八年级数学(北师大版)一次函数培优测试题

合集下载

北师大版八年级数学(上)一次函数检测试卷

北师大版八年级数学(上)一次函数检测试卷

八年级数学(上)一次函数检测试卷一、选择题:本大题共10个小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各曲线中不能表示y是x的函数是()A.B.C.D.2. 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量 B.时间t是变量C.速度v和时间t都是变量 D.速度v、时间t、路程s都是常量3.汽车由 A 地驶往相距 120km 的 B 地,它的平均速度是 30km/h,则汽车距B 地路程(s km)与行驶时间 t(h)的函数关系式及自变量 t 的取值范围是()A.S=120﹣30t(0≤t≤4) B.S=120﹣30t(t>0)C.S=30t(0≤t≤40) D.S=30t(t<4)4. 一次函数y=﹣2x+4的图象是由y=﹣2x的图象平移得到的,则移动方法为()A.向右平移4个单位B.向左平移4个单位C.向上平移4个单位D.向下平移4个单位5. 根据图中的程序计算y的值,若输入的x值为3,则输出的y值为()A.﹣5 B.5 C.3D.426. 一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:①李师傅上班处距他家2000米;②李师傅路上耗时20分钟;③修车后李师傅骑车的速度是修车前的4倍;④李师傅修车用了5分钟,其中错误的是()A.0个B.1个C.2个D.3个7. 一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()A. x=2B. y=2C. x=-1D. y=-18.把两个一次函数y=ax+2与y=2x﹣a的图象在同一坐标系中画出,则可能是下面图象中的()A. B.C. D.9. 向一个容器内均匀地注入水,液面升高的高度y与注水时间x满足如图所示的图象,则符合图象条件的容器为()A. B.C.D.10.如图,已知一次函数y=kx﹣1和y=﹣x﹣b的图象交于点P(﹣1.﹣2),则关于x的方程kx﹣1=﹣x﹣b的解是.二、填空题:本大题共5小题,每小题3分,共15分.11. 一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m=____,n=______.12.若正比例函数y=2x上的点(1,2)关于x轴的对称点在y=kx上.则k的值为_________13.一次函数的图象经过点A(3,2),且与y轴的交点坐标是B(0.-2),则这个一次函数的表达式是_____________________14. 如图,已知一次函数y=kx﹣1和y=﹣x﹣b的图象交于点P(﹣1.﹣2),则关于x的方程kx﹣1=﹣x﹣b的解是.15. 已知一次函数y1=(m2-4)x+1-m与y2=(m2-2)x+2m+3的图象与y轴交点的纵坐标互为相反数,则m的值为___________.三、解答题:本大题共8小题,共75分.16.(8分)已知弹簧的长度y(cm)在一定弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时弹簧的长度是6cm,挂4kg的重物时弹簧的长度是7.2cm,求这个一次函数的表达式.17.(8分)已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.18.(9分)地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间满足如下关系:1 2 3 4深度x(km)温度y55 90 125 160(℃)(1)请直接写出y与x之间的关系式;(2)当x=10时,求出相应的y值;(3)若岩层的温度是475℃,求相应的深度是多少?19.(8分)某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图4-9所示.(1)求y与x的函数关系式;(2)一箱油可供拖拉机工作几个小时?20.(9分)如图所示,已知直线y=x+3的图象分别与x轴和y轴交于点A,B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式.21.(9分)如图所示,已知函数y=kx+3与y=mx的图象相交于点(2,1).(1)求这两个函数的表达式;(2)求图中阴影部分的面积.22.(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min.小东骑自行车以300 m/min的速度直接回家,两人离家的距离y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示.(1)家与图书馆之间的距离为________m,小玲步行的速度为________m/min;(2)求小东离家的距离y关于x的函数表达式.(3)求两人相遇的时间.23.(12分)纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,且每月排污设备物资损耗为8000元.设该厂每月生产产品x件,每月获得纯利润y元.(纯利润=总收入﹣总支出).(1)求出y与x之间的函数表达式;(2)若厂家有盈利,则每月至少要生产多少件产品?(3)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产产品的件数.。

北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案)

北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案)

○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………北师大版2020八年级数学上册第四章一次函数单元综合培优训练题(附答案) 一、单选题1.如图,过点A 0(2,0)作直线l :y=33x 的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,,这样依次下去,得到一组线段:A 0A 1,A 1A 2,A 2A 3,,则线段A 2018A 2019的长为( )A .(32)2018B .(33)2018C .(32)2019D .(33)20192.若正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…在直线l 上,直线l 与x 轴的夹角为45°和点C 1,C 2,C 3,…在x 轴上,已知点A 1 (0,1), 则A 2018的坐标是( ).A .20172017(21,21)+-B .20172017(2,21)-C .20172017(21,2)-D .20182018(21,2)-3.如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线15y x b =+和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2019的纵坐标是( )A .(3)2019B .(3)2018C .(2)2019D .(2)2018○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………4.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P`的坐标定义如下:当a b ≥时,P`点坐标为(a ,-b );当a b <时,P`点坐标为(b ,-a ).线段l :()13282y x x =-+-≤≤上所有点按上述“变换点”组成一个新的图形,若直线4y kx =+与组成的新的图形有两个交点,则k 的取值范围是( )A .132k -≤≤-B .3k >-或12k <-C .338k -≤<- D .1328k -<<- 5.已知:实数x 满足2a ﹣3≤x ≤2a +2,y 1=x +a ,y 2=﹣2x +a +3,对于每一个x ,p 都取y 1,y 2中的较大值.若p 的最小值是a 2﹣1,则a 的值是( ) A .0或﹣3 B .2或﹣1C .1或2D .2或﹣3二、填空题6.菱形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按照如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx+b 和x 轴上.已知∠A 1OC 1=60°,点B 1(3,3),B 2(8,23),则A n 的坐标是______(用含n 的式子表示)7.如图,在平面直角坐标系中,已知点(1,3)A ,(2,0)B ,(1,0)C ,E 是线段AB 上的一个动点(点E 不与点A ,B 重合).若OE CE +的值最小,则点E 的坐标为__________8.如图,已知点()6,0A -,()2,0B ,点C 在直线334y x =-+上,则使ABC 是直角三角形的点C 的个数为______.○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………9.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.10.如图,在平面直角坐标系中,半径均为1个单位长度的半圆1O ,2O ,3O ,…组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒4π个单位长度,则第2002秒时点P 的坐标为____.11.已知点M(-3,0),点N 是点M 关于原点的对称点,点A 是函数y= -x+1 图象上的一点,若△AMN 是直角三角形,则点A 的坐标为_______三、解答题12.在平面直角坐标系中,O 为坐标原点,直线3y kx k =+交x 轴负半轴)轴正半轴于,A B 两点, AOB ∆的面积为4.5;()1如图1.求k 的值;()2如图2.在y 轴负半轴上取点C .点D 在第一象限,BD y ⊥连接..AD AC CD ,过点A 作AP BD ⊥交DB 的延长线于点P ,若DP CD CO =+,求sin CAD ∠的值;○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………()3如图3,在()2的条件下.AF AB ⊥交y 轴于点.//F FG x 轴交NC 的延长线于点C ,设AD 与y 轴交于点E ,连接EG ,当5EG OE =时,求点D 的坐标.13.平面直角坐标系在代数和几何之间架起了一座桥梁,实现了几何方法与代数方法的结合,使数与形统一了起来,在平面直角坐标系中,已知点A (x 1,y 1)、B (x 2,y 2),则A 、B 两点之间的距离可以表示为AB =()()221212x x y y -+-,例如A (2,1)、B (﹣1,2),则A 、B 两点之间的距离AB =22(21)(12)++-=10;反之,代数式22(51)(12)-++也可以看作平面直角坐标系中的点C (5,1)与点D (1,﹣2)之间的距离.(1)已知点M (﹣7,6),N (1,0),则M 、N 两点间的距离为 ; (2)求代数式2222(1)(07)(4)(05)x x ++-+-+- 的最小值; (3)求代数式|22174134x x x x -+-++| 取最大值时,x 的取值. 14.如图,在平面直角坐标系中,点A 的坐标为(0,6),点B 在x 轴的正半轴上.若点P 、Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P 、Q 的“涵矩形”。

八年级数学(北师大版)一次函数检测题(含答案)

八年级数学(北师大版)一次函数检测题(含答案)

第六章复习 单元测试班级:_________姓名:____________满分100分 得分:___________一、选择题(每小题2分,共20分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )A .P =25+5tB .P =25-5tC .P =t 525D .P =5t -252.函数y =x x 3-的自变量的取值范围是( )A .x ≥3B .x >3C .x ≠0且x ≠3D .x ≠0 3.函数y =3x +1的图象一定通过( ) A .(3,5) B .(-2,3) C .(2,7)D .(4,10)4.下列函数中,图象经过原点的有( )①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =x 6A .1个B .2个C .3个D .4个5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是( )A .1996年的利润比1995年的利润增长-2173.33万元B .1997年的利润比1996年的利润增长5679.03万元C .1998年的利润比1997年的利润增长315.51万元D .1999年的利润比1998年的利润增长-7706.77万元 6.下列函数中是一次函数的是( )A .y =2x 2-1B .y =-x 1C .y =31+xD .y =3x +2x 2-17.已知函数y =(m 2+2m )x 12-+m m +(2m -3)是x 的一次函数,则常数m 的值为( ) A .-2 B .1 C .-2或-1D .2或-18.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为( )A .a =b ,c =0B .a =-b ,c =0C .a =b ,c =1D .a =-b ,c =19.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3B .-23C .9D .-4910.函数y =2x +1与y =-21x +6的图象的交点坐标是( )A .(-1,-1)B .(2,5)C .(1,6)D .(-2,5)二、填空题(每小题3分,共24分)11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______.12.在函数y =11+x 中,自变量x 的取值范围是______.13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y 随x 的变化的图象,找出通话5分钟需付电话费______元.14.已知直线经过原点和P (-3,2),那么它的解析式为______.15.已知一次函数y =-(k -1)x +5随着x 的增大,y 的值也随着增大,那么k 的取值范围是______.16.一次函数y =1-5x 经过点(0,______)与点(______,0),y 随x 的增大而______.17.一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =______.18.假定甲乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t 小时后离天津S 千米.(1)写出S 与t 之间的函数关系式;(2)画出这个函数的图象;(3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?20.已知正比例函数的图象上有一点P ,它的纵坐标与横坐标的比值是-65. (1)求这个函数的解析式;(2)点P 1(10,-12)、P 2(-3,36)在这个函数图象上吗?为什么?21.作出函数y =34x -4的图象,并回答下面的问题: (1)求它的图象与x 轴、y 轴所围成图形的面积;(2)求原点到此图象的距离.22.如图一次函数y =kx +b 的图象经过点A 和点B .(1)写出点A 和点B 的坐标并求出k 、b 的值;(2)求出当x =23时的函数值.23.一次函数y =(2a +4)x -(3-b ),当a 、b 为何值时 (1)y 随x 的增大而增大;(2)图象与y 轴交在x 轴上方;(3)图象过原点.24.判断三点A (1,3)、B (-2,0)、C (2,4)是否在同一条直线上,为什么?25.为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x (分钟)与通话费y (元)的关系如图 所示:分别求出通话费y 1、y 2与通话时间x 之间的函数关系式.26.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x (立方米),应交水费为y (元).(1)分别写出未超过7立方米和多于7立方米时,y 与x 的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?参考答案一、1.B 2.A 3.C 4.B 5.D 6.C 7.B 8.A 9.D 10.B 二、11.-6,2 12.x ≠-1 13. 614.y =-32x 15.k <1 16.1,51, 减小 17.-1或2 18.100,甲,8三、19.(1)S =240-20t (2)略 (3)①80千米②t =620.(1)y =-65x (2)都不在 点的坐标代入函数式不成立21.图略 (1)6 (2)51222.(1)k =-2,b =1 (2)-223.(1)a >-2,b 为任意数 (2)a ≠-2且b >3 (3)a ≠-2且b =3 24.在 略25.y 1=51x +29 y 2=21x26.(1)y =1.2x (0≤x ≤7) y =1.9(x -7)+8.4(x >7) (2)28。

北师大版八年级下册2.5 一元一次不等式和一次函数培优拔尖同步习题(附答案)

北师大版八年级下册2.5 一元一次不等式和一次函数培优拔尖同步习题(附答案)

2.5 一元一次不等式与一次函数培优拔尖同步习题一.选择题(共 6 小题)1.如图,直线 y =kx ﹣b 与横轴、纵轴的交点分别是(m ,0),(0,n ),则关于 x 的不等 式 kx ﹣b ≥0 的解集为()A .x ≥mB .x ≤mC .x ≥nD .x ≤n2.如图,函数 y =ax +4 和 y =2x 的图象相交于点 A (m ,3),则不等式 a x +4>2x 的解集为 ()A .xB .x <3C .xD .x >33.在平面直角坐标系中,若直线 y =x +n 与直线 y =mx +6(m 、n 为常数,m <0)相交于点 P (3,5),则关于 x 的不等式 x +n +1<mx +7 的解集是()A .x <3B .x <4C .x >4D .x >64.同一直角坐标系中,一次函数 y =k x +b 与正比例函数 y =k x 的图象如图所示,则满足 y ≥y 的 x 取值范围是()A .x ≤﹣2B .x ≥﹣2C .x <﹣2D .x >﹣25.如图,已知直线 y =x +m 与 y=kx ﹣1 相交于点 P (﹣1,1),则关于 x 的不等式 x +m >kx ﹣1 的解集在数轴上表示正确的是( )1 12 2 1 2 1 2A .B .C .D .6.如图,正比例函数 y =ax 与一次函数 y = x +b 的图象交于点 P .下面四个结论:①a<0;②b <0;③不等式 ax > x +b 的解集是 x <﹣2;④当 x >0 时,y y >0.其中正确的是( )A .①②B .②③C .①④D .①③二.填空题(共 7 小题)7.如图是函数 y =kx +b 的图象,它与 x 轴的交点坐标是(﹣3,0),则方程 kx +b =0 的解 是,不等式 kx +b >0 的解集是.8.函数 y =k x +b 与 y =k x +b 在同一平面直角坐标系中的图象如图所示,则关于 x 的不 等式 y >y 的解集为.9.若直线 l :y =k x +b 经过点(0,3),l :y =k x +b 经过点(3,1),且 l 与 l 关于 1 2 1 21 1 12 2 2 1 2 1 1 1 1 2 2 2 2 1 2x 轴对称,则关于 x 的不等式 k x +b >k x +b 的解集为.10.如图,直线 y =kx +b 经过 A (2,1),B (﹣1,﹣2)两点,则不等式﹣2<kx +b <1 的 解集为.11.如图所示,函数 y =ax +b 和 y=|x |的图象相交于(﹣1,1),(2,2)两点.当 y > y 时,x 的取值范围是.12.已知点 P (x ,y )位于第二象限,并且 y ≤x +4,x 、y 为整数,符合上述条件的点 P 共有个.13.对于实数 a ,b ,定义符号 min {a ,b },其意义为:当 a ≥b 时,min {a ,b }=b ;当 a <b时,min {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于 x 的函数 y =min {2x ﹣1,﹣x +3}, 则该函数的最大值为.三.解答题(共 7 小题)14.已知直线 y =kx +b 经过点 A (5,0)B (1,4),并与直线 y =2x ﹣4 相交于点 C ,求关 于 x 的不等式 2x ﹣4<kx +b 的正整数解.15.已知一次函数 y =kx +2(k 为常数,k ≠0)和 y =x ﹣3.(1)当 k =﹣2 时,若 y >y ,求 x 的取值范围.(2)当 x <1 时,y >y .结合图象,直接写出 k 的取值范围. 1 1 2 2 2 1 1 2 1 2 1 21 216.(1)画出一次函数 y =﹣3x +6 的图象; (2)利用(1)中的图象求:①方程﹣3x +6=0 的解; ②不等式﹣3x+6<0 的解集;③当 x <0 时,直接写出 y 的取值范围.17.如图,直线 l :y =﹣ x +b 分别与 x 轴、y 轴交于点 A 、点 B ,与直线 l :y =x 交于点 C (2,2).(1)若 y <y ,请直接写出 x 的取值范围;(2)点 P 在直线 l :y =﹣ x+b 上,且△OPC 的面积为 3,求点 P 的坐标? 1 1 2 21 21 118.已知点 A (6,6)在直线 l :y =kx ﹣3 上,(1)直线 l 解析式为;(2)画出该一次函数的图象;(3)将直线 l向上平移 5 个单位长度得到直线 l ,l 与 x 轴的交点 C 的坐标为 ;(4)直线 l 与直线 OA 相交于点 B ,B 点坐标为;(5)三角形 ABC 的面积为;(6)由图象可知不等式 kx ﹣3<x 的解集为.19.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点 A (﹣2,6),且与 x 轴 相交于点 B ,与正比例函数 y =3x 的图象相交于点 C ,点 C 的横坐标为 1.(1)求 k 、b 的值;(2)请直接写出不等式 kx +b ﹣3x >0 的解集.(3)若点 D 在 y 轴上,且满足 =2S ,求点 D 的坐标. △S △ △ 1 1 1 2 2 2 BCD BOC20.如图,直线 y =﹣ x +b 与 x 轴交于点 A ,与 y 轴交于点 B ,与直线 y =x 交于点 E ,点E 的横坐标为 3.(1)直接写出 b 值:;(2)当 x 取何值时,0<y ≤y ?(3)在 x 轴上有一点 P (m ,0),过点 P 作 x 轴的垂线,与直线 y =﹣ x +b 交于点 C ,与直线 y =x 交于点 D ,若 CD =2OB ,求 m 的值.1 21 212参考答案一.选择题(共 6 小题)1.【解答】解:∵要求 kx ﹣b ≥0 的解集,∴从图象上可以看出等 y >0 时,x ≥m . 故选:A .2.【解答】解:∵函数 y =2x 过点 A (m ,3),∴2m =3,解得:m = ,∴A ( ,3),∴不等式 ax +4>2x 的解集为 x < .故选:A .3.【解答】解:∵直线 y =x +n 从左向右逐渐上升,直线 y =mx+6(m 、n 为常数,m <0) 从左向右逐渐下降,且两直线相交于点 P (3,5)∴当 x <3 时,x +n <mx +6,∴x +n +1<mx +7.故选:A .4.【解答】解:当 x ≤﹣2 时,直线 l :y =k x +b 都在直线 l :y =k x的上方,即 y ≥y . 故选:A .5.【解答】解:∵直线 y =x +m 与 y =kx ﹣1 相交于点 P (﹣1,1),∴根据图象可知:关于 x 的不等式 x +m >kx ﹣1 的解集是 x >﹣1,在数轴上表示为:,故选:B .6.【解答】解:因为正比例函数 y =ax 经过二、四象限,所以 a <0,① 正确;1 1 1 12 2 2 1 21 2 1一次函数 y = x +b 经过一、二、三象限,所以 b >0,②错误;由图象可得:不等式 ax > x +b 的解集是 x <﹣2,③正确;当 x >0 时,y y <0,④错误;故选:D .二.填空题(共 7 小题)7.【解答】解:∵函数 y =kx +b 的图象与 x 轴的交点坐标是(﹣3,0),∴方程 kx +b =0 的解是 x =﹣3,不等式 kx +b >0 的解集是 x <﹣3.故答案为 x =﹣3;x =﹣3.8.【解答】解:由图可得,当 x >2 时,k x +b >k x +b ,所以不等式 y >y 的解集为 x >2.故答案为:x >2.9.【解答】解:依题意得:直线 l :y =k x +b 经过点(0,3),(3,﹣1),则 .解得.故直线 l :y =x +3.所以,直线 l :y = x ﹣3.由 k x +b >k x +b 的得到: 解得 x < .故答案是:x < .x +3> x ﹣3.10.【解答】解:由题意可得:一次函数图象在y =1 的下方时 x <2,在 y =﹣2 的上方时 x >﹣1,∴关于 x 的不等式﹣2<kx +b <1 的解集是﹣1<x <2故答案为:﹣1<x <2.11.【解答】解:∵函数 y =ax +b 和 y =|x |的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当 y >y 时,x 的取值范围是 x >2 或 x <﹣1, 2 1 2 1 1 2 2 1 21 1 11 1 12 2 1 1 2 212故答案为:x<﹣1或x>2.12.【解答】解:∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:613.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故答案为:.三.解答题(共 7 小题)14.【解答】解:∵直线 y =kx +b 经过点 A (5,0),B (1,4),∴解得,,∴直线 AB 的解析式为:y =﹣x +5;∵若直线 y =2x ﹣4 与直线 AB 相交于点 C ,∴解得.,∴点 C (3,2);根据图象可得:关于 x 的不等式 2x ﹣4<kx +b 的解集为:x <3,∴关于 x 的不等式 2x ﹣4<kx +b 的正整数解是 1,2.15.【解答】解:(1)k =﹣2 时,y =﹣2x +2,根据题意得﹣2x +2>x ﹣3,解得 x < ;(2)当 x =1 时,y =x ﹣3=﹣2,把(1,﹣2)代入 y =kx +2 得 k +2=﹣2,解得 k =﹣4, 当﹣4≤k <0 时,y >y ;当 0<k ≤1 时,y >y .所以 k 的范围为﹣4≤k ≤1 且 k ≠0.11 12 1 216.【解答】解:(1)当 x =0 时,y =6; 当 y =0 时,x =2.即该直线经过点(0,6)和(2,0), 其图象如图所示:;(2)①由于一次函数 y =﹣3x +6 的图象与 x 轴的交点坐标是(2,0),所以方程﹣3x +6 =0 的解是 x =2;②由一次函数 y =﹣3x +6 的图象知,不等式﹣3x +6<0 的解集是 x >2;③由一次函数 y =﹣3x +6 的图象,当 x <0 时,y >6.17.【解答】解:(1)∵直线 l :y =﹣ x +b 与直线 l :y =x 交于点 C (2,2),∴当 y <y 时,x >2;(2)将(2,2)代入 y =﹣ x +b ,得 b =3,∴y =﹣ x +3,∴A (6,0),B (0,3),1 12 2 1 2 11∴S =×3×2=3,当点 P 与点 B 重合时,△OPC 的面积为 3, 此时,P (0,3);当点 P 在射线 CA 上时,点 C 为 PB 的中点, 设点 P 的坐标为(a ,b ),则=2, =2,解得 a =4,b =1,∴P (4,1),综上所述,点 P 的坐标为(0,3)或(4,1).18.【解答】解:(1)∵点 A (6,6)在直线 l :y =kx ﹣3 上, ∴6=6k ﹣3,即 k = ,∴直线 l 解析式为:;故答案为:;(2)令 x =0,则 y =﹣3;令 y =0,则 x =2; 函数图象如图:△ BOC 1 1(3)将直线 l 向上平移 5 个单位长度得到直线 l ,则 l 的解析式为 y = x +2, 当 y =0 时,0= x +2,解得 x =﹣ ,∴;故答案为:;(4)由题可得,直线 OA 的解析式为 y =x ,解方程组,可得 ,∴B (﹣4,﹣4);故答案为:(﹣4,﹣4);(5)由 A (6,6),B (﹣4,﹣4),S =S += × ×(6+4)= ;△△△S,可得故答案为: ;(6)由图象可知不等式 kx ﹣3<x 的解集为:x <6. 故答案为:x <6.19.【解答】解:(1)当 x =1 时,y =3x =3,∴点 C 的坐标为(1,3).将 A (﹣2,6)、C (1,3)代入 y =kx +b , 得:1 2 2ABCAOC BOC解得:;(2)由 kx +b ﹣3x >0,得 kx +b >3x ,∵点 C 的横坐标为 1,∴x <1;(3)由(1)直线 AB :y =﹣x +4当 y =0 时,有﹣x +4=0, 解得:x =4,∴点 B 的坐标为(4,0).设点 D 的坐标为(0,m ),∴直线 DB :y =,过点 C 作 CE ∥y 轴,交 BD 于点 E ,则 E (1,),∴CE =|3﹣|∴S =S +S = △ △ △= |3﹣|×4=2|3﹣|.∵S =2S ,即 2|3﹣ △△|= ×4×3×2,解得:m =﹣4 或 12,∴点 D 的坐标为 D (0,﹣4)或 D (0,12).20.【解答】解:(1)点 E 在直线 y =x 上,点 E 的横坐标为 3.BCD CED CEB BCD BOC2∴E (3,3)代入直线 y =﹣ x +b 得,b =4,故答案为:4.(2)直线 y =﹣ x +4 得与 x 轴交点 A 的坐标为(12,0),由图象可知:当 0<y≤y 时,相应的 x 的值为:3≤x <12. (3)当 x =0 时,y =4,∴B (0,4),即:OB =4,∴CD =2OB =8,∵点 C 在直线 y =﹣ x +4 上,点 D 在直线 y =x 上, ∴(﹣ x+4 )﹣x =8 或 x ﹣(﹣ x+4 )=8,解得:x =﹣3 或 x =9,即:m =﹣3 或 m =9.答:m 的值为﹣3 或 9.111 2 1 2。

