实验一 叠加原理和戴维南定理的验证

合集下载

工作报告叠加原理和戴维南定理实验报告

工作报告叠加原理和戴维南定理实验报告

工作报告-叠加原理和戴维南定理实验报告工作报告-叠加原理和戴维南定理实验报告一、实验目的1.学习和掌握叠加原理和戴维南定理的基本概念和原理。

2.通过实验,深入理解叠加原理和戴维南定理的实际应用。

3.提高实验技能和动手能力,掌握基本的电路分析和设计方法。

二、实验原理1.叠加原理:在线性电路中,多个电源共同作用时,各电源单独作用产生的电压(或电流)之和等于它们共同作用时产生的电压(或电流)。

2.戴维南定理:任何一个有源二端网络,都可以等效为一个电源电动势E和内阻R串联的形式。

其中,电动势E等于开路电压,内阻R等于网络中所有电源为零时,从两端看向网络的等效电阻。

三、实验步骤1.准备实验器材:电源、电阻器、电压表、电流表、电键、导线等。

2.搭建实验电路:根据叠加原理和戴维南定理的原理,搭建相应的电路。

3.进行实验测量:首先,分别测量各电源单独作用时的电压(或电流);然后,同时作用时测量总的电压(或电流)。

4.分析实验数据:根据测量数据,验证叠加原理的正确性,并根据戴维南定理计算等效电动势和内阻。

5.讨论实验结果:对实验结果进行分析和讨论,评估误差和实验条件的影响。

四、实验结果及分析1.数据记录:2.结果分析:通过实验测量,我们发现总电压(15V)等于三个电源电压之和(10V + 5V + 8V = 23V),总电流(4.5A)也等于三个电源电流之和(2A + 1A +1.5A = 4.5A),验证了叠加原理的正确性。

同时,根据戴维南定理,等效电动势E等于开路电压(15V),等效内阻R等于网络中所有电源为零时,从两端看向网络的等效电阻。

在这个实验中,由于只有一个电阻器,所以等效内阻R等于该电阻器的阻值。

五、结论总结通过本次实验,我们验证了叠加原理和戴维南定理的正确性,并掌握了它们的实际应用。

实验结果表明,在线性电路中,多个电源共同作用时,各电源单独作用产生的电压(或电流)之和等于它们共同作用时产生的电压(或电流),这为分析和设计电路提供了重要的理论依据。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告实验报告:叠加定理和戴维南定理
引言:
在本次实验中, 我们将介绍和应用叠加定理和戴维南定理两个电路原理的实验过程、结果和分析。

材料和方法:
我们使用了电流计,电压计和万用表等电学实验工具,以及运用不同的电路仿真软件如Multisim、Simetrix等,并采取多种电路组合,对系统进行测试。

结果和分析:
通过本次实验,我们可以看出叠加定理是一种简单但有效的方法,在测量复杂电路时能够快速轻松地计算出每个单独的电流和电压。

另一方面,戴维南定理可以使我们更有效地使用材料和设备,以及识别更重要的电路部分。

结论:
总的来说,本次实验是成功的。

通过应用叠加定理和戴维南定理,我们得出了精确的电路参数,测试结果符合预期,证明了这两个电路原理在电路设计中的重要性和实用性。

未来展望:
本次实验对我们进一步深入研究电路设计和电路优化提供了很好的基础。

我们还可以在此基础上,尝试更复杂的电路设计和实验,进一步加强我们的实践能力。

实验一 叠加原理和戴维南定理的验证

实验一  叠加原理和戴维南定理的验证

实验一、实验二叠加原理和戴维南定理的验证一、实验目的1.验证叠加原理和戴维南定理。

2.学习通用电学实验台的使用方法。

3.学习万用表、毫伏表、伏特表的使用方法。

二、实验仪器及元件1. 通用电学实验台ZH—12型1台2. 万用表MF—47型1快3. 直流伏特表85C17(0—15V)1块4. 直流毫伏表85C17(0—50mA)3块5. 开关2个6. 电阻若干三、实验电路图1—1 验证叠加原理电路图1—2 验证戴维南定理电路图1—3 戴维南等效四、实验方法1. 叠加原理的验证1. 首先调整好直流稳压电源, 用万用表直流电压档测出其输出值, 使其两路电压输出分别为U1=10V, U2=12V。

2. 按照实验电路图1—1接线, 经过老师检查无误后, 方可开始实验。

3. 先将开关S1闭合, S2断开, 并用短路线将cd短接, 即只有电源U1单独作用, 分别测量I1.I2.I3.U, 并将数据填入表1—1中, 测完将短路线拆除。

4.再将开关S1断开, S2闭合, 并用短路线将ab短接, 此时只有电源U2单独作用, 分别测量I1、I2、I3、U, 并将数据填入表1—1中, 测完将短路线拆除。

