模电01半导体
模电第一章(江晓安)祥解
第一章 半导体器件
此时, PN结处于导通状态, 它所呈现出的电阻为正向 电阻, 其阻值很小。 正向电压愈大, 正向电流愈大。其关
系是指数关系:
ID ISe
U UT
式中, ID为流过PN结的电流;U为PN结两端电压;
kT UT q , 称为温度电压当量, 其中k为玻耳兹曼常数, T为绝对温度 ,q为电子的电量 ,在室温下即 T=300K 时,UT=26mV;IS为反向饱和电流。电路中的电阻 R是为了限制正向电流的大小而接入的限流电阻。
身的性质有关以外, 还与温度有关, 而且随着温度的升高,
基本上按指数规律增加。因此, 半导体载流子浓度对温度 十分敏感。对于硅材料, 大约温度每升高8℃, 本征载流 子浓度ni增加 1 倍;对于锗材料, 大约温度每升高12℃,
ni增加 1 倍。 除此之外, 半导体载流子浓度还与光照有
关, 人们正是利用此特性, 制成光敏器件。
第一章 半导体器件
外电场
外电场
P
N
P
N
ID
自建场
自建场
+ - U R
- + U R
(a ) 外加正向电压
(b ) 外加反向电压
图 1 - 7 PN结单向导电特性
第一章 半导体器件
2. 若将电源的正极接N区, 负极接P区, 则称此为反向接法
或反向偏置。此时外加电压在阻挡层内形成的电场与自建
场方向相同, 增强了自建场, 使阻挡层变宽, 如图1-7(b)所 示。 此时漂移作用大于扩散作用, 少数载流子在电场作用下 作漂移运动, 由于其电流方向与正向电压时相反, 故称为反 向电流。 由于反向电流是由少数载流子所形成的, 故反向电 流很小, 而且当外加反向电压超过零点几伏时, 少数载流子 基本全被电场拉过去形成漂移电流, 此时反向电压再增加, 载流子数也不会增加, 因此反向电流也不会增加, 故称为反 向饱和电流, 即 ID=-IS。
模拟电子技术第1章PPT课件
多数载流子——自由电子 施主离子
少数载流子—— 空穴
7
8
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
8
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子 9
杂质半导体的示意图
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下UZ,所对应的Iz反min 向工作电u压。
(2) 动态电阻rZ ——
△I
rZ =U /I
rZ愈小,反映稳压管的击穿特性△愈U 陡。
I zmax
(3) 最小稳定工作 电流IZmin——
保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。
(4) 最大稳定工作电流IZmax——
17
EW
R
18
(2) 扩散电容CD
当外加正向电压
不同时,PN结两 + 侧堆积的少子的 数量及浓度梯度 也不同,这就相 当电容的充放电 过程。
P区 耗 尽 层 N 区 -
P 区中电子 浓度分布
N 区中空穴 浓度分布
极间电容(结电容)
Ln
Lp
x
电容效应在交流信号作用下才会明显表现出来
18
19
1.2 半导体二极管
30
31
四、稳压二极管
稳压二极管是应用在反向击穿区的特殊二极管
பைடு நூலகம்
模电第1章复习精简版
第一章
半导体器件
价电子
(a) 硅、锗原子结构 最外层电子称价电子 4 价元素
+4
惯性核
4 价元素的原子常常用 + 4 电荷的正离子和周围 4 个价电子表示。
(b) 简化模型
图 1-1 原子结构及简化模型
第一章
半导体器件
2)
本征半导体的原子结构
完全纯净的、不含其他杂质且具有晶体结构的半导 体称为本征半导体。
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出现, 称为 电子 - 空穴对。