(北师大版)北京市八年级数学上册第四单元《一次函数》检测题(包含答案解析)

(北师大版)北京市八年级数学上册第四单元《一次函数》检测题(包含答案解析)

一、选择题1.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法比较2.两条直线y ax b =+与y bx a =+在同一直角坐标系中的图象位置可能为( ).A .B .C .D .3.一次函数y=2x-1的图象大致是( )A .B .C .D .4.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .5.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为( ).A .()100910092,2 B .()100910092,2-C .()100910102,2--D .()100910102,2-6.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 7.如图①,正方形ABCD 中,点P 以恒定的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y ( cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,△APQ 的面积为( )A .6cm 2B .4cm 2C .262cmD .42cm 28.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min9.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( ) A .17B .5+2C .35D .410.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .2511.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .12.如图,在平面直角坐标系中,已知()0,6A 、()3,0B 、()1,4C 过A 、B 两点作直线,连接OC ,下列结论正确的有( )A .直线AB 解析式:36y x =-+ B .点C 在直线AB 上 C .线段BC 长为17D .:1:3AOC BOC S S ∆∆=二、填空题13.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值. 14.请你直接写出一个图象经过点(0,-2),且y 随x 的增大而减小的一次函数的解析式_____.15.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.16.若直线3y kx =+与坐标轴所围成的三角形的面积为6,则k 的值为______. 17.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 18.正方形1111A B C O ,2222A B C C ,3333A B C C ,...按如图的方式放置,点1A ,2A ,3A ,..和点1C ,2C ,3C ,...分别在直线1y x =+和x 轴上则点4B 的坐标是__________.19.如图,正方形A 1B 1C 1O,A 2B 2C 2C 1,A 3B 3C 3C 2, ……,按如图的方式放置.点A 1,A 2,A 3,……和点C 1,C 2,C 3……分别在直线y =x +1和x 轴上,则点A 6的坐标是____________.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘.现有甲、乙两家果园可供采摘,这两家草莓的品质相同,售价均为每千克30元,是两家果园的采摘方案不同. 甲果园:每人需购买20元的门票一张,采摘的草莓按6折优惠; 乙果园:不需要购买门票,采摘的草莓按售价付款不优惠.设小明和爸爸妈妈三个人采摘的草莓数量为x 千克,在甲、乙果园采摘所需总费用分别为y 甲、y 乙元,其函数图象如图所示.(1)请分别求出y 甲、y 乙与x 之间的函数关系式; (2)请求出图中点A 的坐标并说明点A 表示的实际意义;(3)请根据函数图象,直接写出小明一家选择哪家果园采摘更合算. 23.已知一次函数()1240y mx m m =-+≠.(1)判断点()2,4是否在该一次函数的图象上,并说明理由;(2)若一次函数26y x =-+,当0m >,试比较函数值1y 与2y 的大小;(3)函数1y 随x 的增大而减小,且与y 轴交于点A ,若点A 到坐标原点的距离小于6,点B ,C 的坐标分别为()0,2-,()2,1.求ABC 面积的取值范围.24.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数251xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全函数图象:x …… 3-2- 1-0 1 2 3 (251)xy x =+ ……1.5-2.5- 02.51.5……...括号内打“√”,错误的在答题卡上相应的括号内打“×”; ①该函数图象是轴对称图形,它的对称轴是y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值2.5;当1x =-时,函数取得最小值 2.5-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数20.5y x =+的图象如图所示,结合你所画的函数图象,直接写出方程2520.51xx x =++的解(保留一位小数,误差不超过0.2).25.如图,在平面直角坐标系xOy 中,直线3y kx =+与x 轴的负半轴交于点A ,与y 轴交于点B .点C 在第四象限,BC BA ⊥,且BC BA =.(1)点B 的坐标为_________,点C 的横坐标为________;(2)设BC 与x 轴交于点D ,连接AC ,过点C 作CE x ⊥轴于点E .若射线AO 平分BAC ∠,用等式表示线段AD 与CE 的数量关系,并证明.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.2.B解析:B 【分析】由于a 、b 的符号均不确定,故应分四种情况讨论,找出合适的选项. 【详解】解:分四种情况讨论:当a >0,b >0时,直线y ax b =+与y bx a =+的图象均经过一、二、三象限,4个选项均不符合;当a >0,b <0,直线y ax b =+图象经过一、三、四象限,y bx a =+的图象经过第一、二、四象限;选项B 符合此条件;当a <0,b >0,直线y ax b =+图象经过一、二、四象限,y bx a =+的图象经过第一、三、四象限,4个选项均不符合;当a <0,b <0,直线y ax b =+图象经过二、三、四象限,y bx a =+的图象经过第二、三、四象限,4个选项均不符合; 故选:B. 【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.3.B解析:B 【分析】根据一次函数的性质进行判断即可.【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.4.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.5.B解析:B 【分析】根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数)”,依此规律结合2018=504×4+2即可找出点A 2018的坐标. 【详解】解:当x=1时,y=2, ∴点A 1的坐标为(1,2); 当y=-x=2时,x=-2, ∴点A 2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2018=504×4+2,∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.6.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.7.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.8.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min,故A选项说法正确;B. 小明家离食堂0.6km,食堂离图书馆0.8-0.6=0.2(km),故B选项说法正确;C. 小明吃早餐用了25-8=17(min),读报用了58-28=30(min),故C选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min),故D选项正确.故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 9.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR 的值即可.试题当点P 在直线y=-x+3和x=1的交点上时,作P 关于x 轴的对称点P′,连接P′R ,交x 轴于点Q ,此时PQ+QR 最小,连接PR ,∵PR=1,PP′=4∴221417+=∴PQ+QR 17故选A .考点:一次函数综合题.10.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.11.B解析:B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键. 12.B解析:B【分析】根据待定系数法,求得直线AB 解析式,即可判断A ,把()1,4C 代入直线AB 解析式,即可判断B ,利用两点间的距离公式,即可求解BC 的长,进而判断C ,求出AC :BC=1:2,进而判断D .【详解】设直线AB 解析式:y=kx+b ,把()0,6A 、()3,0B 代入得603b k b =⎧⎨=+⎩,解得:62b k =⎧⎨=-⎩, ∴直线AB 解析式:26y x =-+,故A 错误;∵当x=1,y=-2×1+6=4,∴()1,4C 在直线AB 上,故B 正确;∵BC==,故C 错误;∵=,∴AC= AB-BC∴AC :BC=1:2,∴:1:2AOC BOC S S ∆∆=,故D 错误.故选B .【点睛】本题主要考查一次函数的待定系数法,两点间的距离公式,直线上点的坐标特征,熟练掌握一次函数的图像和性质,是解题的关键.二、填空题13.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,), 故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值. 即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.14.y=-x-2(答案不唯一)【分析】由图象经过点(0-2)则b=-2又y 随x 的增大而减小只要k <0即可【详解】解:设函数y=kx+b (k≠0kb 为常数)∵图象经过点(0-2)∴b=-2又∵y 随x 的增大解析:y=-x-2(答案不唯一).【分析】由图象经过点(0,-2),则b=-2,又y 随x 的增大而减小,只要k <0即可.【详解】解:设函数y=kx+b (k≠0,k ,b 为常数),∵图象经过点(0,-2),∴b=-2,又∵y 随x 的增大而减小,∴k <0,可取k=-1.这样满足条件的函数可以为:y=-x-2.故答案为:y=-x-2.【点睛】本题考查了一次函数y=kx+b (k≠0,k ,b 为常数)的性质.它的图象为一条直线,当k >0,图象经过第一,三象限,y 随x 的增大而增大;当k <0,图象经过第二,四象限,y 随x 的增大而减小;当b >0,图象与y 轴的交点在x 轴的上方;当b=0,图象过坐标原点;当b <0,图象与y 轴的交点在x 轴的下方.15.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 16.±【分析】由直线的性质可知当x=0时可知函数与y 轴的交点为(03)设图象与x 轴的交点到原点的距离为a 根据三角形的面积为6求出a 的值从而求出k 的值【详解】当x=0时可知函数与y 轴的交点为(03)设图象解析:±34【分析】 由直线的性质可知,当x=0时,可知函数与y 轴的交点为(0,3),设图象与x 轴的交点到原点的距离为a ,根据三角形的面积为6,求出a 的值,从而求出k 的值.【详解】当x=0时,可知函数与y 轴的交点为(0,3),设图象与x 轴的交点到原点的距离为a , 则12×3a=6, 解得:a=4,则函数与x 轴的交点为(4,0)或(-4,0),把(4,0)代入y=kx+3得,4k+3=0,k=-34, 把(-4,0)代入y=kx+3得,-4k+3=0,k=34, 故答案为±34. 【点睛】 本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,解答时要注意进行分类讨论.17.3【分析】根据知道一次函数是单调递减函数即y 随x 的增大而减小代入计算即可得到答案【详解】解:∵∴一次函数是单调递减函数即y 随x 的增大而减小∴当时在时y 取得最大值即:当时y 的最大值为:故答案为:3【点 解析:3【分析】根据20-<知道一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,代入计算即可得到答案.【详解】解:∵20-<,∴一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,∴当05x ≤≤时,在0x =时y 取得最大值,即:当05x ≤≤时,y 的最大值为:max 0(2)33y =⨯-+=,故答案为:3.【点睛】本题主要考查了一次函数的性质,一次函数y kx b =+,当k 0<时y 随x 的增大而减小,0k >时,y 随x 的增大而增大;掌握一次函数的性质是解题的关键.18.【分析】根据一次函数图象上的点的坐标特征可得出点的坐标结合正方形的性质可得到点的坐标同理可得的坐标即可得到结果;【详解】当∴点的坐标为∵四边形为正方形∴点的坐标为当时∴的坐标为∵四边形为正方形∴点的 解析:()15,8【分析】根据一次函数图象上的点的坐标特征可得出点1A 的坐标,结合正方形的性质可得到点1B 的坐标,同理可得2B 、3B 、4B 的坐标,即可得到结果;【详解】当0x =,11y x =+=,∴点1A 的坐标为0,1,∵四边形111A B C O 为正方形,∴点1B 的坐标为()1,1,当1x =时,12y x =+=,∴2A 的坐标为1,2,∵四边形2221A B C C 为正方形,∴点2B 的坐标为()3,2,同理可得:点3A 的坐标为()3,4,点3B 的坐标为()7,4,点4A 的坐标为()7,8,点4B 的坐标为()15,8;故答案是()15,8.【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质.通过求出B1、B2、B3 的纵坐标得出规律是解决问题的关键.19.(3132)【解析】分析:由题意结合图形可知从左至右的第1个正方形的边长是1第2个正方形的边长是2第3个正方形的边长是4……第n 个正方形的边长是由此可得点An 的纵坐标是根据点An 在直线y=x+1上可解析:(31,32)【解析】分析:由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n 个正方形的边长是12n -,由此可得点A n 的纵坐标是12n -,根据点A n 在直线y=x+1上可得点A n 的横坐标为121n --,由此即可求得A 6的坐标了. 详解:由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n 个正方形的边长是12n -,∵点A n 的纵坐标是第n 个正方形的边长,∴点A n 的纵坐标为12n -,又∵点A n 在直线y=x+1上,∴点A n 的横坐标为121n --,∴点A 6的横坐标为:612131--=,点A 6的纵坐标为:61232-=,即点A 6的坐标为(31,32).故答案为:(31,32).点睛:读懂题意,“弄清第n 个正方形的边长是12n -,点A n 的纵坐标与第n 个正方形边长间的关系”是解答本题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°, ∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”; (3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°, ∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)1860y x =+甲,30y x =乙;(2)点A 的坐标为(5,150),点A 的实际意义是当采摘量为5千克时,到两家果园所需总费用相同均为150元;(3)当采摘量大于5千克时,到甲果园更划算;当采摘量等于5千克时,两家果园所需总费用相同,所以到甲乙果园哪家都可以;当采摘量小于5千克时,到家乙果园更划算.【分析】(1)根据函数图象和图象中的数据可以解答本题;(2)根据(1)的结论,联立方程组解答即可;(3)根据(1)的结论列不等式或方程组解答即可;【详解】解:(1)根据题意得300.62031860y x x =⨯⨯+⨯=+甲,设2y k x =乙,∵点(10,30)在y 乙上根据题意得,210300k =,解得230k =,∴30y x =乙;(2)联立186030y x y x=+⎧⎨=⎩,解得5150x y =⎧⎨=⎩, ∴点A 的坐标为(5,150),点A 的实际意义是当采摘量为5千克时,到两家果园所需总费用相同均为150元;(3)由(2)知点A 的坐标为(5)150,,观察图象知: 当采摘量大于5千克时,到甲果园更划算;当采摘量等于5千克时,两家果园所需总费用相同,所以到甲乙果园哪家都可以; 当采摘量小于5千克时,到家乙果园更划算.【点睛】本意考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答;23.(1)点()2,4在该一次函数的图象上,理由见解析;(2)当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)68ABC S △<<【分析】(1)根据一次函数的性质,将点()2,4代入到函数解析式,判断等式两边是否相等即可; (2)根据(1)中结果,即可求得两个函数的交点,根据函数的增减性即可判断函数值1y 与2y 的大小;(3)根据函数的增减性以及若点A 到坐标原点的距离小于6,确定m 的取值范围,再用m 表示出ABC 的面积,即可求得ABC 面积的取值范围.【详解】(1)将点()2,4代入到函数解析式,得,4224m m =-+,即44=,∴点()2,4在该一次函数的图象上;(2)两函数联立得,1224264y mx m x y x y =-+=⎧⎧⇒⎨⎨=-+=⎩⎩, ∵一次函数 26y x =-+,10k =-<,∴该函数单调递减,∵一次函数124y mx m =-+,0k >,∴该函数单调递增,∴当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)设A(0,y ),∵ABC 由A(0,y ),B ()0,2-,C ()2,1三点构成,又∵函数1y 随x 的增大而减小,∴0m <,当0x =时,246y m =-+<,解得,1m >-,∴10m -<<,∴A(0,24m -+),∵B ()0,2-,C ()2,1, ∴24226AB m m =-++=-+,∴12262ABC S AB m =⨯=-+△, ∵10m -<<, ∴6268m -+<<,∴68ABC S △<<.【点睛】本题考查了一次函数的性质、三角形的面积、绝对值的性质、平面直角坐标系中的点等知识,解题的关键是熟练运用以上知识点找到等量关系进行求解.24.(1)2-,2,图见解析;(2)①×,②√,③√;(3)11x =,20.2x =,3 1.5x =-.【分析】 (1)将2,2x x =-=直接代入函数解析式求解即可;(2)利用函数图像的性质,逐项判断即可;(3)结合图像,当11x =时等式成立,再确定此时2x 、3x 的范围,在范围内取值求解即可.【详解】解:(1)将2x =-代入251x y x =+中,则2y =- 将2x =代入251x y x =+中,则2y = 补全函数图形如图所示:(2)由函数图像可知函数为中心对称图形,故①错误;由图像可知当1x <-或1x >时,y 随x 增大而减小,当11x -<<时,y 随x 增大而增大,故当1x =和1x =-时取最大最小值,故②③正确(3)结合图像可知,当11x =时,2x 的值在01-之间、3x 的值在2-到1-之间 ∴代入0.2得2520.51x x x >++ 代入0.1得2520.51x x x <++代入0.15得2520.51x x x <++ 故2x 取0.2; 代入 1.5-得2520.51x x x >++ 代入 1.4-得2520.51x x x <++ 代入 1.45-得2520.51x x x <++ 故3x 取 1.5-所以11x =,20.2x =,3 1.5x =-.【点睛】本题考查了函数的图像和性质,会用描点法画出函数图像,利用数形结合的思想得到函数的性质是解题关键.25.(1)(0,3),3;(2)AD=2CE ,证明见解析.【分析】(1)过点C 作CD ⊥y 轴于点D ,可利用AAS 证明△ABO ≌△BCD ,则可得OB=CD ,根据直线3y kx =+与y 轴交于点B ,可得点B 的坐标,并由此得出OB=CD=3,即可求得点C 的横坐标;(2)延长CE ,与AB 相交于点F ,可利用ASA 证得△ABD ≌△CBF ,可得 AD=CF ,根据三角形内角和定理由CE ⊥x 轴及AO 平分∠BAC 得出∠AFE=∠ACE ,则由等角对等边得AC=AF ,再根据“三线合一”推出CF=2CE,则结论AD =2CE 得证.【详解】(1)解:如图,过点C 作CD ⊥y 轴于点D ,∴∠CDB=90°,∠C+∠CBD=90°.∵BC ⊥BA ,∴∠ABC=90°,∠ABO+∠CBD=90°.∴∠C=∠ABO ,∠CDB=∠ABC .在△ABO 和△BCD 中,CDB ABC C ABO AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCD (AAS ).∴OB=CD .∵直线3y kx =+与y 轴交于点B ,∴B(0,3).∴OB=3.∴点C 的横坐标为3.故答案为:(0,3),3.(2)AD=2CE .证明:如图,延长CE ,并与AB 相交于点F ,∵BC ⊥BA ,∴∠ABD=∠CBF=90°.∴∠BAD+∠BDA=90°,∠ECD+∠EDC=90°.∵∠BDA=∠EDC ,∴∠BAD=∠ECD .在△ABD 和△CBF 中,ABD CBF AB CB BAD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△CBF (ASA ).∴AD=CF .∵AO 平分∠BAC .∴∠EAF=∠EAC .∵CE ⊥x 轴,∴∠AEF=∠AEC=90°.∴∠EAF+∠AFE=∠EAC+∠ACE=90°.∴∠AFE=∠ACE .∴AC=AF.∴△ACF是等腰三角形.∴CE=FE.∴CF=2CE.∴AD=2CE.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质及等腰三角形的判定与性质等知识,掌握全等三角形与等腰三角形的判定与性质是解题的关键.26.(1)y=4x-2;(2)x=0.【分析】(1)根据正比例函数定义设设y=k(2x-1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x-1),当x=3时,y=10,∴5k=10,解得k=2,∴y与x之间的函数关系式是y=4x-2;(2)当y=-2时4x-2=-2,解得x=0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。