5. 然后将开关S1.S2同时闭合, 测量U1.U2共同作用时的I1.I2、I3、U, 并将数据填入表1—1中。

2. 戴维南定理验证1. 按照实验电路图1—2接线, 经老师检查无误后, 方可开始。

2. 将开关S1.S2断开, 即负载RL开路时, 测此时的开路电压U0, 记录伏特表读数并填入表1—2中。

然后将S1闭合, 测量RL短路时的短路电流IS, 记录毫安表读数并填入表1—2中, 根据公式R0=U0/IS计算戴维南等效电阻R0。

3. 再将S1断开, 并用短路线将AB短接, 用万用表欧姆档测无源二端网络EF 两端的等效电阻R0, 填入表1—2中并和上面的计算结果比较。

4.然后闭合S2, 改变RL的阻值, 并将不同RL下的I、U填入表1—3中。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告一、实验目的1、深入理解叠加定理和戴维南定理的基本概念和原理。

2、通过实验操作,掌握运用叠加定理和戴维南定理分析电路的方法。

3、培养实验操作技能和数据处理能力,提高对电路理论的实际应用能力。

二、实验原理1、叠加定理叠加定理指出:在线性电路中,多个电源共同作用时,在任一支路中产生的电流(或电压)等于各个电源单独作用时在该支路产生的电流(或电压)的代数和。

在使用叠加定理时,需要分别考虑每个电源单独作用的情况。

当一个电源单独作用时,其他电源应视为零值,即电压源短路,电流源开路。

然后将各个电源单独作用时在该支路产生的电流(或电压)进行代数相加,得到最终的结果。

2、戴维南定理戴维南定理表明:任何一个线性有源二端网络,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效替代。

其中,电压源的电压等于有源二端网络的开路电压,电阻等于有源二端网络内所有独立电源置零后所得到的无源二端网络的等效电阻。

三、实验设备1、直流稳压电源(多组输出)2、直流电流表3、直流电压表4、电阻箱5、实验电路板6、连接导线若干四、实验内容与步骤1、叠加定理实验(1)按照图 1 所示连接电路,其中 E1 = 10V,E2 = 5V,R1 =10Ω,R2 =20Ω,R3 =30Ω。

(2)测量 E1 单独作用时,各支路的电流和电压。

将 E2 短路,接通 E1,记录电流表和电压表的读数。

(3)测量 E2 单独作用时,各支路的电流和电压。

将 E1 短路,接通 E2,记录电流表和电压表的读数。

(4)测量 E1 和 E2 共同作用时,各支路的电流和电压。

同时接通E1 和 E2,记录电流表和电压表的读数。

(5)将测量结果填入表 1,验证叠加定理。

表 1 叠加定理实验数据|电源作用情况| I1(mA)| I2(mA)| I3(mA)| Uab (V)|||||||| E1 单独作用|____ |____ |____ |____ || E2 单独作用|____ |____ |____ |____ || E1、E2 共同作用|____ |____ |____ |____ ||叠加结果|____ |____ |____ |____ |2、戴维南定理实验(1)按照图 2 所示连接电路,其中有源二端网络由电阻 R1 =50Ω,R2 =100Ω,电压源 E = 20V 组成。

电路与模拟电子技术实验

电路与模拟电子技术实验
铁芯电感线圈负载实验 1、R-L 串联电路实验 闭合开关 S,断开开关 S1,即为 R-L 电路。用功率表、电压表、电流表量测并读取 U, UR,US,I,I1,及 P 等数据,记入表 1-5-1 中。(注意:此时,电容未并入电路,I = I1)
2、R-L 串联电路并电容 C 实验
闭合开关 S,逐步选择并入的电容 C 的数值,并再次测量 U,UR,US,I,I1,IC 及 P 等 数据,将不同的电容 C 值(分别为 4、6、8μF)时对应的上述数据值记入表 1-5-1 中。
表 2 数据和波形记录
测量值
U2/V
10
14
17
UI/V
Uo/V
四、问题 1. 整流实验时,测量输出电压采用______ __表, 测量变压器付方电压采用___ ___ __表。
2. 观察桥式整流电路输出波形,示波器应接在__ ____点与公共点之间;观察整流、滤 波电路输出波形,示波器应接在_ _____点与公共点之间。
510
+ E1 -
A
I2
B
510
I3
1K
E2 + -
C
图 1-2-1(自制实验电路)
图 1-2-1’(天煌实验电路)
2、戴维南定理实验线路如下图所示
I1
100
+ K1 E1 -
50
I3 K2
6V
100
图 1-2-2(自制实验电路)
mA
300
510
RL
+12V 10
RL
510
200
图 1-2-2’(天煌实验电路)
5
(2)电压跟随器实验,将图 3(a)中的 R1 断开,得图 3(b)电路,重复(1)的内容。 3、 反相加法运算电路 (1)按图 3 连接实验电路,调零和消振。 (2)输入信号采用直流信号,用直流电压表测量输入电压 Ui1、Ui2 及输出电压 Uo,填入 表 2 中(实验时要注意选择合适的直流信号幅度以确保集成运算放大器工作在线性区)。 4、 减法运算电路 (1)按图 4 连接实验电路,调零和消振。 (2)采用直流输入信号,实验步骤同内容 3,填入表 2 中。

电工电子学(二)实验.

电工电子学(二)实验.

