n =D 、1m =,6n =-10.将120)51(,)3(,)30(----这三个数按照从小到大的顺序排列,正确的是( )A. 120)51()3()30(--<-<-B.102)51()30()3(--<-<-密封线内不得答题C.210)3()51()30(-<-<--D.201)3()30()51(-<-<-- 11.如图,在矩形花园ABCD 中,a AB =,b AD =,在花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
省乌鲁木齐市2017-2018学年七年级数学下学期第二次月考试卷
2017-2018学年新疆乌鲁木齐七年级(下)第二次月考数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列是二元一次方程的是()A.2x=5y B.x﹣=3 C.2x﹣3y=xy D.3x2﹣6=x2.(3分)关于x、y的方程组的解是方程3x+2y=24的一个解,那么m的值是( )A.2 B.﹣1 C.1 D.﹣23.(3分)若|x+y﹣5|与(x﹣y﹣1)2互为相反数,则x2﹣y2的值为( )A.﹣5 B.5 C.13 D.154.(3分)下列方程中,是二元一次方程的是( )A.8x2+1=y B.y=8x+1 C.y= D.xy=15.(3分)方程组的解中x与y的值相等,则k等于() A.2 B.1 C.3 D.46.(3分)已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.7.(3分)若不等式组无解,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤38.(3分)若方程组的解是,则方程组的解是()A. B.C. D.9.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A. B.C. D.10.(3分)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米二.填空题(共6小题,满分18分,每小题3分)11.(3分)在二元一次方程x+4y=13中,当x=5时,y= .12.(3分)已知x﹣3y=3,则6﹣x+3y的值是.13.(3分)若不等式组的解集是空集,则a,b的大小关系是.14.(3分)等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为.15.(3分)已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y= .16.(3分)如果三个连续自然数的和不大于9,那么这样自然数共有组.三.解答题(共7小题,满分52分)17.(8分)已知关于x,y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.18.(8分)解下列不等式组:(1)2(x+1)>3x﹣4(2).19.(6分)先阅读,然后解方程组.解方程组时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法".请用这样的方法解方程组.20.(8分)已知关于x,y的二元一次方程组的解适合方程x+y=6,求n的值.21.(6分)若a,b,c是△ABC的三边,且a,b满足关系式|a﹣6|+(b﹣8)2=0,c是不等式组的最大整数解,试判断△ABC的形状.22.(6分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元."王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车",甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗"?如果是你,你该如何设计租车方案,并说明理由.23.(10分)某公司要招聘甲、乙两类员工共150人,甲、乙两类员工的月工资分别为600元和1000元.(1)现要求乙类员工的人数不少于甲类员工的人数2倍,问甲、乙两类员工各招聘多少人时,可使得公司每月所付工资最少,最少工资总额是多少?(2)在招聘两类员工的月工资总额最少的条件下,由于完成项目优秀,公司决定用10万元钱奖励所招聘的这批员工,其中甲类员工的奖金总数不大于乙类员工的奖金总数,但每人不得低于200元,若以百元为单位发放,试问有几种发放方案请具体写出(员工得到的奖金为整百).2017-2018学年新疆乌鲁木齐七年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、2x=5y是二元一次方程;B、x﹣=3是分式方程;C、2x﹣3y=xy是二元二次方程;D、3x2﹣6=x一元二次方程.故选:A.2.【解答】解:,①+②,得:2x=12m,x=6m;①﹣②,得:2y=6m,y=3m;将x=6m、y=3m代入3x+2y=24,得:18m+6m=24,解得:m=1,故选:C.3.【解答】解:由题意得:|x+y﹣5|+(x﹣y﹣1)2=0,∴,则原式=(x+y)(x﹣y)=5,4.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.5.【解答】解:根据题意得:y=x,代入方程组得:,解得:,故选:B.6.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.7.【解答】解:∵不等式组无解.∴m≤3.故选D.8.【解答】解:令x+1=m,y﹣2=n,∴方程组可化为,∵方程组的解是,∴x+1=2,y﹣2=﹣1,解得.故选:A.9.【解答】解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.10.【解答】解:设导火线的长度为x厘米,可列不等式:400÷5<x÷1。
人教版江西省新余2017-2018学年七年级(下)第一次月考数学试卷(含答案)
2017-2018学年江西省新余七年级(下)第一次月考数学试卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)如果,则x:y的值为()A.B.C.2 D.33.(3分)若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是()A.27 B.18 C.15 D.124.(3分)把一张对面互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则下列结论正确有()(1)∠C′EF=32°(2)∠AEC=116°(3)∠BFD=116°(4)∠BGE=64°.A.1个B.2个C.3个D.4个5.(3分)若方程组的解是,则方程组的解是()A.B.C.D.6.(3分)一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73二.填空题(共6小题,满分18分,每小题3分)7.(3分)若方程3x2(m+n)﹣3(m﹣n)﹣3﹣2y5(m+n)﹣7(m﹣n)﹣1=1是二元一次方程,则m=,n=.8.(3分)在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.9.(3分)大于小于的整数是.10.(3分)若x同时满足不等式2x+3>0和x﹣2≤x+,则x的取值范围是.11.(3分)如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有个.12.(3分)如图,所有正方形的中心均在坐标原点O,且各边均与x轴成y轴平行,从内到外,它们的边长依次是2,4,6,8,…,每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,则顶点A10的坐标为.三.解答题(共5小题,满分30分,每小题6分)13.(6分)(1)解方程组(2)解不等式组,并写出它的所有非负整数解.14.(6分)解不等式,并把它的解集在数轴上表示出来.15.(6分)填空并完成以下证明:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:AB∥CD,∠E=∠F.证明:∵∠BAP+∠APD=180°,(已知)∴AB∥.()∴∠BAP=.()又∵∠1=∠2,(已知)∠3=﹣∠1,∠4=﹣∠2,∴∠3=(等式的性质)∴AE∥PF.()∴∠E=∠F.()16.(6分)已知点A(x,y)在第四象限,它的坐标x,y满足方程组,并且x﹣y≤5,求k的整数解.17.(6分)已知关于x,y的二元一次方程组的解适合方程x+y=6,求n的值.四.解答题(共4小题,满分32分,每小题8分)18.(8分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的三个顶点的坐标分别为A(0,2)、B(1,0)、C(3,4).请在所给直角坐标系中解答下列问题:(1)画出△ABC;(2)将△ABC向左平移4个单位长度,再向下平移5个单位长度,画出平移后的△A1B1C1.(3)求出△ABC的面积.19.(8分)已知关于x、y的方程组(1)求这个方程组的解;(2)当m取何值时,这个方程组的解中,x大于1,y不小于﹣1.20.(8分)某种水果的价格如表:购买的质量(千克)不超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?21.(8分)某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.五.解答题(共1小题,满分10分,每小题10分)22.(10分)解关于x的不等式组:,其中a为参数.六.解答题(共1小题,满分12分,每小题12分)23.(12分)在平面直角坐标系中(单位长度为1cm),已知点M(m,0),N(n,0),且+|2m+n|=0.(1)求m,n的值;(2)若点E是第一象限内一点,且EN⊥x轴,点E到x轴的距离为4,过点E作x轴的平行线a,与y轴交于点A.点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q 从原点O同时出发,以每秒1cm的速度沿x轴向右移动.①经过几秒PQ平行于y轴?②若某一时刻以A,O,Q,P为顶点的四边形的面积是10cm2,求此时点P的坐标.参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.2.【解答】解:在方程组中,(2)×5﹣(1)×11,得3x﹣9y=0,∴3x=9y,即x=3y.所以x:y=3.故选:D.3.【解答】解:∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2①∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc;又(a﹣b)2+(b﹣c)2+(c﹣a)2=3a2+3b2+3c2﹣(a+b+c)2=3(a2+b2+c2)﹣(a+b+c)2②①代入②,得3(a2+b2+c2)﹣(a+b+c)2=3×9﹣(a+b+c)2=27﹣(a+b+c)2,∵(a+b+c)2≥0,∴其值最小为0,故原式最大值为27.故选:A.4.【解答】解:由题意得:∠EFB=∠FEC′=32°可知(1)正确.由翻折变换的性质可得:∠GEF=∠FEC′=32°,∠AEC=180°﹣(∠C′EF+∠FEG)=116°,故(2)正确.∠BFD=∠EFD﹣∠EFG=∠EFD′﹣∠EFG=(180°﹣∠EFG)﹣∠EFG=180°﹣2∠EFG=116°,故(3)正确.∠BGE=∠C′EG=64°,故(4)正确.综上可知有四个正确.故选:D.5.【解答】解:令x+1=m,y﹣2=n,∴方程组可化为,∵方程组的解是,∴x+1=2,y﹣2=﹣1,解得.故选:A.6.【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.二.填空题(共6小题,满分18分,每小题3分)7.【解答】解:因为方程3x2(m+n)﹣3(m﹣n)﹣3﹣2y5(m+n)﹣7(m﹣n)﹣1=1是二元一次方程,则,即,利用代入法求出m=﹣19,n=﹣3.8.【解答】解:若a,b同号,则﹣b,﹣a也同号且符号改变,此时点(﹣b,﹣a),点(a,b)分别在一三象限,不合题意;若a,b异号,则﹣b,﹣a也异号,此时点(﹣b,﹣a),点(a,b)都在第二或第四象限,符合题意;故答案为:二、四.9.【解答】解:1.732≈<x<≈2.645,则x的整数是2,故答案为:210.【解答】解:根据题意得:x>﹣且x<,则x的范围是﹣<x<,故答案为:﹣<x<11.【解答】解:由不等式组得:,由于其整数解仅为1,2,3,结合图形得:,a的整数值共有9个;,b的整数值共8个,则整数a,b的有序数对(a,b)共有8×9=72个.12.【解答】解:∵所有正方形的中心均在坐标原点O,且各边均与x轴成y轴平行,从内到外,它们的边长依次是2,4,6,8,…,每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,∴点A1的坐标为(﹣1,﹣1),点A2的坐标为(﹣1,1),同理可得,点A10的点的坐标为(﹣3,3),故答案为:(﹣3,3).三.解答题(共5小题,满分30分,每小题6分)13.【解答】解:(1)①×2得:6x﹣2y=10 ③,②+③得:11x=33,x=3.