北师大版版八年级上册数学 一次函数培优训练(详细,经典)

北师大版版八年级上册数学   一次函数培优训练(详细,经典)

《一次函数》培优资料(1)专题一:一次函数的定义、图像及性质1.对于一次函数y = kx + k -1(k ? 0),下列叙述正确的是()A.当0 < k <1 时,函数图象经过第一、二、三象限B.当k > 0 时,y 随x 的增大而减小C.当k <1 时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(-1, -2)2.对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.3.直线y=kx+b 经过点(2,﹣4),且当3≤x≤6 时,y 的最大值为8 则k+b 的值为.4.两个一次函数y=ax+b与y=bx+a在同一坐标系中的图象大致是()5.如图,函数y=mx﹣4m(m 是常数,且m≠0)的图象分别交x 轴y 轴于点M、N,线段MN 上两点A、B(点B 在点A 的右侧),作AA1 ⊥x 轴,BB1⊥x 轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A 的面积S1 与△OB1B 的面积S2 的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定的6.已知直线y =- n x +n +11n +1(n 为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2018= .7.如图,在平面直角坐标系中,函数y=﹣2x+12 的图象分别交x 轴y 轴于A、B 两点,过点A 的直线交y 正半轴于点M,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)试在直线AM 上找一点P,使得S=S△AOM,请直接写出点P△ABP的坐标.8.点C 在直线AM 上,在坐标平面内是否存在点D,使以A、O、C、D 为顶点的四边形是正方形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.专题二:重要公式和结论1.直线y=kx+b过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k 的值为.2.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2 0),B(0,1),则直线BC 的解析式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式.4.如图,点A的坐标为(﹣2,0),点B在直线上运动,当点B 的坐标是时,线段AB 最短,最短距离为.5.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为.6.对于坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2 两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O 为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;7.设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b 上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4 的“转角距离”为10,求a 的值.专题三:直线与x轴正方向夹角和k的关系1.已知:一次函数的图象如图所示,则k= .2.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b 的表达式为.3.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为.4.如图,在平面直角坐标系中,直线l:y = 3 x ,直线l2:y =3x ,在3直线l1 上取一点B,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1 作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2 于点C1,得到四边形OA1B1C1;再以点B1 为对称中心,作O 点的对称点B2,过点B2 作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2 于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.5.已知,直线x +与x 轴,y 轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a 为坐标系中的一个动点.= ;(1)则三角形ABC 的面积S△ABC点C 的坐标为;(2)证明不论 a 取任何实数,△BOP 的面积是一个常数;(3)要使得△ABC 和△ABP 的面积相等,求实数a 的值.6.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A、B 两点,点A 的坐标为(1,0)∠ABO=30°,过点B 的直线y= x+m 与x 轴交于点C.(1)求直线l 的解析式及点C 的坐标.7.点D 在x 轴上从点C 向点A 以每秒1 个单位长的速度运动(0<t<4),过点D 分别作DE∥AB,DF∥BC,交BC、AB 于点E、F,连接EF,点G 为EF 的中点.①判断四边形DEBF 的形状并证明;②求出t 为何值时线段DG 的长最短.8.点P 是y 轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,说明理由.《一次函数》培优资料(2)专题四:一次函数与几何变换1. ( 1 )直线y = 2x +1 向下平移 3 个单位后的解析式是.( 2 )直线y = 2x +1 向右平移 3 个单位后的解析式是.2.如图,已知点 C 为直线y =x 上在第一象限内一点,直线y = 2x +1 交y轴于点A,交x 轴于B,将直线AB 沿射线OC 方向平移3 2 个单位,则平移后的直线的解析式为.yACBO x3.如图,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B (3,1),C(2,2),当直线与△ABC 有交点时,b 的取值范围是.4.在平面直角坐标中,已知点A(-2,3)、B(4,5),直线y=kx+1(k≠0 与线段AB 有交点,则k 的取值范围为.5.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为.6.如图,函数y=﹣2x+2 的图象分别与x 轴、y 轴交于A,B 两点,线段AB绕点A顺时针旋转90°得到线段AC,则直线AC的函数解析式是.7.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴y 轴上,点B 在第一象限,直线y=x+1 交y 轴于点D,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为.8.如图1,已知平行四边形ABCD,AB∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是平行四边形ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD,求点P 的坐标.(2)若点P 在边AB,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x﹣1 上,求点P 的坐标.解:(1)∵CD=6,∴点P 与点C 重合,∴点P 坐标为(3,4).(2)①当点P 在边AD 上时,∵直线AD 的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P 关于x 轴的对称点Q1(a,2a+2)在直线y=x﹣1 上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P 关于y 轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1 上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P 在边AB 上时,设P(a,﹣4)且1≤a≤7,若等P 关于x 轴的对称点Q2(a,4)在直线y=x﹣1 上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P 关于y 轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1 上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P 的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).9.若点P 在边AB,AD,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM,过点G 作x 轴的平行线GM,它们相交于点M,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)(3)①如图1 中,当点P 在线段CD 上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得,∴P (﹣,4)根据对称性可知,P(,4)也满足条件.②如图2 中,当点P 在AB 上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P 坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4)10.如图,直线l1 与x 轴、y 轴分别交于A、B 两点,直线l2 与直线l1 关于x 轴对称,已知直线l1 的解析式为y=x+3,(1)求直线l2 的解析式;y=﹣x﹣3(2)过A 点在△ABC 的外部作一条直线l3,过点B 作BE⊥l3 于E,过点C 作CF⊥l3 于F,请画出图形并求证:BE+CF=EF;(2)如图.BE+CF=EF.∵直线l2 与直线l1 关于x 轴对称,∴AB=AC,∵l1 与l2 为象限平分线的平行线,∴△OAC 与△OAB 为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P,过P 点的直线与AC 边的延长线相交于点Q,与y 轴相交于点M,且BP=CQ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.(3)①对,OM=3过Q 点作QH⊥y 轴于H,直线l2 与直线l1 关于x 轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM ∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM= BC=3.例1对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1 次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A. B. C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C 的坐标为(7,6),求出点B的坐标及n的值.例2 已知,在平面直角坐标系中,正方形ABOC的顶点在原点.(1)如图,若点C 的坐标为(-1,3),求A点坐标;(2)如图,点F 在AC 上,AB 交x 轴于点E。

北师大版八年级上学期数学培优试题

北师大版八年级上学期数学培优试题

八年级上学期培优试题一 一、选择题 1. 关于直线l :y=kx+kk≠0,下列说法不正确的是A.点0,k 在l 上B.l 经过定点﹣1,0C.当k >0时,y 随x 的增大而增大D.l 经过第一、二、三象限2.已知一次函数y=x+a 与y=﹣x+b 的图象都经过点A ﹣2,0,且与y 轴分别交于B,C 两点,那么△ABC 的面积是A .2B .3C .4D .5二、填空题3. 81的平方根是 ;4.若三角形的周长为24,它的三边长a,b,c 满足4a=3b,c=2b-a,则这个三角形的三边长分别是 ;5.如图是“赵爽弦图”,△ABH、△BCG、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,AH =6,那么EF 等于 .6.如图3,直线L 上有三个正方形a,b,c,若a,c 的面积分别为5和11,则b 的面积为 ;7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 dm .8.我国古代有这样一道数学问题:“枯木一根直立地上'高二丈 周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几 何,题意是:如图所示,把枯木看作一个圆柱体,因一丈是 十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是 尺.9. 若点M k ﹣1,k+1关于y 轴的对称点在第四象限内,则一次函数y=k ﹣1x+k 的图象不经过第 象限.10.如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E,连接BE,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为 .11.如图,直线132y x =-+与坐标轴分别交于点A 、B ,与直线y x =交于点C , 线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为 .1如果两班联合起来购买服装,那么比各自购买服装共可以省多少钱2两班各有多少名学生参加演出12.如图,在平面直角坐标系中,过点B 6,0的直线AB 与直线OA 相交于点 A 4,2,动 点M 在线段OA 和射线AC 上运动.1求直线AB 的解析式.2求△OAC 的面积.3是否存在点M ,使△OMC 的面积是△OAC 的面积的14若存在求出此时点M 的坐标;若不存在,说明理由.。

北师大版八年级上册一次函数与几何解答题 培优专题(解析版)

北师大版八年级上册一次函数与几何解答题 培优专题(解析版)

2019-2020一次函数与几何解答题培优专题(解析版)1.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.2.如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.3.如图,已知一次函数y=mx+3的图象经过点A(2,6),B(n,-3).求:(1)m,n的值;(2)△OAB的面积.4.已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线-3y x ,且经过点(2,-3). (1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.5.长方形OABC ,O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限.(1)求点B 的坐标;(2)如图,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标.6.如图,在平面直角坐标系xOy 中,正比例函数y =x 的图象与一次函数y =kx -k 的图象的交点坐标为A(m ,2).(1)求m 的值和一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,求△AOB 的面积;(3)直接写出使函数y =kx -k 的值大于函数y =x 的值的自变量x 的取值范围.7.如图,已知直线y =-2x +6与x 轴交于点A ,与y 轴交于点B.(1)点A 的坐标为________,点B 的坐标为________.(2)求△AOB 的面积.(3)直线AB 上是否存在一点C(点C 与点B 不重合),使△AOC 的面积等于△AOB 的面积?若存在,求出点C 的坐标;若不存在,请说明理由.8.已知:直线24y x =+与x 轴交于点A ,与y 轴交于点B ,坐标原点为O .(1)求点A ,点B 的坐标.(2)求直线24y x =+与x 轴、y 轴围成的三角形的面积.(3)求原点O 到直线24y x =+的距离.9.如图,一次函数y =2x +3与x 轴相交于点A ,与y 轴相交于点B.(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.10.如图,一次函数334y x =-+的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB 沿直线CD 对折,使点A 与点B 重合,直线CD 与x 轴交于点C ,与AB 交于点D .(1)求A 、B 两点的坐标;(2)求OC 的长;(3)点P 是x 轴上一动点,若△P AB 是等腰三角形,写出点P 的坐标(不需计算过程).11.如图,直线l 1的解析式为33y x =-,且l 2与x 轴交于点D ,直线2l 经过点A 、B ,直线l 1,2l 相交于点C .()1求点D 的坐标;()2求ADC 的面积.12.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.13.已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.14.如图,在平面直角坐标系中,为坐标原点,直线:与直线:交于点,与轴交于,与轴交于点.(1)求△的面积;(2)若点在直线上,且使得△的面积是△面积的,求点的坐标.15.已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m 为何值时,函数图象过原点?(2)m 为何值时,函数图象平行于直线y=2x ?(3)m 为何值时,函数图象过点(0,﹣15),且y 随x 的增大而减小?16.已知函数y =(m -2)x 3-|m|+m +7,当m 为何值时,y 是x 的一次函数.17.如图,一次函数y=-x+m 的图象与x 轴和y 轴分别交于点A 和点B ,与正比例函数32y x =图象交于点P(2,n).(1)求m 和n 的值;(2)求△POB 的面积;(3)在直线OP 上是否存在异与点P 的另一点C ,使得△OBC 与△OBP 的面积相等?若存在,请求出C 点的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线3y x =-+过点(5,)A m 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与2y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.19.如图,直线1y x =-+与直线3y x =- ,两直线与x 轴的交点分别为A 、B .(1)求两直线交点C 的坐标;(2)求ABC ∆的面积.20.如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.21.已知一次函数y =kx +b 的图象经过点A (−1,−1)和点B (1,−3).求:(1)求一次函数的表达式;(2)求直线AB 与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得P A+PB最小,并求出P的坐标.22.如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积。

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册一、选择题1.已知A点坐标为A()点B在直线y=﹣x上运动,当线段AB最短时,B点坐标()A.(0,0)B.(,﹣)C.(1,﹣1)D.(﹣,)2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.二、填空题4.在平面直角坐标系中,一次函数y=x+4的图象分别与x轴,y轴交于点A,B,点P在一次函数y=x的图象上,则当△ABP为直角三角形时,点P的坐标是.5.直线y=kx+1与两坐标轴围成的三角形周长为6,则k=.6.如图,正方形OA1B1C1,C1A2B2C2,C2A3B3C3,…的顶点A1,A2,A3,…在直线y=kx+b上,顶点C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),那么点A4的坐标为,点A n的坐标为.7.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是.8.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于.9.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC 于点F,连接EF,若AF平分∠DFE,则k的值为.10.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.12.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.三、解答题13.如图,直线与x轴、y轴分别交于B、C两点.(1)求B、C两点的坐标.(2)若点A(x,y)是第一象限内的直线上的一个动点,则当点A运动到什么位置(求出点A的坐标)时,△AOB的面积是3.(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l交x轴于点A(﹣1,0)、交y轴于点B(0,3).(1)求直线l对应的函数表达式;(2)在x轴上是否存在点C,使得△ABC为等腰三角形,若存在,请求出点C的坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(2,4).(1)求m的值及l2的解析式;(2)若点M是直线上的一个动点,连接OM,当△AOM的面积是△BOC面积的2倍时,请求出符合条件的点M的坐标;(3)一次函数y=kx+2的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.16.已知:如图1,直线AB:y=﹣x+2分别交x,y轴于点A,B.直线AC与直线AB关于x轴对称,点D为x轴上一点,E为直线AC上一点,BD=DE.(1)求直线AC的函数解析式;(2)若点D的坐标为(3,0),求点E的坐标;(3)如图2,将“直线AB:y=﹣x+2”改为“直线AB:y=kx+2”,∠E=∠ABO+∠ADB,x E=3,其他不变,求k的值.17.在平面直角坐标系中,点O为坐标原点,直线y=kx+3交x轴负半轴于点A,交y轴于点B,AB+OB=2OA.(1)如图1,求k值;(2)如图2,点C在y轴正半轴上,OC=2OA,过点C作AB的垂线交x轴于点D,点E为垂足,点P在BE的延长线上,点P的横坐标为t,连接PO,PD,△POD的面积为S,求S与t之间的函数关系式,不要求写出自变量t的取值范围;(3)在(2)的条件下,点F在OD上,连接FB,FP,若∠OBF+∠BPF=∠FPD=45°,求t值.18.在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?20.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?21.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?。

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷教师版

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷教师版

2019-2020北师大版八年级数学上册第四章一次函数单元培优试卷一、选择题(每小题3分,共30分)1.一次函数y=-3x+1的图象一定经过点( )A. B. C. D.解:A.∵ -3x+1=-3×2+1=-5,∴在函数图像上;B. ∵ -3x+1=-3×1+1=-2,∴不在函数图像上;C. ∵ -3x+1=-3×(-2)+1=7,∴不在函数图像上;D. ∵ -3x+1=-3×0+1=1,∴不在函数图像上;故答案为:A.2.直线y=2x﹣6与x轴的交点坐标是()A. (0,3)B. (3,0)C. (0,﹣6)D. (﹣3,0)解:当y=0时,2x-6=0,解得:x=3,所以,与x轴的交点坐标是(3,0),故答案为:B。

3.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)解:△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),故答案为:B。

4.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中. 设小明出发第分钟的速度为米/分,离家的距离为米. 与之间的部分图象、与之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A. 4.5B. 8.25C. 4.5 或8.25D. 4.5 或8.5解:当2≤t≤5时,设s=kt+b, 得200=2k+b, 680=5k+b, 解得k=160, b=-120, ∴s=160t-120,∴600=160t-120, 解得t=4.5;由图像分析可得,5-16分钟,小明经过的路程是11×80=880m, 故小明全程经过的路程是680+880=1560m, 则单程距离为780m, 故小明从5分钟后开始跑完单程,又回到600m, 还需跑780-680+180=280m, 所用的时间为280÷80=3.5min, 故所用的时间为(5+3.5)min=8.5min.故答案为:D5.一次函数y1=kx+b与y2=x+a的图象如图所示,有下列结论:①k<0;②a>0;③当x<3时,y1<y2.其中正确结论的个数是()A. 0个B. 1个C. 2个D. 3个解:①y1=kx+b图象向右下降,y1随x增加而减小,则k<0, 符合题意;②y2=x+a的图象与y轴的交点在x轴下方,则a<0,不符合题意;③当x<3时,y1=kx+b的图象在y2=x+a的图象上方,则y1>y2;综上,只有①正确;故答案为:B.6.已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A. B. C. D.解:∵正比例函数,且随的增大而减少,.在直线中,,,∴函数图象经过一、三、四象限.故答案为:D.7.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.解:A、兔子后出发,先到了,不符合题意;B、乌龟比兔子早出发,而早到终点,符合题意;C、乌龟先出发后到,不符合题意;D、乌龟先出发,与兔子同时到终点,不符合题意。