实验一直流电路一、实验目的1.验证叠加原理和戴维南定理的内容,加深理解其内涵。

2.学习使用稳压电源。

3.掌握用数字万用表测量直流电量的方法。

二、相关知识叠加原理是线性电路中的普遍性原理,它是指当有几个电源同时作用于线性电路时,电路中所产生的电压和电流等于这些电源分别单独作用时在该处所产生的电压和电流的代数和。

在分析一个复杂的线性网络时,可以利用叠加原理分别考虑各个电源的影响,从而使问题简化,本实验通过测量各电源的作用来验证该原理。

戴维南定理是指在线性电路中,任何一个有源二端网络总可以看做一个等效电源,等效电源的电动势就等于该网络的开路电压U O,等效电源的内阻R O等于该网络中所有电源置零(电压源短路,电流源开路)后所得无源网络的等效电阻。

如图1—1所示有源二端网络图(a)可以由图(b)等效代替。

利用戴维南定理可以把复杂电路化简为简单电路,从而使计算简化。

(a)(b)图1—1 有源二端网络及其等效电路有源二端网络等效内阻R O的三种测量方法:1.开路短路法。

若图(a)的AB端允许短路,可以测量其短路电流I S,再测AB端的开路电压U O,则等效电阻R O=U O/I S。

2.外特性法。

在AB之间接一负载电阻R L如图(a)所示,测绘有源二端网络的外特性曲线U= f(I),该曲线与坐标轴的交点为U O和I S,则R O=U O/I S。

3.直接测量法。

使有源二端网络中的电源置零(电压源短路,电流源开路),用万用表电阻挡直接测量AB端的阻值R O。

三、预习要求1.复习教材中有关叠加定理和戴维南定理的内容,掌握其基本要点,注意其使用条件。

2.阅读实验指导中有关仪器的使用方法:3.预习本次实验内容,作好准备工作。

(1)熟悉实验线路和实验步骤。

(2)对数据表格进行简单的计算。

(3)确定仪表量程。

四、实验线路原理图图1—2 叠加定理实验线路图图1—3 戴维南定理实验原理图图1—4 戴维南等效电路五、实验设备1.THHE—1型高性能电工电子技术实验台(双路稳压电源、数字电压表、数字电流表)。

电工学第七版上册实验电工学第七版上册答案

电工学第七版上册实验电工学第七版上册答案

电工学第七版上册实验电工学第七版上册答案实验一叠加定理及戴维南定理的验证一、实验目的1.验证线性电路叠加原理的正确性,加深对其使用范围的理解;2.通过实验加深对线性电路的叠加性和齐次性的认识和理解;3.验证戴维南定理的正确性;二、实验原理叠加定理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

如果网络是非线性的,叠加原理将不适用。

任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源单口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势ES等于这个有源二端网络的开路电压UOC,其等效内阻RO等于该网络中所有独立源均置于零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

UOC和RO称为有源二端网络的等效参数。

三、实验组件多功能实验网络;直流电压表;直流电流表;可调直流稳压源;可调直流电流源;可调电阻。

四、实验步骤1、验证线性电路的叠加原理:1按图1电路图连接好电路后,请教师检查电路;○2开路Is,合上E后测各支路的电压、电流;○3短接E,测量Is单独作用时,各支路的电压、电流;○4测量E、Is同时作用时各支路电压、电流;○5根据记录的数据,验证电流、电压叠加原理。

○2、验证非线性电路不适用叠加原理:将图1中DC支路的线性电阻用稳压二极管代替,重复步骤1,重复测量各支路电流和电压。

3、戴维南定理验证:(1)测量含源单口网络:1按图2电路图连接好电路后,请教师检查电路;○2设定Is=15mA、Es=10V;○S图1请在实验之前完成实验预习报告(实验表格请画在报告上,粘贴表格者实验成绩扣分)图 23调节精密可调电阻,测定AB支路从开路状态(R=∞,此时测出的UAB为A、B开路电○压UK)变化到短路状态(R=0,此时测出的电流即为A、B端短路时的短路电流Id)的UAB、IAB。

验证叠加原理及戴维南定理

验证叠加原理及戴维南定理

图2-48 二端网络
2.戴维南定理
戴维南定理是说明如何将一个线性有源二端电路等效成一个 电压源的重要定理。戴维南定理可以表述如下:对外电路来 说,线性有源二端网络可以用一个理想电压源和一个电阻的 串联组合来代替。理想电压源的电压等于该有源二端网络两 端点间的开路电压,用U0表示;电阻则等于该网络中所有电 源都不起作用时(电压源短接,电流源切断)两端点间的等效 电阻,用R0表示。
叠加原理是线性电路分析的基本方法,它的内容是: 在线性电路中,任一支路中的电流(或电压)等于各个电 源单独作用时,在此支路中所产生的电流(或电压)的代 数和。
应用叠加原理求复杂电路,可将电路等效变换成几 个简单电路,然后将计算结果叠加,求得原来电路的电 流、电压。在等效变换过程中,要保持电路中所有电阻 不变(包括电源内阻),假定电路中只有一个电源起作用, 而将其他电源作多余电源处理,多余电压源作短路处理, 多余电流源作开路处理。
三、二端网络与戴维南定理
1.二端网络

