新人教版初一(七年级)下册数学期中考试卷 (1)

合集下载

新人教版七年级数学下册期中试卷及答案【完美版】

新人教版七年级数学下册期中试卷及答案【完美版】

新人教版七年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .219992.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.将一个四边形截去一个角后,它不可能是( )A .六边形B .五边形C .四边形D .三角形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.若单项式32m x y 与3m n xy +2m n +的值是_______________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x 的不等式组152(3)3()>22x x x a x +>-⎧⎨++⎩只有4个整数解,求a 的取值范围.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.已知直线l 1∥l 2,l 3和11,l 2分别交于C ,D 两点,点A ,B 分别在线l 1,l 2上,且位于l 3的左侧,点P 在直线l 3上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P在射线DC上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.5.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、C5、B6、A7、B8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、55°3、15°4、25、16、1三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、14 53a-<≤-3、4.4、(1)∠2=∠1+∠3;(2)不成立,应为∠3=∠1+∠2,证明略.5、略;m=40, 14.4°;870人.6、25元超市一共购进1200个魔方。

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案一、选择题1.4的算术平方根是()A.2 B.4 C.2±D.4±2.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.3.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列命题中是假命题的是().A.等角的补角相等B.平行于同一条直线的两条直线平行C.对顶角相等D.同位角相等5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC的度数可能是()A.①②③B.①②④⑤C.①②③⑤D.①②③④⑤6.下列结论正确的是()A.64的平方根是4±B.18-没有立方根C.立方根等于本身的数是0 D.332727-=-7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为()A.10°B.14°C.20°D.31°8.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是()A .(3,44)B .(41,44)C .(44,41)D .(44,3)二、填空题9.125的算术平方根是___. 10.点(3,0)关于y 轴对称的点的坐标是_______11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ’处,折痕为EF ,若∠ABE =30°,则∠EFC ’的度数为____________.14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.(1)计算:16125- (2)计算: 3223--(3)计算:310.0484+-- (4)计算:16122+--18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.如图,,,12AB BF CD BF ⊥⊥∠=∠,试说明3E ∠=∠.证明:∵,AB BF CD BF ⊥⊥(已知)∴ABD ∠=∠________=________︒(垂直定义)∴________//________(________________)∵12∠=∠(________)∴________//________(________________)∴//CD________(平行于同一直线的两条直线互相平行)∴3E∠=∠(________________________).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.21.已知a是77-的整数部分,b是7的小数部分,求()27a b-的平方根.22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数【参考答案】一、选择题1.A解析:A【分析】依据算术平方根的定义解答即可.【详解】4的算术平方根是2,故选:A.【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】构建不等式求出m,n的范围可得结论.【详解】解:由题意,3040mn+<⎧⎨->⎩,解得:34mn<-⎧⎨>⎩,∴A(m,n)在第二象限,故选:B.【点睛】此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.4.D【分析】根据等角的补角,平行线的性质,对顶角的性质,进行判断.【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】根据平方根与立方根的性质逐项判断即可得.【详解】A648±±,此项错误;=,8的平方根是84B311--,此项错误;82C、立方根等于本身的数有0,1,1-,此项错误;D、33-=---,273,2733273∴-=-,此项正确;27故选:D.【点睛】本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.7.B【分析】根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵直角三角形ADE中,∠ADE=45°,∴∠1=45°-31°=14°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2021=452-4=2025-4,∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,即(44,3)的位置.故选:D .【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义计算得出答案.【详解】解:的算术平方根是:.故答案为:.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15【分析】直接利用算术平方根的定义计算得出答案.【详解】解:12515 . 故答案为:15. 【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°, ∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.120【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF=∠DEF ,而解析:120【分析】由折叠的性质知:∠EBC ′、∠BC ′F 都是直角,因此BE ∥C ′F ,那么∠EFC ′和∠BEF 互补,欲求∠EFC ′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF =∠DEF ,而∠AEB 的度数可在Rt △ABE 中求得,由此可求出∠BEF 的度数,即可得解.【详解】解:Rt △ABE 中,∠ABE =30°,∴∠AEB =60°;由折叠的性质知:∠BEF =∠DEF ;而∠BED =180°-∠AEB =120°,∴∠BEF =60°;由折叠的性质知:∠EBC ′=∠D =∠BC ′F =∠C =90°,∴BE ∥C ′F ,∴∠EFC ′=180°-∠BEF =120°.故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12, ∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A 在x 轴上,故A 100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A 的脚标数之间的联系寻找规律.三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1);(2)①;②【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1),,解析:(1)2725;(2)①54125;②95 【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1)3m a =,5n a =,32m n a -∴32m n a a =÷32()()m n a a =÷3235=÷2725=; (2)①35x y -=,1825xy =, 22x y xy ∴-183()255xy x y =-=⨯ 54125=; ②35x y -=,1825xy =, 22x y ∴+2()2x y xy =-+23182525⎛⎫=+⨯ ⎪⎝⎭9362525=+ 95=. 【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB ∥CD ∥EF ,再由平行线的性质证得结论,据此填空即可.【详解】解析:CDF ,90;,AB CD ,同位角相等,两直线平行;已知;,AB EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB ∥CD ∥EF ,再由平行线的性质证得结论,据此填空即可.【详解】证明:∵,AB BF CD BF ⊥⊥(已知),∴90ABD CDF ∠=∠=︒(垂直定义),∴//AB CD (同位角相等,两直线平行),∵12∠=∠(已知),∴//AB EF (内错角相等,两直线平行),∴//CD EF (平行于同一直线的两条直线互相平行),∴3E ∠=∠(两直线平行,同位角相等).故答案为:CDF ,90;AB ,CD ,同位角相等,两直线平行;已知;AB ,EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键.20.(1)3,4,3,﹣2,D ,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C ( 3解析:(1)3,4,3,﹣2,D ,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A →C ( 3,4),B →D (3﹣2),C →D (+1,﹣2);故答案为3,4;3,﹣2;D ,﹣2;(2)这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】先进行估算的范围,确定a,b的值,再代入代数式即可解答.【详解】解:∵,∴的整数部分为2,小数部分为,且.∴的整数部分为4.∴,∴.【点睛】本题考查了估算无理数的大小,解析:4±【分析】a,b的值,再代入代数式即可解答.【详解】解:∵23<,∴2,小数部分b2,且475<.∴7a为4.∴(22a b=⨯=,4216∴=±.4【点睛】的范围.22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.23.(1)见解析;(2)∠BAE+∠CDE=∠AED ,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根解析:(1)见解析;(2)∠BAE +∠CDE =∠AED ,证明见解析;(3)①∠AED -∠FDC =45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根据平行线的性质得AB ∥CD ∥EF ,然后由两直线平行内错角相等可得结论;(3)①根据∠AED +∠AEC =180°,∠AED +∠DEC +∠AEB =180°,DF 平分∠EDC ,可得出2∠AED +(90°-2∠FDC )=180°,即可导出角的关系;②先根据∠AED =∠F +∠FDE ,∠AED -∠FDC =45°得出∠DEP =2∠F =90°,再根据∠DEA -∠PEA =514∠DEB ,求出∠AED =50°,即可得出∠EPD 的度数. 【详解】解:(1)证明:AB ∥CD ,∴∠A +∠D =180°,∵∠C =∠A ,∴∠C +∠D =180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.。