八年级数学(北师大版)一次函数培优测试题

八年级数学(北师大版)一次函数培优测试题

一次函数培优测试题一. 选择题1. 下列函数中,是正比例函数,且y 随x 增大而减小的是( ) A.14+-=x y B. 6)3(2+-=x y C. 6)2(3+-=x y D. 2x y -=2.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( ) A. 1y >2y B. 1y < 2y C. 1y =2y D.不能确定3.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( ) A. 1b >2b B. 1b <2b C. 1b =2b D.不能确定4.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )4.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=5.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm6.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.7.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________.8.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.9.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______. 10.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.11.南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,若从A 城运往甲、乙两个农场的运费分别为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费分别为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,如果你承包了这项运输任务,怎样调运花钱最少?12.A 、B 两辆汽车从相距120千米的甲、乙两地同时同向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间.如图,1l 、2l 分别表示两辆汽车的s 与t 的关系.(1)2l 表示那辆汽车离甲地的距离与行驶时间的关系? (2)汽车B 的速度是多少?(3)2小时后,A 、B 两辆汽车相距多少千米? (4)行使多长时间后,A 、B 两辆汽车相遇?13、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200个,超过部分除按上述规定外,每个产品再增加0.4元,求一个工人:(1)完成100个以内所得报酬y (元)与产品数x (个)之间的函数关系式。

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.27一次函数(全章分层练习)(培优练)一、单选题本大题共10小题,每小题3分,共30分)1.(2023春·八年级单元测试)无论m 为什么实数时,直线2y mx m =+-总经过点().A .(0,2)-B .(1,2)-C .(1,2)--D .(2,0)2.(2023秋·北京西城·九年级北京市第一六一中学校考开学考试)如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h 、水面的面积S 及注水量V 是三个变量.下列有四种说法:①S 是V 的函数;②V 是S 的函数;③h 是S 的函数;④S 是h 的函数.其中所有正确结论的序号是()A .①③B .①④C .②③D .②④3.(2023·浙江丽水·统考一模)将一圆柱体从水中匀速提起,从如图所示开始计时,直至其下表面刚好离开水面,停止计时.用x 表示圆柱体运动时间,y 表示水面的高度,则y 与x 之间函数关系的图象大致是()A .B .C .D .4.(2022秋·四川成都·八年级校考期中)如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是()A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 25.(2023春·四川南充·八年级期末)如图,是李林周末骑自行车离家出游的图象,图中t 表示时间,s 表示李林离家的距离.则下列说法错误的是()A .60min 时李林离家8kmB .前20min 骑行速度为12km/hC .20min 30min -骑行的距离为4kmD .45min 时李林离家6km6.(2023春·浙江·八年级期末)如图,()()1122,,,A x y B x y 分别是直线21,4y x y x =+=-+上的动点,若121x x -≤时,都有124y y -≤,则1x 的取值范围为()A .1103x -≤≤B .102x ≤≤C .17133x -≤≤-D .1223x -≤≤7.(2023春·浙江台州·八年级统考期末)已知一次函数()0y kx b k =+≠的图象与2y x =-的图象交于点(),4m -.则对于不等式2kx b x -<- ,下列说法正确的是()A .当2k <-时,2x >B .当2k <-时,2x <C .当2k >-且0k ≠时,2x >-D .当2k >-且0k ≠时,<2x -8.(2023春·广东深圳·八年级统考期中)如图,点P 为直线1y x =+上一点,先将点P 向左移动2个单位,再绕原点O 顺时针旋转90︒后,它的对应点Q 恰好落在直线34y x =-+上,则点Q 的横坐标为()A.13-B.12C.13D.12-9.(2022秋·江苏无锡·八年级期末)如图,直线y=2x+2与直线y=﹣x+5相交于点A,将直线y=2x+2绕点A旋转45°后所得直线与x轴的交点坐标为()A.(﹣8,0)B.(3,0)C.(﹣11,0),(73,0)D.(﹣10,0),(2,0)10.(2021秋·重庆北碚·九年级西南大学附中校考期中)小明和小李住在同一个小区,暑假期间,他们相约去缙云山某地露营;小明先出发5分钟后,小李以65米/分的速度从小区出发,小明到达相约地点后放下装备,休息了10分钟,立即按原路以另一速度返回,途中与小李相遇,随后他们一起步行到达目的地.小李与小明之间的距离y(米)与小明出发的时间x(分)之间的关系如图,则下列说法正确的是()A.小明首次到达目的地之前的速度是75米/分B.小明首次到达目的地时,小李距离目的地还有200米C.从小区到目的地路程为2800米D .小明返回时的速度是33米分二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·八年级课时练习)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =.12.(2021春·湖北武汉·八年级统考期末)直线l :y kx b =+(k 、b 是常数,0k ≠)经过()0,2A 、()1,B m -两点,其中0m <,下列四个结论:①方程0kx b +=的解在1-和0之间;②若点()111,P x y 、()2121,Px y +在直线l 上,则12y y >;③2k >;④不等式kx b m +>-的解集为13x >-时,3k =,其中正确的结论有.(只需填写序号)13.(2022秋·江苏镇江·八年级统考期末)已知点Р在直线l :y =kx ﹣3k (k ≠0)上,点Q 的坐标为(0,4),则点Q 到直线l 的最大距离是.14.(2023春·全国·七年级期末)平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()2,4-,点P 的坐标为(),a b ,其中a ,b 满足方程组21223b a m b a m -+=⎧⎨--=⎩,已知点P 在直线AB 的下方,且点P 不在第三象限,则m 的取值范围为.15.(2022秋·安徽蚌埠·八年级校考期中)已知{}max ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最大的那个数,{}min ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最小的那个数,例如{}min 5,3,03-=-,则:(1){}max 2,4,1-=;(2)已知函数min 152,28,44y x x x ⎧⎫=+-++⎨⎬⎩⎭,则max y =;16.(2023·全国·八年级假期作业)在平面直角坐标系中,直线4:4AB y x m =-+与直线:4m OC y x =交于点P ,N 为直线4x =上的一个动点,(2,0)M ,则+MN NP 的最小值为.17.(2023春·八年级课时练习)甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲、乙行驶的路程分别为,S S 甲乙,路程与时间的函数关系如图所示,丙与乙同时出发,从N 地沿同一条公路匀速前往M 地.当丙与乙相遇时,甲、乙两人相距20km ,问丙出发后小时后与甲相遇.18.(2023春·湖北武汉·八年级校联考阶段练习)已知一次函数()0y kx b k =+<的图象与y 轴正半轴交于点A ,且2k b +=,则下列结论:①函数图象经过一、二、四象限;②函数图象一定经过定点()1,2;③不等式()20k x b -+>的解集为1x <;④直线y bx k =--与直线y kx b =+交于点P ,与y 轴交于点B ,则PAB 的面积为2.其中正确的结论是.(请填写序号)三、解答题(本大题共6小题,共58分)19.(8分)(2023春·山东济南·七年级统考期中)如图1,在长方形ABCD 中,动点P 以1厘米/秒的速度,由A 点出发,沿A B C D →→→匀速运动,到点D 停止运动.设运动的时间为t 秒,三角形ADP 的面积为S 平方厘米.图2为运动过程中,S 与t 的关系图象.(1)由图2可知,AB =______厘米;(2)当点P 在AB 上运动时,求S 与t 的关系式;(3)在整个运动过程中,当三角形ADP 的面积为10平方厘米时,求t 的值.20.(8分)(2023春·福建龙岩·八年级统考期末)如图,已知直线1l :112y x =--与x 轴交于点A ,直线2l :4y kx =+经过点A ,与y 轴交于点B .(1)求点A 的坐标和k 的值;(2)点E 在线段AB 上,点F 在直线AC 上,若EF y ∥轴,且52EF =,求点E 坐标.21.(10分)(2023春·云南临沧·八年级统考期末)如图,直线1l 与x 轴交于点()5,0A ,与y 轴交于点()0,5B ,直线2l 的解析式为33y x =-.(1)求直线1l 的解析式.(2)点P 在x 轴上,过点P 作直线x a =平行于y 轴,分别与直线1l 、2l 交于点M 、N ,当点M 、N 、P 三点中的任意两点关于第三点对称时,求a 的值.22.(10分)(2023·四川眉山·校考三模)“双减”政策实施后,学生有了更多体验生活、学习其它知识的时间,为丰富学生的课外生活,某学校计划购入A 、B 两种课外书,已知用300元购进A 种书的数量与用400元购进B 种书的数量相同,B 种书每本价格比A 种书每本价格多10元.(1)求A 种书、B 种书的单价;(2)若学校一次性购进A 、B 两种书共200本,且要求购进A 种书的本数不超过B 种书本数的2倍,则学校怎样购书,才能使购书款最少?请你求出最少的购书款及相应的购买方案.23.(10分)(2023春·湖南邵阳·八年级统考期末)如图,过点C 的直线6y x -=与坐标轴相交于A 、B 两点,已知点(),C x y 是第二象限的点,设AOC 的面积为S .(1)写出S 与x 之间的函数关系,并写出x 的取值范围;(2)当AOC 的面积为6时,求出点C 的坐标;(3)在(2)的条件下,坐标轴上是否存在点M ,使得M 与A 、O 、C 中任意两点形成的三角形面积也为6,若存在,请直接写出点M 的坐标.24.(12分)(2023·河南商丘·统考三模)某火锅店为吸引客户,推出两款双人套餐,下表是近两天两种套餐的收入统计:数量收入A 套餐B 套餐第一天20次10次2800元第二天15次20次3350元(1)求这两款套餐的单价;(2)A 套餐的成本约为45元,B 套餐的成本约为50元,受材料和餐位的限制,该火锅店每天最多供应50个套餐,且A 套餐的数量不少于B 套餐数量的15,求火锅店每天在这两种套餐上的最大利润;(3)火锅店后续推出增值服务,每个套餐可选择再付10元即可加料,即在鱼豆腐、面筋、川粉和蘑菇中任选两种涮菜.小明是这个火锅店的常客,2022年他共花费1610元购买两个套餐,其中A 套餐不加料的数量占总数量的14,则小明选择B 套餐加料的数量为______个.参考答案1.C【分析】把解析式变形得到关于m 的不定方程形式得到y =(x +1)m -2,根据无论m 为什么实数时,直线总过定点得出,x +1=0,求出经过的点即可.解:∵y =mx +m ﹣2,∴y =(x +1)m -2,∵无论m 为什么实数时,直线总过定点,∴x +1=0,解得x =﹣1,代入解析式得,y =﹣2,∴直线y =mx +m ﹣2总经过点(﹣1,﹣2).故选:C .【点拨】本题考查了一次函数过定点问题,解题关键是把解析式适当变形,根据所含参数系数为0求出点的坐标.2.B【分析】由函数的概念求解即可.解:①:由题意可知,对于注水量V 的每一个数值,水面的面积S 都有唯一值与之对应,所以V 是自变量,S 是因变量,所以S 是V 的函数,符合题意;②:由题意可知,对于水面的面积S 的每一个数值,注水量V 的值不一定唯一,所以V 不是S 的函数,不符合题意;③:由题意可知,对于水面的面积S 的每一个数值,水面的高度h 的值不一定唯一,所以h 不是S 的函数,不符合题意;④:由题意可知,对于水面的高度h 的每一个数值,水面的面积S 都有唯一值与之对应,h 是自变量,S 是因变量,所以S 是h 的函数,符合题意;所以正确的的序号有①④,故选:B .【点拨】此题考查了函数的概念,解题的关键是熟记函数的概念.3.C【分析】设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,根据函数解析式确定函数图象即可.解:设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,∵210S v S -<,∴y 随x 的增大而减小,∴可知y 与x 之间函数关系的图象大致为y 先保持不变,然后y 随x 的增大而减小,故选:C .【点拨】本题考查了一次函数的图象.解题的关键在于正确的表示数量关系.4.C【分析】由一次函数的图象经过一,二,三象限,所以0,0,k b >>从而可判断A ,B ,由直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),可判断C ,由0k >结合一次函数的性质可判断D ,从而可得答案.解:由一次函数的图象经过一,二,三象限,所以0,0,k b >>故A 不符合题意;直线y =bx +k 经过一,二,三象限,故B 不符合题意;直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),∴关于x 的方程kx +b =0的解为x =﹣5,故C 符合题意;若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,而0,k >y 随x 的增大而增大,若x 1<x 2,则y 1<y 2,故D 不符合题意;故选C【点拨】本题考查的是一次函数的图象与性质,一次函数与一元一次方程的关系,掌握“一次函数的图象与性质”是解本题的关键.5.C【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.解:由图可得,A.60min 时李林离家8km ,故选项A 说法正确,不符合题意;B.前20min 骑行速度为h 204261/0km ÷=,故选项B 说法正确,不符合题意;C.20min 30min -骑行的距离为0km ,故选项C 说法错误,符合题意;D.设3060t ≤≤时,s 与t 之间的函数关系式为s mt n =+,把()()30,4,60,8代入得,304608m n m n +=⎧⎨+=⎩,解得,2150m n ⎧=⎪⎨⎪=⎩,∴s 与t 之间的函数关系式为215s t =,∴当45t =时,2456km 15s =⨯=,故选项D 说法正确,不符合题意;故选:C .【点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.6.B【分析】将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,同理将点A 向左平移一个单位得到C ,进而即可求解.解:如图,将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,()111,21C x x ∴++,()()111,14B x x +-++即()111,3B x x +-+,()11121332BC x x x ∴=+--+=-1324x ∴-≤解得12x ≤如图,将点A 向左平移一个单位得到C ,∴()11121C x x -+,,()()111,14B x x ---+即()111,5B x x --+,()11521BC x x ∴=-+-+134x =-+4≤解得10x ≥综上所述,102x ≤≤,故选B【点拨】本题考查了一次函数的性质,坐标与图形,根据题意作出图形分析是解题的关键.7.D【分析】根据正比例函数可求出交点坐标,进一步可得出k 与b 的关系,利用函数图象可得出正确结论.解:由题意可得交点坐标为()2,4-故有:24k b +=-,24b k ∴=--令24y kx b kx k '=-=++,可知函数24y kx k '=++的图象恒过点()2,4-()2,4-也在2y x =-的图象上对于A 、B 选项,当2k -<时画出函数图象,如图所示:可得:2x ->,故A 、B 错误;对于C 、D 选项,当2k ->且0k ≠时画出函数图象,如图所示:无论20k -<<还是0k >,均有2x -<故C 错误,D 正确故选:D【点拨】本题考查函数的交点问题以及不等式与函数的联系.利用数形结合思想是解决此类问题的关键.8.B【分析】可将点的平移和旋转转化为直线的平移和旋转,求出解析式后,联立两个函数解析式即可求出交点的横坐标.解:∵点P 为直线1y x =+上一点,∴点P 向左移动2个单位后的解析式为213y x x =++=+,∵3y x =+绕原点O 顺时针旋转90︒后解析式为3y x =-+∴334y x y x =-+⎧⎨=-+⎩,可得12x =,∴点Q 的横坐标为12.故选:B【点拨】此题考查一次函数,解题关键是将点的平移和旋转转化为函数平移和旋转,然后求函数的交点坐标.9.C【分析】先求出点A 的坐标;设直线y =2x +2与x 轴交于点B ,过点A 作AC ⊥x 轴于点C ,可求出AC 和BC 的长;若将直线y =2x +2绕点A 旋转45°,则需要分两种情况:当直线AB 绕点A 逆时针旋转45°时,如图1,设此时直线与x 轴的交点为P ;过点B 作BD ⊥AB 交直线AP 于点D ,过点D 作DE ⊥x 轴于点E ,可得△ACB ≌△BED ,进而可得点D 的坐标,用待定系数法可求出直线AP 的表达式,进而求出点P 的坐标;当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F ,则△ADF 是等腰直角三角形,根据中点坐标公式可求出点F 的坐标,进而求出直线AQ 的表达式,最后可求出点Q 的坐标.解:令2x+2=-x+5,解得x=1,∴A(1,4).设直线y=2x+2与x轴交于点B,过点A作AC⊥x轴于点C,∴OC=1,AC=4,令y=2x+2=0,则x=-1,∴OB=1,∴BC=2.将直线y=2x+2绕点A旋转45°,需要分两种情况:①当直线AB绕点A逆时针旋转45°时,如图1,设此时直线与x轴的交点为P,此时∠BAP=45°,过点B作BD⊥AB交直线AP于点D,过点D作DE⊥x轴于点E,∴∠ACO=∠ABD=90°,∴∠ABC+∠DBE=∠DBE+∠BDE=90°,∴∠ABC=∠BDE,∵∠ABD=90°,∠BAP=45°,∴∠BDA=∠BAP=45°,∴AB=BD,∴△ACB≌△BED(AAS),∴BC=DE=2,BE=AC=4,∴OE=3,∴D(3,-2),设直线AP的解析式为y=kx+b,∴432k bk b+⎧⎨+-⎩==,解得37kb-⎧⎨⎩==,∴直线AP的解析式为y=-3x+7,令y =0,则x =73,∴P (73,0);②当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F,则∠BAQ =45°,∵∠ABF =∠ABD =90°,∴∠BAF =∠BFA =45°,∴BF =BA =BD ,即点B 为DF 的中点,∵B (-1,0),D (3,-2),∴F (-5,2),设直线AQ 的解析式为:y =mx +n ,∴524m n m n -+⎧⎨+⎩==,解得13113m n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AQ 的解析式为:y =13x +113.令y =0,则x =-11,∴Q (-11,0),综上所述,将直线y =2x +2绕点A 旋转45°后所得直线与x 轴的交点坐标为(-11,0),(73,0).故选:C .【点拨】本题属于一次函数与几何综合题目,涉及全等三角形的性质与判定,图象的交点,等腰三角形的性质等内容,解题的关键是根据45°角作出垂线构造全等.本题若放在九年级可用相似解决.10.C【分析】根据图象可知,小明5分钟行走400米,可求速度,到达目的地用时35分,可求总路程,再根据小李行走时间可知小李走的路程,利用两人相向而行时,两分钟相遇可求小明返回时速度,即可得出答案.解:A 、小明首次到达目的地之前的速度是400805=米/分,A 不正确;B 、两地间的距离为:80×35=2800(米).小李在小明到达目的地时行走的路程为:65×(35-30)=1950(米).2800-1950=850(米),此时,小李距目的地还有850米,B 不正确;C 正确;D 、850-65×10=200(米),200÷(47-45)=100(米/分),100-65=35(米/分).D 不正确;故选:C .【点拨】本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,点的坐标的运用,解答时认真分析函数图象的意义是关键.11.0【分析】令x =1和x =-1,得到()1212f f ⎛⎫+= ⎪⎝⎭①,()1212f f ⎛⎫-= ⎪⎝⎭②,两个等式相减,即可得到答案.解:∵对于所有的实数x ,都有()()222x x f xf x -+=,∴当x =1时,()1212f f ⎛⎫+= ⎪⎝⎭①,当x =-1时,()1212f f ⎛⎫-= ⎪⎝⎭②,①-②,得:()220f =,解得:()2f =0.故答案是:0.【点拨】本题主要考查抽象函数求值,掌握赋值法以及等式的性质,是解题的关键.12.①③④【分析】根据图象可对①进行判断;根据题意b =2,m =−k +2<0,解得k >2,可对③进行判断;根据一次函数的性质可对②进行判断;由b =2,m =−k +2,不等式kx +b >−m 化为kx +2>k −2,得到413k k -=-,解得k =3,于是可对④进行判断.解:∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴直线与x 轴的交点横坐标在−1和0之间,故①正确;∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴b =2,∴m =−k +2<0,∴k>2,故③正确;∵k>0,y随x的增大而增大,∵x1<x1+1,∴y1<y2,故②错误;∵b=2,m=−k+2,∴不等式kx+b>−m化为kx+2>k−2,∴kx>k−4,∵不等式kx+b>−m的解集为x>−1 3,∴413 kk-=-,解得k=3,故④正确;故答案为①③④.【点拨】本题考查了一次函数的性质,一次函数与一元一次不等式,一次函数与一元一次方程,根据题意得出k>0,b=2是解题的关键.13.5【分析】由题意得直线l一定过点(3,0),在过(3,0)的直线中,当点Q和(3,0)的连线垂直于直线l时,点P到直线l的距离最大,根据勾股定理求解即可.解:∵直线l:y=kx﹣3k=k(x-3)∴当x=3时,y=0,故点(3,0)再直线l上令点P(3,0)连接PQ,当PQ垂直与直线l垂足为点P时,点Q到直线l的距离最大PQ5=故答案为:5【点拨】本题主要考查了一次函数图像和点到直线的距离,过一点作已知直线的垂线,这条垂线段的长度是点到直线的距离;明确当PQ ⊥直线l 时,点Q 到直线的距离最大是解题的关键.14.1122m ≤<【分析】求出直线AB 的解析式2y x =-+,再根据21223b a m b a m -+=⎧⎨--=⎩求出点P 的坐标为()7,2P m m --,然后过P 作'∥PP y 轴,交直线AB 于点P ',确定()7,9P m m '--,再分两步:点P 在直线AB 的下方;点P 不在第三象限,分别确定m 的取值范围,然后确定公共部分即可。