把x=3代入①得:9﹣y=5,y=4.所以;(2)由4(x+1)≤7x+10,得:x≥﹣2,由x﹣5<,得:x<,不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.14.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.15.【解答】解:∵∠BAP+∠APD=180°,(已知)∴AB∥C D.(同旁内角互补两直线平行)∴∠BAP=∠AP C.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∠3=∠BAP﹣∠1,∠4=∠APC﹣∠2,∴∠3=∠4(等式的性质)∴AE∥PF.(内错角相等两直线平行)∴∠E=∠F.(两直线平行内错角相等)故答案为CD,同旁内角互补两直线平行,∠APC,两直线平行内错角相等,∠BAP,∠APC,内错角相等两直线平行,两直线平行内错角相等;16.【解答】解:∵坐标x,y满足方程组,解得x=k+1,y=﹣2,∵点A(x,y)在第四象限,∴k+1>0,k>﹣1,∵x﹣y≤5,解得k≤2,∴﹣1<k≤2,∴k的整数解为0、1、2.17.【解答】解:方程组消元n得:4x+3y=3,联立得:,解得:,则n==﹣4.四.解答题(共4小题,满分32分,每小题8分)18.【解答】解:(1)如图所示:△ABC,即为所求;(2)如图所示:△A1B1C1,即为所求;(3)△ABC的面积为:3×4﹣×2×3﹣×1×2﹣×2×4=4.19.【解答】解:(1),①﹣②得3y=1﹣m,则y=,①+2×②得3x=1+2m,则x=.解得;(2)根据题意得:,解得1<m≤4.20.【解答】解:设张欣第一次、第二次购买了这种水果的量分别为x千克、y千克,因为第二次购买多于第一次,则x<12.5<y.①当x≤10时,,解得;②当10<x<12.5时,,此方程组无解.答:张欣第一次、第二次购买了这种水果的量分别为7千克、18千克.21.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,则:,解之得.答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.五.解答题(共1小题,满分10分,每小题10分)22.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.六.解答题(共1小题,满分12分,每小题12分)23.【解答】解:(1)依题意,得,解得;(2)①设经过x秒PQ平行于y轴,依题意,得6﹣2x=x解得x=2,②当点P在y轴右侧时,依题意,得,解得x=1,此时点P的坐标为(4,4),当点P在y轴左侧时,依题意,得,解得,此时点P的坐标为.。
2017-2018学年湖北省武汉外国语学校美加分校十二月月考七年级数学试卷(无答案)
武汉外国语学校美加分校2017-2018上十二月月考试卷第Ⅰ卷一、选择题(每小题3分,满分30分) 1.12的相反数为( ) A .2B .12-C .12D .2-2.右图是由几个小正方体组成的一个几何体,这个几何体从左面看到的平面图形是( )ABCD3.有理数m 、n 、e 、f 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是( )A .mB .nC .eD .f4.下列计算正确的是( ) A .2a a a +=B .2265a a a -=C .235325a a a +=D .22234a b ba a b -=-5.在解方程32123x xx ---=-时,去分母正确的是( ) A .3(3)162(2)x x x --=-- B .3(3)664x x x --=-- C .3(3)62(2)x x x --=--D .3(3)662(2)x x x --=--6.如图,把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴合的数学道理是( ) A .两点之间线段最短 B .直线比曲线短 C .两点之间直线最短D .两点确定一条直线7.若方程211x +=-的解是关于x 的方程12()2x a --=的解,则a 的值为( ) A .-1B .1C .32-D .12-8.如图,a 、b 、c 在数轴上的位置如图所示,则下列结论正确的是( ) A .abc >0B .()c a b -<0C .()c a b -<0D .()b c a +>09.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.8(10.5)28x x +=+ B .0.8(10.5)28x x +=- C .0.8(10.5)28x x +=-D .0.8(10.5)28x x +=+10.下列说法正确的个数为( )个①如果a a =,那么a >0;②使得134x x -++=的x 的值有无数个;③用四舍五入法把数2005明确到百位是2000;④几个数相乘,积的符号一定由负因数的个数决定,当负因数的个数为偶数时积为正. A .0B .1C .2D .3二、填空题(每题3分,共18分)11.已知多项式3221322m n mn -+-,它是______次三项式,最高次项的系数______,常数项为_______. 12.已知()1235m m xm --+=-是关于x 的一元一次方程,则m 的值为_______.13.若1m =,2n =,且m n m n +=+,则nm=_______. 14.某商品进价为40元,若按标价的8折出售扔可获利20%,则按标价出售可获利______元.15.如图是正方体的一个平面开展图,则原正方体上“国”相对的面上的字是______. 16.已知a 、b 、c 满足()()()0a b b c c a +++=,且abc >0,则代数式a b ca b c++的值为_______.三、解答题(共5题,共52分)17.(10分)计算:(1)()116232⎛⎫-⨯-- ⎪⎝⎭(2)()2411112122⎛⎫⎛⎫----⨯--÷- ⎪ ⎪⎝⎭⎝⎭18.(本题10分)解方程:(1)2641x x -=-(2)3157146y y ---=19.(10分)先化简,再求值:(1)化简:()()222223313a b ab ab a b --+--(2)当关于x 、y 的多项式22ax xy x +-与2323x bxy y -+的差不含二次项时,求上式的值.20.(10分)电子商务的快递发展逐步改变了人们的购物方式,李阿姨在某商店买了甲、乙两件商品,已知甲商品的价格比乙商品价格的2倍多108元,乙商品的价格比甲、乙两件商品的总价的14少3元,问甲、乙两件商品的价格各为多少元?21.(12分)现定义运算“⊗”,对于任意有理数a 、b ,都有a b ab b ⊗=-,如23233⊗=⨯-,请根据定义计算下列各题:(1)()23⊗-=_________;()2x ⊗-=________. (2)化简:()()32x -⊗⊗-⎡⎤⎣⎦.(3)若()132x x ⎛⎫⊗-=⊗- ⎪⎝⎭,求x 的值.第Ⅱ卷四、填空题(共16分,每小题4分)22.观察下列等式找出规律:①3211=;②332123+=;③33321236++=; ④33332123410+++=,...则()()()()333311121320-+-+-+⋅⋅⋅+-的值是________. 23.下表是2015—2016赛季欧洲足球冠军杯第一阶段G 组赛(G 组共四个队,每个队分别与其他三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.(备注:总积分=胜场积分+平场积分+负场积分)本次足球小组赛中切尔西队总积分是_______分.球队 场次 胜 平 负 总积分 切尔西 6 ? ? 1 ? 基辅迪纳摩 6 3 2 1 11 波尔图 6 3 1 2 10 特拉维夫马卡比5624.如图,第1个图是一个面积为2a 的正方形,第2个图是由两个面积为2a 的正方形构成,其中重叠部分面积为2b .第3个图是由三个面积为2a 的正方形构成,其中重叠部分面积为22b ,如图一次叠放,则第11个图形的面积为___________.25.已知,A 、B 、C 三点在数轴上的位置如图所示,将点A 向右移动1个单位得到点B ,将点B 向右移动2个单位得到点C ,点A 、B 、C 所表示的有理数分别是a 、b 、c ,且abc >0,若这三个数的和与其中的一个数相等,则a 的值为_________.五、解答题(共3小题,34分)26.(10分)(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度.(2)对于(1)题,如果将“点C 在线段AB 上”改写成“点C 在线段AB 延长线上”,其他条件不变,画出图形并求线段MN 的长度.27.(12分)通过学习绝对值,我们知道了绝对值的几何意义.如:5表示5在数轴上的对应点到原点的距离,550=-,即50-表示5、0在数轴上对应的两点之间的距离.类似的,()5353+=--,即53+表示5、3-在数轴上对应的点两点之间的距离.一般的,点A 、B在数轴上分别表示数a 、b ,那么A 、B 之间的距离可表示为AB a b =-. (1)若32x +=,则x =_______. (2)利用数轴探究:①13x x -++的最小值是_______,取得最小值时x 的取值范围是_______. ②满足13x x -++>4的x 的取值范围为_______.(3)求满足1253x x +=-+的x 值(要求:书写求解过程)28.(12分)如图,A、B两点在数轴上对应的数分别为-20,24,C点在A、B之间,在A、B、C三点处各放一个挡板,M、N两个小球分别从A、B两处出发,相对而行,碰到挡板后则向反方向运动,一直如此下去(当M小球第二次碰到挡板时,两球均停止运动)(1)若两个小球运动速度相同,当N小球第一次碰到C挡板时,M小球刚好第二次碰到C 挡板,求C点所对应的数.(2)若M、N小球的运动速度分别为3个单位/秒、2个单位/秒,则M小球前三次碰到挡板的时间依次为a、b、c秒钟,设两球的运动时间为t秒钟.①请直接写出下列时间段内M小球所对应的数(用含t的代数式表示)当0≤t≤a时,M小球对应的数为__________当a<t≤b时,M小球对应的数为__________当b<t≤c时,M小球对应的数为__________②当M、N两个小球的距离等于42时,求t的值(3)移走A、B、C三处的挡板,M、N以(2)中的速度运动,与此同时,R点从原点出发,以5个单位/秒的速度向数轴负方向运动,P是AN的中点,Q是MR的中点,求证:PQ的长度为定值,并求出该值为多少?。
山东初一初中数学月考试卷带答案解析
山东初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.﹣2017的相反数是()A.﹣2017B.2017C.D.2.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2B.2C.0D.﹣13.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()A.﹣3℃B.7℃C.3℃D.﹣7℃4.下列说法中错误的是()A.零的相反数是零B.任何有理数都有相反数C.a的相反数是﹣a D.表示相反意义的量的两个数互为相反数5.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化6.已知M是线段AB的中点,那么,①AB=2AM;②BM=AB;③AM=BM;④AM+BM=AB.上面四个式子中,正确的有()A. 1个B. 2个C. 3个D. 4个7.有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣aC.a>|b|>b>﹣a D.a>|b|>﹣a>b8.若|n+2|+|m+8|=0,则n﹣m等于()A.6B.﹣10C.﹣6D.109.绝对值大于1且小于4的所有整数和是()A.6B.﹣6C.0D.410.点C是线段AB的中点,点D在线段CB上,且CD=CB,若AD=12,则DB=()A.5B.6C.7D.811.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣1212.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且满足2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则原点为()A.点E B.点F C.点M D.点N二、填空题1.在,2,0,0.3,﹣9这五个数中,是负有理数;是整数.2.化简:(1)+(+6)=;(2)﹣(﹣11)=;(3)﹣[+(﹣7)]=.3.比较两数的大小:(填“<““>““或”=“)4.﹣(﹣5)+16+(﹣15.5)﹣(﹣3)=.5.图1和图2中所有的正方形都全等.将图1的正方形放在图2中的(从①②③④中选填)位置,所组成的图形能够围成正方体.6.两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是cm.7.把下列各数填在相应的大括号内:﹣3,﹣|﹣|,﹣11,0,﹣3,14,+2.97,﹣(﹣5),(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.8.