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案一、选择题1.实数2的平方根为()A .2B .2±C .2D .2± 2.下列图形中,可以由其中一个图形通过平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点(-1,-3)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列说法正确的是( ) A .9的立方根是3 B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是2 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.计算:36的结果为_____.10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.12.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.推理填空:如图,已知∠B =∠CGF ,∠DGF =∠F ;求证:∠B +∠F =180°. 请在括号内填写出证明依据.证明:∵∠B =∠CGF (已知),∴AB ∥CD ( ).∵∠DGF =∠F (已知),∴ //EF ( ).∴AB //EF ( ).∴∠B +∠F =180°( ).20.已知点P (﹣3a ﹣4,a +2).(1)若点P 在y 轴上,试求P 点的坐标;(2)若M (5,8),且PM //x 轴,试求P 点的坐标;(3)若点P 到x 轴,y 轴的距离相等,试求P 点的坐标.21.22的小数部分我们不能全212的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分. 请解答下列问题: (1)10的整数部分是____,小数部分是_____.(2)如果55-的小数部分是a ,412-的整数部分是b ,求5a b ++的值. (3)已知611x y -=+,其中x 是正整数,01y <<,求x y -的相反数.22.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数; (3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系【参考答案】一、选择题1.D解析:D利用平方根的定义求解即可.【详解】∵2的平方根是故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数. 2.C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.C【分析】根据平面直角坐标系中象限内点的特征判断即可;【详解】∵10-<,30-<,∴点(-1,-3)位于第三象限;故选C .【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键. 4.B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.解:9的立方根是39,故A 项错误;算术平方根等于它本身的数是1和0,故B 项错误;﹣2是4的一个平方根,故C 项正确;4的算术平方根是2,故D 项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x+++=-,⋯,1220202(20204)1010x x x∴++⋯+=-⨯÷=-,20211011x=,12320211x x x x∴+++⋯+=,故选:A.【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.10.(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4)设点P'和点''P 关于y 轴对称则''P 的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .【详解】解:∵BE 和CE 分别是∠ABC 和∠ACD 的角平分线,∴∠EBC =12∠ABC ,∠ECD =12∠ACD ,又∵∠ACD 是△ABC 的一外角,∴∠ACD =∠A +∠ABC ,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 12.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 13.5【分析】根据翻折的性质,可得到∠DEC=∠FED ,∠BEF 与∠DEC 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC =∠FED ,∠BEF 与∠DE C 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =45°,∠B =90°,∴∠BEF =45°,∴∠DEC =12(180°-45°)=67.5°.故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.(2,0)【分析】根据x 轴上点的坐标的特点y=0,计算出m 的值,从而得出点P 坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、2021,2解析:()【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,202145051÷=⋯,A坐标是(2021,2).故点2021故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键. 18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴,∴,∴;(2解析:(1)54;(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x-=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF解析:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF ,根据平行线的性质得出即可.【详解】证明:∵∠B =∠CGF (已知),∴AB ∥CD (同位角相等,两直线平行),∵∠DGF =∠F (已知 ),∴CD ∥EF (内错角相等,两直线平行),∴AB ∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),∴∠B +∠F =180°(两直线平行,同旁内角互补),故答案为:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.20.(1)P (0,);(2)P (-22,8);(3)P (,)或P (-1,1).【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案; (2)根据平行于x 轴的直线上的点的纵坐标相解析:(1)P (0,23);(2)P (-22,8);(3)P (12,12)或P (-1,1). 【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案;(2)根据平行于x 轴的直线上的点的纵坐标相等列方程求出a 值即可得答案;(3)根据点P 到x 轴,y 轴的距离相等可得|34||2|a a --=+,解方程求出a 值即可得答案.【详解】(1)∵点P 在y 轴上,∴340a --=, ∴43a =-, ∴422233a +=-+= ∴P (0,23). (2)∵PM //x 轴,∴28a +=,∴6a =,此时,3422a --=-,∴P (-22,8)(3)∵若点P 到x 轴,y 轴的距离相等,∴|34||2|a a --=+,∴342a a --=+或34(2)a a --=-+, 解得:32a =-或1a =-, 当32a =-时,﹣3a ﹣4=12,a +2=12, ∴P (12,12),当1a =-时,﹣3a ﹣4=-1,a +2=1,∴P (-1,1),综上所述:P (12,12)或P (-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 21.(1)3;;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a 的值,同理估计的大小,再求出其整数部分b 的值,即可求解;(解析:(1)33;(2)7;(3)2【分析】(1(2)先估算5的大小,再求出其小数部分a 2的大小,再求出其整数部分b 的值,即可求解;(3)根据题意先求出x ,y 所表示的数,再求出x-y ,即可求出其相反数.【详解】解:(1)∵3<4, ∴33故答案为:33;(2)∵23< ∴32-<<-∴253<<∴5的小数部分a =5-2=3∵67 ∴425<< ∴2的整数部分b =4 ∴a b ++=34=7;(3)∵34<< ∴-4<-3 ∴263< ∴62,小数部分为62=4∵6x y =+,其中x 是正整数,01y <<,∴2x =,y=4∴x y -=(242--=∴x y -的相反数为2【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)65°;(2);(3)2n ∠M+∠BED=360°【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒, ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒,BM 、DM 分别是ABF ∠和CDF ∠的角平分线, 12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.。

人教版数学七年级下册《期中考试试卷》(含答案)

人教版数学七年级下册《期中考试试卷》(含答案)
A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,

2022-2023年人教版七年级数学下册期中考试卷(及参考答案)

2022-2023年人教版七年级数学下册期中考试卷(及参考答案)