北师大数学八年级上培优组卷-一次函数中档解答题

北师大数学八年级上培优组卷-一次函数中档解答题

北师大数学八年级上培优组卷-一次函数-中档解答题一.解答题(共25小题)1.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?2.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.3.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?4.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.5.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.6.若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.7.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.8.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式;(2)直接写出直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.9.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.10.如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.11.为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.12.在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.13.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.14.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.15.直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.16.如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.17.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?18.已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.19.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.20.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C (0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.21.已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.22.某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.23.星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.24.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?25.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.一次函数-中档题型111参考答案与试题解析一.解答题(共25小题)13.(2016•怀化)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.14.(2016春•西华县期末)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.【解答】解:(1)令y=kx﹣1中x=0,则y=﹣1,∴C(0,﹣1),OC=1.∵OB=OC,∴OB=,∴点B的坐标为(,0),把B(,0)代入y=kx﹣1中,得0=k﹣1,解得:k=2.(2)∵点A(x,y)是第一象限内直线y=2x﹣1的一个动点,∴A(x,2x﹣1)(x>),∴S=•OB•y=×(2x﹣1)=x﹣(x>).(3)当S=时,有x﹣=,解得:x=1,∴y=2x﹣1=1,故当点A的坐标为(1,1)时,△AOB的面积为.15.(2016春•朝阳区期末)直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.【解答】解:(1)令y=2x﹣2中y=0,则2x﹣2=0,解得:x=1,∴A(1,0).令y=2x﹣2中x=0,则y=﹣2,∴B(0,﹣2).(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).16.(2016春•宜宾期末)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S△AOB=OA•OB=×2×3=3.(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.17.(2016春•海珠区期末)如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(5,0)、B(1,4)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+5.(2)联立两直线解析式得:,解得:,∴点C(3,2).∵y=﹣×3+4=2,∴直线y=﹣x+4也经过点C.18.(2016春•中山市期中)已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣x+4中,令y=0可求得x=3,令x=0可求得y=4,∴A(3,0),B(0,4);(2)由A(3,0),B(0,4)可得OA=3,OB=4,在Rt△AOB中,由勾股定理可得AB===5,即AB的长度为5;(3)假设存在满足条件的C点,其坐标为(x,0),则AC=|x﹣3|,BC==,若△ABC为等腰三角形时,则有AC=BC、AC=AB或BC=AB,①当AC=BC时,则有|x﹣3|=,解得x=﹣,此时C点坐标为(﹣,0),②当AC=AB时,则有|x﹣3|=5,解得x=8或x=﹣2,此时C点坐标为(8,0)或(﹣2,0),③当BC=AB时,则有=5,解得x=3或﹣3,当x=3时,A、C重合,不能构成三角形,舍去,故此时C 点坐标为(﹣3,0),综上可知存在满足条件的C点,其坐标为(﹣,0)或(8,0)或(﹣2,0)或(﹣3,0).19.(2016春•武汉校级月考)已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.【解答】解:(1)连接OC,作CM⊥OA于点M,如图1所示.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴OA=OB=12.∵点C为线段AB的中点,∴OC⊥AB,∴△OCA为等腰直角三角形,又∵CM⊥OA,∴CM=OM=MA=OA=6.故点C的坐标为(6,6).(2)证明:连接OC,在OB上截取OM=AF,连接CM、ME,如图2所示.∵△AOB、△OCA、△OCB均为等腰直角三角形,∴∠A=∠B=∠BOC=45°,OC=AC.在△ACF和△OCM中,,∴△ACF≌△OCM(SAS),∴CM=CF,∠OCM=∠ACF.∵∠ACO=∠ACF+∠ECF+∠OCE=90°,∠ECF=45°,∴∠ACF+∠OCE=45°=∠OCM+∠OCE=∠ECM=∠ECF.在△ECF和△ECM中,,∴△ECF≌△ECM(SAS),∴ME=EF.在Rt△MOE中,∠MOE=90°,∴EF2=ME2=OE2+OM2=OE2+AF2.(3)过点C作CN⊥OA于点N,如图3所示.设AF=x=OM,则EF=OA﹣OE﹣AF=12﹣3﹣x=9﹣x=EM,由(2)可得:(9﹣x)2=32+x2,解得:x=4,∴OF=OA﹣AF=12﹣4=8.∵△OCA为等腰直角三角形,∴CN=ON=OA=6,NF=OF﹣ON=8﹣6=2.在Rt△CNF中,∠CNF=90°,CN=6,NF=2,∴CF==2.20.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP=6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP=S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.21.(2014•黄浦区二模)已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.【解答】解:(1)把(4,8),(8,10)代入y=kx+b得:,解得,故弹簧A的弹力系数为.(2)设弹簧B弹力系数为k b,弹簧A的直径为d A,则弹簧B的直径为.由题意得.∴.又∵弹簧B与弹簧A不挂重物时的长度相同,∴弹簧B长度与所挂重物质量的关系可表示为.把y=9代入得:9=x+6解得:x=4.故此时所挂重物质量为4千克.22.(2014•姜堰市校级模拟)某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.【解答】解:(1)设0≤x≤200时,y=kx﹣1000,把(100,0)代入可得:0=100k﹣1000,解得,k=10,那么可得函数式为:y=10x﹣1000.设第二段范围的函数式为:y=kx+b,把(200,500)和(300,2000)代入可得:,解得:.即y=15x﹣2500;(2)∵y>1000,那么根据图象,则15x﹣2500>1000,解得,x>,x取整则x=234(张);(3)图象与y轴交点(0,﹣1000)的实际意义为:当每天不卖门票时,每天亏损1000元;(4)由函数图象可以得出:当销售100张门票时,赢利为0元;当销售200张门票时,单价为10元一张的利润大于15元一张的利润.答案不唯一,合理即可.23.(2016•柘城县一模)星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.【解答】解:(1)小华返回的速度为3000÷(50﹣30)=150(米/分).答:小华返回时的速度为150米/分.(2)点B的纵坐标为:150×(50﹣45)=750.小强步行的速度为:(3000﹣750)÷45=50(米/分),小强比步行提前到图书馆的时间为:3000÷50﹣50=10(分钟).答:小强比步行提前10分钟到图书馆.(3)设直线OA的解析式为y=kx+b,将点O(0,0),A(30,3000)代入y=kx+b中得:,解得:.∴线段OA的解析式为y=100x(0≤x≤30);同理可得:线段AB的解析式为y=﹣150x+7500(30<x≤45);线段BD的解析式为y=﹣50x+3000.当0≤x≤30时,令|﹣50x+3000﹣100x|=1000,解得:x1=,x2=;当30<x≤45时,令﹣150x+7500﹣(﹣50x+3000)=1000,解得:x3=35.∴小强与小华相距1000米的时间为、或35分钟.24.(2016•莲湖区二模)在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60÷2=30(千米/时),∴货车行驶360千米所需时间为360÷30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.25.(2016春•单县期末)如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.【解答】解:(1)作PE⊥y轴于E,∵P的横坐标是2,则PE=2.∴S△COP=OC•PE=×2×2=2;(2)∴S△AOC=S△AOP﹣S△COP=6﹣2=4,∴S△AOC=OA•OC=4,即×OA×2=4,∴OA=4,∴A的坐标是(﹣4,0).设直线AP的解析式是y=kx+b,则,解得:.则直线的解析式是y=x+2.当x=2时,y=3,即p=3;(3)∵S△AOP=S△BOP,∴OB=OA=4,则B的坐标是(4,0),设直线BD的解析式是y=mx+n,则,解得.则BD的解析式是:y=﹣x+6.1.(2016•南京)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.2.(2016•牡丹江)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.3.(2016•新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.4.(2016•衡阳)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.5.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.6.(2016•黄冈一模)若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.【解答】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为;(3)设直线直线y=x+2与y轴的交点为C,与x轴的交点为D,则C(0,2),D(﹣2,0),∵A(﹣1,1),∴S△AOC=S△AOD=×2×1=1,①当B点在第一象限时,则S△BOC=1,设B的横坐标为m,∴S△BOC=×2×m=1,解得m=1,∴B(1,3);②当B点在第三象限时,则S△BOD=1,设B的纵坐标为n,∴S△BOD=×2×(﹣n)=1,解得n=﹣1,∴B(﹣3,﹣1).综上,B的坐标为(1,3)或(﹣3,﹣1).7.(2016•微山县校级一模)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.【解答】解:(1)∵直线y=kx+3与y轴交于B点,∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.8.(2016•张家港市校级模拟)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式y=﹣x﹣2;(2)直接写出直线AB与坐标轴围成的三角形的面积2;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3),∴,解得,∴一次函数为y=﹣x﹣2;(2)在y=﹣x﹣2中,分别令x=0、y=0,可求得一次函数与两坐标轴的交点坐标分别为(0,﹣2)、(﹣2,0),∴直线与两坐标轴围成的三角形的面积为:S=×2×2=2;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点P.设直线BA′的解析式为y=mx+n,将点A′(﹣1,1)和点B(1,﹣3)代入可得:,解得:.故直线BA′的解析式为y=﹣2x﹣1,令y=0,可得﹣2x﹣1=0,解得:x=﹣,故点P的坐标为(﹣,0).故答案为y=﹣x﹣2;2.9.(2016•南京校级一模)如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80m/min,乙的速度为200m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960m.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.(4)∵乙的速度>甲的速度,∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,3×(80+200)=840(m);当x=18时,甲乙两人间距为:2400﹣80×18=960(m).∵960>840,∴甲乙两人相距的最远距离为960m.故答案为:960.10.(2016•丹阳市模拟)如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.【解答】解:(1)设y=kx+b,∵函数图象经过点(0,90),(50,0),∴,解得,∴y=﹣x+90;(2)5×40+90﹣(﹣×40+90),=200+90﹣(﹣72+90),=272m;(3)甲的速度为:272÷40=6.8m/s,所以,甲的速度增加后为:6.8+1.2=8m/s,x=10时,y=﹣×10+90=72m,由题意得,相遇时,5(x﹣10)+72=8(x﹣10),解得x=34,①10<x≤34时,y=5(x﹣10)+72﹣8(x﹣10)=﹣3x+102,②x>34时,y=8(x﹣34)﹣5(x﹣34)=3x﹣102,函数图象如图所示.11.(2016•驻马店模拟)为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.【解答】解:(1)普通卡:y1=20x;贵宾卡:y2=10x+200;(2)令y1=500得:20x=500,解得:x=25,∴点B坐标为(25,500);令y2=500得:10x+200=500,解得:x=30,∴点C的坐标为(30,500);联立y1、y2得:,解得:,∴点A的坐标为(20,400);∴A(20,400),B(25,500),C(30,500).(3)①当0<x<20时,选择普通卡更合算;②当x=20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算;③当20<x<30时,选择贵宾卡更合算;④当x=30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算;⑤当x>30时,选择至尊卡更合算.12.(2016•泰州三模)在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.【解答】解:(1)依照题意画出图形,如图1所示.令y=﹣x+3中y=0,则x=3,∴A(3,0);令y=3x﹣5中y=0,则x=,∴B(,0);联立两直线解析式成方程组,得:,解得:,∴C(2,1).S△ABC=AB•y C=(3﹣)×1=.(2)∵点P在直线y=﹣x+3上,∴设P(m,﹣m+3),∵P、Q关于原点成中心对称,∴Q(﹣m,m﹣3).∵点Q在直线y=3x﹣5上,∴m﹣3=﹣3m﹣5,解得:m=﹣,∴点P的坐标为(﹣,).(3)依照题意画出图形,如图2所示.若要△QPC≌△ABC,只需PQ∥AB,且PQ=AB即可.设P(3﹣n,n),则Q(,n),∵PQ=AB,∴﹣(3﹣n)=3﹣,解得:n=2,∴点Q(,2).。

北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)

北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)

期末备考压轴题培优:一次函数1.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)2.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为:(2,1)或(2,4)或(﹣2,8).3.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).4.如图,直线y=2x+4分别与x轴,y轴交于B,A两点(1)求△ABO 的面积;(2)如果在第三象限内有一点P (﹣1,m ),请用含m 的式子表示四边形AOPB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOPB 的面积是△ABO 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)当x =0时,y =4,∴OA =4,当y =0时,2x +4=0,x =﹣2,∴OB =2,∴△ABO 的面积===4;(2)四边形AOPB 的面积=S △AOB +S △BOP =4+=4﹣m ;(3)存在满足条件的点P .∵S 四边形AOPB =2S △ABO ,∴4﹣m =8,∴m =﹣4,∴存在点P (﹣1,﹣4),使得S 四边形ABOP =2S △ABO .5.如图,直线y =kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D 点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).7.如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动点P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)填空:当t=2时,点B的坐标为(6,2).(2)在P点的运动过程中,当AB∥x轴时,求t的值;(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.解:(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),故答案为:(6,2);(2)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠P AB=∠PBA=45°,∴∠OAP=90°﹣∠P AB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4,t=4÷1=4(秒);(3)∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠P AO+∠APO=90°,∴∠P AO=∠BPC.∠P AO=∠BPC,在△P AO和△BPC中,∠AOP=∠PCB=90°,∴△P AO≌△BPC(AAS).AP=BP,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0),点B(x,y),∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,∴y=x﹣4.8.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(4+K,﹣3+K),又∵点D在直线y=﹣2x+1上,∴﹣2(4+K)+1=﹣3+K,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).9.如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠P AE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF =S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB 的面积,∴S =S △ABC ﹣S △P AE =×8×8﹣×(2m ﹣8)×(2m ﹣8)=16m ﹣2m 2; (3)如图2,连接AM ,CM ,过点P 作PE ⊥AC ,∵AB =BC ,BO ⊥AC ,∴BO 是AC 的垂直平分线,∴AM =CM ,且AP =CQ ,PM =MQ ,∴△APM ≌△CQM (SSS )∴∠P AM =∠MCQ ,∠BQM =∠APM =45°,∵AM =CM ,AB =BC ,BM =BM ,∴△ABM ≌△CBM (SSS )∴∠BAM =∠BCM ,∴∠BCM =∠MCQ ,且∠BCM +∠MCQ =180°,∴∠BCM =∠MCQ =∠P AM =90°,且∠APM =45°, ∴∠APM =∠AMP =45°,∴AP =AM ,∵∠P AO +∠MAO =90°,∠MAO +∠AMO =90°,∴∠P AO =∠AMO ,且∠PEA =∠AOM =90°,AM =AP , ∴△APE ≌△MAO (AAS )∴AE =OM ,PE =AO =4,∴2m ﹣8=4,∴m =6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10.如图,一次函数y=﹣x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(8,0),点B的坐标为(0,4);(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)求OC的长度.解:(1)令x=0,则y=4,∴B(0,4),令y=0,则0=﹣x+4,∴x=8,∴A(8,0),故答案为:(8,0),(0,4);(2)设点P(x,﹣x+4)∵△APO的面积为12,∴12=×8×|﹣x+4|∴x=2或14,∴点P(2,3)或(14,3)(3)设点C(a,0),则OC=a,∴AC=8﹣a,由折叠知,BC=AC=8﹣a,在Rt△BOC中,OB=4,根据勾股定理得,BC2﹣OC2=OB2,∴(8﹣a)2﹣a2=16,∴a=3,即:OC=3,11.如图,已知直线y=﹣x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的关系;(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.解:(1)令y=0,则﹣x+3=0,解得x=2,∴A(2,0),令x=0,则y=3,∴C(0,3);由折叠可知:CD=AD,设AD=x,则CD=x,BD=3﹣x,由题意得,(3﹣x)2+22=x2,解得x=,此时AD=,∴D(2,),设直线CD为y=kx+3,把D(2,)代入得=2k+3,解得k=﹣,∴直线CD的解析式为y=﹣x+3;(2)∵A(2,0),D(2,),∴AD=.∵∠DAP=90°,∴△ADP是等腰直角三角形,∴当AD=AP=时,P点的坐标是(﹣,0)或(,0).12.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y =﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.=22;(1)直接写出直线BD的解析式为y=﹣2x﹣3,S△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,=×11×4=22.∴S△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).13.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP =S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP =S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=yN=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).14.在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.解:(1)把P(2,2)和点Q(0,﹣2)分别代入y1=kx+b,得.解得.则直线y1=kx+b的解析式为:y1=2x﹣2;(2)如图所示,P(2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=,AM=1当m>0时,点B有3种位置使得△P AB为等腰三角形①当AP=AB时,AB=,∴B(+1,0)②当P A=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=解得x=2.5,∴B(3.5,0)当m<0时,点B有1种位置使得△P AB为等腰三角形.当AB=AP时,OB=﹣1,∴B(1﹣,0).综上所述,点B有4种位置使得△P AB为等腰三角形,坐标分别为(+1,0)、(3,0)、(3.5,0)、(1﹣,0).15.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y =4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=4;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.解:(1)d(S,T)=|﹣1+2|+|6﹣3|=4,故答案为4;(2)直线y=﹣2x+3上的“互助直线”为:y=3x﹣2,设点H(a,﹣2a+3),将点H坐标代入y=3x﹣2得:﹣2a+3=3a﹣2,解得:a=1,故点H(1,1);(3)M(m,n)在y=ax+b上,则n=am+b…①,点N在“互助直线”y=bx+a上,则2m﹣3n=3bm+a…②,联立①②并整理得:m(2﹣3a﹣3b)=a+3b,对于任意一点M(m,n)都等式均成立,故:a+3b=0,2﹣3a﹣3b=0,解得:a=1,b=﹣,故函数的表达式为:y=x﹣,设点P(x,x﹣)是函数上的点d(L,P)=|5﹣x|+|x﹣+1|=|x﹣5|+|x+|,则d(L,P)的最小值为5.。

