信号与系统总复习PPT课件

合集下载

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

信号与线性系统ppt

信号与线性系统ppt
δ(k) = ε(k) –ε(k –1)
k
(k) (i) i
(k) (k j) j0
总结
➢ 系统性质分析
线性性质: af1(·) +bf2(·) →ay1(·)+by2(·)
时不变性:f(t ) → yzs(t )
f(t - td) → yzs(t - td)
直观判断方法: 若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
-1
1
3
τt
-1
(4) f1(2–τ)乘f2(τ) (5)积分,得f(2) = 0(面积为0)
பைடு நூலகம்
总结
➢卷积积分的性质
f(t)*δ(t)=δ(t)*f(t) = f(t) ε(t) *ε(t) = tε(t)
f(t)*δ(t –t0) = f(t – t0) f(t)*δ’(t) = f’(t)
f(t)*ε(t)
方程中均为输出、输入序列的一次关系项,则是线性的。输入输出序 列前的系数为常数,且无反转、展缩变换,则为时不变的。
因果,稳定(见第七章)。
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积:f1(t) * f2 (t) f1( ) f2 (t )d
图解法一般比较繁琐,但若只求某一 时刻卷积值时还是比较方便的。确定 积分的上下限是关键。
①连续正弦信号一定是周期信号,而正弦序列不 一定是周期序列。
•sin2t是周期信号,其角频率和周期为ω1= 2 rad/s,T1= 2π/ ω1= πs •仅当2π/ β为整数时,正弦序列才具有周期N = 2π/ β。 •当2π/ β为有理数时,正弦序列仍为具有周期性,但其周期为N= M(2π/ β),M取使N为整数的最小整数。 •当2π/ β为无理数时,正弦序列为非周期序列。

信号与系统_第三章连续信号的正交分解_ppt课件

信号与系统_第三章连续信号的正交分解_ppt课件
第 三 章 连 续 信 号 的 正 交 分 解
信号与系统_第 三章连续信号 的正交分解
第 三 章 连 续 信 号 的 正 交 分 解
学习内容及要求
内容:
信号的分量与分解、正交函数集的概念,信号 的傅立叶级数分解
周期信号的频谱分析 非周期信号的频谱分析,常用典型信号的傅立 叶变换,掌握傅立叶变换的技巧 傅立叶变换的性质,帕塞瓦尔定理与能量频谱
示任何的复杂信号;
找到---信号如何分解,如何将信号分解或表示为该函数集中单 元函数的组合(付里叶级数(三角付里叶级数,指数付里叶级 数)) –从信号分量组成情况讨论信号特性
周期信号频谱; 非周期信号频谱;
–信号时域特性与频域特性的关系
第 三 章 连 续 信 号 的 正 交 分 解
§3.1 引言
t 2
2 (t) min 1 2 1 t 1 2 2 f ( t ) dt 1 t1 t t 2 1
1 2
12

t2 t1
t2
t1
f1(t)f2(t)dt
t2 t1 2 2 1 2
[ f (t)dt ] f (t)dt
2 1
A n C 1V 1 C 2V 2 C rV r C nV n 并且: V V K V 2 m m m m V ,l m m 0 l V
为使近似误差矢量的模 或是模的平方最小,
Cr AV r V r V r AV r V r