2022-2023年人教版七年级数学下册期中考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2),一次函数图象经过点B (﹣2,﹣1),与y 轴的交点为C ,与x 轴的交点为D .(1)求一次函数解析式;(2)求C 点的坐标;(3)求△AOD 的面积.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、x=1,y=-1,k=9.3、(1)y=x+1;(2)C(0,1);(3)14、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.6、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案 一、选择题1.81的平方根是()A .9B .9和﹣9C .3D .3和﹣3 2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,下列点中位于第四象限的是( )A .()0,3B .()2,1-C .()1,2-D .()1,1-- 4.命题:①对顶角相等;②同旁内角互补;③如果两条直线垂直于同一条直线,那么这两条直线互相平行;④过一点有且只有一条直线与已知直线平行;⑤平行于同一条直线的两条直线互相平行.其中是真命题的有( )A .5个B .4个C .3个D .2个5.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒ 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与α∠互余的角共有( )A .0个B .1个C .2个D .3个8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.364--的算术平方根是________.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则∠A 与∠C 的等量关系是________________(等式中含有α)12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.计算:(1)3-(-5)+(-6)(2)()211162--⨯ 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.完成下面的证明.如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2,求证:∠BAC +∠AGD =180°.证明:∵AD ⊥BC ,EF ⊥BC (已知),∴∠EFB =90°,∠ADB =90°( ),∴∠EFB =∠ADB (等量代换),∴EF ∥AD ( ),∴∠1=∠BAD ( ),又∵∠1=∠2(已知),∴∠2=∠ (等量代换),∴DG ∥BA (内错角相等,两直线平行),∴∠BAC +∠AGD =180°( ).20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC 的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A ,C 的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B 的坐标;(2)在(1)的条件下,将三角形ABC 先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A 'B 'C ',请在图中画出平移后的三角形A 'B 'C ',并分别写出点A ',B ',C '的坐标.21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = . (2)x 是17+2的小数部分,y 是17﹣1的整数部分,求x = ,y = . (3)(17﹣x )y 的平方根.22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 23.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.【参考答案】一、选择题1.D解析:D【分析】先化简,再根据平方根的地红衣求解.【详解】解:∵,∴3±,故选D.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.2.B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意.故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A、(0,3)在y轴上,故本选项不符合题意;B、(2,1)-在第二象限,故本选项不符合题意;C、(1,2)-在第四象限,故本选项符合题意;D、(1,1)--在第三象限,故本选项不符合题意.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.D【分析】根据对顶角的概念、平行线的性质、平行公理、平行线的判定定理判断即可.【详解】解:①对顶角相等,①是真命题,故①正确;②两直线平行,同旁内角互补,②是假命题,故②错误;③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线互相平行,③是假命题,故③是错误;④过直线外一点有且只有一条直线与已知直线平行,④是假命题,故④错误; ⑤平行于同一条直线的两条直线互相平行,⑤是真命题,故⑤正确;综上所述,真命题有①⑤,有2个.故选:D .【点睛】本题主要考查了对顶角的概念、平行线的性质、平行公理、平行线的判定定理,解题的关键是熟练掌握相关知识点.5.D【分析】过点P 作PQ ∥AB ,过点H 作HG ∥AB ,根据平行线的性质得到∠EPF =∠BEP +∠DFP =78°,结合角平分线的定义得到∠AEH +∠CFH ,同理可得∠EHF =∠AEH +∠CFH .【详解】解:过点P 作PQ ∥AB ,过点H 作HG ∥AB ,//AB CD ,则PQ ∥CD ,HG ∥CD ,∴∠BEP =∠QPE ,∠DFP =∠QPF ,∵∠EPF =∠QPE +∠QPF =78°,∴∠BEP +∠DFP =78°,∴∠AEP +∠CFP =360°-78°=282°,∵EH 平分∠AEP ,HF 平分∠CFP ,∴∠AEH +∠CFH =282°÷2=141°,同理可得:∠EHF =∠AEH +∠CFH =141°,故选D .【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.B【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【详解】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:B.【点睛】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长 解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1,∴P 的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 二、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力. 解析:2【分析】 先求出,再求出算术平方根即可.【详解】解:∵, ∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.10.-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:解析:-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:-1.【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 11.∠A =∠C+2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A+∠ABC =180°,∠ADC+∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠ 解析:∠A =∠C +2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A +∠ABC =180°,∠ADC +∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠C +2α即可得到答案.【详解】解:如图所示:∵BD 为∠ABC 的角平分线,∴∠ABC =2∠CBD ,又∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A +2∠CBD =180°,又∵DF 是∠ADC 的角平分线,∴∠ADC =2∠ADF ,又∵∠ADF =∠ADB +α∴∠ADC =2∠ADB +2α,又∵∠ADC +∠C =180°,∴2∠ADB +2α+∠C =180°,∴∠A +2∠CBD =2∠ADB +2α+∠C又∵∠CBD =∠ADB ,∴∠A =∠C +2α,故答案为:∠A =∠C +2α.【点睛】本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.12.48°【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.【详解】解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a 、b 为两个连续的整数,15a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题. 15.【分析】连接OP ,将PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有()12n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题17.(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6=2(2)解:(-1)21 2=1-4× 1 2=1-2 =-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到1BAD ∠=∠,再根据等量代换得出2BAD ∠=∠,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.【详解】解:∵AD ⊥BC ,EF ⊥BC (已知),∴∠EFB =90°,∠ADB =90°(垂直的定义),∴∠EFB =∠ADB (等量代换),∴EF ∥AD (同位角相等,两直线平行),∴∠1=∠BAD (两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠2=∠BAD (等量代换),∴DG ∥BA (内错角相等,两直线平行),∴∠BAC +∠AGD =180°(两直线平行,同旁内角互补).故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键. 20.(1)坐标系见解析,B (0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(解析:(1)坐标系见解析,B (0,1);(2)画图见解析,A ′(2,1),B ′(4,3),C ′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(2)分别作出A ′,B ′,C ′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B (0,1).(2)△A ′B ′C ′如图所示.A ′(2,1),B ′(4,3),C ′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)4;5;(2);3;(3)±8.【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2174;3;(3)±8.【分析】(117的取值范围,即可得出结论;(2)根据 (1)的结论4175<<,得到61727<<,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵16<17<25, ∴4175<,∴a =4,b =5.故答案为:4;5(2)∵4175<<, ∴61727<<, 172的整数部分为6174, ∴174x =,3y =. 174;3(3)当174x ,3y =时,代入,()33(17)17174464y x ⎡⎤===⎣⎦﹣. ∴64的平方根为:8±.【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.22.符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.。

2022—2023学年人教版数学七年级下册期中考试模拟试卷 (1)

2022—2023学年人教版数学七年级下册期中考试模拟试卷 (1)

七年级下册数学期中模拟卷姓名___班级___考号___得分___一.选择题(共10小题,每小题3分,共30分)1.在实数﹣1,0.3,,,无理数是()A.﹣1B.0.3C.D.2.下列关于的说法中,错误的是()A.是无理数B.5的平方根是C.2<<3D.的相反数是3.如图,数轴上点P表示的数可能是()A.B.C.﹣3.2D.4.如图:经过刨平的木板上的两个点.能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这实际应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.两点确定一条线段D.垂线段最短5.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间6.将一副直角三角尺的按照如图所示方式叠放在一起(其中∠A=60°,∠B=30°,∠C=∠D=45°),若AB∥CD,则∠AOC等于()A.75°B.90°C.100°D.105°7.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°8.已知点P(m+3,2m+4)在x轴上,那么点P的坐标为()A.(﹣1,0)B.(1,0)C.(﹣2,0)D.(2,0)9.点P(x,y)在第三象限,且到x轴的距离是2,到y轴的距离是3,则P点的坐标是()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(﹣2,﹣3)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)二.填空题(共6小题,每小题3分,共18分)11.的立方根是.12.x﹣2的平方根是±2,2x+y+7的立方根是3,则x2+y2的平方根是.13.命题“互为相反数的两个数的和为0”的逆命题为.14.如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D分别落在H、G的位置,再沿BC折叠成图b,若∠DEF=72°,则∠GMN=°.15.已知点M(﹣2,5),点N(a,b),若点N在第一象限,MN所在直线平行于x轴,且M、N两点之间的距离为6,则ab的值为.16.把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C′EF=32°;②∠AEC=116°;③∠BGE=64°;④∠BFD=116°,正确的有.三.解答题(共72分)17.计算(1)﹣﹣|﹣2|﹣(2)(﹣2)2+|﹣1|﹣.18.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.20.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()21.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.22.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠P AD=y°,∠BP A=z°,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.23.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i(1)填空:i3=,i4=.(2)填空:①(2+i)(2﹣i)=;②(2+i)2=.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知,(x+y)+3i=1﹣(x﹣y)i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣2x+4=0.。

最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。

人教版数学七年级下册《期中考试卷》(含答案)