在电路分析中,任何具有两个引出端的部分电路 都可称为二端网络。二端网络中,如果含有电源就称为 有源二端网络,如图2-48(a)所示;如果没有电源则称 为无源二端网络,如图2-48(b)所示。电阻的串联、并 联、混联电路都属于无源二端网络,它总可以用一个等 效电阻来替代,而一个有源二端网络则可以用一个等效 电压源来代替。
一、支路电流法
支路电流法是分析复杂电路的基本方法,对 于一个复杂电路,在已知电路中各电阻和电动势 的前提下,以各条支路电流为未知量,根据基尔 霍夫第一定律和基尔霍夫第二定律分别列出电路 中的节点电流方程及回路电压方程,然后联立求 解,计算出各支路电流,这种分析电路的方法称 为支路电流法。
二、叠加原理

叠加原理与戴维南原理的验证要点

叠加原理与戴维南原理的验证要点

在输出端接入可变电阻箱(连接A、C、连接B、G)。以上面 求得的R0为中心,分别向两侧逐步改变电阻箱阻值,测量通过 RL的电流IL和电压UL,记入表2。计算各种负载下的功率。 用毫米方格纸作RL-P图。
100 150 200 250 300 350 400 450 500 600 700 800 900 100电阻获得最大功率的条件 是负载电阻RL=电源内阻RO,这是 认为负载电阻与电源内阻是相匹配 的,称为最大功率匹配,而这时负 载上获得的最大功率为:
PMAX
2 E R 2 0 L E0 2 ( RL R0 ) 4R0
实验设备
序号
1 2 3 4
实验二
叠加原理与戴维南原理 的验证
实验目的


验证叠加原理,加深对线性电路的认识。 验证戴维南定理,测量有源二端网络等效参数。 验证最大功率传递原理。
叠加原理
在有几个独立源共同作用下的线性电路中, 通过每一支路的电流或者电压,可以看成是由 每一个独立源单独作用时在该支路上所产生的 电流或电压的代数和。
表2
利用所作的RL- P图,验证当RL=RO时为 最大传递功率。
RL(Ω ) P(mW)
100 6.72
150 8.47
200 9.8
250 10.4
300 10.54
350 10.83
400 11.13
450 11
500 10.58
600 10.32
700 10.14
800 9.73
900 9.02
戴维南定理
任何一个有源二端线性网络,对于外电路 来说,可以用一个电动势为Es的理想电压源 与内阻Ro串联的电源来等效代替。其中,等 效电源的电动势Es等于该网络的开路电压Uoc, 内阻Ro等于相应无源二端网络两端的等效电 阻。

叠加原理、戴维南定理

叠加原理、戴维南定理

实验一叠加原理一、实验目的验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。

二、实验原理叠加原理:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、实验仪器1.电路分析实验箱2.数字电流表3.数字万用表四、实验内容实验电路如图2-1所示1.按图2-1电路接线,取E1=+12V,E2=+6V。

2.令E1电源单独作用时,用数字电流表和数字万用表分别测量各支路电流及各电阻元件两端电压,数据记入表格中。

图2-13.令E2电源单独作用时,重复实验步骤2的测量和记录。

4.令E1、E2共同作用时,重复上述的测量和记录。

5.将E2的数值调到+12V,重复上述的测量和记录。

五、实验注意事项1.测量各支路电流时,应注意仪表的极性,及数据表格中“+、-”号的记录。

2.注意仪表量程的及时更换。

六、预习思考题1.叠加原理中E1、E2分别单独作用,在实验中应如何操作?可否直接将不用的电源(E1或E2)置零(短接)?2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性与齐次性还成立吗?为什么?七、实验报告1.根据实验数据验证线性电路的叠加性与齐次性。

2.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。

3.心得体会及其他。

实验二戴维南定理一、实验目的1.验证戴维南定理的正确性。

2.掌握测量有源二端网络等效参数的一般方法。

二、实验原理1.任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维南定理指出:任何一个线性有源二端网络,总可以用一个等效电压源来代替,此电压源的电动势ES等于这个有源二端网络的开路电压UOC,其等效内阻RO等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。

戴维南定理与叠加定理实验报告

戴维南定理与叠加定理实验报告

实验名称:实验一戴维南定理与叠加定理一、实验目的1.深刻理解和掌握戴维南定理。

2.掌握测量等效电路参数的方法。

3.初步掌握用Multisim 软件绘制电路原理图。

4.初步掌握Multisim软件中的Multimeter、Voltmeter、Ammeter等仪表的使用以及DC Operating Point、Parameter Sweep等SPICE仿真分析方法。

5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。

6.初步掌握Origin绘图软件的应用。

二、实验原理一个含独立源、线性电阻和受控源的一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效置换,其等效电压源的电压等于该--端口网络的开路电压,其等效电阻等于将该一端口网络中所有独立源都置为零后的输入电阻。