3. 本征半导体中自由电子和空穴的浓度用 ni 和 pi 表示,显然 ni = pi 。 4. 由于物质的运动,自由电子和空穴不断的产生又 不断的复合。在一定的温度下,产生与复合运动会达到 平衡,载流子的浓度就一定了。 5. 载流子的浓度与温度密切相关(它随着温度的升 高,基本按指数规律增加)。
I / mA
60 40 死区 20 电压
0 0.4 0.8 U / V
正向特性
第一章
半导体器件
I / mA
–50 –25
– 0.02
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增 大,即饱和;
0U / V
反向饱 和电流
– 0.04
反向特性
如果反向电压继续升高,大到一定数值时,反向电 流会突然增大;
(a)N 型半导体
(b) P 型半导体
杂质半导体的的简化表示法
第一章
半导体器件
1.2 半导体二极管
1)PN 结的形成
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
精品课件-模拟电子技术-第1章
15
第1章 半导体器件
图1.4 半导体内部载流子的运动
16
第1章 半导体器件
4
第1章 半导体器件
3) 掺杂特性 在纯净的半导体中掺入微量的杂质元素能使其导电性能 发生显著变化,这种特性称为掺杂特性。例如在纯净的硅中 掺入百万分之一的杂质,其导电能力可以增强上百万倍。各 种半导体器件的制作,正是利用掺杂特性来改变和控制半导 体的导电能力的。 此外,半导体的导电能力还会随着电场、磁场的作用而 变化。 为什么半导体会有这些独特的导电性能呢?这主要是由 其内部的原子结构所决定的。
5
第1章 半导体器件
1.1.2 半导体的原子结构 用来制造晶体管的半导体材料主要是硅和锗。下面就来
讨论这两种半导体材料的原子结构。 1. 单个原子结构 硅的化学元素符号是Si,它有一个带正电的原子核和14
个带负电的电子。电子分三层绕原子核不停地旋转,如图 1.1(a)所示。由于原子核带14个电子电量的正电,因此正常 情况下原子呈中性。锗的化学元素符号是Ge,它共有32个电 子,分四层绕原子核不停地转动,如图1.1(b)所示。
第1章 半导体器件
第1章 半导体器件
1.1 半导体的基础知识 1.2 半导体二极管 1.3 半导体三极管 1.4 场效应管 本章小结 练习题
1
第1章 半导体器件
1.1 半导体的基础知识
1.1.1 半导体的基本特性 1. 什么是半导体 自然界中的物质,按其导电能力的强弱,可分为导体、
模电1--常用半导体器件PPT课件
.5ຫໍສະໝຸດ 1.1.0 半导体特性常用的半导体导体材料有如::金属 物元体素分半类导绝体缘:体硅(如S:i)橡、胶锗、(云G母e、)塑料等。
化合物半半导导体体:—砷化导镓电(能G力aA介s于)导体和绝缘体之间。 掺杂材料:硼(B)、铟(In);磷(P)、锑(Sb)。
• 半导体特性
掺杂特性 掺入杂质则导电率增加几百倍
2. 在外电场的作用下,产生电流 — 电子流和空穴流 电子流 自由电子作定向运动形成的
与外电场方向相反
自由电子始终在导带内运动
空穴流 价电子递补空穴形成的
用空穴移动产
与外电场方向相同
生的电流代表束缚电
始终在价带内运动
子移动产生的电流
.
10
1.1.2 杂质半导体
杂质半导体
掺入三价元素如B、Al、In等, 形成P型半导体,也称空穴型半导体
+4
.
8
本征半导体
共价键内的电子 挣脱原称子为核束束缚缚电的子 价带中电留子下称的为自由电子 空位称为空穴
导带
自由电子定向移 动形成电外子电流场E
禁带EG
束缚电子填补空穴的 定向移动形成空穴流
价带
.
9
本征半导体
1. 本征半导体中有两种载流子 — 自由电子和空穴 电子浓度ni = 空穴浓度pi
空穴的出现是半导体区别于导体的一个重要特点。
定其化学性质和导电性能 .