把下列各数在数轴上表示出来,并用“<”把各数连接起来.,0,|-4|,0.5,-5,-(-3).三、解答题1.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.2.有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?3.右下图为某一矿井的示意图:以地面为基准,A点的高度是+4.2米,B、C 两点的高度分别是﹣15.6米与﹣24.5米.A点比B点高多少?B点比C点高多少?(要写出运算过程)4.如图,已知线段AB,请按要求完成下列问题.(1)用直尺和圆规作图,延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC;(2)如果AB=2cm;①求CD的长度;②设点P是线段BD的中点,求线段CP的长度.5.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.四、计算题计算下列各式:(1)(﹣1.25)+(+5.25);(2)(﹣6)﹣(﹣1.8);(3)(﹣1.7)﹣2.5;(4)0.36+(﹣7.4)+0.5+0.24+(﹣0.6);(5) +(-0.5)+(-3.2)+;山东初一初中数学月考试卷答案及解析一、选择题1.﹣2017的相反数是()A.﹣2017B.2017C.D.【答案】B【解析】试题解析:-2017的相反数是2017.故选B.【考点】相反数.2.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2B.2C.0D.﹣1【答案】B【解析】由题可得:原式=1+1=2,故选:B.3.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()A.﹣3℃B.7℃C.3℃D.﹣7℃【答案】B【解析】根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,继而作差求解即可.解:根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,故该天最高气温比最低气温高5﹣(﹣2)=7℃,故选B.【考点】有理数的减法.4.下列说法中错误的是()A.零的相反数是零B.任何有理数都有相反数C.a的相反数是﹣a D.表示相反意义的量的两个数互为相反数【答案】D【解析】A中,0的相反数是0本身,故A不符合题意;B中,任何有理数都有相反数,故B不符合题意;C中,a的相反数是﹣a,故C不符合题意;D中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示.故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【答案】C【解析】这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选C.【考点】专题:正方体相对两个面上的文字.6.已知M是线段AB的中点,那么,①AB=2AM;②BM=AB;③AM=BM;④AM+BM=AB.上面四个式子中,正确的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】线段的中点分线段为相等的两部分,又因为点M在AB上,所以AM+BM=AB,进而可得出结论.解:∵M是线段AB的中点,∴AM=BM=AB,AM+BM=AB,∴题中①②③④的结论都正确,故选D.【考点】比较线段的长短.7.有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣aC.a>|b|>b>﹣a D.a>|b|>﹣a>b【答案】A【解析】根据题意b是负数,|b|=-b,在数轴上标出-a和-b大致位置,根据数轴上右边的数比左边的数大,得-b>a>-a>b,即|b|>a>﹣a>b.故选A.点睛:有理数比较大小时可以利用数轴进行比较,规则是数轴上左边的数小于右边的数.8.若|n+2|+|m+8|=0,则n﹣m等于()A.6B.﹣10C.﹣6D.10【答案】A【解析】根据绝对值的非负性:任何数的绝对值不小于0,得|n+2|≥0,|m+8|≥0,再根据|n+2|+|m+8|=0,则只有当|n+2|=0,且|m+8|=0时成立,解得m、n的值,再求n-m.解:∵|n+2|+|m+8|=0,∴|n+2|=0,且|m+8|=0,解得n=-2,m=-8,则n-m=-2-(-8)=6.故选A.点睛:两个具有非负性的数的和等于0,则两个数都为0,是初中数学的常考点.9.绝对值大于1且小于4的所有整数和是()A.6B.﹣6C.0D.4【答案】C【解析】试题解析:绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.点C是线段AB的中点,点D在线段CB上,且CD=CB,若AD=12,则DB=()A.5B.6C.7D.8【答案】B【解析】根据题意画出示意图:设CD=x,则CB=3CD=3x,则DB=CB-CD=2x,因为C是线段AB的中点,得AC=CB=3x,则AD=AC+CD=3x+x=12,解得x=3,则DB=2x=6,故选B.11.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【答案】A【解析】题中给出了 x,y 的绝对值,可求出 x=±7,y=±5;再根据 x+y>0,分类讨论: x,y 同号或 x,y 异号,但正数的绝对值较大,可求得x=7,y="5" 或 x=7,y=﹣5.代入后解得x﹣y="2" 或 12.故选: A.12.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且满足2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则原点为()A.点E B.点F C.点M D.点N【解析】根据A为-5,D为6,求得AD的长,然后根据2AB=BC=3CD,求得AB、BC,CD的长,从而找到E,M,N所表示的数,再判断哪个是原点.解:∵2AB=BC=3CD,∴设CD=x,则BC=3x,AB=1.5x,∵A、D两点表示的数分别为-5和6,∴AD=11,∴x+3x+1.5x=11,解得x=2,故CD=2,BC=6,AB=3,∵AC的中点为E,BD的中点为M,∴AE=EC=4.5,BM=MD=4,则E点对应的数是-0.5,M点对应的数为2,∵BC之间距点B的距离为BC的为点N,∴BN=BC=2,∴AN=5,∴N点对应的数为0,即为原点.故选D.二、填空题1.在,2,0,0.3,﹣9这五个数中,是负有理数;是整数.【答案】,-9;2,0,-9.【解析】负有理数包括负分数和负整数,则,-9是负有理数,整数包括负整数,0,和正整数,则2,0,-9是整数.故答案为,-9;2,0,-9.点睛:有理数的分类:有理数包括整数和分数,而整数包括正整数、0和负整数,分数包括正分数和负分数.2.化简:(1)+(+6)=;(2)﹣(﹣11)=;(3)﹣[+(﹣7)]=.【答案】6;11;7.【解析】(1)+(+6)=6;(2)﹣(﹣11)=11;(3)﹣[+(﹣7)]=7.故答案为(1)6;(2)11;(3)7.点睛:此类化简数的符号的题,当“-”号的个数是奇数个时,结果是负号;当“-”的个数是偶数个时,结果是正号. 3.比较两数的大小:(填“<““>““或”=“)【答案】>.【解析】因为=,=,所以<,所以->-,故答案为>.点睛:有理数大小的比较:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.4.﹣(﹣5)+16+(﹣15.5)﹣(﹣3)=.【答案】10.【解析】本题先化简去加号或括号后,可以看出可以利用加法交换律和结合律进行简便计算.解:原式=5+16﹣15.5+3=(5﹣15.5)+(16+3)5.图1和图2中所有的正方形都全等.将图1的正方形放在图2中的(从①②③④中选填)位置,所组成的图形能够围成正方体.【答案】②③④.【解析】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,将图1的正方形放在图2中的②③④的位置均能围成正方体.故答案为②③④.点睛:做此类题时,可将图形补全后通过空间想象将图形折叠成正方形,能折成则成立. 注意:只要有“田”字格的展开图都不是正方体的表面展开图.6.两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是cm.【答案】70或10.【解析】设AB=60cm,BC=80cm,AB中点为点M,BC中点为点N,两线段重合的端点为点B.分两种情况讨论:①点A、点C在点B两侧时,此时MN=BM+BN;②点A、点C在点B同侧时,此时MN=BN-BM.解:设AB=60cm,BC=80cm,AB中点为点M,BC中点为点N,两线段重合的端点为点B.①点A、点C在点B两侧时,如图:则BM=AB=30,BN=BC=40,则MN=BM+BN=30+40=70.②点A、点C在点B同侧时,如图:则BM=AB=30,BN=BC=40,则MN=BN-BM=40-30=10.故答案为70或10.7.把下列各数填在相应的大括号内:﹣3,﹣|﹣|,﹣11,0,﹣3,14,+2.97,﹣(﹣5),(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.【答案】详见解析.【解析】先将需化简的化简:﹣|﹣|=-,﹣(﹣5)=5,再根据正数、负数、整数和分数的定义进行分类,注意:有限小数和无限循环小数都可以化成分数.解:(1)正数集合:{+2.97,﹣(﹣5),…}(2)负数集合:{﹣3,﹣|﹣|,﹣11,﹣3.14 …}(3)整数集合:{﹣3,﹣11,0,﹣(﹣5)…}(4)分数集合:{﹣|﹣|,﹣3.14,+2.97,…}.8.把下列各数在数轴上表示出来,并用“<”把各数连接起来.,0,|-4|,0.5,-5,-(-3).【答案】(1)在数轴上表示见解析;(2)﹣5<﹣2<0<0.5<﹣(﹣3)<|﹣4|【解析】先将需化简的化简:|﹣4|=4,﹣(﹣3)=3,再在数轴上表示出来,最后根据数轴上左边的数小于右边的数进行比较大小.解:|﹣4|=4,﹣(﹣3)=3,在数轴上表示为:根据数轴上左边的数小于右边的数得﹣5<<0<0.5<﹣(﹣3)<|﹣4|.三、解答题1.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.【答案】见解析【解析】(1)根据要求画出射线及直线即可;(2)射线AP上截取线段AD=AB即可;(3)延长线部分画虚线;(4)连接两点D、E.解:如图所示:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.【考点】直线、射线、线段.2.有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?【答案】不足6千克;244千克【解析】先把称重记录相加即可得到总计超过或不足的重量,再加上50×5即可得到5筐蔬菜的总重量.(+3)+(-6)+(-4)+(+2)+(-1)=-6(千克),-6+50×5=244千克,答:总计不足6千克,5筐蔬菜的总重量是244千克.【考点】本题考查的是有理数的加法的应用点评:解答本题的关键是熟记绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.右下图为某一矿井的示意图:以地面为基准,A点的高度是+4.2米,B、C 两点的高度分别是﹣15.6米与﹣24.5米.A点比B点高多少?B点比C点高多少?(要写出运算过程)【答案】(1)-4.2;(2);(3);(4)-5.【解析】本题考查了有理数的减法在实际问题的应用根据题意列出算式,即可得到结果。
2017-2018学年辽宁省大连市金普新区七年级(下)第一次月考数学试卷 解析版