t2
t1
f1(t) f2(t)dt
t2 t1

f2 (t)dt
2
§3.2 正交函数集与信号分解
第 三 章 连 续 信 号 的 正 交 分 解

信号与系统期末复习ppt课件

信号与系统期末复习ppt课件

PPT学习交流
11
例2.2-1 已知系统的传输算子H(p)= 2p/(p+3)(p+4) , 初始条件yzi(0)=1, yzi(0)2 , 试求系统的零输入
解响应。H(p)(p32)p(p4)
特征根λ1=-3, λ2=-4 零输入响应形式为
yzi(t)=C1e-3t+C2e-4t t>0 将特征根及初始条件y(0)=1, y′(0)=2代入
8
离散系统 (5) (P256,例5.2-1(1),5.2-2(1))
1) y(n)=T[x(n)]=ax(n)+b; 是非线性系统、时不变系统。
2) y(n)= ax(n)+b x(n-1)+c (6) (P257,例5.2-2(2))
1)y(n)=T[x(n)]=nx(n)。 是线性、时变系统
2)y(n)=n3x(n)
PPT学习交流
9
第二章 时域解法
重点
1)求系统的全响应的时域解法 2)卷积及其运算
PPT学习交流
10
一、 时域解法
1)用算子法解零输入响应yzi;
2)用卷积解零状态响应yzs ;
注意:1) 微分方程的算子表示法; 2) 单位冲激响应h(t) 3) 卷积的积分表示式及计算;
(1) f1(t)co 2t)s 5 c ( o 4 t)s((1-3(1))
(2) f2(t)[1c0o3ts)(2 ] (1-3(2))
PPT学习交流
5
二、系统及其性质
1、线性系统:
1)可分解性
2)零输入线性
3)零状态线性
2、时不变系统:
f( t) y ( t) f( t t0 ) y ( t t0 )

信号与系统ppt课件

信号与系统ppt课件
X5
信号与系统
§4.2 系统频率响应 ➢ §4.3 无失真系统 ➢ §4.4 理想低通滤波器 ➢ §4.5 系统的因果性 ➢ §4.6 相关函数 ➢ §4.7 激励与响应的谱关系 ➢ §4.8 实用性抽样系统分析模型 ➢ §4.9 幅度调制与解调
——系统函数 ➢ §5.8 连续时间系统的结构框图 ➢ §5.9 s域零极点分布与时域特性的关系 ➢ §5.10 s域系统稳定性判断 ➢ §5.11复频域与频域相结合的系统特性分析
X7
信号与系统
第六章 离散时间系统的时域分析
➢ §6.1 引言 ➢ §6.2 离散时间序列 ➢ §6.3 离散时间系统 ➢ §6.4 常系数线性差分方程的求解 ➢ §6.5 零输入响应与零状态响应 ➢ §6.6 系统单位样值响应 ➢ §6.7 卷积和
X8
信号与系统
第七章 离散时间信号与系统变换域分析
➢ §7.1 引言 ➢ §7.2 Z变换 ➢ §7.3 Z变换的性质 ➢ §7.4 逆Z变换 ➢ §7.5 利用Z变换求解离散系统离散时间系统响应 ➢ §7.6 单位样值响应Z变换 ➢ §7.7 离散时间系统的因果性及稳定性 ➢ §7.8 序列的傅里叶变换 ➢ §7.9 离散时间系统的频率响应 ➢ §7.10 利用离散系统离散时间系统实现对模拟信号的滤波
信号与系统
X2
第一章 信号与系统概论
➢ §1.1 引言 ➢ §1.2 信号的描述和分类 ➢ §1.3 信号的运算 ➢ §1.4 基本信号 ➢ §1.5 系统的描述 ➢ §1.6 系统的特性与分类
信号与系统
X3
信号与系统
第二章 连续时间系统的时域分析
➢ §2.1 引言 ➢ §2.2 常系数线性微分方程 ➢ §2.3 零输入响应与零状态响应 ➢ §2.4 单位冲激响应 ➢ §2.5 信号的时间轴分解 ➢ §2.6 卷积及其性质和计算 ➢ §2.7 基于单位冲激响应的系统特性分析

信号与系统-吴大正PPT课件

信号与系统-吴大正PPT课件
■ 第 17 页
§1.2 信号的描述和分类
信号的描述 信号的分类 几种典型确定性信号
■ 第 18 页
一、信号的描述
信号是信息的一种物理体现。它一般是随时间或 位置变化的物理量。
信号按物理属性分:电信号和非电信号。它们 可以相互转换。
电信号容易产生,便于控制,易于处理。本课 程讨论电信号——简称“信号”。