7
1.1.1 本征半导体
本征半导体
完全纯净、结构完整的半导体晶体。 纯度:99.9999999%,“九个9” 它在物理结构上呈单晶体形态。
T=常0K用且的无本外征半界导激体发,只有束缚电子,没有自由电子,本征 半导体相当于绝缘体;T=300K,本征激发,少量束缚电子
模电1常用半导体器件
ICEO = (1+β) ICBO
三. 极限参数
1. 集电极最大允许电流ICM 2. 集电极最大允许功耗PCM 3. 反向击穿电压U(BR)CEO 、U(BR)CBO
α=β/(1+β)
三极管的安全工作区
1 .4 场效应管(Field Effect Transistor )
场效应管是单极性管子,其输入PN结处于反偏或 绝缘状态,具有很高的输入电阻(这一点与三极管相 反),同时,还具有噪声低、热稳定性好、抗辐射性 强、便于集成等优点。
1 .3 .5 共射NPN三极管伏安特性曲线
二. 输出特性曲线 IC=f ( IB ,UCE )
实际测试时如下进行:
IC= f ( UCE )|IB
发射结正偏、集电结反 偏时,三极管工作在放大 区(处于放大状态),有放 大作用:IC =βIB + ICEO
两结均反偏时,三极管 工作在截至区(处于截止状 态) ,无放大作用。 IE=IC=ICEO≈0
第五章 负反馈放大器
第六章 信号运算电路
第七章 波形发生电路
第八章 功率放大电路 第九章 直流电源
前进
返回
退出
第一章 常用半导体器件
本章主要内容:
半导体材料、由半导体构成的PN 结、二极管结构特性、三极管结构特性及 场效应管结构特性。
前进
返回
1 .1 半导体(Semiconductor)基本知识
• 2、《电子技术实验》.石焕玉等编. • 3、《电子技术基础》(模拟部分).康华光
主编. 高等教育出版社 • 4、《模拟电子技术基础》华成英(第四
版)习题解答(因网络不通,暂时没法放 在系网页上,需要者来复制)
第一章 半导体器件 第二章 基本放大电路 第三章 放大电路的频率特性 第四章 集成运算放大器
模电-第1章-半导体器件PPT优秀课件
3.4 PN 结的电容效应
1) 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2)扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
注意
空杂穴质-半--导-体多中子,;多子的浓度决定于掺杂原子的浓度; 电子----少子少.子的浓度决定于温度。
13
3 PN结 3.1 PN结的形成
P区
N区
物质因浓度差而产生的运动称为扩散运动。气体、液体、 固体均有之,包括电子和空穴的扩散!
14
3.1 PN结的形成
I扩
在交界面,由于两种载流子的浓度差,产生 扩散运动。
小功率 二极管
大功率 二极管
稳压 二极管
发光 二极管
25
• 二极管的伏安特性及电流方程
二极管的电流与其端电压的关系称为伏安特性。
i f (u)
u
击穿
iIS(eU T1) (常温 U T下 2m 6 V)电压
温度的 电压当量
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
15
3.1 PN结的形成
耗尽层(电荷层、势垒层)
空间电荷区
I漂
在交界面,由于扩散运动,经过复合,出现空 间电荷区
16
3.1 PN结的形成
PN结
I扩 I漂
当扩散电流等于漂移电流时,达到动态 平衡,形成PN结。
17
1.由于扩散运动形成空间电荷区和内电场;
2.内电场阻碍多子扩散,有利于少子漂移;
模电第一章半导体基础知识
杂质能3
对电子的影响
施主杂质能级向导带提供 电子,使半导体呈现n型 导电性。
对空穴的影响
受主杂质能级接受价带的 电子成为空穴,使半导体 呈现p型导电性。
影响程度
杂质浓度越高,对电子和 空穴的影响越显著,半导 体的导电性能也越强。
06
半导体中的光电效应
光电效应的原理和分类
光电器件的特性
光电器件的主要特性包括光谱响应、光电灵敏度、响应速度和噪声等,这些特性决定了光电器件的应用范围和效 果。
光电器件的应用和发展趋势
光电器件的应用
光电器件在多个领域都有应用,如光电探测、光电转换、光通信等。
光电器件的发展趋势
随着科技的不断进步和应用需求的不断提高,光电器件的发展趋势包括高灵敏度、高速响应、高稳定 性、多功能化等。
半导体的热学性质
热导率
半导体的热导率取决于其材料 和结构,热导率越高,导热性
能越好。
热容
半导体的热容取决于其材料和 温度,它决定了半导体的耐热 性能。
热膨胀
半导体的热膨胀系数决定了其 在温度变化时的尺寸变化,对 器件的稳定性有影响。
温差电动势率
半导体的温差电动势率是指在 温度梯度下产生的电动势,它
05
半导体中的掺杂和杂质能级
掺杂的概念和分类
掺杂
在半导体材料中人为地加入某种元素,以改变其导电性能的过程。
分类
施主掺杂、受主掺杂、中性杂质掺杂。
杂质能级的形成和特性
形成