2017-2018学年辽宁省大连市金普新区七年级(下)第一次月考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)下列各组图形,可经平移变换,由一个图形得到另一个图形的是()A.B.C.D.2.(3分)如图,△ABC平移到△A′B′C′位置,下列结论不成立的是()A.AB∥A′B′B.AA′=BB′=CC′C.BB′=B′C′D.AA′∥BB′∥CC′3.(3分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.(3分)的值为()A.25B.±5C.﹣5D.55.(3分)下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.6.(3分)下列命题中是假命题的是()A.如果﹣=3,那么a=﹣9B.如果,那么a=9C.如果﹣=2,那么a=﹣8D.如果﹣=﹣2,那么a=87.(3分)如图,AC⊥BC,AC=3,P是边PC上的动点,则AP长不可能是()A.2.5B.3C.4D.58.(3分)在同一平面内,有8条互不重合的直线l1,l2,l3,…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…,以此类推,则l7和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定二、填空题(共8小题,每小题3分,共24分)9.(3分)计算:=.10.(3分)命题“如果同位角相等,那么这两条直线平行”的题设是.11.(3分)如图,OA⊥OB,OC⊥OD,若∠AOD=150°,则∠BOC=.12.(3分)如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是.13.(3分)如图,直线AB、CD交于点O,射线OM平分∠AOC,且∠BOD=76°,则∠BOM=.14.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=度.15.(3分)一个人从A点出发向北偏东60°方向走到点B,又从B点向南偏西15°方向走到点C,那么∠ABC的度数是.16.(3分)已知如图,AB∥CD,直线l分别截AB、CD于P、C两点,PE平分∠BPC交CD于点E,PF平分∠BPE交CD于点F.若∠PCD=α°,则∠PFC=°.三、解答题(本题共4小题,其中17、18题各10分,19题7分,20小题12分,共39分)17.(10分)计算:(1)+(2)+||﹣()18.(10分)如图,三条直线AB,CD,EF交于一点O,且OF平分∠DOB,试问:OE 是不是∠AOC的平分线?为什么?19.(7分)完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=().∴AB∥CD().20.(12分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)过点C画直线AB垂线CE,垂足为E(利用网格点和直尺画图).四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)如图,直线AB与CD相交于点O,OE⊥AB.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(9分)如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,对AB∥CD说明理由.23.(10分)已知互为相反数,且x﹣6的平方根是它本身,求x+y的值.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为24,OC边长为4.(1)数轴上点A表示的数为;(2)将长方形ABCD沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的图积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴点A′表示的数为;②设点A的移动距离AA′=x.Ⅰ.当S=16时,x=;Ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=,当点D、E所表示的数互为相反数时,求x的值.25.(12分)先阅读下面的文字,然后解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用﹣1表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.由此我们还可以得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果﹣=a+b,其中a是整数,且0<b<1,那么a=,b=;(2)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.26.(12分)已知:点P在射线AB上,且∠A=∠C.(1)如图1,若AB∥CD,求证:∠APC=∠D;(2)如图2,AD⊥CD,请探究∠BPC与∠A的数量关系,写出你的探究结论,并加以证明;(3)操作:在(2)的条件下,过点C作CE⊥CD交射线AB于点E,当∠BEC=2∠BPC 时,求∠BPC的度数.2017-2018学年辽宁省大连市金普新区七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)下列各组图形,可经平移变换,由一个图形得到另一个图形的是()A.B.C.D.【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【解答】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B.【点评】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.2.(3分)如图,△ABC平移到△A′B′C′位置,下列结论不成立的是()A.AB∥A′B′B.AA′=BB′=CC′C.BB′=B′C′D.AA′∥BB′∥CC′【分析】利用平移的性质可判定A、B、C,利用菱形的判定方法可判断D,则可求得答案.【解答】解:∵将△ABC平移到△A′B′C′的位置,∴△ABC≌△A′B′C′,且AB∥A′B′,∴AA′=BB′=CC′,故A、B、D选项是正确的,不符合题意,则BB′=B′C′不一定成立,故选:C.【点评】本题主要考查平移的性质,掌握平移前后图形全等是解题的关键.3.(3分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】估算得出的范围即可.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:C.【点评】此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.4.(3分)的值为()A.25B.±5C.﹣5D.5【分析】根据算术平方根的定义可知表示25的算术平方根,即.【解答】解:.故选:D.【点评】本题主要考查了算术平方根的意义,熟练掌握二次根式的性质是解答本题的关键.5.(3分)下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AD∥BC,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.【点评】本题考查了平行线的判定,解题的关键是熟练掌握3线8角之间的位置关系.6.(3分)下列命题中是假命题的是()A.如果﹣=3,那么a=﹣9B.如果,那么a=9C.如果﹣=2,那么a=﹣8D.如果﹣=﹣2,那么a=8【分析】利用算术平方根和立方根的定义判断后即可确定真假.【解答】解:A、若如果﹣=3,则如果=﹣3,无意义,故错误,是假命题;B、如果如果=3,那么如果a=9,正确,是真命题;C、如果﹣=2,那么a=﹣8,故正确,是真命题;D、如果﹣=﹣2,那么a=8,正确,是真命题,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平方根和立方根的定义,难度不大.7.(3分)如图,AC⊥BC,AC=3,P是边PC上的动点,则AP长不可能是()A.2.5B.3C.4D.5【分析】从直线外一点到这条直线所作的垂线段最短,利用垂线段最短进行判断即可.【解答】解:在△ABC中,∠C=90°,AC=3,根据垂线段最短,可知AP的长不可能小于3,当P和C重合时,AP最短为3,故选:A.【点评】本题主要考查了垂线段最短的性质.从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.8.(3分)在同一平面内,有8条互不重合的直线l1,l2,l3,…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…,以此类推,则l7和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定与l2n是垂直关系,l2n与l2n+1是平行关系,便可得结论.【分析】根据已知可得,l2n﹣1与l2n是垂直关系,l2n与l2n+1是平行关系,【解答】解:由题意可知,l2n﹣1∴l7⊥l8,故选:B.【点评】本题主要考查了平行与垂直的关系的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二、填空题(共8小题,每小题3分,共24分)9.(3分)计算:=2.【分析】根据立方根的定义即可求解.【解答】解:∵23=8∴=2故答案为:2.【点评】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)命题“如果同位角相等,那么这两条直线平行”的题设是同位角相等.【分析】每个命题都由题设和结论两部分组成,题设是条件,结论是结果.【解答】解:题设是同位角相等,结论是两直线平行.故答案为:同位角相等.【点评】本题很简单,考查的是命题的组成.11.(3分)如图,OA⊥OB,OC⊥OD,若∠AOD=150°,则∠BOC=30°.【分析】注意到∠AOD+∠AOB+∠BOC+∠COD=360°,由题知∠AOB=∠COD=90°,∠AOD=150°,则可求∠BOC.【解答】解:∵∠AOD+∠AOB+∠BOC+∠COD=360°∴∠BOC=360°﹣∠AOD﹣∠AOB﹣∠COD∵OA⊥OB,OC⊥OD,∠AOD=150°∴∠AOB=∠COD=90°,∴∠BOC=360°﹣∠AOD﹣∠AOB﹣∠COD=360﹣150°﹣90°﹣90°=30°故答案为30°【点评】此题主要考查周角的定义及垂直的定义,要注意领会由垂直得直角这一要点.12.(3分)如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是∠BEC=60°(答案不唯一).【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=120°,故可按同旁内角互补两直线平行补充条件.【解答】解:因为∠C=120°,要使AB∥CD,则要∠BEC=180°﹣120°=60°(同旁内角互补两直线平行).故答案为:∠BEC=60°(答案不唯一).【点评】此题考查平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.13.(3分)如图,直线AB、CD交于点O,射线OM平分∠AOC,且∠BOD=76°,则∠BOM=142°.【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故答案为:142°.【点评】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.【点评】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15.(3分)一个人从A点出发向北偏东60°方向走到点B,又从B点向南偏西15°方向走到点C,那么∠ABC的度数是45°.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图,由题意可知∠ABC=60°﹣15°=45°.故答案为:45°.【点评】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.16.(3分)已知如图,AB∥CD,直线l分别截AB、CD于P、C两点,PE平分∠BPC交CD于点E,PF平分∠BPE交CD于点F.若∠PCD=α°,则∠PFC=(45﹣α)°.【分析】先根据平行线的性质得出∠BPC的度数,再由PE平分∠BPC交CD于点E,PF平分∠BPE交CD于点F用α表示出∠FPC的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠PCD=α°,∴∠BPC=180°﹣α°,∵PE平分∠BPC交CD于点E,PF平分∠BPE交CD于点F,∴∠FPC=∠EPC+∠FPE=(180°﹣α°),∴∠PFC=180°﹣∠PCD﹣∠FPC=180°﹣α°﹣(180°﹣α°)=(45﹣α)°.故答案为:(45﹣α).【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.三、解答题(本题共4小题,其中17、18题各10分,19题7分,20小题12分,共39分)17.(10分)计算:(1)+(2)+||﹣()【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式性质,绝对值的代数意义计算即可求出值.【解答】解:(1)原式=4﹣3=1;(2)原式=2+﹣1﹣+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)如图,三条直线AB,CD,EF交于一点O,且OF平分∠DOB,试问:OE 是不是∠AOC的平分线?为什么?【分析】根据角平分线的定义,可得∠1与∠2的关系,根据对顶角相等,可得∠2与∠3的关系,∠1与∠4的关系,根据等量代换,可得答案.【解答】解:OE是∠AOC的平分线,理由如下:∵OF平分∠BOD,∴∠1=∠2.∵∠2=∠3,∠1=∠4.∴∠3=∠4,∴OE是∠AOC的平分线.【点评】本题考查了对顶角、邻补角,利用了对顶角的性质,角平分线的性质.19.(7分)完成下面的证明:已知:如图.BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【分析】首先根据角平分线的定义可得∠BDC=2∠1,∠ABD=2∠2,根据等量代换可得∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2),进而得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.