第1页
信号与系统
是电子技术、信息工程、通信工程 等专业重要的学科基础课
课程介绍
Signals and Systems
电子技术、 信息工程、 通信工程 等专业的 考研课程

第3页
课程位置
先修课
后续课程
《高等数学》 《通信原理》
《线性代数》 《数字信号处理》
《复变函数》 《自动控制原理》
《电路分析基础》 《数字图像处理》


第7页
参考书目
(1)郑君里等. 信号与系统(第二版) . 北京:高等教育出 版社, 2000 (2) 管致中等 . 信号与线性系统 (第四版) . 北京:高等 教育出版 社, 2004 (3)A.V.OPPENHEIM. 信号与系统 (第二版) .北京 :电 子工业出版 社, 2002 (4)王松林、张永瑞、郭宝龙、李小平.信号与线性系统 分析 (第4版) 教学指导书. 北京:高等教育出版 社, 2006


第8页
信号与系统
第一章 信号与系统
第二章 连续系统的时域分析
第三章 离散系统的时域分析
第四章 傅里叶变换和系统的频域分析
第五章 连续系统的s域分析
第六章 离散系统的z域分析
第七章 系统函数
第八章 系统的状态变量分析

信号与系统三大变换PPT课件

信号与系统三大变换PPT课件

拉普拉斯变换
拉普拉斯变换可以将时域信 号转换为复频域,能够分析 系统的动态特性,是分析线 性时不变系统的重要工具。
Z变换
Z变换可以将离散时间信号 转换为复频域,广泛应用于 数字信号处理、数字滤波器 设计等领域。
信号与系统分析的一般流程
信号建模
1
根据实际问题,建立合适的数学模型
系统分析 2
对系统的输入输出关系进行分析
信号与系统分析实例
频域分析
运用傅里叶变换将时域信号转换到频域,分析信号的频谱特性,如频带、主频、谐波等。
时域分析
利用时域函数描述信号的波形、幅值、时间特性,如上升时间、延迟时间、衰减特性等。
系统建模
建立信号传输系统的数学模型,运用拉普拉斯变换或Z变换分析系统的响应特性。
滤波设计
利用频域分析结果设计合适的滤波器,如低通、高通、带通滤波器,优化系统性能。
系统
系统指由相互关联的元素组成的 整体,对输入信号进行处理并产 生输出信号的装置或过程。
输入输出
系统接受外界信号作为输入,经 过一系列的处理过程后产生输出 信号。输入输出是系统的基本特 性。
为什么要学习信号与系统
理解现代技术的 基础
信号与系统是现代技 术的基础之一,涉及 电子、通信、控制、 信息处理等诸多领域 。学习这门课程可以 帮助我们深入理解这 些技术的工作原理变换F(s)的收敛性 由实部大于某个门限值的s 决定。即当Re(s) > σ₀时, 拉普拉斯变换收敛。
拉普拉斯变换的性质
线性性
拉普拉斯变换满足线 性性质,即对任意常 数a和b以及信号x(t) 和y(t),有 L{ax(t)+by(t)}=aL{ x(t)}+bL{y(t)}。这 使得拉普拉斯变换在 信号分析中有很强的 适用性。

信号与系统全套课件

信号与系统全套课件

解答
f (t)
f (t 5)
1
时移
1
1 O 1 t 尺度 变换
f (3t)
6 5 4
t 尺度 O 变换
f (3t 5)
1 t
1O 1
33
时移
1 t
2 4 3
1.4.2 信号的变换
平移、展缩、反折相结合举例
例 已知f (t)如图所示,画出 f(-2t-4)。 解答
右移4,得f (t–4)
反转,得f (-2t–4)
1.4.2 信号的变换
2.信号的平移
将 f (t) → f (t–t0) ,称为对信号f (t)的右移
f (t) → f
其中,t0 >0