人教版数学七年级下册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++= 2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = 3.若=8,=4,则2m n +=( )A. 12B. 4C. 32D. 24.用加减消元法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( ) A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1 B. 2 C. 3 D. 46.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3 B. 3- C. 6 D. 6-7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 8.计算(13)2019×32020 的结果为 ( ). A. 1 B. 3 C. 13 D. 20209.已知关于,方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( ) A. ,3 B. 2,3 C. ,3- D. 2,3-10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ 二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x +5y -3=0,用含x 的代数式表示y,则y=________.12.写出一个以13x y =-⎧⎨=⎩为解的二元一次方程______. 13.已知则3632x y y x -=⎧⎨-=⎩,则x y +的值为______. 14.已知4m a =,3n a =,则2m n a +=__________.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. 17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.18.某体育场环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-21.(1)已知a m =2,a n =3,求a m +n 值;(2)已知3x +1=81,求x.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.24.已知方程组51542ax y x by +=⎧⎨+=-⎩①②由于甲看错了方程①中a ,得到方程组的解为31x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为52x y =⎧⎨=⎩试求出a ,b 的值.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?答案与解析一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++=[答案]A[解析][分析]根据二元一次方程的定义对各选项进行逐一分析即可.[详解]解: A.符合二元一次方程的定义,故是二元一次方程,故本选项正确;B.含有一个未知数,是一元一次方程,故本选项错误;C.是分式方程,故本选项错误;D.是三元一次方程,故本选项错误.故选A .[点睛]本题考查了二元一次方程的定义,即含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = [答案]C[解析][分析]分别计算出各项的结果,再进行判断即可.[详解]A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C[点睛]本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.3.若=8,=4,则2m n+=()A. 12B. 4C. 32D. 2[答案]C[解析][分析]根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得22•2m n m n,据此用8乘以4,求出2m n+的值是多少即可.[详解]解:2?228432m n m n,故选:C.[点睛]此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是判断出:22•2m n m n.4.用加减消元法解方程3210415x yx y-=⎧⎨-=⎩①②时,最简捷的方法是()A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去[答案]B[解析][分析]把②×2-①,即可消去.[详解]把②×2-①,得5x=20,故选B.[点睛]本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1B. 2C. 3D. 4[答案]B[解析][分析] 将12x y =-⎧⎨=⎩代入2x ﹣y+2a =0解方程即可求出a.[详解]将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选B .6.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3B. 3-C. 6D. 6- [答案]C[解析][分析]先消元用表示出方程组的解,再代入已知条件,即可求得.[详解]因为5323x y x y p+=⎧⎨+=⎩, 故可得23325232p x p y -⎧=⎪⎪⎨-⎪=⎪⎩, 代入1x y -=-,则424p =解得6p .故选:C.[点睛]本题考查二元一次方程组的求解,属基础题.7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 [答案]C[解析]∵2n 3273⨯=,∴23n 333⨯=,∴5n 33=,∴n =5.故选C.8.计算(13)2019×32020 的结果为 ( ). A. 1B. 3C. 13D. 2020[答案]B[解析][分析]直接利用积的乘方运算法则将原式变形求出答案. [详解]解:20192020201911()3(3)333⨯=⨯⨯ =3.故选:B .[点睛]此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键.9.已知关于,的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( )A. ,3B. 2,3C. ,3-D. 2,3-[答案]B[解析][分析] 将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可.[详解]由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B.[点睛]此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ [答案]B[解析][分析] 根据题意可以列出相应的二元一次方程组,从而本题得以解决.[详解]用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x =+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 112y xy x=+⎧⎪⎨=-⎪⎩,故选B.[点睛]本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.[答案]335x -;[解析]分析: 将x看作已知数求出y即可. 详解:方程3x+5y-3=0,解得:y=335x -.故答案为335x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.12.写出一个以13xy=-⎧⎨=⎩为解的二元一次方程______.[答案]x+y=2[解析][分析]先由-1和3列出一个算式:-1+3=2,即可得出x=-1,y=3为x+y=2解,得到正确答案.[详解]根据题意得:x+y=2.故答案为:x+y=2.[点睛]此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.13.已知则3632x yy x-=⎧⎨-=⎩,则x y+的值为______.[答案][解析][分析]将两个方程相加得到2x+2y=8,再两边同时除以2即可得到答案.[详解]3632x y y x -=⎧⎨-=⎩①②, 由①+②,得2x+2y=8,∴x+y=4,故答案为:4.[点睛]此题考查解二元一次方程组,求方程组中两个未知数的其他关系式时,可根据方程组中两个方程的关系直接求值.14.已知4m a =,3n a =,则2m n a +=__________.[答案]48[解析][分析]利用幂的运算中同底数幂相乘,底数不变指数相加的运算方法,先将2m n a +分解成几个数相乘的形式,即可得出结果.[详解]解:244348m n m m n a a a a +=⨯⨯=⨯⨯=故答案为:48.[点睛]本题主要考查是幂的运算中同底数幂相乘的运算法则,掌握同底数幂相乘,底数不变指数相加是解题的关键.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.[答案]32a b[解析][分析]逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.[详解]解:2m a =,32n b =,,为正整数,52n b ∴=,3103522(2)(2)m n m n +∴=⨯32a b =.故答案为:32a b .[点睛]此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. [答案]-15[解析][分析]把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求出a ,b 的值,再代入代数式(a+b)(a-b)计算即可.[详解]解:∵21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解, 2227a b b a +=⎧∴⎨+=⎩, 解得:14a b =-⎧⎨=⎩, ∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选:B .[点睛]本题考查二元一次方程组的解和解二元一次方程组.理解方程组的解满足方程组中的每一个方程是解题的关键.17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.[答案]1,0,2.x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解方程即可.[详解]解:1,2,3,x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,++①②③得2()6x y z ++=,所以3x y z ++=④.把①代入④,得2z =.把②代入④,得1x =.把③代入④,得0y =.所以原方程组的解为1,0,2.x y z =⎧⎪=⎨⎪=⎩[点睛]本题考查解三元一次方程组,解题的关键是通过加减消元法或代入消元法消去未知数,从而达到解方程的目的.18.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.[答案]30()40080()400x y y x +=⎧⎨-=⎩ [解析]分析]此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米[详解]解:①根据反向而行,得方程为30(x+y )=400;②根据同向而行,得方程为80(y ﹣x )=400.那么列方程组30()40080()400x y y x +=⎧⎨-=⎩.[点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩[答案](1)64x y =⎧⎨=⎩;(2)51x y =⎧⎨=⎩ [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)102x y x y +=⎧⎨-=⎩①② ①+②得:2x =12,解得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩; (2)293217x y x y -=⎧⎨+=⎩①②①×2+②得:7x =35,解得:x =5,把x =5代入①得:y =1,则方程组的解为51x y =⎧⎨=⎩. [点睛]此题考查了二元一次方程组的解法,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-[答案](1)412x ;(2)14132716a b [解析][分析] (1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;[详解]解:(1)()()24576332x x x x x ⋅+⋅-+ =1266122x x x x +⋅+=1212122x x x ++=412x(2)2324251(3)()()2a b a b -⋅-⋅- =63810127()16a b a b -⋅⋅- =14132716a b [点睛]考核知识点:同底数幂乘法、幂的乘方、积的乘方.掌握相关运算法则是关键.21.(1)已知a m =2,a n =3,求a m +n 的值;(2)已知3x +1=81,求x.[答案](1)6.(2)x =3.[解析]试题分析:(1)用同底数幂的乘法法则,底数不变,指数相加;(2)逆用同底数幂的乘法法则,将3x +1转化为3x ×3,再求解.试题解析:(1)a m +n =a m ·a n =2×3=6.(2)因为3x +1=3x ×3=81,所以3x =27=33.所以x =3.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.[答案]2b =a +c ,理由见解析.[解析][分析]由62=3×12,可得()22222b a c a c +=⨯=,即可求得a,b,c 之间的关系. [详解]解:(答案不唯一)方法一:∵2326212a b c ===,,,且2666312⨯==⨯,∴()22222a c a c b +=⨯=,∴2b =a +c .方法二:∵2b =6=3×2=2a ×2=2a +1,∴b =a +1.① 又∵2c =12=6×2=2b ×2=2b +1,∴c =b +1.② ①-②,得2b =a +c[点睛]考查幂的乘方与积的乘方,同底数幂的乘法,比较基础,找出等量关系是解题的关键.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.[答案](1)5;(2)1x y +=-[解析][分析](1)利用题目中的新定义进行计算即可;(2)根据新定义,对式子进行化简后得到二元一次方程,求解该方程组即可.[详解]解:(1)根据题中的新定义得:原式=()243835⨯+-=-=;故答案为:5. (2)根据题中的新定义化简得:2241x y x y -=-⎧⎨+=-⎩, 两式相加得:333x y +=-,则1x y +=-.故答案为:.[点睛]本题借助新定义题型考查了二元一次方程组的解法,新定义题型就按照题目的意思来进行计算即可,本质还是要熟练掌握二元一次方程的解法.24.已知方程组51542ax yx by+=⎧⎨+=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩乙看错了方程②中的b,得到方程组的解为52xy=⎧⎨=⎩试求出a,b的值.[答案]110 ab=⎧⎨=-⎩[解析] [分析]根据方程组解的定义,31xy=-⎧⎨=-⎩应满足方程②,52xy=⎧⎨=⎩应满足方程①,将它们分别代入方程②①,就可得到关于a,b的方程,解得a,b的值.[详解]解:根据题意31xy=-⎧⎨=-⎩是②方程的解,52xy=⎧⎨=⎩是①方程的解,∴4(3)(1)2 55215ba⨯-+⨯-=-⎧⎨+⨯=⎩解得110 ab=⎧⎨=-⎩[点睛]此题主要考查了二元一次方程组解的定义,解决本题的关键是二元一次方程组解的定义.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?[答案](1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少.[解析][分析](1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.[详解]解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得883520 6123480x yx y+=⎧⎨+=⎩解得300140 xy=⎧⎨=⎩答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.[点睛]本题主要考查二元一次方程组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.。