这一定理称为戴维南定理,如图3.1.1。

三、实验设备与器件1.计算机一台2.通用电路板一块3.万用表两只4.直流稳压电源一台5.电阻若干四、实验内容Multisim仿真(1)创建电路:从元器件库中选择电压源、电阻(根据自己实验板上电阻的阻值),同时接入万用表。

(2)用万用表测量端口的开路电压和短路电流,并计算等效电阻。

(3)(4)(5)等效电阻(计算):3-1-2.表3-1-2(4)根据开路电压和等效电阻创建等效电路。

(5)用参数扫描法(对负载电阻R4参数扫描)测量原电路及等效电路的外特性,观测DC Operating Point,将测量结果填入表3-1-3。

表3-1-3五、实验步骤、数据记录、结论;表3-1-12.在通用电路板.上焊接实验电路并测试等效电压和等效电阻,测量结果填入表3-1-2中。

3.在通用电路板上焊接戴维南等效电路。

4.测量原电路和戴维南等效电路的外特性,测量方式:1、我将万用表调至欧姆档,按照表3-1-1所示调到对应电阻。

连接1 2 点同时并测出3 4点对应电压,记录在表格中。

3. 运用欧姆定律算出电流填至表中。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告叠加定理和戴维南定理是电路分析中常用的两种方法,通过实验验证它们的有效性,可以更好地理解和掌握这两个定理在电路分析中的应用。

实验一,叠加定理实验。

首先,我们搭建了一个简单的电路模型,包括电压源、电阻和电流表。

在实验中,我们分别对电压源和电阻进行了不同的变化,记录了电流表的读数。

在变化电压源的情况下,我们发现电流表的读数随着电压的增大而增大,这符合叠加定理的要求。

叠加定理指出,一个线性电路中的电流或电压可以分别由各个独立电源所产生的电流或电压之和得到。

实验结果验证了叠加定理在电路分析中的有效性。

实验二,戴维南定理实验。

在这个实验中,我们构建了一个包含多个电压源和电阻的复杂电路模型。

通过对电路中的不同电压源进行独立激励,我们记录了电流表的读数,并进行了数据分析。

实验结果显示,当单独激励某一个电压源时,电流表的读数与该电压源的激励有关,而与其他电压源的激励无关。

这符合戴维南定理的要求,即在一个多端口网络中,任意一个端口的电压或电流可以表示为其他端口电压或电流的线性组合。

通过实验验证,我们进一步加深了对戴维南定理的理解。

结论。

通过以上两个实验,我们验证了叠加定理和戴维南定理在电路分析中的有效性。

叠加定理适用于线性电路中的电流和电压分析,而戴维南定理适用于多端口网络的电压和电流分析。

这两个定理为电路分析提供了重要的理论基础,通过实验验证,我们更加深入地理解了它们的应用。

在今后的学习和工作中,我们将继续深入研究电路分析的理论和方法,不断提升自己的实验能力和理论水平,为电子电路领域的发展贡献自己的力量。

叠加原理和戴维南定理实验报告

叠加原理和戴维南定理实验报告

叠加原理和戴维南定理实验报告叠加原理实验报告叠加原理是指使用多个简单、可控的脉冲来叠加构成复杂的电磁波,是现代电波形成的基本原理。

戴维南定理是叠加原理的重要推广,它指出叠加的幅度和相位的变化,随着参加叠加的信号数量的增加而发生变化,有助于理解不同波形的特性。

本次实验的目的是实验戴维南定理,使用电脉冲发生器的石英晶体管组成电路,电路中石英晶体管可以发出正弦波,当多个正弦波同时存在,便会构成叠加效应,由此得出相应波形,并观察相应的结果。

实验方法:本次实验主要采用计算机仿真程序,采用Matlab软件来进行仿真,用以研究叠加原理,并进行戴维南定理实验。

具体步骤如下:(1) 打开Matlab软件,点击“新建仿真”,点击左侧的“电脉冲发生器”,在此画布中设置正弦波的数量和相位。

(2) 设置正弦波的数量和相位后,单击“计算”按钮,得到结果,此时可以观察到叠加效果,得出叠加波形。

(3) 按照上述步骤,繁殖不同数量和相位的正弦波,得出叠加波形,实现叠加原理。

实验结果:参考图1:2个正弦波叠加的结果根据实验程序的结果可以看出,在模拟叠加2个正弦波的情况下,两个正弦波的峰值都保持不变,而叠加完之后的电子运动呈现出抖动的形状,而且两个正弦波的位相也在叠加之中发生变化,表明电子运动波形出现了变化。