【解答】证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角的平分线的性质).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【点评】此题主要考查了平行线的判定,关键是掌握角平分线定义和平行线的判定方法.20.(12分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)过点C画直线AB垂线CE,垂足为E(利用网格点和直尺画图).【分析】(1)将三角形的三顶点分别向右平移4个单位得到对应点,再顺次连接可得;(2)根据高的定义作图可得.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CE即为所求.【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)如图,直线AB与CD相交于点O,OE⊥AB.(1)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140°度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【分析】(1)利用对顶角相等的概念解答;(2)利用设未知数的方法解题.【解答】解:(1)∵∠AOD=140°,∴∠BOC=140°.(2)设∠AOC=x,则∠EOD=2x.∵OE⊥AB,∴∠EOB=∠EOA=90°∵∠AOC=∠BOD,且∠BOD+∠EOD=∠EOB=90°,∴x+2x=90°,∴x=30°,2x=60°,即∠EOD=60°,∴∠AOD=∠EOA+∠EOD=60°+90°=150°.故答案为:(1)对顶角相等,140°.(2)150°.【点评】本题考查了对顶角的性质,并利用了设未知数的方法解题,熟练掌握这些方法是解题的关键.22.(9分)如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,对AB∥CD说明理由.【分析】求出∠ABC+∠BCD=180°,根据平行线的判定推出即可.【解答】证明:∵∠ACD=70°,∠ACB=60°,∴∠BCD=∠ACB+∠ACD=130°,∵∠ABC=50°,∴∠ABC+∠BCD=180°,∴AB∥CD.【点评】本题考查了平行线的判定的应用,注意:同旁内角互补,两直线平行.23.(10分)已知互为相反数,且x﹣6的平方根是它本身,求x+y的值.【分析】先依据相反数的定义得到y﹣1=2y﹣3,然后再有平方根的性质求得x﹣6=0,最后,再代入计算即可.【解答】解:∵互为相反数,∴y﹣1=2y﹣3,解得:y=2,∵x﹣6的平方根是它本身,∴x﹣6=0,解得:x=6,∴x+y=2+6=8.【点评】本题主要考查的是立方根、平方根的性质,熟练掌握相关知识是解题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为24,OC边长为4.(1)数轴上点A表示的数为6;(2)将长方形ABCD沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的图积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴点A′表示的数为3或9;②设点A的移动距离AA′=x.Ⅰ.当S=16时,x=2;Ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=,当点D、E所表示的数互为相反数时,求x的值.【分析】(1)由矩形的面积即可表示A点;(2)①分两种情况讨论:长方形向左平移和向右平移;②Ⅰ.OA'=6﹣AA'=6﹣x;Ⅱ.由点D、E所表示的数互为相反数,判断出正方形ABCD向左平移,D点表示的数是6﹣x,E点表示的数是﹣6+x,根据已知关系能够得到18﹣x=x;【解答】解:(1)长方形OABC的面积为24,OC边长为4.∴OA=6,∴A点表示6;故答案为6;(2)①当S恰好等于原长方形OABC面积的一半时,当向左移动时,∴OA=3,∴移动后的A'表示3;当向右移动时,∴O'A=3,∴移动后A'表示9,故答案3或9;②Ⅰ.OA'=6﹣AA'=6﹣x,∴S=16=4(6﹣x),∴x=2,故答案为2;Ⅱ.∵点D、E所表示的数互为相反数,∴正方形ABCD向左平移,∵AA'=x,D是AA'的中点,∴D点表示的数是6﹣x,∴E点表示的数是﹣6+x,∵OE=,∴OO'=18﹣x,∵OO'=AA',∴18﹣x=x,∴x=;【点评】本题考查矩形的性质,数轴上点的特点;能够将数轴上的点与矩形的边长之间的关系联系起来是解题的关键.25.(12分)先阅读下面的文字,然后解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用﹣1表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.由此我们还可以得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果﹣=a+b,其中a是整数,且0<b<1,那么a=3,b=3﹣;(2)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.【分析】(1)估算出2<<3,可得﹣3<﹣<﹣2,依此即可确定出a,b的值;(2)根据题意确定出m与n的值,代入求出|m﹣n|即可.【解答】解:(1)∵﹣=a+b,其中a是整数,且0<b<1,2<<3,﹣3<﹣<﹣2,∴a=﹣3,b=3﹣,则a+b=2+3=5;(2)∵2+=m+n,其中m是整数,且0<n<1,∴m=4,n=﹣2,则|m﹣n|=|4﹣+2|=6﹣.【点评】此题考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.26.(12分)已知:点P在射线AB上,且∠A=∠C.(1)如图1,若AB∥CD,求证:∠APC=∠D;(2)如图2,AD⊥CD,请探究∠BPC与∠A的数量关系,写出你的探究结论,并加以证明;(3)操作:在(2)的条件下,过点C作CE⊥CD交射线AB于点E,当∠BEC=2∠BPC 时,求∠BPC的度数.【分析】(1)根据平行线的性质得到∠BPC=∠C,等量代换得到∠BPC=∠A,求得PC∥AD,根据平行四边形的判定定理得到四边形ADCP是平行四边形,根据平行四边形的性质得到结论;(2)由∠D=90°得,∠AHD=90°﹣∠C,∠AHD=∠BPC+∠C,已知∠A=∠C,从而得90°﹣∠A=∠BPC+∠A,即可求∠A与∠BPC的关系(3)由DC⊥CE得,AD∥CE,从而得∠BEC+∠A=180°,由(2)继而得3∠BPC=270°,即可求∠BPC=90°【解答】(1)证明:∵AB∥CD,∴∠BPC=∠C,∵∠A=∠C,∴∠BPC=∠A,∴PC∥AD,∴四边形ADCP是平行四边形,∴∠APC=∠D;(2)2∠A+∠BPC=90°,如图2,理由:∵AD⊥CD,∴∠D=90°,∴∠AHD=90°﹣∠C,∵∠AHD=∠BPC+∠C,∵∠A=∠C,∴90°﹣∠A=∠BPC+∠A,∴2∠A+∠BPC=90°;(3)如图2∵DC⊥CE,∠D=90°∴AD∥CE∴∠BEF=∠A∵∠BEC+∠BEF=180°,∴∠BEC+∠A=180°∵∠BEC=2∠BPC∴2∠BPC+∠A=180°①∵2∠A+∠BPC=90°②∴①×2﹣②得3∠BPC=270°∴∠BPC=90°【点评】此题主要考查平行线的性质,熟记平行线的三条性质是解题的关键。
北师大版七年级下册数学第一次月考试卷 第一二章试题
北师大版七年级下册数学第一次月考试卷(第一二章)一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3D.3y3•5y3=15y9 2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣84.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=.8.用科学记数法表示0.000000023=.9.计算:22016×()2017所得的结果是.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=.11.若x+y=2,x2﹣y2=6,则x﹣y=.12.已知∠α=72°,则∠α的余角是,∠α的补角是.三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是,∠COD的余角是(2 )OE是∠BOC的平分线吗?请说明理由.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)()=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(4)利用该规律计算1+4+42+43+…+42013=.参考答案与试题解析一、选择题(本大题共6小题,共18分)1.下列计算正确的是()A.9a3•2a2=18a5B.2x5•3x4=5x9C.3x3•4x3=12x3 D.3y3•5y3=15y9【考点】单项式乘单项式.【分析】直接利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,进而求出答案.【解答】解:A、9a3•2a2=18a5,正确,符合题意;B、2x5•3x4=6x9,错误,不合题意;C、3x3•4x3=12x6,错误,不合题意;D、3y3•5y3=15y6,错误,不合题意;故选:A.2.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x)D.(x2+y)(x﹣y2)【考点】平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.3.若x2+mx+16是完全平方式,则m的值等于()A.﹣8 B.8 C.4 D.8或﹣8【考点】完全平方式.【分析】根据两平方项确定出这两个数是x和4,再根据完全平方公式的乘积二倍项列式求解即可.【解答】解:∵x2+mx+16是完全平方式,∴mx=±2×4•x,解得m=±8.故选D.4.如图,通过计算大正方形的面积,可以验证一个等式,这个等式是()A.(x+y+z)2=x2+y2+z2+2y+xz+yzB.(x+y+z)2=x2+y2+z+2xy+xz+2yzC.(x+y+z)2=x2+y2+z2+2xy+2xz+2yzD.(x+y+z)2=(x+y)2+2xz+2yz【考点】完全平方公式的几何背景.【分析】根据大长方形的面积=3个正方形的面积+6个小长方形的面积,即可解答.【解答】解:根据题意得:(x+y+z)2=x2+y2+z2+2xy+2xz+2yz,故选:C.5.已知a m=6,a n=10,则a m﹣n值为()A.﹣4 B.4 C.D.【考点】同底数幂的除法.【分析】根据指数相减,可得同底数幂的除法,可得答案.【解答】解:a m﹣n=a,故选:C.6.下列说法中正确的是()①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.A.①②B.②③C.①④D.②④【考点】余角和补角.【分析】根据余角和补角的定义进行选择即可.【解答】解:①互为补角的两个角不可以都是锐角,故①错误;②互为补角的两个角可以都是直角,故②正确;③互为补角的两个角可以都是钝角,故③错误;④互为补角的两个角之和是180°,故④正确;故选D.二、填空题(本大题共6小题,共18分)7.如果x n y4与2xy m相乘的结果是2x5y7,那么mn=12.【考点】单项式乘单项式.【分析】根据单项式乘以单项式法则即可求出m、n的值.【解答】解:由题意可知:x n y4×2xy m=2x n+1y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12,故答案为:128.用科学记数法表示0.000000023= 2.3×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000023=2.3×10﹣8.故答案为:2.3×10﹣8.9.计算:22016×()2017所得的结果是.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法,积的乘方,可得答案.【解答】解:原式=[22016×()2016]×()=(2×)2016×=,故答案为:.10.如果(x2+p)(x2+7)的展开式中不含有x2项,则p=﹣7.【考点】多项式乘多项式.【分析】先把(x2+p)(x2+7)的展开,再让x2项的系数为0即可得出p的值.【解答】解:原式=x4+(7+p)x2+7p∵(x2+p)(x2+7)的展开式中不含有x2项,∴7+p=0,∴p=﹣7;故答案为﹣7.11.若x+y=2,x2﹣y2=6,则x﹣y=3.【考点】平方差公式.【分析】已知第二个等式左边利用平方差公式化简,把x+y=2代入即可求出x﹣y 的值.【解答】解:∵x+y=2,x2﹣y2=(x+y)(x﹣y)=6,∴x﹣y=3,故答案为:3.12.已知∠α=72°,则∠α的余角是18°,∠α的补角是108°.【考点】余角和补角.【分析】根据两个角的和为90°,则这两个角互余;两个角的和等于180°,则这两个角互补计算即可.【解答】解:根据定义∠α的余角度数是90°﹣72°=18°.