新人教版七年级数学下册期中试卷及答案【完整版】

新人教版七年级数学下册期中试卷及答案【完整版】

新人教版七年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a -b的值为()A.-3 B.-9 C.-3或-9 D.3或9 9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x yx y--=⎧⎨-=⎩2.若关于x、y的二元一次方程组525744x y ax y a+=⎧⎨+=⎩的解满足不等式组259x yx y+<⎧⎨->-⎩求出整数a的所有值.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、C5、D6、D7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、40°3、2或2 -34、225、2或2.56、76.510⨯三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、整数a的所有值为-1,0,1,2,3.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)详略;(2)70°.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)y=1.6x;(2)50千克;(3)36元。

人教版七年级数学下册期中考试卷(完美版)

人教版七年级数学下册期中考试卷(完美版)

人教版七年级数学下册期中考试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2B.3C.9D.±32.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A .4B .8C .16D .645.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .437.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.方程()()()()32521841x x x x +--+-=的解是_________.5.若一个数的平方等于5,则这个数等于________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x 一2y=0的解,则k 的值是多少?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、D6、A7、A8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1002、90°3、135°4、3x =.5、6、2或-8三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、5k =-3、(1)6;(2)略;(3)略.4、∠BOE 的度数为60°5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

新人教版七年级数学下册期中测试卷(及答案)

新人教版七年级数学下册期中测试卷(及答案)

新人教版七年级数学下册期中测试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A.±3B.±3或±7C.﹣3或7D.﹣3或﹣7 2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.433.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.276.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、D5、B6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、90°3、-124、8-5、﹣16、2 1三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)①40°;②30°;(2)50°,130°,10°4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)答案见解析(2)36°(3)4550名6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案) (1)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案) (1)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。