这些变化正好符合戴维南定理所描述的规律,表明叠加原理在此实验中发挥了作用。

结论:从本实验结果可以看出,通过Matlab仿真,当两个正弦波的数量和相位发生变化时,叠加波形会发生相应的变化,这符合戴维南定理。

另外,我们也可以用这种方法来模拟一些复杂的电磁波形,以便更深入地了解电磁波形,以及在无线电通信技术中的应用。

戴维南定理及叠加定理

戴维南定理及叠加定理

a
R1
+ E1 _
S3
R2
mA
+ _ E2
RL b
图2-2( a )
b、方法二:二次电压测量法,首先测量有源 二端网络的开路电压UOC,然后闭合S3,接 入负载RL=510Ω 。由a、b端测量有源二端 网络带负载时的输出电压UL,则等效内阻 UOC – 1)RL ,测量线路见图2-2(b), RO=( UL 将UOC、UL、RO记入表2-2中。
(2)有源二端网络等效内阻R0的测量; a、方法一:开路短路法,将S1、S2倒向外 侧, S 3 断开,测有源二端网络的开路电压 U OC ,而后将毫安表跨接在 a 、 b 之间。则有 源二端网络通过毫安表短接,毫安表的读数 U 即为有源二端网络的短路电流IS,那么, RO= OC IS 测量电路见图2-2(a),将UOC、IS、RO记入 表2-2中。
a
R1
+ E1 _
S3
R2
V
RL b
+ _ E2
图2-2( b )
c、方法三:伏安法,将有源二端网络中的E1、 E2用短路线代替,即S1、S2倒向内侧;S3断开, 在a b间外加电压U=6V(由稳压电源供电), 串入电流表测量无源二端网络的电流;则等 效内阻 RO=U/I ,测量电路图见图2-2(c), 将U、I、RO记入表2-2中。
I1(mA) I2(mA) E1作用 E2作用 E1、E2 作用
表2-1 验证叠加原理
I3(mA)
2、戴维南定理的验证: (1)有源二端网络开路电压UOC的测量。 直接测量法:当有源二端网络的等效电阻 R 0 与电压表内阻 R 1 相比可以忽略时,直接用 电压表测量开路电压,本实验中(见图2-1), 我们将 R 3 =510 Ω 电阻视为负载 R L , R L 以外的 部分为待测有源二端网络,其两个输出端为 a、 b,用数字电压表测 a、b间的电压即为开路电 压UOC记下所测数据。

实验一叠加定理和戴维南定理

实验一叠加定理和戴维南定理

实验一叠加定理和戴维南定理一、实验目的1.掌握叠加定理和戴维南定理的基本原理。

2.学会使用叠加定理和戴维南定理分析电路。

二、实验原理1.叠加定理:当线性电路中有多个独立电源同时作用时,其总电压和电流可以通过每个独立电源产生的电压和电流的叠加得到。

即,总电压等于每个独立电源产生的电压之和,总电流等于每个独立电源产生的电流之和。

2.戴维南定理:任何一个线性有源二端网络都可以等效为一个电压源和内阻串联的形式。

其中,电压源的电压等于网络两端点的开路电压,内阻等于网络断路电阻。

通过戴维南定理,我们可以将复杂的网络简化为一个简单的电压源,方便分析计算。

三、实验步骤1.搭建实验电路,包含多个独立电源和负载。

2.连接测量仪器,如万用表等,测量电路的总电压和总电流。

3.分别断开每个独立电源,测量每个独立电源产生的电压和电流。

4.根据叠加定理,计算总电压和总电流,验证是否与测量结果相符。

5.运用戴维南定理,将实验电路等效为一个电压源和内阻串联的形式。

6.断开负载,测量开路电压和断路电阻。

7.根据戴维南定理,计算等效电压源的电压和内阻,验证是否与测量结果相符。

四、实验结果与分析1.实验数据记录:独立电源产生的电流之和。

在此实验中,总电压为23V,总电流为9A,与测量结果相符。

3.根据戴维南定理,等效电压源的电压等于网络两端点的开路电压,内阻等于网络断路电阻。

在此实验中,开路电压为23V,断路电阻为6Ω(未提供具体计算过程)。

因此,等效电压源的电压为23V,内阻为6Ω。

五、结论总结与实验心得体会通过本次实验,我们掌握了叠加定理和戴维南定理的基本原理,学会了如何使用这两个定理来分析电路。

实验结果表明,叠加定理可以帮助我们分析多个独立电源同时作用时的总电压和电流,戴维南定理可以帮助我们将复杂的电路简化为一个简单的电压源和内阻串联的形式,方便我们进行电路分析和计算。

通过本次实验,我们更加深入地理解了线性电路的基本性质和电路设计的基本原理。

实验一电路基本定律和定理的验证

实验一电路基本定律和定理的验证

实验一电路基本定理一、实验目的1、通过实验加深对参考方向,基尔霍夫定理、叠加定理、戴维南定理的理解;2、初步掌握用Multisim软件建立电路、辅助分析电路的方法。

二、实验原理1.基尔霍夫定理基尔霍夫电流定理(KCL):任意时刻,流进和流入电路中节点的电流的代数和等于零,即∑I=0。

基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即∑V=0。

2.叠加定理在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独作用时,在该支路所产生的电流或电压的代数和。