杂质原子在半导体晶体中占据了特定 的位置,这些位置上的电子能级与晶 体中的其他电子能级不同,形成了杂 质能级。
特性
杂质能级位于禁带中,其能量位置取 决于掺杂元素的种类和浓度,对半导 体的导电性能有重要影响。
模电第一章半导体基础(场效应管)
④ 输入电阻RGS 场效应三极管的栅源输入电阻的典型值, 场效应三极管的栅源输入电阻的典型值,对 于结型场效应三极管, 约大于10 于结型场效应三极管,反偏时RGS约大于 7 ,对 约是10 于绝缘栅型场效应三极管, 于绝缘栅型场效应三极管 RGS约是 9~1015 。 低频跨导g ⑤ 低频跨导 m 低频跨导反映了栅压对漏极电流的控制作用, 低频跨导反映了栅压对漏极电流的控制作用, gm可以在转 移特性曲线上求取,单位是 移特性曲线上求取,单位是mS(毫西门 毫西门 子)。 。 最大漏极功耗P ⑥ 最大漏极功耗 DM 最大漏极功耗可由P 决定, 最大漏极功耗可由 DM= uDS iD决定,与双极型 三极管的P 相当。 三极管的 CM相当。
的区域,曲线基本平行等距。 的区域,曲线基本平行等距。 此时,发射结正偏, 此时,发射结正偏,集电结 反偏,电压大于0.7 左右 左右(硅 反偏,电压大于 V左右 硅 管) 。
1.4 场效应管
结型场效应管 绝缘栅型场效应管 场效应管的主要参数 晶体管和场效应管的比较
概述
1.定义 1.定义 是利用电场效应来控制输出电流的半导体器件。 是利用电场效应来控制输出电流的半导体器件。 电场效应来控制输出电流的半导体器件 仅一种载流子参与导电,又称单极型晶体管 单极型晶体管。 因仅一种载流子参与导电,又称单极型晶体管。 2.分类 2.分类 从参与导电的载流子来划分, 沟道器件和 从参与导电的载流子来划分,有N沟道器件和 沟道 P沟道器件。 沟道器件 沟道器件。 从场效应管的结构来划分, 从场效应管的结构来划分,有结型场效应管 绝缘栅型场效应管。 和绝缘栅型场效应管。
DS
UGS(th) UGS(th)
2UGS(th) 2UGS(th)
转移特性曲线
模拟电路基础课件:1-半导体基础知识(新)
• 半导体材料 Si: +14 2 8 4
Ge: +32 2 8 18 4
最外层电子(价电子)都是四个 价电子
Si
Ge
惯性核表示:
+4
惯性核:除价电子外的 内层稳定结构
二. 半导体三大基本特性
1.半导体的热敏性(temperature sensitive) 环境温度升高时,半导体的导电能力大幅度增强,制成 的热敏电阻可以用于温度控制。
浓度梯度:
dn(x) 或 dp(x)
dx
dx
小结
导体或半导体的导电作用是通过带电粒子的运动(形成电 流)来实现的,这种电流的载体称为载流子。导体中的载流 子是自由电子,半导体中的载流子则是带负电的电子和带正 电的空穴。
关键词:
• 本征半导体、杂质半导体 • 自由电子、空穴、N型半导体、P型半导体; • 多数载流子、少数载流子、漂移电流与扩散电流。
N型半导体
+4
+45
+4
+4
+4
+4
磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共 价键,必定多出一个电子,这个电子 几乎不受束缚,很容易被激发而成为 自由电子(常温下几乎完全电离), 这样磷原子就成了不能移动的带正电 的离子。这一现象称为“施主电离”。 磷原子称为施主原子。
施主电离:
缘体和半导体。 导 体: 电阻率 < 10-4 Ω·cm,如铁、铝、铜等金属元素等 低价元素,其最外层电子在外电场作用下很容易产生定向移 动,形成电流。
绝缘体:电阻率 > 109 Ω·cm,如惰性气体、橡胶等,其 原子的最外层电子受原子核的束缚力很强,只有在外电场 强到相当程度时才可能导电。
最新模拟电子技术基础第1章
势垒 UO
硅 0.5V 锗 0.1V
多子扩散电流
总电流=0
2. PN结的单向导电性
(1) 加正向电压(正偏)——电源正极接P区,负极接N区 外电场的方向与内电场方向相反。
外电场削弱内电场 →耗尽层变窄 →扩散运动>漂移运动
→多子扩散形成正向电流I F
P型半导体 空间电荷区 N型半导体
- - --
++ ++
硅原子
+4
空穴
+4
硼原子
+4
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子
杂质半导体的示意图
多子—空穴
多子—电子
P型半导体
N型半导体
- - --
++ + +
- - --
++ + +
- - --
++ + +
一 、半导体二极管的V—A特性曲线
实验曲线
i
锗
击穿电压UBR
(1) 正向特性 i
u
V
mA
(2) 反向特性
i u
V
uA
0 反向饱和电流
u
导通压降 硅:0.7 V
死区
电压
E
锗:0.3V
硅:0.5 V 锗: 0.1 V
E
二. 二极管的模型及近似分析计算
例:
模电第一节PPT(1-半导体基础知识)
扩散
在没有电场的情况下,载流子会从高浓度区域向低浓度区域 扩散。