完整版人教版七年级数学下册期中考试试题(含答案)_图文

完整版人教版七年级数学下册期中考试试题(含答案)_图文

完整版人教版七年级数学下册期中考试试题(含答案)_图文一、选择题1.一个有理数的平方等于36,则这个数是()A .6B .6或6-C .36D .6-2.下列图案可以由部分图案平移得到的是( )A .B .C .D . 3.若点()3,P a -在x 轴上,则点()1,1Q a a +-所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( )A .1个B .2个C .3个D .4个5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70° 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D .327-=﹣3 7.已知:如图,AB ∥EF ,CD ⊥EF ,∠BAC =30°,则∠ACD =( )A .100°B .110°C .120°D .130° 8.如下图所示,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次运动到点()2,0,第3次运动到点()3,1-,……,按照这样的运动规律,点P 第2021次运动到点( )A .()2021,1B .()2021,0C .()2021,1-D .()2022,0二、填空题9.计算:36的结果为_____.10.点(3,0)关于y 轴对称的点的坐标是_______11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.12.如图,直线AB ,CD 相交于点E ,//DF AB .若100AEC ∠=︒,则D ∠等于_____.13.如图所示,是用一张长方形纸条折成的,如果1128∠=︒,那么2∠=___°.14.已知221m <,若0,m >2m +m =______ .15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.在平面直角坐标系中,点A 与原点重合,将点A 向右平移1个单位长度得到点A 1,将A 1向上平移2个单位长度得到点A 2,将A 2向左平移3个单位长度得到A 3,将A 3向下平移4个单位长度得到A 4,将A 4向右平移5个单位长度得到A 5…按此方法进行下去,则A 2021点坐标为_______________.三、解答题17.(1)计算:()()23121273-+-⨯-- (2)解方程:123123x x +--= 18.求下列各式中x 的值:(1)9x 2-25=0;(2)(x +3)3+27=0.19.已知如图,//BC EF ,80AOB ∠=︒,1160C ∠+∠=︒,60B ∠=︒,求证:A D ∠=∠. 完成下面的证明过程:证明:∵80AOB ∠=︒,∴80COD AOB ∠=∠=︒(______________________________)∵____________________(已知)∴1180COD ∠+∠=︒.(______________________________)∴1100∠=︒.∵1160C ∠+∠=︒,(已知)∴1601______C ∠=︒-∠=又∵60B ∠=︒,∴B C ∠=∠,∴//AB CD ,(______________________________)∴A D ∠=∠.(______________________________)20.已知在平面直角坐标系中有三点(3,0)A ,(5,4)B ,(1,5)C ,请回答如下问题: (1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2个单位长度,再向左平移1个单位,得到111A B C △;画出111A B C △,并写出1A 、1B 、1C 三点坐标;(3)求出111A B C △的面积.21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部写出来,但是由于1222121,差就是21).解答下列问题:(110的整数部分是 ,小数部分是 ;(26a 13b ,求a +b 6(3)已知3x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋【参考答案】一、选择题1.B解析:B【分析】根据一个数a,如果2a b=,那么a就叫做b的平方根求解即可.【详解】±=,解:∵()2636∴36的平方根为6或-6,故选B.【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A、是旋转变换,不是平移,选项错误,不符合题意;B、轴对称变换,不是平移,选项错误,不符合题意;C、是平移,选项正确,符合题意;D、图形的大小发生了变化,不是平移,选项错误,不符合题意.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.D【分析】根据点()3,P a -在x 轴上,求得a ,从而求得Q 点的坐标,进而判断所在的象限.【详解】()3,P a -在x 轴上,0a =,11,11a a +=-=-,∴()1,1Q -在第四象限,故选D .【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解.4.B【分析】根据几何初步知识对命题逐个判断即可.【详解】解:①对顶角相等,为真命题;②内错角相等,只有两直线平行时,内错角才相等,此为假命题;③平行于同一条直线的两条直线互相平行,为真命题;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;①③命题正确.故选:B .【点睛】本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.5.A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB ∥CD ,∴∠2=∠D ,∵∠1=140°,∴∠D =∠2=180°−∠1=180°−140°=40°,故选:A .【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4的算术平方根为105,故C 错误, 故选C .【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.C 【分析】如图,过点C 作//GH AB ,利用平行线的性质得到BAC GCA ∠=∠,CD GH ⊥,则易求∠ACD 的度数.【详解】解:过点C 作//GH AB ,则30BAC GCA ∠=∠=︒,//AB EF ,//GH EF ∴,CD EF ⊥,CD GH ∴⊥,3090120ACD GCA GCD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质.该题通过作辅助线,将ACD ∠转化为(BAC ∠+90°)来求. 8.A【分析】令P 点第n 次运动到的点为Pn 点(n 为自然数).列出部分Pn 点的坐标,根据点的坐标变化找出规律“P4n (4n ,0),P4n +1(4n +1,1),P4n +2(4n +2,0),P4n +3(4解析:A【分析】令P 点第n 次运动到的点为P n 点(n 为自然数).列出部分P n 点的坐标,根据点的坐标变化找出规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,−1)”,根据该规律即可得出结论.【详解】解:令P 点第n 次运动到的点为P n 点(n 为自然数).观察,发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,−1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,−1). ∵2021=505×4+1,∴P 第2021次运动到点(2021,1).故选:A .【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.12.80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BE解析:80°.【分析】先根据补角的定义求出∠BEC的度数,再由平行线的性质即可得出结论.【详解】解:∵∠AEC=100°,∴∠BEC=180°-100°=80°.∵DF∥AB,∴∠D=∠BEC=80°.故答案为:80°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻折的性质得,∠212=(180°﹣∠3)12=(180°﹣52°)=64°.故答案为:64.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.14.2【分析】根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m是整数,∵,∴m2≤4,∴−2≤m≤2,∴m=−2,−1解析:2【分析】根据题意可知m是整数,然后求出m的范围即可得出m2m+整数即可求出答案.【详解】解:∵2m+∴m是整数,∵221m<∴m2≤4,∴−2≤m≤2,∴m=−2,−1,0,1,2当m=±2或−12m+∵0,m>∴m=2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m 的范围,本题属于中等题型.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 16.(1011,﹣1010)【分析】求出A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•••,探究规律可得A2021(1011,﹣1010).【详解】解:由题意A1(1解析:(1011,﹣1010)【分析】求出A 1(1,0),A 5(3,﹣2),A 9(5,﹣4),A 13(7,﹣6),•••,探究规律可得A 2021(1011,﹣1010).【详解】解:由题意A 1(1,0),A 5(3,﹣2),A 9(5,﹣4),A 13(7,﹣6),•••, 可以看出,3=512+,5=912+,7=1312+,各个点的纵坐标等于横坐标的相反数+1, 故202112+=1011, ∴A 2021(1011,﹣1010),故答案为:(1011,﹣1010).【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=, 去分母,可得:3(x +1)-6=2(2-3x ),去括号,可得:3x +3-6=4-6x ,移项,可得:3x +6x =4-3+6,合并同类项,可得:9x =7,系数化为1,可得:x =79. 【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x =53±;(2)x =-6 【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)29250x -=解:2925x =2259x = 53x =±(2)3(3)270x ++=解:3(3)27x +=-33x +=-6x =-【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.19.见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB=80°,∴∠COD=∠AOB=80°(对顶角相等).∵BC∥EF(已知),∴∠COD+解析:见解析【分析】根据平行线的判定和性质定理以及对顶角相等即可得到结论.【详解】解:证明:∵∠AOB=80°,∴∠COD=∠AOB=80°(对顶角相等).∵BC∥EF(已知),∴∠COD+∠1=180°(两直线平行,同旁内角互补).∴∠1=100°.∵∠1+∠C=160°(已知),∴∠C=160°-∠1=60°.又∵∠B=60°,∴∠B=∠C.∴AB∥CD(内错角相等,两直线平行).∴∠A=∠D(两直线平行,内错角相等).【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了对顶角的定义.20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,1A(-4,-2)、1B(4,2)、1C(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:1A(-4,-2)、1B(4,2)、1C(0,3);(3)111A B C△的面积:111 5845484112 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.(1)3,-3;(2)1;(3)−14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解.【详解】解:(1)解析:(1)3-3;(2)1;(314【分析】(1(2)分别求得a、b,即可求得代数式的值;(3)求得x,小数部分y,即可求解.【详解】解:(1)∵34∴3-3;(2)∵2<3,34∴a2,b=3∴a+b=1;(3)∵12,∴13<14,∴x=13,y1∴x-y=13−1)∴x-y14.【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键.22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x∴3x=35,2x=25,答:这个长方形纸片的长为35,宽为25;(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

新人教版七年级数学下册期中试卷【及参考答案】

新人教版七年级数学下册期中试卷【及参考答案】

新人教版七年级数学下册期中试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.已知2a﹣3b=7,则8+6b﹣4a=________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.(1)若a2=16,|b|=3,且ab<0,求a+b的值.(2)已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是3,且m位于原点左侧,求22015 (1)()2016m a b cd--++-的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b444a a--.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、B6、C7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)11 ±32、90x y z +-=︒3、4332a ≤≤ 4、-65、七6、两点确定一条直线. 三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)x >125.2、(1)1±;(2)9.3、(1)∠AOE ,∠BOC ;(2)125°4、(1)A (8,0),B (4,4),C (0,4);(2)t =3;(3)存在;点Q 坐标(0,12)或(0,−4)5、(1)75,54;(2)补图见解析;(3)600人.6、(1)2400个, 10天;(2)480人.。

2023年人教版七年级数学下册期中考试题及答案(1)

2023年人教版七年级数学下册期中考试题及答案(1)

2023年人教版七年级数学下册期中考试题及答案(1)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:20 346 x yx y+=⎧⎨+=⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、(3,7)或(3,-3)4、205、40°三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)矩形的周长为4m;(2)矩形的面积为33.4、(1)略(2) ∠AEB=15°(3) 略5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。