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.51一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•道里区开学)若把直线y=2x+3向上平移3个单位长度,得到图象对应的函数解析式是()A.y=2x+9 B.y=2x﹣3 C.y=2x+6 D.y=2x解:由“上加下减”的原则可知,将直线y=2x+3,向上平移3个单位所得的直线的解析式是y=2x+3+3,即y=2x+6.故选:C.2.(2分)(2023春•丰润区期末)若k<0,则一次函数y=﹣2x﹣k的图象大致是()A.B.C.D.解:∵k<0,∴﹣k>0,∴直线y=﹣2x﹣k的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选:A.3.(2分)(2022秋•平遥县期末)如图,直线与x轴,y轴分别交于点A和点B,点C在线段AB 上,且点C坐标为(m,2),点D为线段OB的中点,点P为OA上一动点,当△PCD的周长最小时,点P 的坐标为()A.(﹣3,0)B.C.D.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选:B.4.(2分)(2022秋•相山区校级期末)一次函数y1=mx+n(m,n是常数)与y2=nx+m在同一平面直角坐标系中的图象可能是()A.B.C.D.解:由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n<0,m=0,矛盾,故A不合题意;由一次函数y1=mx+n图象可知m>0,n<0,由一次函数y2=nx+m可知n<0,m>0,一致,故B符合题意;由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n>0,m>0,矛盾,故C不合题意;由一次函数y1=mx+n图象可知m>0,n>0,由一次函数y2=nx+m可知n<0,m>0,矛盾,故D不合题意;故选:B.5.(2分)(2022秋•兴化市期末)若点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣x+1图象上的点,则()A.y3<y2<y1B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣1<1<2,∴y3<y2<y1,故选:A.6.(2分)(2021秋•沂源县期末)关于函数y=(k﹣3)x+k,给出下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(﹣1,3);③若图象经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是0<k<3.其中正确结论的序号是()A.①②③B.①③④C.②③④D.①②③④解:①根据一次函数定义:k≠0函数为一次函数,故正确;②y=(k﹣3)x+k=k(x+1)﹣3x,故函数过(﹣1,3),故正确;③图象经过二、三、四象限,则k﹣3<0,k<0,解得:k<0,故正确;④函数图象与x轴的交点始终在正半轴,则x=>0,解得:0<k<3,故正确.故选:D.7.(2分)(2020秋•苏州期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1 B.3或C.2或D.3或+1解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.8.(2分)(2020•鹿城区校级模拟)如图,平面直角坐标系中,直线l:y=﹣x+2分别交x轴、y 轴于点B、A,以AB为一边向右作等边△ABC,以AO为一边向左作等边△ADO,连接DC交直线l于点E.则点E的坐标为()A.(,)B.(,)C.(,)D.(,)解:y=﹣x+2①,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(0,2)、(2,0),即OB=2,AO=2=OD,则AB=4=BC,tan∠ABO==,故∠ABO=60°,而△ABC为等边三角形,则BC与x轴的夹角为180°﹣∠ABC﹣∠ABO=180°﹣60°﹣60°=60°,则y C=BC sin60°=4×=2,x C=x B+BC cos60°=2+4×=4,故点C(4,2),同理可得点D的坐标为:(﹣3,),设直线CD的表达式为y=kx+b,则,解得:,故直线CD的表达式为:y=x+②,联立①②并解得:x=,y=,故点E的坐标为:(,),故选:A.9.(2分)(2023•灞桥区校级模拟)已知直线l1:y=kx+b(k≠0)与直线l2:y=k1x﹣6(k1<0)在第三象限交于点M,若直线l1与x轴的交点为B(3,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2解:∵直线l1与x轴的交点为B(3,0),∴3k+b=0,∴y=kx﹣3k,直线l2:y=k1x﹣6(k1<0)与y轴的交点坐标为(0,﹣6),若直线l1与x轴的交点为B(3,0),则l1与y轴交点(0,﹣3k)在原点和点(0,﹣6)之间,即:﹣6<﹣3k<0,解得:0<k<2,故选:D.10.(2分)(2019秋•龙岗区校级期末)如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE 的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.解:由题意A(0,),B(﹣3,0),C(3,0),∴AB=AC=8,取点F(3,8),连接CF,EF,BF.∵C(3,0),∴CF∥OA,∴∠ECF=∠CAO,∵AB=AC,AO⊥BC,∴∠CAO=∠BAD,∴∠BAD=∠ECF,∵CF=AB=8,AD=EC,∴△ECF≌△DAB(SAS),∴BD=EF,∴BD+BE=BE+EF,∵BE+EF≥BF,∴BD+BE的最小值为线段BF的长,∴当B,E,F共线时,BD+BE的值最小,∵直线BF的解析式为:y=x+4,∴H(0,4),∴当BD+BE的值最小时,则H点的坐标为(0,4),故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋中期末)已知在平面直角坐标系中,点A(3,m),B(5,n)是直线y=﹣2x上的两点,则m,n的大小关系是m n.(填“<”,“>”或“=”)解:∵点A(3,m),B(5,n)是直线y=﹣2x上的两点,又∵k=﹣2<0,∴y随着x增大而减小,∵3<5,∴m>n,故答案为:>.12.(2分)(2022秋•磁县期末)如图,在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x 轴的对称点B在直线y=﹣x+1m的值为.解:∵点A(3,m),∴点A关于x轴的对称点B(3,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2,∴m=2,故答案为:2.13.(2分)(2023春•昌吉市期末)已知一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,则k的值是.解:∵一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,∴当x=﹣1时,函数有最大值5,∴﹣k+3=5,解得k=﹣2.故答案为:﹣2.14.(2分)(2022秋•法库县期末)关于一次函数y=kx﹣k(k≠0)有如下说法:①当k>0时,y随x的增大而减小;②当k>0时,函数图象经过二、三、四象限;③函数图象一定经过点(1,0);④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=(k﹣2)x﹣k(k≠0).其中说法正确的序号是.解:①当k>0时,y随x的增大而增大;不符合题意;②当k>0时,则﹣k<0,函数图象经过一、三、四象限,不符合题意;③当x=1时,则y=0,∴函数图象一定经过点(1,0),符合题意;④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=kx﹣k﹣2(k≠0),不符合题意;故答案为:③.15.(2分)(2023春•漳平市期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A,若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故答案为1+或3.16.(2分)(2023春•昌吉市期末)如图,直线与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将△ABC沿BC折叠,点A恰好落在x轴上的A处,若P是y轴负半轴上一动点,且△BCP 是等腰三角形,则P的坐标为.解:当x=0时,=8,∴点A的坐标为(0,8);当y=0时,=0,解得:x=﹣6,∴点B的坐标为(﹣6,0).∴AB==10.∵AB=A′B,∴OA′=10﹣6=4.设OC=m,则AC=A′C=8﹣m.在Rt△A′OC中,A′C2=A′O2+OC2,即(8﹣m)2=42+m2,解得:m=3,∴点C的坐标为(0,3),∴BC==3,∴当BC=BP时,P1(0,﹣3);当BC=CP时,则OP+OC=3,∴OP=3﹣3,∴P2(0,3﹣3);当CP=BP时,设P(0,﹣n),则BP=CP=3+n,∴(3+n)2=62+n2,解得n=,∴此时P3(0,﹣);综上,P点的坐标为(0,﹣3)或(0,3﹣3)或(0,﹣);故答案为:(0,﹣3)或(0,3﹣3)或(0,﹣).17.(2分)(2022秋•丹徒区期末)如图,平面直角坐标系中,x轴上一点A(4,0),过点A作直线AB ⊥x轴,交正比例函数的图象于点B.点M从点O出发,以每秒1个单位长度的速度沿射线OB运动,设其运动时间为t(秒),过点M作MN⊥OB交直线AB于点N,当△MBN≌△ABO时,t=秒(写出所有可能的结果).解:如图1所示,当点M在线段OB上时,∵A(4,0),AB⊥x,∴点B的横坐标为4,当x=4时,,∴B(4,3),∴OA=4,OB=3,∴,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB﹣BM=2,∴t=2;如图2所示,当点M在OB延长线上时,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB+BM=8,∴t=8;综上所述,当t=2或t=8时△MBN≌△ABO,故答案为:2或8.18.(2分)(2022秋•南京期末)如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,将直线AB顺时针旋转90°,则旋转后的直线的函数表达式为.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴A(2,0),B(0,4),∴AO=2,BO=4,将直线AB绕点A顺时针旋转90°,交y轴于C,根据旋转的性质得到△BAO∽△ACO,∴=,即=,∴OC=1.∴C(0,1),设直线AC为y=kx﹣1,代入A(2,0)得2k﹣1=0,解得k=,∴旋转后的直线的函数表达式为y=x﹣1.故答案为:y=x﹣1.19.(2分)(2022秋•成华区期末)如图,直线y=x+4与x轴,y轴分别交于点A,B,点C是AO的中点,点D,E分别为直线y=x+4和CDE的周长最小时,线段DE的长是.解:在y=x+4中,令y=0得x=﹣4,∴A(﹣4,0),∵C是OA中点,∴C(﹣2,0),作C(﹣2,0)关于y轴的对称点G(2,0),作C(2,0)关于直线y=x+4的对称点F,连接AF,连接FG交AB于D,交y轴于E,如图:∴DF=CD,CE=GE,∴CD+CE+DE=DF+GE+DE=FG,此时△CDE周长最小,由y=x+4得A(﹣4,0),B(0,4),∴OA=OB,△AOB是等腰直角三角形,∴∠BAC=45°,∵C、F关于AB对称,∴∠FAB=∠BAC=45°,∴∠FAC=90°,∵AC=OA﹣OC=2=AF,∴F(﹣4,2),由F(﹣4,2),G(2,0)可得直线FG解析式为y=﹣x+,在y=﹣x+中,令x=0得y=,∴E(0,),由得,∴D(﹣,),∴DE==,故答案为:.20.(2分)(2022秋•锦江区期末)如图,在平面直角坐标系xOy中,已知∠AOB=90°,∠A=60°,点A的坐标为(﹣2,2),若直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是.解:过点A作AE⊥x轴于点E,过点B作BF⊥x于点F,如图,∵,∴,根据勾股定理得,,∴∠AOE=30°,∵∠AOB=90°,∠CAO=60°,∴∠ABO=30°,∴AB=2AO=8,∴,又∠BOF=180°﹣∠AOE﹣∠AOB=60°,∴∠OBF=30°,∴,∴,∴,对于y=﹣2x+2,当y=0时,﹣2x+2=0,∴x=1,∴直线y=﹣2x+2与x轴的交点坐标为(1,0);设过点A且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+p,把代入y=﹣2x+p,得:,∴,∴,当y=0时,,∴,∴直线与x轴的交点坐标为,设过点B且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+q,把代入y=﹣2x+q,得:,∴,∴,当y=0时,,∴,∴与x轴的交点坐标为,∴直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是,即.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023春•柘城县期末)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点P在y轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).22.(6分)(2022秋•沙坪坝区校级期末)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x 轴、y轴分别交于点A和点B(0,3),直线l2:y=2x+6与x轴交于点C,且与直线l1交于点D(﹣1,m).(1)求直线l1的表达式;(2)将直线l1向下平移4个单位长度得到直线l3,直线l2、l3交于点E,连接AE,求△ADE的面积.解:(1)把点D(﹣1,m)代入y=2x+6得,m=﹣2+6=4,∴点D的坐标为(﹣1,4),把点D(﹣1,4)和点B(0,3)代入y=kx+b得:,∴,∴直线l1的表达式为:y=﹣x(2)将直线l1向下平移4个单位长度得到直线l3的解析式为y=﹣x﹣1,解得,∴E(﹣,),在y=﹣x+3中,令y=0,则x=3,∴A(3,0),在直线l2:y=2x+6中,令y=0,则x=﹣3,∴C(﹣3,0),∴AC=6,∴△ADE的面积=S△ADC﹣S△ACE=×6×4﹣×6×=8.23.(8分)(2022秋•顺德区期末)一次函数y=x+1.(1)画出函数的图象;(2)当x时,的值大于0;(3)对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,求b的取值范围.解:(1)列表:画图如下:(2)由图可知:函数图象在x轴上方的部分对应的x的范围是x>﹣2,∴当x>﹣2时,的值大于0;(3)若对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,则当x≤﹣2时,y=﹣x+b必然大于0,∴﹣(﹣2)+b=4+b>0,解得b>﹣2.∴b的取值范围为:b>﹣2.24.(8分)(2023•花都区一模)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣,故答案为:﹣;(2)①如图1,由(1)可知直线AB的解析式为y=﹣x+4.∴设C(m,﹣m+4)(0<m<8),∵点D的坐标为(6,0),点E的坐标为(0,1),∴OD=6,OE=1,∴OM=m,CM=﹣m+4,∵四边形OECD的面积是9,∴S梯形CEOM+S△CDM=(1﹣m+4)•m+(﹣m+4)•(6﹣m)=9,整理得2m=6,解得m=3,∴点C的坐标为(3,);②∵CE平行于x轴,CD平行于y轴,∴四边形CEOD是矩形,∵四边形OECD的周长是10,∴2(m﹣m+4)=10或2(﹣m+4﹣m)=10,解得m=2或m=6,点C的坐标为(2,3)或(﹣,).25.(8分)(2023•南山区校级三模)图象对于探究函数性质有非常重要的作用,下面我们就一类特殊的函数展开探究.画函数y1=3|x|的图象,经历分析表达式、列表、描点、连线过程得到函数图象如图所示:在同一平面直角坐标系中,经历同样的过程画出函数y2=3|x﹣2|的图象如图所示.(1)观察发现:两个函数的图象都是由两条射线组成的轴对称图形,且图象的开口方向和形状完全相同,只有最低点和对称轴发生了变化.所以可以将函数y1的图象向右平移2个单位得到y2的图象,则此时函数y2的图象的最低点A的坐标为.(2)探索思考:将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,请在网格图中画出函数y3的图象,并求出当x≥4时,函数y3的最小值.(3)拓展应用:将函数y3的图象继续平移得到函数y4=3|x﹣m|+2的图象,其最低点为点P.①用m表示最低点P的坐标为;②当﹣1≤x≤2时,函数y4有最小值为5,求此时m的值.解:(1)由图象可得A(2,0),故答案为:(2,0);(2)将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,如图:当x≥4时,y3取到最小值,最小值为8;(3)拓展应用:将函数y3的图象继续平移得到y4=3|x﹣m|+2,其最低点为点P.①最低点P的坐标为(m,2),故答案为(m,2);②若m<﹣1,当x=﹣1时,y4有最小值5,∴3×|﹣1﹣m|+2=5∴m=0(舍),或m=﹣2若﹣1≤m≤2,当x=m时,y4有最小值2,不符合题意,舍去.若m>2,当x=2时,y4有最小值5,∴3×|2﹣m|+2=5∴m=1(舍),或m=3综上所述,m=﹣2或m=3.26.(8分)(2023春•新疆期末)因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:,解得:,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.27.(8分)(2022秋•皇姑区校级期末)在初学函数过程中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题;在y=a|x|+b中,如表是y与x的几组对应值.(1)直接写出a=,b=;(2)直接写出m=,n=;(3)在给出的平面直角坐标系xOy中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得:①该函数的最小值为;②该函数图象轴对称图形(填“是”或“不是”);(4)已知点(2022,y1)和(﹣2023,y2)在函数y=a|x|+b的图象上,则比较y1y2(填“>”或“<”).解:(1)∵函数y=a|x|+b的图象经过点(﹣1,3),(0,1),∴,解得,故答案为:2,1;(2)∵y=2|x|+1,∴当x=﹣2时,m=2×|﹣2|+1=5,当x=1时,n=2×|1|+1=3.故答案为:5,3;(3)函数y=2|x|+1的图象如图所示:根据图象可知,①该函数的最小值为1.②该函数图象是轴对称图形,故答案为:1;是;(4)∵点(2022,y1)到对称轴y轴的结论小于点(﹣2023,y2)的距离,∴y1<y2.故答案为:<.28.(8分)(2021秋•镇海区期末)如图,一次函数y=﹣x+4的图象交y轴于点A,交x轴于点B,点P为AB中点,点C,D分别在OA,OB上,连结PC,PD,点A,E关于PC对称,点B,F关于PD对称,且CE∥DF.(1)直接写出点A,B,P的坐标.(2)如图1,若点O,E重合,求DF.(3)如图2,若点F横坐标为5,求点E的坐标.解:(1)∵当x=0时,y=4,∴A(0,4),∵当y=0时,即,则x=8,∴B(8,0),∵点P为AB中点∴P(4,2),综上所述:A(0,4),B(8,0),P(4,2);(2)∵点C在OA,点A,E关于PC对称,此时点O,E重合,∴CE⊥x轴,∵CE∥DF,∴DF⊥x轴,∵B(8,0),P(4,2),∴PB2=(8﹣4)2+(0﹣2)2=20,∵点B,F关于PD对称,∴PF=PB,DF=DB设OD=m,则DF=DB=8﹣m,∴F(m,m﹣8),∴PF2=(m﹣4)2+(m﹣10)2=2m2﹣28m+116,∵PF2=PB2,∴2m2﹣28m+116=20,解得:m1=6,m2=8(舍),∴DF=8﹣6=2;(3)设F(5,n),由折叠知PF=PB==2,∵P(4,2),∴,解得n=2+(舍)或n=2﹣,∴F(5,2﹣),设PF的解析式为y=kx+b(k≠0),则,解得,∴直线PF的解析式为:y=﹣x+4+2,过P作PQ∥CE,则PQ∥CD∥DF,∴∠EPQ=∠E=∠PAC,∠FPQ=∠F=∠ABD,∴∠EPF=∠EPQ+∠FPQ=∠PAC PBD=90°,即PE⊥PF,∴可设直线PE的解析式为y=x+m,把P(4,2)代入得2=+m,解得m=2﹣,∴直线PE的解析式为y=x+2﹣,设E(t,t+2﹣),∵PE=PA=2,∴解得t=4+(舍)或t=4﹣,∴E(4﹣,1)。

(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(包含答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(包含答案解析)(1)