(t +t0), 称为对信号f t → t–1右移
(t)的左移
f (t-1)
1
f (t) 1
o1 2 t
o1 t
t → t+1左移
雷达接收到的目标回波信号就是平移信号。
1.2.2 信号的分类
1. 确定信号和随机信号
•确定性信号 可用确定的时间函数表示的信号。
对于指定的某一时刻t,有确定的函数值f(t)。
•随机信号
取值具有不确定性的信号。 如:电子系统中的起伏热噪声、雷电干扰信号。
•伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
1.2.2 信号的分类
f (t)
2
1
4
- 4 - 3 - 2- 1 0 1 2 3
t
-1
-2
f (t) 2 1 - 4 - 3 - 2- 1 0 1 2 3 4 t
(a)
(b)
图5 确定性信号与随机信号

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

信号与系统第二版PPT

信号与系统第二版PPT

系统的稳定性分析
定义
如果一个系统在所有可能的输入下都保持稳定,则称该系 统为稳定系统。
判断方法
通过分析系统的极点和零点分布,判断系统的稳定性。如 果所有极点都位于复平面的左半部分,则系统是稳定的。
稳定性分析的重要性
稳定性是系统设计和应用的重要考虑因素,不稳定的系统 无法在实际应用中实现。
系统的频率响应分析
优点
时域分析方法直观、物理意义明 确,可以方便地处理系统的瞬态 响应和稳态响应。
缺点
对于高阶系统或复杂系统,求解 微分方程或差分方程可能变得非 常复杂。
系统的频域分析方法
定义
频域分析方法是将系统的频率特性作为研究对象,通过傅里叶变换、拉普拉斯变换等数学工具将 时间域的信号或系统转换为频域进行分析。
时不变系统
系统的特性不随时间 变化。
时变系统
系统的特性随时间变 化。
信号与系统的重要性及应用领域
重要性
信号与系统是信息传输和处理的基础, 是通信、控制、图像处理、音频处理 等领域的重要理论基础。
应用领域
信号与系统理论广泛应用于通信、雷 达、声呐、遥感、生物医学工程、自 动控制等领域。
02 信号的特性与表示方法
定义
频率响应是描述系统对不同频率输入信号的响应特性。
分析方法
通过傅里叶变换或拉普拉斯变换等方法,将时域信号转换为频域信 号,然后分析系统的频率响应特性。
频率响应的重要性
频率响应是信号处理、控制系统等领域的重要概念,通过分析频率响 应可以了解系统的性能和特性,如传递函数、带宽、相位失真等。
06 信号处理技术与应用
物联网与边缘计算在系统设计中的应用
利用物联网和边缘计算的技术,实现系统的远程监控和管理,提高系 统的可靠性和响应速度。

信号与系统 总结

信号与系统 总结

解: (1) yzs(t) = 2 f (t) +1, yzi(t) = 3 x(0) + 1
显然, y (t) ≠ yzs(t) + yzi(t) 不满足可分解性,故为非线性
(2) yzs(t) = | f (t)|, yzi(t) = 2 x(0)
y (t) = yzs(t) + yzi(t) 满足可分解性;
两个周期信号x(t),y(t)的周期分别为T1和T2,若其 周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周 期信号,其周期为T1和T2的最小公倍数。
例: 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin (3πk/4) + cos (0.5πk) (2)f2(k) = sin (2k)
δ(5t)(t 2)2 dt ? 4

5
f(5-2t)
f(t) (4)
例: 已知信号f (5 2t)的波形,
(2)
请画出f (t)的波形。
t 0 123
-1 0 1 2 3
第 11 页
1.5 系统的特性与分类
连续系统与离散系统:分别用微分方程与差分方程来描述 动态系统与即时系统:动态系统也称为记忆系统 线性系统与非线性系统:齐次性和可加性
求导
(2) -1
f '(t)
1t 0 (-2)
第8 页
1.4 阶跃函数和冲激函数
冲激函数的性质(习题1.10)
取样性