完整版人教人教版七年级数学下册期中考试试题(含答案)_图文

完整版人教人教版七年级数学下册期中考试试题(含答案)_图文

完整版人教人教版七年级数学下册期中考试试题(含答案)_图文一、选择题1.14的算术平方根为() A .116 B .12± C .12 D .12- 2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.点A (-2,-4)所在象限为( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )A .0个B .1个C .2个D .3个5.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120° 6.下列计算正确的是( ) A .93=± B .382-= C .2(7)5= D .222= 7.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……,第n 次移动到点n A ,则点2021A 的坐标是( )A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题9.计算()()2223-+-=_______________.10.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________;11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______).又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______)180.(DGA BAC ∴∠+∠=︒______)20.在平面坐标系中描出下列各点且标该点字母:(1)点A (32)--,,B (21)--,,C (10)-,,D (12),; (2)点E 在x 轴上,位于原点右侧,距离原点2个单位长度;(3)点F 在x 轴下方,y 轴左侧,距离每条坐标轴都是3个单位长度.21.(阅读材料) ∵459<<,即25<<3,∴15-<1<2,∴5-1的整数部分为1,∴5-1的小数部分为5-2(解决问题)(1)填空:91的小数部分是 ;(2)已知a 是21-4的整数部分,b 是21-4的小数部分,求代数式(﹣a )3+(b +4)2的值.22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF .(1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义求解.【详解】解:因为211 24⎛⎫=⎪⎝⎭,所以14的算术平方根为12.故选C.【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义. 2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.【详解】解:3=,3的平方根是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】先根据平行线的性质得到70BED D ∠=∠=︒,然后根据平角的定义解答即可.【详解】解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.故选:B .【点睛】本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D .【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.8.B【分析】根据题意可得 ,,,,,, ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解.【详解】解:由题意得:,,,,解析:B【分析】根据题意可得1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点2021A 的纵坐标,然后根据4(2,0)A ,8(4,0)A ,12(6,0)A ,,可得:2020(1010,0)A ,即可求解. 【详解】解:由题意得:1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,∵202145051÷= ,∴点2021A 的纵坐标为1,∵4(2,0)A ,8(4,0)A ,12(6,0)A ,,由此得:2020(1010,0)A ,∴2021(1010,1)A .故选:B【点睛】 本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题.二、填空题9.11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案.【详解】解:原式=2+9=11.故答案为:11.【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案.【详解】解:原式=2+9=11.故答案为:11.【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键. 10.1【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案.【详解】由点与点的坐标关于y 轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题解析:1【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案.【详解】由点()11A m n +-,与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,解得:2m =,1n =-,∴20192019()(21)1m n +=-=.故答案为:1.【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.180°【分析】根据平行线的性质可得∠1=∠AFD ,从而得到∠EFC=180°-∠EFD ,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB ∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD ,从而得到∠EFC =180°-∠EFD ,∠ECF =180°-∠3,再根据∠2+∠ECF +∠EFC =180°,即可得到答案【详解】解:∵AB ∥CD ,∴∠1=∠AFD ,∵∠EFC =180°-∠EFD ,∠ECF =180°-∠3,∠2+∠ECF +∠EFC =180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x ,y ) 到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:()19,20【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x ,y )到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x 轴上,横坐标为偶数时,所用时间为x 2秒,在y 轴上时,纵坐标为奇数时,所用时间为y 2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩, (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点E 的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点F 的坐标,然后在平面直角坐标系内描出各点即可.【详解】解:(1)如图 ,(2)∵点E在x轴上,位于原点右侧,距离原点2个单位长度,E;∴点()2,0(3)点F在x轴下方,y轴左侧,距离每条坐标轴都是3个单位长度,∴点()F--.3,3【点睛】本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.21.(1);(2)21.【分析】(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.【详解】(1)∵81<91<1解析:(1919;(2)21.【分析】(1)由于81<91<1009191(2214的整数部分和小数部分,再代入代数式进行计算即可.【详解】(1)∵81<91<100,∴99110,∴919,∴91919;(2)∵16<21<25,∴4215,∵a214的整数部分,b214的小数部分,∴a=4﹣4=0,b21=4,∴(﹣a)3+(b+4)2=0+21=21.【点睛】本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.。