一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如图,一次函数y=kx+b 图象与x 轴的交点坐标是(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx+b=0的解为x=2.其中说法正确的是( )A .①和②B .①和③C .②和③D .①②③都正确 3.一次函数y=2x-1的图象大致是( )A .B .C .D . 4.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象5.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154其中正确的结论有( )A .1个B .2个C .3个D .4个6.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 7.如图①,正方形ABCD 中,点P 以恒定的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y ( cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,△APQ 的面积为( )A .6cm 2B .4cm 2C .262cmD .42cm 2 8.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为33y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .40409.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A.①②B.①③C.②③D.①②③10.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A.4 B.8 C.82D.1611.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为()A.17B.5+2 C.35D.412.如图,若弹簧的总长度y(cm)是关于所挂重物x(kg)的一次函数y=kx+b,则不挂重物时,弹簧的长度是()A.5cm B.8cm C.9cm D.10cm二、填空题13.如图,在平面直角坐标系中,点M(﹣1,3)、N(a,3),若直线y=﹣2x与线段MN有公共点,则a的值可以为_____.(写出一个即可)14.已知一次函数y=kx+3(k 0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为_____.15.复习课中,教师给出关于x的函数y=−2mx+m−1(m≠0).学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y 随着自变量x 的增大而减小;③该函数图象与y 轴的交点在y 轴的正半轴上;④若函数图象与x 轴交于A(a ,0),则a<0.5;⑤此函数图象与直线y=4x−3、y 轴围成的面积必小于0.5.对于以上5个结论是正确有_____个.16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____. 19.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.20.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.三、解答题21.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x (min )后,到达距离甲地y (m )的地方,图中的折线表示的是y 与x 之间的函数关系.(1)甲、乙两地的距离为 ,a = ;(2)求小明从乙地返回甲地过程中,y 与x 之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min 的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?22.元旦期间,小明和父母一起开车到距家200千米的景点旅游出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内剩余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;写出自变量的取值范围.(2)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽乍报警前回到家?请说明理由. 23.甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示. (1)A ,B 两城相距 千米,乙车比甲车早到 小时;(2)甲车出发多长时间与乙车相遇?(3)若两车相距不超过30千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?24.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,货车与甲地的距离是________千米;(2)在轿车行进过程中,轿车行驶多少时间两车相遇?(3)在轿车行进过程中,轿车行驶多少时间,两车相距15千米?25.甲、乙两人开车同时从某地出发,沿同一路线去离该地560km 的景区游玩,甲先以每小时60km 的速度匀速行驶1h ,再以每小时km m 的速度匀速行驶,途中休息了一段时间后,仍按照每小时km m 的速度继续匀速行驶,两人同时到达目的地,如图的折线、线段OD 分别表示甲、乙两人所走的路程()km y 甲,()km y 乙与时间()h x 之间的关系.请根据图象提供的信息,解决下列问题:(1)图中点E 的坐标为______,m =______.(2)求线段CD 所表示的函数关系式;(3)两人第二次相遇后,又经过多长时间两人相距30km ?26.为精准扶贫,某农科所为对接的贫困村庄提供了一种新研发的瓜苗.这种瓜苗先在农科所的温室中生长10天,大约长到20cm ,然后移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度()cm y 与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数表达式;(2)当这种瓜苗长到大约110cm 时,开始开花结果,试求这种瓜苗移至大棚后,继续生...长.大约多少天,开始开花结果?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.3.B解析:B【分析】根据一次函数的性质进行判断即可.【详解】解:∵k=2>0,∴直线y=2x-1经过第一、三象限;∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方,∴直线y=2x-1经过第一、三、四象限,∴B 选项符合题意.故选:B .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.4.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A 、令y=0,则x=2,因此函数的图象与x 轴的交点坐标是(2,0),故A 选项错误;B 、因为一次函数y=-2x+4中k=-2<0,因此函数值随x 的增大而减小,故C 选项正确; C 、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C 选项正确;D 、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x 的图象,故D 选项正确.故选A .【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.5.C解析:C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲;综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.6.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.7.A解析:A【分析】先由图象得出BD 的长及点P 从点A 运动到点B 的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P 运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD 的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ 运动到BD 时,PQ 的值最大,即y 最大,故;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.8.A解析:A【分析】延长A1B交x轴于D,A2B1交x轴于E,根据等边三角形的性质得OA=OD,A1B=BB1,A2B1=B2B1,直线OB的解析式为33y x=,得出∠BOD=30°,由直线a:31y x=+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得33代入3求得A1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A1B交x轴于D,A2B1交x轴于E,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭=32,把33得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴22332⎛⎫- ⎪⎝⎭33,把333得y=112,∴A2E=112,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A .【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n 个等边三角形的边长为2n-1是解题的关键.9.B解析:B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.10.D解析:D【解析】试题如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.11.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴221417+=∴PQ+QR17故选A.考点:一次函数综合题.12.B解析:B【分析】利用待定系数法求解一次函数的关系式,再令x=0计算即可求解不挂重物时弹簧的长度.【详解】解:将(4,10),(20,18)代入y=kx+b,得4102018k b k b +=⎧⎨+=⎩, 解得128k b ⎧=⎪⎨⎪=⎩, ∴182y x =+, 当x =0时,y =8,∴不挂重物时,弹簧的长度是8cm .故选:B .【点睛】本题考查了一次函数的应用,根据题意和图象求出函数解析式是解题关键.二、填空题13.﹣16【分析】把y=3代入y=-2x 得到x=-15根据已知可得N 点应该在直线y=-2x 的左侧从而分析出a 的取值范围依此判断即可【详解】解:当y =3时x =﹣15若直线y =﹣2x 与线段MN 有公共点则N 点解析:﹣1.6【分析】把y=3代入y=-2x 得到x=-1.5,根据已知可得N 点应该在直线y=-2x 的左侧,从而分析出a 的取值范围,依此判断即可.【详解】解:当y =3时,x =﹣1.5.若直线y =﹣2x 与线段MN 有公共点,则N 点应该在直线y =﹣2x 的左侧,即a ≤﹣1.5.∴a 的值可以为﹣1.6.(不唯一,a ≤﹣1.5即可).故答案为:﹣1.6.【点睛】本题考查了一次函数图象上点的坐标特征,解决本题的关键是掌握一次函数的性质. 14.【分析】根据三角形的面积公式求出OB 把点B 的坐标代入一次函数解析式计算得到答案【详解】解:一次函数y =kx+3与y 轴的交点A 的坐标为(03)则OA =3如图由题意得×OB×3=3解得OB =2则点B 的坐 解析:332y x =+ 【分析】根据三角形的面积公式求出OB ,把点B 的坐标代入一次函数解析式计算,得到答案.【详解】解:一次函数y =kx +3与y 轴的交点A 的坐标为(0,3),则OA=3,如图,由题意得,12×OB×3=3,解得,OB=2,则点B的坐标为(﹣2,0),∴﹣2k+3=0,解得,k=32,∴一次函数的表达式为y=32x+3,故答案为:y=32x+3.【点睛】本题考查的是一次函数图象上点的坐标特征、三角形的面积计算,掌握一次函数图象与坐标轴的交点的求法是解题的关键.15.0【分析】根据正比例函数的定义对①进行判断;根据一次函数的性质对②③进行判断;先利用函数值为0可计算出则只有m>0时a<05于是可判断④;求出直线和直线的交点坐标以及它们与y轴的交点坐标则根据三角形解析:0【分析】根据正比例函数的定义对①进行判断;根据一次函数的性质对②③进行判断;先利用函数值为0可计算出1122am=-,则只有m>0时,a<0.5,于是可判断④;求出直线21y mx m=-+-和直线43y x=-的交点坐标,以及它们与y轴的交点坐标,则根据三角形面积公式得到它们与y轴围成的面积为124m⋅+,利用特殊值可对⑤进行判断.【详解】解:由题意得:此函数是一次函数,当m=1时,它是正比例函数,所以①错误;当m>0时,函数的值y随着自变量x的增大而减小,所以②错误;当m >1时,该函数图像与y 轴的交点在y 轴的正半轴上,所以③错误;若函数图像与x 轴交于(),0A a ,令y=0,则021mx m =-+-,解得:11=22x a m =-,当m >0时,a <0.5,所以④错误;此函数图像与直线43y x =-的交点坐标为1,12⎛⎫- ⎪⎝⎭,此直线与y 轴的交点坐标为()0,1m -,直线43y x =-与y 轴的交点坐标为()0,3-,所以此函数图像与直线43y x =-、y 轴围成的面积为111132224m m ⋅-+⋅=⋅+,当m=2时,面积为1,所以⑤错误;故正确的个数为0个;故答案为0.【点睛】本题主要考查一次函数的图像与性质,熟练掌握一次函数的图像与性质是解题的关键. 16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得: 21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩ 故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y=x沿y轴正方向平移2个单位后得y=x+2,根据题意,将(1,a﹣2)代入,得:1+2=a﹣2,解得:a=5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.(0﹣3)【分析】代入x=0求出与之对应的y值进而可得出点A的坐标【详解】解:当x=0时y=x﹣3=﹣3∴点A的坐标为(0﹣3)故答案为:(0﹣3)【点睛】本题考查一次函数图象上点的坐标特征牢记直线解析:(0,﹣3)【分析】代入x=0求出与之对应的y值,进而可得出点A的坐标.【详解】解:当x=0时,y=x﹣3=﹣3,∴点A的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题关键.19.-1【解析】试题分析:根据题意可得2k+3>0k<0解得﹣<k<0因k为整数所以k=﹣1考点:一次函数图象与系数的关系解析:-1【解析】试题分析:根据题意可得2k+3>0,k<0,解得﹣<k<0.因k为整数,所以k=﹣1.考点:一次函数图象与系数的关系.20.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm其中一边长为xcm∴另一边长为:(12-x)cm∵长方形面积为∴y与x的关系式为y=解析:212-+x x【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm,其中一边长为xcm,∴另一边长为:(12-x)cm,∵长方形面积为2y,cm∴y与x的关系式为y=x(12−x)=-x2+12x.故答案为:y=-x2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.三、解答题21.(1)2000m,14;(2)y=﹣200x+4800;(3)6小时或223小时或23小时【分析】(1)根据图象可知甲、乙两地的距离为2000m,根据以相同的速度原路返回,可知a=24﹣10=14;(2)设y与x解析式为y=kx+b,把(14,2000)与(24,0)代入求出k与b的值,即可确定出解析式;(3)先求出小明骑自行车的速度,再根据题意列方程解答即可.【详解】解:(1)由图象可知,甲、乙两地的距离为2000m;a=24﹣10=14;故答案为:2000m,14;(2)设y与x之间的函数关系式为y=kx+b,把(14,2000)与(24,0)代入得:142000240k bk b+=⎧⎨+=⎩,解得:k=﹣200,b=4800,则y与x之间的函数关系式为y=﹣200x+4800;(3)小明骑自行车的速度为:2000÷10=200(m/min),根据题意,得(200+100)x=2000﹣200或(200+100)x=2000+200或200(x﹣4)=4000﹣200,解得x=6或x=223或x=23,答:小明从甲地出发6小时或223小时或23小时,与小红相距200米.【点睛】本题考查一次函数的应用、待定系数法求一次函数的解析式、解一元一次方程、解二元一次方程组,理解题意,能从图象中获得有效信息是解答的关键.22.(1)y=−110x+45(0≤x≤450);(2)能,见解析【分析】(1)先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,(2)把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.【详解】解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴4515030bk b=⎧⎨+=⎩,解得11045kb⎧=-⎪⎨⎪=⎩,∴y=−110x+45(0≤x≤450);(2)当x=400时,y=−110×400+45=5>3,∴他们能在汽车报警前回到家.【点睛】本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.23.(1)300;1;(2)2.5小时;(3)32小时【分析】(1)根据函数图象中的数据,可以解答本题;(2)根据函数图象中的数据,可以求得甲乙的速度,然后即可得到甲车出发多长时间与乙车相遇;(3)根据题意和(2)中的结果,可以得到相应的方程,从而可以计算出两车都在行驶过程中可以通过无线电通话的时间有多长.【详解】解:(1)由图象可得,A,B两城相距300千米,乙车比甲车早到5﹣4=1(小时),故答案为:300,1;(2)由图象可得,甲车的速度为300÷5=60(千米/时),乙车的速度为300÷(4﹣1)=100(千米/时),设甲车出发a小时与乙车相遇,60a=100(a﹣1),解得a=2.5,即甲车出发2.5小时与乙车相遇;(3)设甲车出发b小时时,两车相距30千米,由题意可得,|60b﹣100(b﹣1)|=30,解得b=74或b=134,1373442-=(小时),即两车都在行驶过程中可以通过无线电通话的时间有32小时.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)270;(2)y=110x﹣195;(3)2.4小时;(3)轿车行驶2.1小时或2.7小时,两车相距15千米.【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD对应的函数表达式,OA和CD交点横坐标即为所求;(3)根据题意和函数图象中的数据,可以计算出在轿车行进过程,轿车行驶多少时间,两车相距15千米.【详解】解:(1)(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),故答案为:270;(2)设线段CD对应的函数表达式是y=kx+b.∵点C(2.5,80),点D(4.5,300),∴2.580 4.5300k bk b+=⎧⎨+=⎩,解得110195 kb=⎧⎨=-⎩,即线段CD对应的函数表达式是y=110x﹣195,由图象可得:线段OA对应的函数解析式为y=60x,则60x=110x﹣195,解得:x=3.9,3.9﹣1.5=2.4答:轿车行驶2.4小时两车相遇;(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70.∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得:线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得:x1=3.6,x2=4.2.∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(1)()2,160,100;(2)线段CD 所表示的函数关系为100140y x =-;(3)两人第二次相遇后,又经过0.375h 或1h 两人相距30km【分析】(1)由图求出乙行驶的速度,再根据速度乘以时间等于路程求出点E 的坐标及m 的值; (2)先根据点A 、E 的坐标求出直线AB 的函数解析式,得到点B 的坐标及C 的坐标,设线段CD 所表示的函数关系为y mx n =+,将C 、D 坐标代入计算即可;(3)利用BC 及OD 所表示的函数关系式求出两人第二次相遇的时间,分两种情况:①当甲在休息时,②当甲休息1h 后,继续匀速行驶时,利用函数解析式列方程解答.【详解】解:(1)根据图象知:乙行驶的速度为:560780÷=(km/h ),∴点E 的纵坐标为:802160⨯=,∴点E 坐标为(2,160),m=160-60=100,故答案为:()2,160,100;(2)由题意知,点A 的坐标为()1,60,点E 的坐标为()2,160,设线段AB 的解析式为y kx b =+,得602160k b k b +=⎧⎨+=⎩,解得10040k b =⎧⎨=-⎩, ∴线段AB 的解析式为10040y x =-.由图象知点B 的横坐标为4,∴100440360y =⨯-=.∴点B 的坐标为()4,360.∴点C 的纵坐标为360.∴甲从点C 到点D 用时()()5603601002h -÷=,∴甲途中休息了()7421h --=,∴点C 的坐标为()5,360.设线段CD 所表示的函数关系为y mx n =+,将点()5,360C ,()7,560D ,代入y mx n =+,得53607560m n m n +=⎧⎨+=⎩,解得100140m n =⎧⎨=-⎩, ∴线段CD 所表示的函数关系为100140y x =-.(3)∵线段BC 所表示的函数关系为360y =,线段OD 所表示的函数关系为80y x =,∴80360x =,解得 4.5x =,∴两人开车行驶4.5h 后第二次相遇.分两种情况:①当甲在休息时,8036030x -=,解得 4.8755x =<,()4.875 4.50.375h -=;②当甲休息1h 后,继续匀速行驶时,()8010014030x x --=,解得 5.57x =<,()5.5 4.51h -=.综上所述,两人第二次相遇后,又经过0.375h 或1h 两人相距30km .【点睛】此题考查一次函数的实际应用,待定系数法求函数解析式,解一元一次方程,正确理解题意,掌握路程、时间、速度之间的关系及函数图象各段的意义是解题的关键.26.(1)2(010)310(1060)x x y x x ≤≤⎧=⎨-<≤⎩;(2)这种瓜苗移至大棚后.继续生长大约30天,开始开花结果.【分析】(1)分段函数,利用待定系数法解答即可;(2)利用(1)的结论,把y=110代入求出x 的值即可解答.【详解】解:(1)当0≤x≤10时,设y=kx (k≠0),则:20=10k ,解得k=2,∴2y x =,当10<x≤60时,设(0)y k x b k ,则:201017060k b k b ''=+⎧⎨=+⎩,解得310k b =⎧⎨=-'⎩∴310y x =-,∴2(010)310(1060)x x y x x ≤≤⎧=⎨-<≤⎩, (2)当y=110时,110310x =-,解得40x =,40-10=30,∴这种瓜苗移至大棚后.继续生长大约30天,开始开花结果.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量的值,仔细观察图象,准确获取信息是解题的关键.。

2019-2020学年度北师大版八年级上册第四章一次函数 一次函数图像与性质培优题(解析版)

2019-2020学年度北师大版八年级上册第四章一次函数  一次函数图像与性质培优题(解析版)