∠α的补角是180°﹣72°=108°′.故答案为:18°,108°三、(本大题共4小题,共30分)13.计算:(1)99×101(2)992.【考点】平方差公式;完全平方公式.【分析】(1)根据平方差公式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)99×101==1002﹣1=9999;(2)992=2=1002﹣2×100+1=9801.14.计算:(1)(﹣1)2017+(﹣)﹣2﹣(3.14﹣π)0.(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=1+4﹣1=4;(2)原式=4x6y2•(﹣2xy)+(﹣8x9y3)•=﹣8x7y3﹣4x7y3=﹣12x7y3.16.如图,已知CD⊥AB,垂足点为O,若∠FOC=5∠COE,求∠AOF的度数?【考点】垂线.【分析】先根据邻补角的定义计算出∠COE=30°,再利用对顶角相等得∠DOF=30°,然后根据垂直的定义得∠AOD=90°,最后利用∠AOF=∠AOD+∠DOF进行计算.【解答】解:∵∠FOC=5∠COE,而∠FOC+∠COE=180°,∴5∠COE+∠COE=180°,∴∠COE=30°,∴∠DOF=30°,∵CD⊥AB,∴∠AOD=90°,∴∠AOF=∠AOD+∠DOF=120°.17.把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.【考点】整式的混合运算.【分析】根据题意表示出原来正方形桌子的面积,以及改变后长方形的面积,比较即可得到结果.【解答】解:根据题意得:(x+2)(x﹣1)﹣x2=x2+x﹣2﹣x2=x﹣2,∵x<1.5,∴x﹣2<0,则改变后的桌子面积比原正方形桌子的面积是减少了.四、(本大题共4小题,共32分)18.已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.【考点】完全平方公式.【分析】(1)根据和的完全平方公式,可得答案;(2)根据差的完全平方公式与和的完全平方公式,可得答案.【解答】(1)a2+b2=(a+b)2﹣2ab=72﹣2×12=49﹣24=25;(2)(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1.19.化简求值:已知|x﹣2|+(y+1)2=0,求代数式[(x+2y)(x﹣2y)﹣(x﹣y)2]÷2y的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据题意,利用非负数的性质求出x与y的值,原式化简后代入计算即可求出值.【解答】解:∵|2x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,原式=(x2﹣4y2﹣x2+2xy﹣y2)÷2y=(2xy﹣5y2)÷2y=x﹣y,当x=2,y=﹣1时,原式=4.5.20.如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)×高).(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b 的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.【考点】平方差公式的几何背景.【分析】(1)利用正方形的面积公式和梯形的面积公式即可求解;(2)根据(1)所得的两个式子相等即可得到.【解答】解:(1)∵大正方形的边长为a,小正方形的边长为b,∴S1=a2﹣b2.S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)根据题意得:(a+b)(a﹣b)=a2﹣b2.21.如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是∠COE、∠BOE,∠COD的余角是∠COE、∠BOE (2 )OE是∠BOC的平分线吗?请说明理由.【考点】余角和补角.【分析】(1)直接利用角平分线的定义得出∠AOD=∠COD,进而利用已知得出∠AOD、∠COD的余角;(2)利用(1)中所求得出OE是∠BOC的平分线.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠COD,∵∠DOE=90°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∴∠AOD+∠COE=90°,∴∠AOD的余角是:∠COE、∠BOE;∠COD的余角是:∠COE,∠BOE;故答案为:∠COE,∠BOE;∠COE,∠BOE;(2)OE平分∠BOC,理由:∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COD+∠DOE=90°,∴∠AOD+∠BOE=∠COD+∠DOE∵OD平分∠AOC,∴∠AOD=∠COD,∴∠COE=∠BOE∴OE平分∠BOC.五、(本大题共1小题,共10分)22.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.六、(本大题共1小题,共12分)23.计算并观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格.(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)利用该规律计算1+4+42+43+…+42013=.【考点】平方差公式.【分析】(1)利用平方差公式,依此类推得到结果即可;(2)利用发现的规律填写即可;(3)利用得出的规律计算得到结果;(4)原式变形后,利用得出的规律计算即可得到结果.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)利用你发现的规律计算:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(4)1+4+42+43+…+42013=×(4﹣1)×(1+4+42+43+…+42013)=.故答案为:(1)x2﹣1;x3﹣1;x4﹣1;(2)x5+x4+x3+x2+x+1;(3)x7﹣1;(4).。
2017年江西省萍乡七年级下第一次月考数学试卷(有答案)
2016-2017学年江西省萍乡七年级(下)第一次月考数学试卷一、选择题(3×10=30分)1.(3分)下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6D.5x3÷x2=5x2.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣x﹣y)(x﹣y)B.(﹣x+y)(﹣x﹣y)C.(x+y)(﹣x+y)D.(x﹣y)(﹣x+y)3.(3分)下列计算中,正确的是()A.3ab2•(﹣2a)=﹣6a2b2B.(﹣2x2y)3=﹣6x6y3C.a3•a4=a12D.(﹣5xy)2÷5x2y=5y24.(3分)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab5.(3分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2a m+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④6.(3分)已知x a=3,x b=5,则x3a﹣2b=()A.52 B.C.D.7.(3分)若(x﹣5y)(x﹣by)=x2﹣3xy+ay2,则a、b的值为()A.a=10,b=﹣2 B.a=﹣10,b=﹣2 C.a=10,b=2 D.a=﹣10,b=28.(3分)若x2+(2m+2)x+16是完全平方式,则m的值为()A.m=3 B.m=5 C.m=﹣3或m=5 D.m=3或m=﹣59.(3分)已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a10.(3分)如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)二、填空题(3×8=24分)11.(3分)用科学记数法表示0.000000059=.12.(3分)计算:()2013×(1.5)2014=.13.(3分)计算:(﹣a2b)3=.(﹣a2)3+(﹣a3)2=.3x3•(﹣2x2)=.14.(3分)计算:(﹣)﹣3=.15.(3分)若x+2y﹣3=0,则2x•4y的值为.16.(3分)已知x+=5,那么x2+=.17.(3分)要使(ax2﹣3x)(x2﹣2x﹣1)的展开式中不含x3项,则a=.18.(3分)已知2a=5,2b=10,2c=50,那么a,b,c之间满足的等量关系是.三、解答题(46分)19.(12分)(1)20122﹣2011×2013;(2)4(x+1)2﹣(2x﹣5)(2x+5)(3)a3﹣(﹣b3)2+(﹣2ab2)3(4)(2a+3b+c)(3b﹣2a﹣c).20.(8分)(1)先化简,再求值:计算:(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)其中a=,b=(2)若A=3a﹣1,B=2﹣5a+3a2,C=2a+3,求A•C﹣B的值.21.(6分)已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.22.(6分)有一道题目,是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,正确的结果应该是多少?23.(6分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积;(2)若x=4,y=2,剩下钢板的面积是多少?(保留π)24.(8分)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1 的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?2016-2017学年江西省萍乡七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(3×10=30分)1.(3分)下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6D.5x3÷x2=5x【解答】解:A、不是同类项,不能相加,故本选项错误;B、3x2y﹣2x2y=x2y,故本选项错误;C、(2a2)3=8a6,故本选项错误;D、5x3÷x2=5x,故本选项正确.故选:D.2.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣x﹣y)(x﹣y)B.(﹣x+y)(﹣x﹣y)C.(x+y)(﹣x+y)D.(x﹣y)(﹣x+y)【解答】解:A、含y的项符号相同,含x的项符号相反,能用平方差公式计算;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算;D、含y的项符号相反,含x的项符号相反,不能用平方差公式计算.故选:D.3.(3分)下列计算中,正确的是()A.3ab2•(﹣2a)=﹣6a2b2B.(﹣2x2y)3=﹣6x6y3C.a3•a4=a12D.(﹣5xy)2÷5x2y=5y2【解答】解:A、3ab2•(﹣2a)=﹣6a2b2,正确;B、(﹣2x2y)3=﹣8x6y3,故此选项错误;C、a3•a4=a7,故此选项错误;D、(﹣5xy)2÷5x2y=5y,故此选项错误;故选:A.4.(3分)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab【解答】解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选:B.5.(3分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选:D.6.(3分)已知x a=3,x b=5,则x3a﹣2b=()A.52 B.C.D.【解答】解:∵x a=3,x b=5,∴x3a﹣2b=(x a)3÷(x b)2=27÷25=.故选:D.7.(3分)若(x﹣5y)(x﹣by)=x2﹣3xy+ay2,则a、b的值为()A.a=10,b=﹣2 B.a=﹣10,b=﹣2 C.a=10,b=2 D.a=﹣10,b=2【解答】解:∵(x﹣5y)(x﹣by)=x2﹣(5+b)xy+5by2=x2﹣3xy+ay2,∴,解得.故选:B.8.(3分)若x2+(2m+2)x+16是完全平方式,则m的值为()A.m=3 B.m=5 C.m=﹣3或m=5 D.m=3或m=﹣5【解答】解:∵x2+(2m+2)x+16,∴2m+2=±8,解得:m=3或m=﹣5,则m的值为3或﹣5.故选:D.9.(3分)已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a【解答】解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.10.(3分)如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)2﹣b2;【解答】解:正方形中,S阴影=a2a+2b)(a﹣b)=(a+b)(a﹣b);梯形中,S阴影=(故所得恒等式为:a 2﹣b 2=(a +b )(a ﹣b ). 