3.戴维南定理对外电路来说,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联来等效。

此电压源的电压等于一端口的开路电压Uoc,而电阻等于一端口的全部独立电压置0后的输入电阻R O。

实验中往往采用电压表测量开路电压Uoc,用电流表测量端口短路电流I SC,等效电阻R O等于开路电压Uoc除以短路电流I SC,即R O=Uoc/I SC。

三、实验内容实验电路如图1-1所示。

图1-11.基尔霍夫定理和叠加定理的验证1)实验步骤a)按图1-1所示用Multisim软件创建电路;b)启动程序,测得各电阻两端电压和各支路电流,验证KCL,KVL;c)E1单独作用下,E2的数值置为0以及E2单独作用,E1的数值置为0两种情况下,测得各个电阻两端电压和各支路电流值,验证叠加定理;d)将R2改成1N4009的二极管,验证KCL,KVL,叠加定理是否成立。

2)实验数据R2=100ΩU1(V)U2(V)U3(V)I1(A)I2(A)I3(A)E1,E2同时作用 5.255 -1.255 4.745 0.011 -0.013 0.024E1单独作用8.757 1.243 1.243 0.019 0.012 6.241mE2单独作用-3.503 -2.497 3.503 -7.456m -0.025 0.018 叠加结果R2换为1N4009二极管,实验电路如图1-2所示。

叠加原理和戴维宁定理的验证

叠加原理和戴维宁定理的验证

一、实验项目名称:叠加原理和戴维宁定理的验证二、实验目的●通过实验验证叠加原理和戴维南定理,以加深对它们的理解。

●掌握基本直流电量的测量方法及相关仪器的使用方法。

●掌握测量有源二端网络等效参数的一般方法。

三、实验内容利用实验的方法测量出电路的相关实验数据,并用实验数据或根据实验数据计算得到的结果,来验证叠加原理和戴维南定理。

四、实验原理叠加原理:在线性电路中,当有两个或两个以上电源作用时,任何一支路的电流或电压,等于各个电源单独作用时在该支路中产生的电流或电压的代数和。

戴维宁定理:任何一个线性有源二端网络,对外电路来说,都可以用一个电压源来代替,该电压源的电动势E等于二端网络的开路电压,其内阻R0等于将有源二端网络转换成无源二端网络后(将有源二端网络中的恒压源短路,恒流源开路),网络两端的等效电阻。

五、实验电路图六、使用仪器设备1.实验用仪器设备(1)双路直流电源供应器(GPS - 2303C型)一台。

(2)数字万用表一块。

(3)毫安提(C31 -mA型)一块。

(4)多孔实验板一块。

(5)导线若干。

2.实验用元件电阻:82Ω、100Ω、120Ω、150Ω、200Ω。

七、实验步骤1.叠加原理分别按图1-1-l a,b,c,正确地连接电路,用数字万用表和电流表按表1-1-1中的要求测量图中a和b两点电压及流经电阻R3的电流数据、并将测得的数据记录在表格中。

具体步骤如下:1)测量E1单独作用时ab两点电压与流经电阻R3的电流。

检查元件与设备是否完整。

按电路图1-1-1a连接电路。

调节电压输出为6V,然后进行电压的测量。

注意电压表表笔方向与参考方向一致。

记录所测电压数据。

断开电路。

按电路图1-1-1a连接电路。

用数字万用表测量流经电阻R3的电流。

注意电压表表笔方向与参考方向一致,红入黑出。

记录所测电压数据。

2)测量E2单独作用时ab两点电压与流经电阻R3的电流。

按电路图1-1-1b连接电路。

调节电压输出为2V,然后进行电压的测量。

叠加原理和戴维南定理实验报告

叠加原理和戴维南定理实验报告

叠加原理和戴维南定理实验报告篇一:实验报告1:叠加原理和戴维南定理的验证实验报告叠加原理和戴维南定理的验证姓名班级学号叠加原理和戴维南定理的验证一.实验目的:1. 通过实验加深对基尔霍夫定律、叠加原理和戴维南定理的理解。

2. 学会用伏安法测量电阻。

3. 正确使用万用表、电磁式仪表及直流稳压电源。

二.实验原理:1.基尔霍夫定律:1).电流定律(KCL):在集中参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零,即??=0。

流出节点的支路电流取正号,注入节点的支路电流取负号。

2).电压定律(KVL):在集中参数电路中,任何时刻,对任一回路内所有支路或原件电压的代数和恒等于零,在即??=0。

凡支路电压或原件电压的参考方向与回路绕行方向一致者为正量,反之取负号。

2.叠加原理在多个独立电源共同作用的线性电路中,任一支路的电流(或电压)等于各个电源独立作用时在该支路所产生的电流(或电压)的代数和。

3. 戴维南定理:任一线性有源二端网络对外电路的作用均可用一个等效电压源来代替,其等效电动势EO等于二端网络的开路电压UO,等效内阻RO等于该网络除源(恒压源短路、开流源开路)后的入端电阻。