1一次函数图像与性质培优题一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( ) A . B . C . D . 2.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.k 0<3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A.24y x =-B.24y x =+C.22y x =+D.22y x =- 4.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A.5B.2C.52D.255.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是( )A.5B.4C.3D.26.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+37.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.8.如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A. B. C. D.239.已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb <0,则在平面直角坐标系内它的大致图象是( )A .B .C .D .10.两个一次函数y=ax+b 与y=bx+a (a ,b 为常数,且ab≠0),它们在同一个坐标系中的图象可能是( )A. B. C. D. 11.如图, 直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点, 点P 为OA 上一动点, 当PC PD +最小时, 点P 的坐标为 ()A .(3,0)-B .(6,0)-C .3(2-,0)D .5(2-,0)4二、填空题12.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是_____.13.如图,已知()0,2A ,()6,0B ,()2,C m ,当1ABC S ∆=时,m =______.14.将直线33y x =-向右平移2个单位,所得的直线的与坐标轴所围成的面积是_______. 15.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 16.已知直线y kx b =+与25y x =-平行且经过点(1,3),则y kx b =+的表达式是__________.三、解答题17.如图,A 点的纵坐标为3,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B .(1)求该一次函数的解析式.(2)若该一次函数的图象与x 轴交于D 点,求BOD 的面积.518.如图,点A 、B 的坐标分别为(0,2),(1,0),直线132y x =-与y 轴交于点C 、与x 轴交于点D .(1)直线AB 解析式为y kx b =+,求直线AB 与CD 交点E 的坐标;(2)四边形OBEC 的面积是________;(3)求证:AB CD ⊥.619.如图,一次函数 的图象与 轴交于点 ,与正比例函数 的图象相交于点 , ,且 .(1)分别求出这两个函数的解析式;(2)求 的面积;(3)点 在 轴上,且 是等腰三角形,请直接写出点 的坐标.参考答案1.C【解析】分析:对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求.详解:A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;B、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以B选项错误;C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项正确;D、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以D选项错误;故选:C.点睛:本题考查了一次函数图象:一次函数y=kx+b经过两点(0,b)、(-bk,0).注意:使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.2.B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.C【解析】【详解】分析:通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.详解:过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F 从D 到B 时,用5s.∴BD=5.Rt △DBE 中, BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 2=22+(a-1)2.解得a=52. 故选:C .点睛:本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.5.C【解析】【分析】设直线l 解析式为:y=kx+b ,由l 与x 轴交于点A (-b k,0),与y 轴交于点B (0,b ),依题可得关于k 和b 的二元一次方程组,代入消元即可得出k 的值,从而得出直线条数.【详解】设直线l 解析式为:y=kx+b ,则l 与x 轴交于点A (-b k,0),与y 轴交于点B (0,b ),∴2142AOBk bbS bk+=⎧⎪⎨=⨯-⨯=⎪⎩,∴(2-k)2=8|k|,∴k2-12k+4=0或(k+2)2=0,∴k=6±42或k=-2,∴满足条件的直线有3条,故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b与x轴、y轴的交点坐标.6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.D 【解析】 【分析】根据正比例函数y kx =的图象经过第一,三象限可得: 0k >, 因此在一次函数y kx k =-中0k >,0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解. 【详解】根据正比例函数y kx =的图象经过第一,三象限可得: 所以0k >,所以一次函数y kx k =-中0k >, 0b k =-<, 所以一次函数图象经过一,三,四象限, 故选D. 【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质. 8.A 【解析】试题分析:A .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、四象限,所以a <0,b >0,故A 正确;B .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b 过第一、二、四象限,所以a <0,b >0,所以矛盾,故B 错误;C .正比例函数y=abx 过第二、四象限,所以a <0,b >0,而y=ax+b 过第一、二、三象限,所以a >0,b >0,所以矛盾,故C 错误;D .正比例函数y=abx 过第一、三象限,所以a >0,b <0,而y=ax+b 过第一、三、四象限,所以a <0,<0,所以矛盾,故D 错误,故选:A .考点:一次函数的图象性质.9.A【解析】【分析】先根据函数图象得出其经过的象限,由一次函数图象与系数的关系即可得出结论.【详解】解:因为y随x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图象经过一、二、四象限.故选:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.10.B【解析】【分析】本题主要考查一次函数的图象与性质,根据函数图象得出一次函数各系数的正负是解题的关键;【详解】解:(1)对于y=ax+b,当a>0时,图像经过一三象限,则b>0,y=bx+a也要过一三象限,即A错误.(2) 对于y=ax+b,当a>0时,图像经过一三象限,且b<0,y=bx+a经过二四象限,与y轴交点在x轴上方,即B正确.(3) 对于y=ax+b,当a>0时,图像经过一三象限,且b>0,y=bx+a经过一三象限,即C错误.(4) 对于y=ax+b,当a<0时,图像经过二四象限,若b>0,则y=bx+a经过一三象限,即D错误.【点睛】掌握一次函数的图像与性质,根据函数猜图像时要善于抓住增减性,特殊值等重点.11.C【解析】【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:(方法一)如图所示作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=23x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(-3,2),D′(0,-2),∴有232k bb==-+⎧⎨-⎩,解得:432kb⎧-⎪⎨⎪-⎩==,∴直线CD′的解析式为y=42 3x--,令y=423x--中y=0,则0=423x--解得:x=32-,∴点P的坐标为3 (0)2 -,.故选C.(方法二)如图所示连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,令y=243x+中x=0,则y=4,∴点B的坐标为(0,4);令y=243x+中y=0,则243x+=0,解得:x=-6,∴点A的坐标为(-6,0).∵点C、D分别为线段AB、OB的中点,∴点C(-3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,-2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(32,-).故选:C.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.12.x=2【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为:x=2.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x 轴的交点的横坐标的值.13.1或5 3【解析】【分析】求出直线AB的解析式,设直线x=2交直线AB于点E,可得4(2,)3E,再根据三角形面积公式列出方程求解即可.【详解】解:如图,∵A(0,2),B(6,0),∴直线AB的解析式为123y x=-+设直线x=2交直线AB于点E,则可得到4 (2,)3 E,由题意:1461 23m⋅-⋅=解得m=1或5 3故答案为:1或53【点睛】本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.14.272【解析】 【分析】先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果. 【详解】解:直线33y x =-向右平移2个单位后的解析式为3(2)339y x x =--=-, 令x =0,则y =-9,令y =0,则3x -9=0,解得x =3,所以直线39y x =-与x 轴、y 轴的交点坐标分别为(3,0)、(0,-9),所以直线39y x =-与坐标轴所围成的三角形面积是1273922⨯⨯=. 故答案为:272. 【点睛】本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键. 15.32y x =-- 【解析】 【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式. 【详解】解:设一次函数解析式为y=kx+b , 把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行, ∴k=-3,∴一次函数解析式为y=-3x-2. 故答案为:y=-3x-2. 【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同. 16.21y x =+ 【解析】 【分析】先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b 中求出b 即可. 【详解】∵直线y=kx+b 与y=2x+1平行, ∴k=2,把(1,3)代入y=2x+b 得2+b=3,解得b=1, ∴y=kx+b 的表达式是y=2x+1. 故答案为:y=2x+1. 【点睛】此题考查一次函数中的直线位置关系,解题关键在于求k 的值. 17.(1)3y x =-+;(2)3BODS =.【解析】 【分析】(1)利用正比例函数,求得点B 坐标,再利用待定系数法即可求得一次函数解析式; (2)利用一次函数解析式求得点D 坐标,即可求BOD 的面积. 【详解】(1)把1x =代入2y x =中,得2y =, 所以点B 的坐标为()1,2, 设一次函数的解析式为y kx b =+,把()0,3A 和()1,2B 代入,得32b k b =⎧⎨+=⎩,解得13k b =-⎧⎨=⎩,所以一次函数的解析式是3y x =-+;(2)在3y x =-+中,令0y =,则03x =-+, 解得3x =,则D 的坐标是()3,0,所以13232BODS=⨯⨯=. 【点睛】本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键. 18.(1)(2,2)E - (2)4 (3)证明见解析【解析】 【分析】(1)运用待定系数法即可得到直线AB 解析式,再根据方程组的解,即可得到直线AB 与CD 交点E 的坐标;(2)根据坐标轴上点的特征求出C 、D 两点的坐标,然后根据S OBEC S DOC S DBE ∆∆=-Y 面积公式计算即可;(3)作EF ⊥y 轴于点F ,根据勾股定理分别求出222AE CE AC 、、,利用勾股定理的逆定理判断即可. 【详解】解:(1)点A 、B 的坐标分别为(0,2),(1,0),∴02k b b +=⎧⎨=⎩,解得22k b =-⎧⎨=⎩,故直线AB 的解析式是22y x =-+,则22132y x y x =-+⎧⎪⎨=-⎪⎩,解得22x y =⎧⎨=-⎩ ∴(2,2)E -;(2直线CD 的解析式为132y x =-, 当x=0时,y=-3,当y=0时,x=6,则点C 的坐标是(0,-3),点D 的坐标是(6,0).S OBEC S DOC S DBE ∆∆=-Y =11635222⨯⨯-⨯⨯=4;(3)作EF y ⊥轴于点F ,由(0,2)A ,(2,2)E -,(0,3)C -∴4AF =,1CF =,2EF =,5AC =222224220AE AF EF =+=+=,22222215CE CF EF =+=+=,22525AC ==,∴222AE CE AC +=,∴ACE ∆是直角三角形,且90AEC ∠=︒∴AB CD ⊥.【点睛】此题考查一次函数的综合运用,解题关键在于运用待定系数法,勾股定理的逆定理.19.(1) ; ;(2)10;(3) 或 或 或【解析】【分析】(1)根据点A 坐标,可以求出正比例函数解析式,再求出点B 坐标即可求出一次函数解析式. (2)如图1中,过A 作AD ⊥y 轴于D ,求出AD 即可解决问题.(3)分三种情形讨论即可①OA=OP ,②AO=AP ,③PA=PO .【详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为如图1中,过作轴于,在中,,解得一次函数解析式为(2)如图1中,过作轴于,(3))如图2中,当OP=OA时,P(−5,0 ,P(5,0),当AO=AP时,P(8,0),当PA=PO时,线段OA的垂直平分线为y=−,∴P,∴满足条件的点P的坐标或或或【点睛】此题考查一次函数综合题,解题关键在于作辅助线.。

最新北师大版八年级数学上册《一次函数》达标检测卷及答案

最新北师大版八年级数学上册《一次函数》达标检测卷及答案

第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )(第1题)A .1个B .2个C .3个D .4个 2.直线y =x +3与y 轴的交点坐标是( ) A .(0,3) B .(0,1) C .(1,0) D .(3,0)3.如图,直线OA 是某正比例函数的图象,下列各点在该函数图象上的是( ) A .(-4,16) B .(3,6) C .(-1,-1) D .(4,6)(第3题)(第4题)(第6题)4.如图,与直线AB 对应的函数表达式是( )A .y =32x +3B .y =-32x +3C .y =-23x +3D .y =23x +35.关于一次函数y =12x -3的图象,下列说法正确的是( )A .图象经过第一、二、三象限B .图象经过第一、三、四象限C .图象经过第一、二、四象限D .图象经过第二、三、四象限6.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,则下列结论中:①k<0;②a>0;③b>0;④当x =3时,y 1=y 2.正确的有( )A .0个B .1个C .2个D .3个7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x ≤12).下列说法不正确的是( )x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A.x 与y 都是变量,且x 是自变量 B .弹簧不挂物体时的长度为10 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg ,弹簧长度为14.5 cm8.若直线y =-3x +m 与两坐标轴所围成的三角形的面积是6,则m 的值为( ) A .6 B .-6 C .±6 D .±39.A ,B 两地相距20 km ,甲、乙两人都从A 地去B 地,如图,l 1和l 2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系,下列说法:①乙晚出发1 h ;②乙出发3 h 后追上甲;③甲的速度是4 km/h ;④乙先到达B 地.其中正确的个数是( )A .1B .2C .3D .4(第9题)(第10题)10.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其从正面看得到的图形如图所示.小亮决定做个实验:把塑料桶和玻璃杯看成一个容器,对准杯口匀速注水,注水过程中玻璃杯始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是( )二、填空题(每题3分,共24分)11.下列函数:①y =πx ;②y =2x -1;③y =1x +8;④y =kx +3;⑤y =x 2-(x -2)2.其中一定属于一次函数的是________.12.直线y =-3x +5不经过的象限为________.13.若一次函数y =2x +b(b 为常数)的图象经过点(1,5),则b =________. 14.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1________y 2.(填“>”“<”或“=”)15.如图,一次函数的图象经过点E ,且与正比例函数y =-x 的图象交于点F ,则该一次函数的表达式为____________.(第15题)(第17题)(第18题)16.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a ≠0)上,则ab -5=________.17.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当销售量x________时,该公司盈利(收入大于成本).18.将正方形A 1B 1C 1O 和正方形A 2B 2C 2C 1按如图所示方式放置,点A 1,A 2在直线y =x +1上,点C 1,C 2在x 轴上.已知点A 1的坐标是(0,1),则点B 2的坐标为________.三、解答题(19题6分,20,21题每题9分,22题10分,23题8分,其余每题12分,共66分)19.已知y +2与x -1成正比例,且当x =3时,y =4. (1)求y 与x 之间的函数关系式; (2)当y =1时,求x 的值.20.作出函数y =3x +1的图象,根据图象回答: (1)当x 取什么值时,函数值y 大于零? (2)直接写出方程3x +1=0的解.21.已知直线y 1=-23x +3与x 轴交于点A ,与y 轴交于点B ,直线y 2=2x +b 经过点B ,且与x 轴交于点C ,求△ABC 的面积.22.请你根据如图所示的图象所提供的信息,解答下面问题:(1)分别写出直线l 1,l 2对应的函数中变量y 的值随x 的变化而变化的情况; (2)求出直线l 1对应的函数表达式.(第22题)23.一次函数y =ax -a +1(a 为常数,且a ≠0).(1)若点⎝ ⎛⎭⎪⎫-12,3在一次函数y =ax -a +1的图象上,求a 的值; (2)当-1≤x ≤2时,函数有最大值2,请求出a 的值.24.某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种收费方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示.(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________;(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种收费方式较合算?(第24题)25.甲、乙两车分别从A,B两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C地休息了1 h,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(km)与甲车出发时间x(h)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(km)与甲车出发时间x(h)的函数表达式(写出自变量x的取值范围);(3)当两车相距120 km时,乙车行驶了多长时间?(第25题)答案一、1.B 2.A 3.B 4.B5.B 点拨:一次函数y =12x -3.其中k =12>0,b =-3<0.其图象如图所示.(第5题)6.D 7.D 8.C 9.C 10.C 二、11.①②⑤ 12.第三象限 13.3 14.< 15.y =x +216.-13 点拨:将(3,5)代入y =ax +b ,得3a +b =5.所以b -5=-3a ,因为a ≠0,所以b ≠5.所以a b -5=a -3a =-13. 17.>4 18.(3,2)三、19.解:(1)由y +2与x -1成正比例可设y +2=k(x -1),将x =3,y =4代入上式得4+2=k(3-1),解得k =3,所以y +2=3(x -1),即y =3x -5.(2)当y =1时,得1=3x -5,解得x =2,即当y =1时,x =2. 20.解:列表:x … -13 0 … y…1…图象如图所示.(1)当x>-13时,y>0.(第20题)(2)x =-13.21.解:令x =0,则y 1=3;令y 1=0,则0=-23x +3,即x =92.所以点A 的坐标为⎝ ⎛⎭⎪⎫92,0,点B 的坐标为(0,3). 又因为点B 在直线y 2=2x +b 上, 所以b =3,即y 2=2x +3.令y 2=0,则0=2x +3, 所以x =-32.所以点C 的坐标为⎝ ⎛⎭⎪⎫-32,0.(第21题)如图,AC =⎪⎪⎪⎪⎪⎪-32+92=6,OB =3, ∴S △ABC =12AC ·OB =12×6×3=9.22.解:(1)直线l 1对应的函数中,y 的值随x 的增大而增大;直线l 2对应的函数中,y 的值随x 的增大而减小.(2)设直线l 1对应的函数表达式为y =a 1x +b 1,由题意得a 1+b 1=1,b 1=-1, 可得a 1=2,所以直线l 1对应的函数表达式为y =2x -1.23.解:(1)把⎝ ⎛⎭⎪⎫-12,3代入y =ax -a +1,得-12a -a +1=3,解得a =-43.(2)当a>0时,y 随x 的增大而增大,则当x =2时,y 有最大值2,把x =2,y =2代入函数关系式得2=2a -a +1,解得a =1;当a<0时,y 随x 的增大而减小,则当x =-1时,y 有最大值2,把x =-1,y =2代入函数关系式得2=-a -a +1,解得a =-12.所以a =-12或a =1. 24.解:(1)y =0.1x +6;y =0.12x (2)当甲、乙两种收费方式费用相同时,有 0.12x =0.1x +6, x =300.因此可得其函数图象交点横坐标为300.如图,由函数图象可得(第24题)当100≤x <300时选择乙种收费方式较合算;当x =300时,选择甲、乙两种收费方式费用一样;当300<x ≤450时,选择甲种收费方式较合算.25.解:(1)a =90,m =1.5,n =3.5.(2)①休息前,0≤x <1.5,设甲车与B 地的距离y(km)与甲车出发时间x(h)的函数表达式为y =kx +b(k ≠0).因为函数图象经过点(0,300),故b =300.把点(1.5,120)的坐标代入y =kx +300中得k =-120. 所以y =-120x +300;②休息时,1.5≤x <2.5,y =120;③休息后,2.5≤x ≤3.5,设甲车与B 地的距离y(km)与甲车出发时间x(h)的函数表达式为y =px +n(p ≠0).把点(2.5,120),(3.5,0)的坐标分别代入y =px +n 中得p =-120,n =420. 所以y =-120x +420.综上可知,y 与x 的函数表达式为y =⎩⎨⎧-120x +300(0≤x<1.5),120(1.5≤x<2.5),-120x +420(2.5≤x ≤3.5).(3)设两车相距120 km 时,乙车行驶了t h ,甲车的速度为(300-120)÷1.5=120(km/h),乙车的速度为120÷2=60(km/h).①若两车相遇前相距120 km ,则120t +60t =300-120,解得t =1;②若两车相遇后相距120 km ,则120(t -1)+60t =300+120,解得t =3.所以当两车相距120 km 时,乙车行驶了1 h 或3 h.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(北师大版)一次函数培优测试题
一. 选择题
1.下列关于x 的函数中,是一次函数的是( D )
A.222-=x y
B.11+=x y
C.2x y =
D.22
1+-=x y 2.下列各点在直线13-=x y 上的是(c )
A.)0,1(-
B. )0,1(
C. )1,0(-
D. )1,0(
3. 下列函数中,是正比例函数,且y 随x 增大而减小的是( d )
A.14+-=x y
B. 6)3(2+-=x y
C. 6)2(3+-=x y
D. 2
x y -= 4.已知长方形的周长为25,设它的长为x ,宽为y ,则y 与x 的函数关系为(c )
A.x y -=25
B. x y +=25
C. x y -=225
D. x y +=2
25 5.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( )
A. 1y 2y
B. 1y 2y
C. 1y =2y
D.不能确定
6.直线63+=x y 与两坐标轴围成的三角形的面积是( )
A.4
B.5
C.6
D.7
7.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )
A. 1b 2b
B. 1b 2b
C. 1b =2b
D.不能确定
8.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )
9.平分坐标轴夹角的直线是( )
A.1+=x y
B.1+-=x y
C.1-=x y
D.x y -=
10.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )
A.7cm
B.8cm
C.9cm
D.10cm
二. 填空题
11.对于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.
12.若y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,则这个一次函数的关系式是_______.
13. 一次函数b kx y +=的图象与两坐标轴的交点坐标分别为)0,3(和)2,0(-,则=k ____,=b ____.
14.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.
15.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________.
16.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.
17.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______.
18.如图是一次函数b kx y +=的大致图像,由图可知:k _________,b _______
(填“ ”、“ ”或“=”).
三. 解答题
19.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.
20.一次函数的图像过点)6,1(),2,3(--N M 两点.(1)求该函数的表达式;(2)画出该函数的图像.
21. 石家庄至北京300千米,火车从距石家庄站15千米的正定站出发,以每小时90千米/小时的速度向北京方向行驶,求火车与石家庄站间路程s (千米)和时间t (小时)的函数关系式,并指出自变量的取值范围.( 正定站位于北京与石家庄之间)
22.南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,若从A 城运往甲、乙两个农场的运费分别为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费分别为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,如果你承包了这项运输任务,怎样调运花钱最少?
23.A 、B 两辆汽车从相距120千米的甲、乙两地同时同向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间.如图,1l 、2l 分别表示两辆汽车的s 与t 的关系.
(1)2l 表示那辆汽车离甲地的距离与行驶时间的关系?
(2)汽车B 的速度是多少?
(3)2小时后,A 、B 两辆汽车相距多少千米?
(4)行使多长时间后,A 、B 两辆汽车相遇?
一、解答题:
1、在边长为2的正方形ABCD的一边BC上有一点P,从B点运动到C点,设PB=x ,梯形APCD的面积S.(1)写出S 与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象。

2、某工厂加工一批产品,为了提前交货,规定每个工人完成100个以内,每个产品付酬1.5元,超过100个,超过部分每个产品付酬增加0.3元,超过200个,超过部分除按上述规定外,每个产品再增加0.4元,求一个工人:
(1)完成100个以内所得报酬y(元)与产品数x(个)之间的函数关系式。

(2)完成100个以上,但不超过200个所得报酬y(元)与产品数x(个)之间的函数关系式。

(3)完成200个以上所得报酬y(元)与产品数x(个)之间的函数关系式。

3、已知方程x2-6x+(6+m)=0的两正实根之积为(1)求y与m之间函数关系式;(2)写出自变量m的取值范围;(3)求当m为何值时,方程的两根之积不小于3.
4、已知△ABC的∠B、∠C的平分线交于点D,设∠A、∠BDC的度数分别为x、y.(1)写出y与x 的函数关系式,(2)指出自变量x的取值范围;(3)画出函数的图象。

5、在直角坐标系中,点A的坐标是(3,0),点P在第一象限内的直线x+y=4上。

设点P的坐标为(x ,y)。

(1)求△POA的面积S与自变量y的函数关系式;(2)S与y是什么函数关系?并求出
自变量y的取值范围;(3)S与x是什么函数关系?并求出自变量x的取值范围;(4)当S= 时,求点P的位置。

6、已知一次函数y=(a-2)x+1的图象不经过第三象限,化简 .
7、在直角坐标系中,一次函数的图象与x轴、y轴分别交于点A 和点B、点C的坐标是(1,0),点D在x轴上,且∠BCD和∠ABD是两个相等的钝角。

如图13—18,求图象经过B、D 两点的一次函数解析式。

二、应用题
1、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥、乙库可调出80吨水泥。

A 地需70吨水泥。

B地需110吨水泥。

两库到A、B两地的路程和运费如下表(表中运费栏“元/吨。

千米”表示每吨水泥运送一千米所需人民币):
(1)设甲库运往A地水泥x吨、求总运费y(元)关于x(吨)的函数关系式。

(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?
2、气温随着高度的升高而下降、下降的一般规律是从地面到高空11km时处,每升高1km,气温下降60c,高于11km时,几乎再不变化,设地面的气温为20oc,高空中xkm的气温为y0c.(1)当0≤x≤11时,求x和y的关系式(2)作出气温随高度(包括高于11 km时)而变化的图象;(3)试求在离地面4.5km及13km的高空处,气温分别是多少?
3、A市和B市分别库存机器12台和6台,现在决定支援给C市10台,B市8台。

已知从A市调走一台机器到C市、D市的运费分别为400元和800元,从B市调走一台机器到C市、D市的运费分别为300元和500元。

(1)设B市运往C市x台机器,求总运费y关于x的函数关系式。

(2)若要求运费不超过9000元,问共有几种调运方案。

(3)指出总运费最低的调运方案,最低运费是多少?
4、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。

已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)按要求安排A、B两地产品的生产件数,有哪几种方案?请你给设计出来。

(2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?
5、某糖厂向B市销售糖块,如果从铁路托运,每千克需运费0.5元,若厂家派人从公路运送,需出差补助费240元,然后每千克需运0.26元。

(1)设该厂向B市销售糖块为x千克,铁路运费为y1元,公路运送的费用为y2元,分别计算两种运送方案所需费用(建立表达式)。

(2)当向B市销售糖块多少千克时,两种运送的费用一样?
(3)就销售的糖块的重量为x千克,讨论哪种运送方案更合算。

相关文档
最新文档