δ(t) f (t) f (0) δ(t)
δ(t) f (t) d t f (0)
f (t) δ(t t 0) f (t0 ) δ(t t 0)

信号与系统第2章ppt课件

信号与系统第2章ppt课件

(B) u(t)Limetu(t) 0
假设u(t)的傅立叶变换为:
F ()A ()jB ()
e t u (t ) 的傅立叶变换为 :
依据傅立叶变换具有唯一性:
F e()A e()jB e()
F()li m0Fe()
所以
A()li m0Ae()精选pBpt()li m0Be()
第二章 傅立叶变换
F ()A ()jB () A()li m0Ae() B()li m0Be()
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)乘以Cs(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
精选ppt
第二章 傅立叶变换
11周期信号的傅里叶变换
周期信号的频谱------用傅里叶级数表示。 非周期信号的频谱——用傅里叶变换表示。 周期信号的频谱可以用傅里叶变换表示吗? (1)正弦、余弦信号的傅里叶变换 直流信号的博立叶变换为

信号与系统ppt

信号与系统ppt

包权
人书友圈7.三端同步
通信系统的一般模型如图1.1所示。其 中转换器是指把声音转换为电信号或者把 电信号转换为声音的装置,如话筒和喇叭。 信道是指电信号传输的通道,在有线电话 中它是一对导线,在无线电话中它是电磁 波传播的空间和通信卫星等。在电话通信 系统中,声音信号变换为电信号后经发射 机以电磁波的形式通过信道传输给接收端, 接收端的转换器再把传过来的电信号转换 为声音信号。
本书只讨论确定性信号。
2.连续时间信号与离散时间信号
若t是定义在时间轴上的连续自变量, 那么,我们称x(t)为连续时间信号,又称模 拟信号。图1.2所示是连续时间信号。
图1.2连续时间信号
如果一个信号只在某些时间点上才有 意义,则这种信号称为离散时间信号。离 散时间信号一般用序列x[n]来表示,其 中n取整数。图1.3所示为离散时间信号。
函数曲线与时间轴所围的面积,常称其为
冲激函数的强度。单位冲激函数的强度为1, 而冲激函数kδ(t)的强度为k。延迟t0时刻的 单位冲激函数为δ(t-t0)。冲激函数用箭头表 示,强度值标记在箭头旁边,如图1.11所示。
图1.11 冲激函数
② 脉冲函数取极限定义法 宽度为τ,高度为1τ的矩形脉冲逼近冲 激信号的过程如图1.12所示 。
其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效

信号与系统分析PPT全套课件可修改全文

信号与系统分析PPT全套课件可修改全文

1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。

信号与系统复习

信号与系统复习

例 1.6-2 试判断以下系统是否为时不变系统。 (1) yf(t)=acos[f(t)] t≥0 (2) yf(t)=f(2t) t ≥0
输入输出方程中f(t)和yf(t)分别表示系统的激励和零状
态响应,a为常数。
解 (1) 设
f (t ) y f (t ) a cos[ f (t )] f1 ( t ) f ( t t d )
1.6 系统的特性和分类
系统的基本作用是将输入信号 (激励 )经过传输、变换或 处理后,在系统的输出端得到满足要求的输出信号 (响应)。这 一过程可表示为
f (·) → y (· )
式中,y(·)表示系统在激励f(·)单独作用时产生的响应。
1.6.1 线性特性
1、线性性质
如果系统的激励f(·)增大α(为任意常数)倍,其响应y(·)
0
t
f x dx f x dx f x dx f x dx
0 t 0 0 t
t
t
t
0
f x dx y t
少时间,即若
则有:
f(t)->yf(t)
f(t-td)->yf(t-td)
系统的这种性质称为时不变性。 因此,结构组成和元件参数不随时间变化的系统,称为时不 变系统
图 1.6-1 系统的时不变特性
时不变系统的判断1
1. 2.
3. 4. 5.
平移是时不变的、但翻转和尺度运算都是时变的,因为 对于翻转而言,输入延迟时,输出延迟,对于尺度而言, 输入延迟时,输出延迟; 乘或加常数,即直流偏置或固定增益放大,是时不变的, 而乘或加与输入无关的变量,即交流偏置或时变增益放 大,是时变的,因为对后者而言,所乘或加的与输入无 关的变量并不随输入的延迟而延迟; 微分和下限为的积分运算是时不变的 所有即时映射都是时不变的; 有零初始状态的常参数电路或常系数微分方程才是时不 变的,而具有非零初始状态的电路或微分方程是时变的, 因为初始状态定义于零时刻,它不会随着输入的延迟而 延迟到另一时刻;同样地,变系数微分方程中的变系数 的时间变量并没有因输入的延迟而延迟。