实验仍采取用图2-3-1所示电路。

可把ac支路右边以外的电路(含R3支路)看成是以a与c为端钮的有源二端网络。

测得a、c两端的开路电压Uab即为该二端网络的等效电动势EO,内阻可通过以下几种方法测得。

(1)伏安法。

将有源二端网络中的电源除去,在两端钮上外加一已知电源E,测得电压U和电流I,则URO=(2)直接测量法。

将有源二端网络中的电压源除去,用万用表的欧姆档直接测量有源二端网络的电阻值即为RO。

本实验所用此法测量,图2中的开关S1合向右侧,开关S2断开,然后用万能表的欧姆挡侧a、c两端的电阻值即可。

(3)测开路电压和短路电流法。

测量有源二端网络的开路电压U0和短路电流IS。

则R0=U0/IS测试如图2-3-3所示,开关S打开时测得开路电压U0,闭合时测得短路电流IS。

直流电路实验1

直流电路实验1

实验一 直流电路一、实验目的1.加深理解叠加原理和戴维南定理 2.学习测定有源二端网络等效内阻的方法3.加深对等效电路概念的理解 二、实验原理1.叠加原理在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时,在该元件上所产生的电流或电压的代数和。

图1(a )为叠加原理实验电路,图中E 1、E 2为直流稳压电源,其内阻可近似看作零。

R 1、R 2、R 3、R 4、R 5均为线性电阻。

该电路在E 1、E 2的共同作用下,所产生的各支路电流I 1、I 2、I 3及各电阻上的电压U AB 、U CD 、U AD 、U D E 、U FA 应该等于电路中仅有E 1作用时,所产生的各支路电流1I '、2I '、3I '及各电阻上的电压AB U '、CD U '、AD U '、DE U '、FA U '与仅有E 2作用时,所产生的各支路电流1I ''、2I ''、3I ''及各电阻上的电压AB U ''、CD U ''、AD U ''、 DE U ''、FAU ''的代数和。

图1(b )为Multisim 仿真原理图。

(a )原理电路图Ω===510R R R 541 Ω=K 1R 2 Ω=330R 3(b)Multisim仿真电路原理图图1叠加原理实验电路2.戴维南定理任何一个线性有源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络,如图2(a)所示。

戴维南定理指出:任何一个线性有源二端网络,就外部特性来说,可以用一个电压为U O的电压源和阻值为R0的电阻的串联组合等效置换。

等效电压源的电压U O等于原有源二端网络的开路电压U OC,如图2(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、实验二叠加原理和戴维南定理的验证一、实验目的
1.验证叠加原理和戴维南定理。

2.学习通用电学实验台的使用方法。

3.学习万用表、毫伏表、伏特表的使用方法。

二、实验仪器及元件
1.通用电学实验台ZH—12型1台
2.万用表MF—47型1快
3.直流伏特表85C17(0—15V)1块
4.直流毫伏表85C17(0—50mA)3块
5.开关2个
6.电阻若干
三、实验电路
图1—1 验证叠加原理电路
图1—2 验证戴维南定理电路
图1—3 戴维南等效
四、实验方法
1.叠加原理的验证
1.首先调整好直流稳压电源,用万用表直流电压档测出其输出值,使其两路电压输出分别为U1=10V,U2=12V。

2.按照实验电路图1—1接线,经过老师检查无误后,方可开始实验。

3.先将开关S1闭合,S2断开,并用短路线将cd短接,即只有电源U1单独作用,分别测量I1、I2、I3、U,并将数据填入表1—1中,测完将短路线拆除。

4.再将开关S1断开,S2闭合,并用短路线将ab短接,此时只有电源U2单独作用,分别测量I1、I2、I3、U,并将数据填入表1—1中,测完将短路线拆除。

5.然后将开关S1、S2同时闭合,测量U1、U2共同作用时的I1、I2、I3、U,并将数据填入表1—1中。

2.戴维南定理验证
1.按照实验电路图1—2接线,经老师检查无误后,方可开始。

2.将开关S1、S2断开,即负载R L开路时,测此时的开路电压U0,记录伏特表读数并填入表1—2中。

然后将S1闭合,测量R L短路时的短路电流I S,记录毫安表读数并填入表1—2中,根据公式R0=U0/I S计算戴维南等效电阻R0。

3.再将S1断开,并用短路线将AB短接,用万用表欧姆档测无源二端网络EF两端的等效电阻R0,填入表1—2中并和上面的计算结果比较。

4.然后闭合S2,改变R L的阻值,并将不同R L下的I、U填入表1—3中。

5.按照实验电路图1—3接线,并按照表1—4分别改变R L的阻值,并将不同R L下的I、U填入表1—4中,然后和表1—3中的数据进行比较,验证电路图1—2、图1—3是否等效。

五、注意事项
1.每次使用万用表之前要检验其档位是否正确,切不可用电流档测量电压,也不可带电测量电阻。

使用欧姆档测量电阻之前必须调零。

2.验证叠加原理时要注意U1、U2单独作用时,电路中电流I1、I2的实际流向,以免指针反偏损坏直流毫安表。

六、实验数据及分析
表1—1
表1—2
表1—3
表1—4
分析:
1.根据表格数据验证叠加原理。

2.在同一个坐标系上画出实验电路图1—2和图1—3的伏安特性曲线,并做比较,验证戴维南定理。

七、回答问题
1.验证叠加原理时,如果电源内阻不可忽略,实验如何进行?
2.验证戴维南定理时,用毫安表测量R L短路时的短路电流I S,那么是否也可以用毫安表测量蓄电池的短路电流?为什么?。

相关文档
最新文档