载流子的产生与复合
产生
在半导体中,载流子的产生主要通过热激发和光激发两种方式。热激发是指电子从价带跃迁到导带; 光激发是指光子与价带电子相互作用,将其激发到导带。
复合
载流子在半导体中会相互复合,释放出能量。这种复合过程分为带间复合和带内复合两种类型。带间 复合是指电子和空穴分别从导带和价带跃迁回各自原来的能级;带内复合是指电子和空穴在同一能级 上发生相互作用,释放出能量。
详细描述
半导体可以根据其导电类型分为P型和N型两种。P型半导体中,多数载流子为空 穴;N型半导体中,多数载流子为电子。
半导体的特性
总结词
半导体的特性
详细描述
半导体的特性包括热敏性、光敏性和掺杂性。热敏性是指半导体材料的电阻随温度变化而变化的特性;光敏性是 指半导体材料能够将光能转换为电能的特性;掺杂性是指通过向半导体中添加其他元素来改变其导电性能的特性。
和热导率等。
常见的合金半导体有硅化物、氮 化物和硫化物等。
03
半导体中的载流子
电子与空穴
电子
带负电荷,是半导体的主要载流 子。在半导体中,电子可以在价 带和导带之间自由移动。
空穴
带正电荷,是电子缺失所产生的 虚拟粒子。在半导体中,空穴的 运动方向与电子相反。
载流子的运动与扩散
运动
在电场的作用下,载流子会沿着电场方向运动,形成电流。
度和性能。
三维集成技术
通过三维集成技术,将不同工艺 的芯片集成在一个封装内,实现
更高效的系统级集成。
柔性电子技术
柔性电子技术使得电子设备可以 弯曲、折叠,具有轻便、可穿戴 等特点,为新型电子产品提供了
【精品】模拟电子技术第一章知识要点
第一章常用半导体器件1.1半导体基础知识场作用下很容易产生定向移动,形成电流。
力很强,只有在外电场强到一定程度时才可能导电。
Si)、锗(Ge),均为四价元素,它们原子的最外层电子受原子核的束缚力介于导体与绝缘体之间。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
1.1.1本征半导体1、晶体中原子的排列方式如图所示:2、本征半导体的结构硅单晶中的硅原子通过共价健结构与周围的四个硅原子结合在一起,共价键中的两个电子,称为价电子。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
一定温度下,自由电子与空穴对的浓度一定;温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大。
2、本征半导体中的两种载流子由于热运动,具有足够能量的价电子挣脱共价键的束缚自由电子的产生使共价键中留有一载流子外加电场时,带负电的自由电子和带正电的空穴均参与导电,且运动温度升高,热运动加剧,载流子浓度增大,导电性增强。
热力学温度0K时不导电。
自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。
只不过空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的,因此,空穴的导电能力不如自由电子。
1.1.2杂质半导体在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。
掺入的杂质主要是三价或五价元素。
掺入杂质后的本征半导体称为杂质半导体。
1.N型半导体在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。
自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子,由热激发形成。
提供自由电子的五价杂质原子因自由电子脱离而带正电荷成为正离子,因此,五价杂质原子也被称为施主杂质。
多数载流子磷(P)正离子杂质半导体主要靠多数载流子导电。
掺入杂质越多,多子浓度越高,导电性越强,实现导电性可控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案
课程名称:模拟电子技术___ 适用专业:电子信息工程技术 _ 总课时: _____ 64_________ 任课教师:陈燕熙_______ 职称:无_______ _
重庆电信职业学院制
二〇一四年四月二十三日
填写说明
1.教案编写要求内容简明、条理清楚、教学目的明确、教学内容设置合理、重点难点清晰;以简案为主。
2.教案按一个教学单元编制,一个教学单元原则上为2-4课时,具体的课时可根据实际情况而定。
3.单元内容:指本教学单元的主题内容,可以是课题、训练项目、工作任务或是教学模块。
重庆电信职业学院课程教案
图 1-2 电子和空穴的填补运动
(2)自由电子:在一定温度下,若受光和热的激发,晶体结构中的少数价电子
图1-6 PN结的正向偏置
(2)PN结的反向偏置
A、P端接电源负极,N端接电源正极则称反向偏置。
B、外加电源产生的外电场方向与PN结产生的内电场方向一致。
C、加强了内电场,使PN结加宽。