信号与系统 系统函数完美版PPT

信号与系统  系统函数完美版PPT

m
j
j1
H(s) H(z) 当t -> ∞ 时,对应的响应函数趋近于零。 n
n
A(s) A(z) 4) H(z)在单位圆上的二阶及二阶以上的极点,
(s p ) (z p ) 全通函数:如果系统的幅频响应|H(jω)|对所有的ω均为常数,i 则称该系统为全通系统,相应的系统函数称为全通函数。 i
极点pi 和零点ζj 的值可能是实数或复数。若A(·)和 B(·)的系数
都是实数,则零、极点若为复数,必共轭成对。
二、系统函数与时域响应
系统的冲激响应或单位序列响应的函数形式由A(·)的根确定, 即由H(·)的极点确定;而自由响应的形式也由H(·)极点确定。
t

t
t σ
t
t
t
H(s)的极点与所对应的响应函数
ห้องสมุดไป่ตู้

1
H| jω | Φ(ω)
一律平等地传输,因而被称为全通系统,其系统函
数称为全通函数。
()121222arc2 t2a 2n 2)ω(
最小相移函数:
如有一系统函数Ha(s),
有两个极点-s1和-s1*, 两个零点-s2和-s2*, 都在左半开平面:
H 系统a函(s数)Ha(s)(可(ss以写为ss:12))((ssjωss1*2*))
Hi(1j)bmB1B2Bm
A1A2An
幅频响应
() (1 2 m ) (1 2 n )相频响应
全通函数:如果系统的幅频响应|H(jω)|对所有的ω均为常
数,则称该系统为全通系统,相应的系统函数称为全通函数。
如有二阶系统,
其系统函数在左半平面有一对共轭极点:p1,2 =-α±jβ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
.
13
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输出方
程 • 典型题目 例8.2-1 例8.2-2 例8.2-3 例8.2-4
4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
.
10
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质 • 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
3.3-1 例3.3-2 例3.3-3 例3.3-4
.
9
第四章 傅里叶变换和系统的频域分析
• 要求掌握的内容 1.理解并掌握信号在正交函数集中的分解, 2. 掌握周期性连续信号的傅里叶级数展开 3. 掌握非周期性连续信号的傅里叶变换 4.掌握傅里叶变换的性质,并能应用于傅里叶变换的计算 5. 熟悉能量谱与功率谱,从能量或功率的角度研究信号在各个频率分量上的能量或功率,
以频谱的形式表达出 6. 掌握常用信号的频谱 7. 掌握用傅里叶变换进行信号分析的方法 8. 了解系统的激励与响应在频域中的关系 9. 掌握无失真传输的条件 10. 熟悉时域取样定理 • 典型题目 例4.3-1 例4.4-1 例4.4-2 例4.4-1,例4.5-1 例4.5-2 例4.5-3 例4.5-4,例4.6-1 例4.7-1 例
• 要求掌握的内容 1、掌握单位阶跃函数和冲激函数的性质 2、掌握信号脉冲分解的方法 3、掌握阶跃与冲激响应的求解方法; 4. 了解卷积运算的方法 5、熟悉卷积的主要性质 • 典型题目 例2.2-1 例2.2-2 例2.2-3 例2.2-4例2.3-1 例2.3-2 例2.4-2 例2.4-4 作业:2.1,2.2,2.4,2.5 2.6 2.7, 2.15 2.16 2.17
.
11
第六章 离散系统的Z域分析
• 要求掌握的内容 1、熟悉Z变换的定义、收敛域以及与拉普拉斯变换之间的关系 2. 熟悉基本序列的Z变换 3. 熟悉Z变换的主要性质; 4. 掌握用部分分式法求解逆z变换 5. 掌握离散系统Z域的分析方法 6. 了解Z域与S域的映射关系 • 典型题目 例6.1-1 例6.1-2 例6.1-3,例6.2-1 例6.2-2 例6.2-4 例6.2-5 例6.2-7,例
.
8
第三章 离散系统的时域分析
• 要求掌握的内容 1. 了解离散信号与系统的基本概念 2. 掌握零输入响应的求解方法 3. 掌握离散信号单位序列响应和阶跃响应的求解方法 4. 掌握利用性质求解卷积和的方法 • 典型题目 例3.1-1 例3.1-2 例3.1-3 例3.1-4 例3.1-5,例3.2-1 例3.2-2 例3.2-3 例
6.2-10 例6.2-11 例6.2-12 例6.3-3 例6.3-5
.
12
第七章 系统函数
• 要求掌握的内容 1. 熟悉系统函数零、极点分布的概念 2. 掌握极零点与系统的稳定性的关系 3. 掌握线性系统稳定性判定法则 4. 掌握线性系统稳定性判定法则 5. 熟悉线性系统的信号流图 6. 掌握用梅森公式求解系统函数的方法 7. 熟悉系统函数的实现方式 • 典型题目 例7.1-1 例7.1-2 例7.1-3 例7.2-1 例7.2-2,例7.2-1 例7.2-2 例7.3-1,例
.
2
• 2、系统分析
系统的描述:线性常系数微分方程,方框图,S域模拟图,
连 续 系
数据流图 时域:
yzs (t) f (t) * h(t)