故选:C .二、填空题(3×8=24分)11.(3分)用科学记数法表示0.000000059= 5.9×10﹣8 . 【解答】解:0.000000059=5.9×10﹣8. 故答案为:5.9×10﹣8.12.(3分)计算:()2013×(1.5)2014= 1.5 .【解答】解:原式=()2013×()2013×=(×)2013×=12013× =1.5.故答案为:1.5.13.(3分)计算:(﹣a 2b )3=a 6b 3 .(﹣a 2)3+(﹣a 3)2= 0 . 3x 3•(﹣2x 2)= ﹣6x 5 .【解答】解:(﹣a 2b )3=a 6b 3,(﹣a 2)3+(﹣a 3)2=0, 3x 3•(﹣2x 2)=﹣6x 5,故答案为:﹣,0,﹣6x 5.14.(3分)计算:(﹣)﹣3= ﹣ .【解答】解:原式=﹣,故答案为:﹣15.(3分)若x+2y﹣3=0,则2x•4y的值为8.【解答】解:2x•4y=2x•22y=2x+2y,x+2y﹣3=0,x+2y=3,2x•4y=2x+2y=23=8,故答案为:8.16.(3分)已知x+=5,那么x2+=23.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.17.(3分)要使(ax2﹣3x)(x2﹣2x﹣1)的展开式中不含x3项,则a=﹣.【解答】解:∵(ax2﹣3x)(x2﹣2x﹣1),=ax4﹣2ax3﹣ax2﹣3x3+6x2+3x,=ax4﹣(2a+3)x3﹣(a﹣6)x2+3x,又∵展开式中不含x3项∴2a+3=0,解得a=﹣.18.(3分)已知2a=5,2b=10,2c=50,那么a,b,c之间满足的等量关系是a+b=c.【解答】解:∵2a=5,2b=10,∴2a•2b=50,2 a+b=50,∵2c=50,∴a+b=c,故答案为:a+b=c.三、解答题(46分)19.(12分)(1)20122﹣2011×2013;(2)4(x+1)2﹣(2x﹣5)(2x+5)(3)a3﹣(﹣b3)2+(﹣2ab2)3(4)(2a+3b+c)(3b﹣2a﹣c).【解答】解:(1)原式=20122﹣(2012﹣1)×(2012+1)=20122﹣(20122﹣1)=1(2)原式=4(x2+2x+1)﹣4x2+25=8x+4+25=8x+29(3)原式=a3﹣b6﹣8a3b6(4)原式=[3b+(2a+c)][3b﹣(2a+c)]=9b2﹣(2a+c)2=9b2﹣(4a2+4ac+c2)=9b2﹣4a2﹣4ac﹣c220.(8分)(1)先化简,再求值:计算:(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)其中a=,b=(2)若A=3a﹣1,B=2﹣5a+3a2,C=2a+3,求A•C﹣B的值.【解答】解:(1)原式=﹣a3b2+4a6b4÷(﹣2a3b2)=﹣a3b2﹣2a3b2=﹣3a3b2,当a=,b=时,原式=﹣;(2)∵A=3a﹣1,B=2﹣5a+3a2,C=2a+3,∴A•C﹣B=(3a﹣1)(2a+3)﹣(2﹣5a+3a2)=6a2+7a﹣3﹣2+5a﹣3a2=3a2+12a﹣5.21.(6分)已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.22.(6分)有一道题目,是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,正确的结果应该是多少?【解答】解:这个多项式为:(2x2﹣x+3)﹣(x2+14x﹣6)=x2﹣15x+9所以(x2﹣15x+9)﹣(x2+14x﹣6)=﹣29x+15正确的结果为:﹣29x+15.23.(6分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积;(2)若x=4,y=2,剩下钢板的面积是多少?(保留π)【解答】解:(1)由题意可得:剩下钢板的面积为:π()2﹣π×()2﹣π()2=πxy;(2)将x=4,y=2代入上式得:原式=π×4×2=2π.24.(8分)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)= a4﹣1;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=a100﹣1(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1 的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?【解答】解:(1)a2﹣1;a3﹣1;a4﹣1;a100﹣1;故答案为:a2﹣1;a3﹣1;a4﹣1;a100﹣1;(2)①(2﹣1)(299+298+297+…+22+2+1)=2100﹣1,由于2﹣1=1,则299+298+297+…+22+2+1=2100﹣1;②∵a6﹣1=(a﹣1)(a5+a4+a3+a2+a+1)=0,∴a6=1,∴a=±1,但当a=1时,a5+a4+a3+a2+a+1=0不成立,则a=﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★精品文档★2017学年七年级数学下月考试卷2016-2017 学年江西省吉安市六校联考七年级(下)月考数学试卷一、选择题(每小题3分,6小题,共18分.)1 . (3分)下列计算正确的是()A . a3?a3=a12B. (- a4)(- a)2=a6c. (- a3)2=a6D.(- ab2)3=a3b62 .(3分)如图,下列条件中,不能判断直线11 II 12的是()A ./ 仁/3B.Z 2=Z 3c./ 4= / 5D.Z 2+Z 4=180 °3 .(3分)已知等腰三角形的两边长为6c和13c,则它的周长是()A . 32cB. 25cc. 25c 或32cD. 19c4 .(3分)根据下列已知条件,能画出唯一△ ABc的是()A . AB=3? Bc=4, Ac=8B. / A=100°,Z B=45°, AB=5c . AB=3, Bc=5, / A=75° D. / c=90 ° , / A=30°, / B=60°5 . (3分)如图①,在矩形ABcD中,动点P从点A出发,在边上沿A- B- c- D方向运动至点D处停止.设点P运动的路程为x, △ PAD的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到()A . A处B. B处c. c处D. D处6 . (3分)在如图所示的5X 5方格中,每个小方格都是边长为1的正方形,△ ABc是格点三角形(即顶点恰好是正方形的顶点),则与△ ABc有一条公共边且全等的所有格点三角形的个数是()A . 1B. 2c. 3D. 4二.填空题(本大题每题3分,6小题,共18分)7 . (3 分)(-2x3y2) + ()=2xy .8 . (3分)如图,直线N是厶ABc的边AB的垂直平分线,N 交Ac 于点D,连接BD,若Ac=6c, Bc=4, AB=7c,则厶BcD 的周长为c.9 . (3分)如图,已知点A、F、c、E在同一直线上,/ 1 =/ 2, AB=DE请你添加一个条件(只填一个即可)使厶ABZ A EDF10 . (3分)已知三角形的三边长分别为a、b、c,且a>b>c,若b=7, c=5,那么a的取值范围是11 . (3分)如图是4X 4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.12 . (3分)如图,△ APB和厶DPc是两个全等的等边三角形,AP I DP,有以下四个结论:①/PBc=15°:②Ac=Bc;③AD// Bc;④直线Pc丄AB其中正确的结论有(填序号)三.(本大题共5小题,每题6分,共30分)13 . (6分)计算:(1)(-) 0+ (-)- 2-(- 1) 2017(2)已知:a、b、c为三角形的三边长,化简:|b+c - a|+|b -c - a| - |c - a - b| - |a - b+c| .14 . (6 分)先化简,再求值:(x - 3y) 2+ (- 3y - x)(- x+3y) - x (- y+2x),其中x= - 2, y= - 1.15 . ( 6分)完成下列说理过程:如图所示,DEL Ac于点E, BF丄Ac 于点F,/ 1 + Z 2=180°,试说明/ AGF玄ABc.解:理由如下:•/ DEI AcBFL Ac (已知)•••/ DEc=/ BFc=90°( )•••II( )•••/ 2+Z 3=180 °( )又•••/ 1 + Z 2=180°(已知)• / 仁/ 3 ( )••• GF// Be (内错角相等,两直线平行)•••/ AGF玄ABe ( ).16 . (6分)如图,下列三个图形都是关于某条直线对称,请仅使用无刻度的直尺画出它们的对称轴.17 . ( 6分)钟亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡下坡的速度仍保持不变.请根据图象解答下列问题:(1)钟亮从家到学校上坡路的速度是百米/分,下坡路的速度是百米/分.(2)求钟亮从学校返回家中共用了多少时间?四.(本大题共3小题,每题8分,共24分)18 . (8分)如图,已知eD是厶ABe的角平分线,DE// Be, / A=58°,Z BDc=82°,求/ B 的度数.19 . (8分)如图所示,BD是/ ABc的角平分线,DE L AB, 垂足分别为E, S A ABc=60c2, AB=18c, Bc=12c,求DE的长.20 .(8分)已知在△ ABc中,AB=Ac BD是Ac边上的高.(1)如图1,若厶ABc是锐角三角形,/ A=40°时,试求/ DBc的度数.(2)如图2,若厶ABc是钝角三角形,/ A=a (90°v a v 180°)时,请在图中画出厶ABc的边Ac上的高BD并求出 / DBc的度数(用含a的式子表示).五.(本大题共2小题,每题9分,共18分)21 . (9分)观察下列式子:(x - 1) (x+1) =x2 - 1(x -1) (x2+x+1) =x3 - 1(x - 1) (x3+x2+x+1 ) =x4 - 1• • •根据上面各式的规律解答:(1)猜想:(x - 1) (x10+x9+x8+ …+x+1) = ; ( x - 1)(xn+xn - 1+…+x2+x+1) = ( n 为正整数)(2)利用上面猜想的规律求220+219+218+…+22+2+1的值.22 . (9分)两个大小不同的等腰直角三角形三角板如图1 所示放置,图2是由它抽象出的几何图形,B,c,E在同一条直线上,连结De.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的宇母);(2)证明:De丄BE.六.(本大题共12分)23 . (12分)在厶ABe中,AB=Ae点D是直线Be上一点(不与B、e重合),以AD为一边在AD的右侧作厶ADE使AD=AE / DAE=/ BAc,连接eE.(1)如图1,当点D在线段Be上,如果/ BAc=90°,则/ BeE= 度;(2)设/ BAe=a,/ BcE=B.①如图2,当点D在线段Be上移动,则a, B之间有怎样的数量关系?请说明理由;②当点D在直线Be上移动,则a,B之间有怎样的数量关系?请直接写出你的结论.2016-2017 学年江西省吉安市六校联考七年级(下) 月考数学试卷参考答案与试题解析一、选择题(每小题3分,6小题,共18分.)1.( 3分)下列计算正确的是( )A . a3?a3=a12B. (- a4)( - a) 2=a6c. (- a3) 2=a6D.(-ab2) 3=a3b6【解答】解:A a3?a3=a6,故此选项错误;B、(- a4)?(- a) 2=- a6,故此选项错误;c、(—a3) 2=a6,正确;D、(- ab2) 3= - a3b6,故此选项错误;故选:c.2 . (3分)如图,下列条件中,不能判断直线11 II 12的是( )A . Z 仁/3B.Z 2=Z 3c. Z 4= / 5D.Z 2+Z 4=180 °【解答】解:A、根据内错角相等,两直线平行可判断直线11 II 12,故此选项不合题意;B、/ 2=2 3,不能判断直线11 II 12,故此选项符合题意;c、根据同位角相等,两直线平行可判断直线11 II 12,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线11 II 12 , 故此选项不合题意;故选:B.3 . (3分)已知等腰三角形的两边长为6c和13c,则它的周长是()A . 32cB. 25cc. 25c 或32cD. 19c【解答】解:由题意知,应分两种情况:(1)当腰长为6c时,三角形三边长为6, 6, 13, 6+6V 13,不能构成三角形;(2)当腰长为13c时,三角形三边长为6, 13, 13,周长=2X 13+6=32c.故选:A.4 .(3分)根据下列已知条件,能画出唯一△ ABc的是()A . AB=3? Bc=4, Ac=8B. / A=100°,Z B=45°, AB=5c . AB=3, Bc=5, / A=75° D. / c=90 ° , / A=30°, / B=60°【解答】解:A、T 3+4V 8,「.根据AB=3, Bc=4, AB=8不能画出三角形,故本选项错误;B、根据/ A=100°,Z B=45°, AB=5,符合全等三角形的判定定理ASA即能画出唯一三角形,故本选项正确;c、根据AB=3 Bc=5,/ A=75° SSA不能判定三角形全等,不能画出唯一三角形,故本选项错误;D、/ c=90 ° ,Z A=30°,Z B=60°, AAA不能判定三角形全等,不能画出唯一三角形,故本选项错误;故选:B.5 . (3分)如图①,在矩形ABcD中,动点P从点A出发,在边上沿A- B- c- D方向运动至点D处停止.设点P运动的路程为x, △ PAD的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到()A . A处B. B处c. c处D. D处【解答】解:当P在BA上运动时,△ DAP的面积不断增大;当P在cB运动时,DA一定,高为BA不变,此时面积不变;当P在cD上运动时,面积不断减小.•••当x=9时,点R应运动到高不变的结束,即点c处.故选:c.6 . (3分)在如图所示的5X 5方格中,每个小方格都是边长为1的正方形,△ ABc是格点三角形(即顶点恰好是正方形的顶点),则与△ ABc有一条公共边且全等的所有格点三角形的个数是()A . 1B. 2c. 3D. 4【解答】解:以Bc为公共边的三角形有3个,以AB为公共边的三角形有0个,以Ac为公共边的三角形有1个,共3+0+1=4 个,故选:D.二.填空题(本大题每题3分,6小题,共18分)7 . (3 分)(-2x3y2) + (- x2y )=2xy .【解答】解:括号内的整式为(- 2x3y2)*(2xy)=-x2y,故答案—x2y.为:8 . (3分)如图,直线N是厶ABc的边AB的垂直平分线,N交Ac于点D,连接BD,若Ac=6c, Bc=4, AB=7c,则厶BcD 的周长为10 c.【解答】解:••• N是厶ABc的边AB的垂直平分线,••• DA=DB•••△ BcD 的周长=cD+BD+Bc=cD+DA+Bc=Ac+Bc=1Qc故答案10.2016全新精品资料-全新公文范文-全程指导写作-独家原创10 / 239 . (3分)如图,已知点A、F、c、E在同一直线上,/ 1 = / 2, AB=DE请你添加一个条件/ A=Z E (只填一个即可)使厶ABC^A EDF.【解答】解:/ A=Z E,理由是:•••在△ ABc和厶EDF中•••△ABC^A EDF(AAS,故答案为:/ A=Z E.10 . (3分)已知三角形的三边长分别为a、b、c,且a>b >c,若b=7, c=5,那么a的取值范围是7v a v 12 .【解答】解:•••在三角形中任意两边之和大于第三边,•• a v 5+7=12,•••任意两边之差小于第三边,--a > 7 - 5=2,••• a> b,•7v a v 12.故答案为:7v a v 12.11 . (3分)如图是4X 4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.12 . (3分)如图,△ APB和厶DPc是两个全等的等边三角形,AP I DP,有以下四个结论:①/PBc=15°:②Ac=Bc;③AD// Bc;④直线Pc丄AB,其中正确的结论有①②③④(填序号).【解答】解:•••△ APB和厶DPc是两个全等的等边三角形,API DP,•••/ APB玄DPc=60°,Z APD=90 ,•••/ BPc=360°- 90°- 60°- 60° =150°,PB=Pc,•••/ PBc=Z PcB=x(180°- 150° )=15°,故①正确;由条件可得/ APc=90° +60° =150 ° ,•••/ APc=Z BPc,在厶APc和厶BPc中•••△AP"A BPc ( SAS ,••• Ac=Bc,故②正确;••• PA=PD / APD=90 ,•••/ PAD=45 ,•••/ DAB=45 +60° =105°,•••/ PBA=60,/ PBc=15°,•••/ ABc=75°,•••/ DAB+Z ABc=180°,•AD// Bc,故③正确;•••△BPc,••Z AcP=Z BcP,且Ac=Bc,•Pc丄AB,故④正确;综上可知正确的结论为①②③④, 故答案为:①②③④.三.(本大题共5小题,每题6分,共30分)13 . (6分)计算:(1)(-) 0+ (-)- 2-(- 1) 2017(2)已知:a、b、c为三角形的三边长,化简:|b+c - a|+|b-c - a| - |c - a - b| - |a - b+c| .【解答】解:(1) (-) 0+(-)- 2-(- 1) 2017=1+9+1=11(2)v a、b、c为三角形的三边长,••• b+c>a, a+c>b, a+b>c, a+c>b,|b+c - a|+|b - c - a| - |c - a - b| - |a - b+c|=b+c —a+a+c —b+c —a - b+b —a - c=2c - 2a14 . (6 分)先化简,再求值:(x - 3y)2+ (- 3y - x)(-x+3y) - x (- y+2x),其中x= - 2, y= - 1.【解答】解:当x= - 2, y= - 1时,原式=x2 - 6xy+9y2+x2 - 9y2+xy - 2x2=-5xy=-1015 . (6分)完成下列说理过程:如图所示,DEL Ac于点E, BF丄Ac 于点F,/ 1 + Z 2=180°,试说明/ AGF玄ABc.解:理由如下:••• DE! AcBF L Ac (已知)•••/ DEc=/ BFc=90°(垂直定义)••• BF II DE (同位角相等,两直线平行)2+/ 3=180°(两直线平行,同旁内角互补)又•••/ 1 + Z 2=180°(已知)•••/仁/ 3 (同角或等角的补角相等)••• GF// Be (内错角相等,两直线平行)•••/ AGF玄ABe (两直线平行,同位角相等).【解答】解:理由如下:•/ DEL Ac, BF丄Ac (已知),•••/ DEe=Z BFc=90°(垂直定义),•BF/ DE (同位角相等,两直线平行),•••/ 2+Z 3=180 °(两直线平行,同旁内角互补).又•••/ 1 + Z 2=180°(已知),•/仁/ 3 (同角或等角的补角相等),•GF/ Be (内错角相等,两直线平行),•••/ AGF玄ABe (两直线平行,同位角相等)故答案为:垂直定义;BF;DE同位角相等,两直线平行; 两直线平行,同旁内角互补;同角或等角的补角相等;两直线平行,同位角相等.16 . (6分)如图,下列三个图形都是关于某条直线对称,请仅使用无刻度的直尺画出它们的对称轴.【解答】解:如图所示:17 . (6分)钟亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡下坡的速度仍保持不变.请根据图象解答下列问题:(1)钟亮从家到学校上坡路的速度是2百米/分,下坡路的速度是3百米/分.(2)求钟亮从学校返回家中共用了多少时间?【解答】解:(1)由题意可得,钟亮从家到学校上坡路的速度是:36 + 18=2百米/分,下坡的速度是:(96 - 36)-(30 - 18)=60- 12=5 百米/ 分,故答案为:2, 5;(2)由题意可得,钟亮从学校返回家中共用的时间为:(96 - 36) - 2+36 + 5=60 - 2+36- 5=30+7.2=37.2 (分),答:钟亮从学校返回家中共用了37.2分钟.四.(本大题共3小题,每题8分,共24分)18 . (8分)如图,已知cD是厶ABc的角平分线,DE// Be, / A=58°,Z BDc=82°,求/ B 的度数.【解答】解:•••/ BDc=82°,•••/ ADc=180°-Z BDc=180°- 82°=98 °;又•••/ A=58°,•••/AcD=180°-Z A-Z ADc=180°- 58°- 98°=24°;••• cD 平分Z AcB,•••Z DcB=Z AcD=24°,•••Z B=180°-Z DcB-Z BDc=180°- 24°- 82°=74°.19 . (8分)如图所示,BD是Z ABc的角平分线,DE I AB, 垂足分别为E, S A ABc=60c2, AB=18c, Bc=12c,求DE的长.【解答】解:作DF丄Bc于F,••• BD是Z ABc 的平分线,DEI AB,•DE=DF•X Bc x DF+x AB X DE=6Q•DE=DF=4••• DE=4c20 . (8分)已知在△ ABc中,AB=Ac BD是Ac边上的高.(1)如图1,若厶ABc是锐角三角形,Z A=40°时,试求Z DBc的度数.(2)如图2,若厶ABc是钝角三角形,/ A=a (90°v a v 180°)时,请在图中画出厶ABc的边Ac上的高BD,并求出 / DBc 的度数(用含a的式子表示).【解答】解:••• AB=Ac,Z A=40°,•••/ ABc=Z AcB=70°••• BD是Ac边上的高,••• BD丄Ac,•••/ DBc=90°- 70° =20°;(2)过点B作BD丄Ac交cA的延长线于点D••• AB=Ac,:丄 ABc=Z c,又A=a,:丄 c=90 ° -,••• BD丄Ac,•••/ BDc=90°,•••/ DBc=90°-Z c=90°-( 90°-)=.五.(本大题共2小题,每题9分,共18分)21 . (9分)观察下列式子:(x - 1) (x+1) =x2 - 1(x -1) (x2+x+1) =x3 - 1(x - 1) (x3+x2+x+1 ) =x4 - 1• • •根据上面各式的规律解答:(1)猜想:(x - 1) ( x10+x9+x8+…+x+1) = x11 - 1 ; (x —1)( xn+xn —1+…+x2+x+1) = xn+1 — 1 (n 为正整数)(2)利用上面猜想的规律求220+219+218+…+22+2+1的值.【解答】(1)解:•••( x —1) (x+1) =x2 —1,(x —1) (x2+x+1) =x3 —1,(x —1) (x3+x2+x+1 ) =x4 - 1,•••( x —1) (x10+x9+x8+ …+x+1) =x11 — 1(x —1) (xn+xn —1+…+x2+x+1)二xn+1—1.故答案是:x11 —1; xn+1 —1;(2) 220+219+218+…+22+2+1=(2—1) (220+219+218+…+22+2+1)=221 —1.22 . (9分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B, c, E在同一条直线上,连结De.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的宇母);(2)证明:De丄BE.【解答】(〔)△ ABE^A AcD.证明:•••△ ABc与厶AED均为等腰直角三角形,••• AB=Ae AE=AD / BAc=Z EAD=90 .•••/ BAc+Z cAE=Z EAD+Z cAE.即/ BAE玄cAD,在△ ABE与△ AcD中,•••△ABE^A AcD;(2)证明•••△ ABE^A AcD•••Z AcD=Z ABE=45 ,又•••/ AcB=45°,•Z BcD=Z AcB+Z AcD=90°,•De 丄BE.六.(本大题共12分)23 . (12分)在厶ABc中,AB=Ac点D是直线Bc上一点(不与B、c重合),以AD为一边在AD的右侧作厶ADE使AD=AE Z DAE=/ BAc,连接cE.(1)如图1,当点D在线段Be上,如果/ BAc=90°,则/ BcE= 90 度;(2)设/ BAc=a,Z BcE=B.①如图2,当点D在线段Bc上移动,则a,B之间有怎样的数量关系?请说明理由;②当点D在直线Bc上移动,则a,B之间有怎样的数量关系?请直接写出你的结论.【解答】解:(1) 90°.理由:•••/ BAc=Z DAE•••/ BAc-Z DAc=Z DAE-/ DAc.即/ BAD Z cAE.在厶ABD与△ AcE中,•••△ABM A AcE ( SAS ,•••Z B=Z AcE.•••Z B+Z AcB=Z AcE+Z AcB,•Z BcE=Z B+Z AcB,又•••/ BAc=90°•Z BcE=90°;(2)①a +B =180°,理由:•••/ BAc=Z DAE•••/ BAD+Z DAc=/ EAc+Z DAc.即/ BAD Z cAE.在厶ABD与△ AcE中,•••△ABM A AcE ( SAS ,•••Z B=Z AcE.•••Z B+Z AcB=Z AcE+Z AcB.•Z B+Z AcB=B,•••a +Z B+Z AcB=180°,•a + B =180°;②当点D在射线Bc上时,a +B =180°;理由:•••/ BAc=Z DAE•Z BAD Z cAE,••在△ABD ffi^ AcE 中•△ABM A AcE ( SAS ,•Z ABD Z AcE,•Z BAc+Z ABD+Z BcA=180°,•Z BAc+Z BcE=Z BAc+Z BcA+Z AcE=Z BAc+Z BcA+Z B=180°,•a + B =180°;当点D在射线Bc的反向延长线上时,a =B.理由:•••/ DAE* BAc,•••/ DAB玄EAc,•••在△ADB ffi^ AEc 中,•••△ADB^A AEc ( SAS ,•••/ ABD玄AcE,•••/ ABD玄BAc+Z AcB,/ AcE=Z BcE+Z AcB,•••/ BAc=Z BcE,即a = B.。