系统响应 的求解
频域:
Yzs ( j) F ( j)H ( j)
统 分
复频域: Yzs (s) F (s)H (s)

系统的描述:线性常系数差分方程,方框图,Z域模拟图,
• 要求掌握的内容
1. 掌握基本信号时域描述方法、特点及性质;
2. 掌握信号的基本运算;
3. 冲激函数与阶跃函数的定义和性质
4. 掌握系统的描述方法
要求掌握的内容
5. 熟悉线性时不变系统的基本特性;
• 典型题目
例1.4-2; 习题:1.1;1.2;1.6;1.7;1.10
.
7
第二章 连续系统的时域分析
信号与线性系统
总复习
西南大学 电子信息工程学院 李传东
.
1
内容回顾

连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合






时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
2j
cos(t) 1 (e jt e jt )
2
.
4
核心内容
两大LTI系统:连续时间系统、离散时间系统 (连续时间信号)、(离散时间信号)
.
5
贯穿课程的三个基本问题
• 基本信号及其响应 •以信号分解为核心思想,研究确知信号的分析方法 •以信号分析为基础,建立分析LTI系统的相应方法
.
6
第一章 信号与系统

散 系
数据流图
时域: yzs (k ) f (k ) * h(k )

系统响应 的求解
频域: 不作要求
Y 复频域: zs (. z) F (z)H (z)
3
两对关系式
欧拉
e jt cos(t) j sin( t)
公式
e jt cos(t) j sin( t)
推出 公式
sin( t) 1 (e jt e jt )
.
14
(二) 典型信号
阶跃、冲激和冲激偶信号
冲激信号
t ()d(t)
(t) d (t)
dt
冲激偶信号
定义
(t)dt 1
t
( )d (t)
奇偶性
(t) (t)
(t)dt 0
t
( )d (t)
(t) (t)
相乘性 抽样性 尺度性
f (t) (t t0 ) f (t0 ) (t t0 )
相关文档
最新文档