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案

完整版人教(完整版)七年级数学下册期中试卷及答案一、选择题1.9的平方根是()A .3B .3±C .3D .3± 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,是假命题的是( )A .两条直线被第三条直线所截,同位角相等B .同旁内角互补,两直线平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .如果两条直线都与第三条直线平行,那么这两条直线也互相平行5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )A .35︒B .45︒C .50︒D .52︒8.如图,点()0,1A ,点()12,0A ,点()23,2A ,点()35,1A ,…,按照这样的规律下去,点2021A 的坐标为( )A .()6062,2020B .()3032,1010C .()3030,1011D .()6063,2021二、填空题9.4的算术平方根为_______;10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图所示,一个四边形纸片ABCD ,B D 90︒∠=∠=,把纸片按如图所示折叠,使点B 落在AD 边上的B '点,AE 是折痕,C 130︒∠=,则AEB ∠=________度.14.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.(1)计算:()2228-+ (2)计算:()()2232527243⎛⎫---+-+÷- ⎪⎝⎭ (3)已知()2116x +=,求x 的值.18.求下列各式中实数的x 值.(1)25x 2﹣36=0(2)|x+2|=π19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图,在平面直角坐标系中,∆ABC 的顶点 C 的坐标为(1,3).点A 、B 分别在格点上.(1)直接写出A 、B 两点的坐标;(2)若把∆ABC 向上平移3个单位,再向右平移2个单位得∆A 'B 'C ',画出∆A 'B 'C '; (3)若∆ABC 内有一点 M (m ,n ),按照(2)的平移规律直接写出平移后点M 的对应点M '的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a ,小数部分为b ,求213a b +-的值.23.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.【参考答案】一、选择题1.B【分析】直接根据平方根的定义进行解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:B.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D、是由基本图形平移得到的,故选此选项.综上,本题选择D.【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A .【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.5.D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A ,由a >b ,b >c ,则a >c ,可得选项A 错误;选项B , 若a ∥b ,b ∥c ,则a ∥c ,正确;选项C ,由49的平方根是±7,可得选项C 错误;选项D ,由负数有立方根,可得选项D 错误;故选B .【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10解析:B【分析】观察图形得到奇数点的规律为,A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A 2n−1(3032,1010).【详解】35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--2462(3,2),(6,3),(9,4)(3,1)n A A A A n n ⋯⋯+∵212021n -=∴1011n =2021(3032,1010)A故选B .【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.二、填空题9.【分析】先求出的值,然后再化简求值即可.【详解】解:∵,∴2的算术平方根是,∴的算术平方根是.故答案为.【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答【分析】【详解】解:∵2=, ∴2,∴..【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关10.-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC=60°∵∠2=∠ACO+∠AOC=∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.【分析】根据四边形的内角和等于求出,根据翻折的性质可得,然后求出,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:,,,由翻折的性质得,,,,.故答案为:.【点睛】解析:【分析】根据四边形的内角和等于360︒求出BAD ∠,根据翻折的性质可得BAE DAE ∠=∠,然后求出 BAE ∠,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:90B D ∠=∠=︒,130C ∠=︒,360909013050BAD ,由翻折的性质得,BAE DAE ∠=∠, 11502522BAE BAD ,90B ∠=︒,902565AEB .故答案为:65.【点睛】本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 14.5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】解:1()1f x x =+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3解析:2或2-3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23-, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去), 综上,x 的值为2或23-, 故答案为2或23-. 【点睛】本题考查了坐标与图形的性质,根据x 的取值范围分情况进行讨论是解题的关键. 16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An 时所用的间分别为a1,a2,…an ,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A 1,A 2,…A n 时所用的间分别为a 1,a 2,…a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A 1,A 2,…,A n 时所用的间分别为a 1,a 2,…,a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,a 2-a 1=2×2,a 3-a 2=2×3,a 4-a 3=2×4,…,a n -a n -1=2n ,各式相加得:a n -a 1=2(2+3+4+…+n )=n 2+n -2,∴a n =n (n +1).∵44×45=1980,故运动了1980秒时它到点A 44(44,44);又由运动规律知:A 1,A 2,…,A n 中,奇数点处向下运动,偶数点处向左运动. 故达到A 44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式a n -a n -1=2n 是本题的突破口,本题对运动规律的探索可知知:A 1,A 2,…A n 中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 3x =或5x =-【解析】【分析】(1 (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1)22=-2=;(2()22243⎛⎫-+÷- ⎪⎝⎭()353442⎛⎫=--++⨯- ⎪⎝⎭, 5346=++-,6=;(3)∵()2116x +=∴14x +=±解得:3x =或5x =-.故答案为:(1)2;(2)6;(3) 3x =或5x =-.【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 18.(1)x =±;(2)x =﹣2﹣π或x =﹣2+π【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x2﹣36=0,25x2= 解析:(1)x =±65;(2)x =﹣2﹣π或x =﹣2+π 【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x 2﹣36=0,25x 2=36,x 2=3625, x =±65;(2)|x+2|=π,x+2=±π,x =﹣2﹣π或x =﹣2+π.【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 19.答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC=∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己解析:答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC =∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己知),∴∠ABC =∠ADE =90°(垂直定义),∴BC ∥DE (同位角相等,两直线平行),∴∠1=∠EBC (两直线平行,内错角相等),又∵∠l =∠2 (已知),∴∠2=∠EBC (等量代换),∴BE ∥GF (同位角相等,两直线平行),∴∠BEC +∠FGE =180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1),;(2)见解析;(3).【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M (m ,n )向上平移3个单位,再向右平移解析:(1)(1,1)A --,(4,2)B ;(2)见解析;(3)(2,3)M m n '++.【分析】(1)根据原点的位置确定点的坐标即可;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',连接,,A B C '''即可;(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到M '的坐标.【详解】(1)根据原点的位置确定点的坐标,则(1,1)A --,(4,2)B ;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',(1,1),(4,2),(1,3)A B C --,(1,2),(6,5),(3,6)A B C '''∴,在图中描出点,,A B C ''',连接,,A B C ''',∆A 'B 'C '即为所求.(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 ∴(2,3)M m n '++.【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵3134<<,c 是13的整数部分∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为 13;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期中考试初一数学试题(注:本次考试设卷面分,书写工整美观、卷面整洁者适当加分,书写潦草适当扣分,最多可加4分,并计入总分,但总分不超过120分) 题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、填空题(每空3分,共39分)1.运算结果为a 6b 12的一个算式是______.2.一个只含x 的二次三项式,它的二次项、一次项系数均为-1,常数项为2,则这个多项式为_______________.3.若∠1和∠2互为余角,且∠1=30°,则∠2=________度. 4.若2×8 n ×16 n = 2 22,则n =________.5.甲产品合格率为96%,乙产品合格率为80%,买_____产品较可靠. 6.在一个球袋中放有7个红球和3个白球,把球摇匀后摸到 球的可能性大.7.如图7,直线a 与b 的关系是 . 8.一个角的补角等于这个角的2倍,则这个 角的度数是 度.9.如图,∠1+∠2=284°,b ∥c ,则 ∠3= 度,∠4= 度.10.若︒=∠+∠9021,︒=∠+∠9023, 则31∠∠与的关系是 .11.若()()n x x mx x ++=-+3152,则m 的值为 .12.房间里有一个从外表量长a 米、宽b 米、高c 米的长方形木箱子,已知木板的厚度为x 米,那么这个木箱子的容积是________________米3.(只列式子,结果不展开)二、选择题(每小题3分,共30分)1.代数式abc 5,172+-x ,x 52-,5121中,单项式的个数是 ( )(A )4个 (B )3个 (C )2个 (D )1个2.如图,∠1=∠2,由此可得哪两条直线平行 ( )(A )AB ∥CD图7ba62︒62︒(B)AD∥BC(C)AB∥CD,AD∥BC(D)无法判断3.下面四个图形中∠1与∠2是对顶角的图形有()(A)0个(B)1个(C)2个(D)3个4.如果一个角的两边平行于另一个角的两边,那么这两个角()(A)相等(B)互补(C)互余(D)相等或互补5.下列事件中,必然发生的事件是()(A)明天会下雨(B)小明数学考试得99分(C)今天是星期一,明天就是星期二(D)明年有370天6.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2 + 3xy-21y2)-(-21x2+ 4xy-23y2)=-21x2_____+ y2. 空格的地方被钢笔水弄污了,那么空格中的一项是()(A)-7xy(B)7xy(C)-xy(D)xy7.下列算式能用平方差公式计算的是()(A)(2a+b)(2b-a)(B))121)(121(--+xx(C)(3x-y)(-3x+y)(D)(-m-n)(-m+n)8.如图OC⊥AB于O点,∠1=∠2,则图中互余的角共有()(A)2对(B)3对(C)4对(D)5对9.按下面的规律摆下去,第n个图形需要棋子的个数是21EDCBA O( )○○○ ○○○○○ ○○○○○○○ ○ ○ ○ ○ ○ ○○ ○○① ② ③(A )3n (B )3n +1 (C )2n +1 (D )3n +210.如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是 ( )(A )<2>和<3> (B )<1>和<2> (C )<2>和<4> (D )<1>和<4> 三、计算题(每小题4分,共16±0.5分)1.()322312122005--÷⎪⎭⎫ ⎝⎛-+⨯÷-2.33222)()2()()(a a a a ---3.()()1212-+++b a b a4.)21()23(3223ab ab b a b a -÷+-四、化简求值(本大题5±0.5分)[()()422222+--+y x xy xy ]÷()xy ,其中 10=x ,251-=y . 五、(本大题5±0.5分)下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.0个红球 2个红球 5个红球 9个红球 10个红球10个白球 8个白球 5个白球 1个白球 0个白球一定摸到红球 很可能摸到红球 可能摸到红球 不太可能摸到红球 不可能摸到红球 六、(本大题4±0.5分)如图,直线BC 与DE 相交,请分别指出图的对顶角、内错角、同位角和同旁内角.对顶角有:同位角有:内错角有:同旁内角有:七、(本大题6±0.5分)如图,若∠1+∠2=180°,则_____∥____, 理由是____ _______.若a ∥b ,则∠___=∠3,理由是__________ _______ _____ .若∠2=∠4,则____∥____, 理由是___________ __________. 八、(本大题6±0.5分)如图,已知AB ∥CD ,∠A =∠C ,若∠ADB =65°,求∠DBC 的度数.4321FE D C B A1 4abc 32九、(本大题6±0.5分)小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点, 例如:1)1)(1(32-=++-x x x x ,33228)24)(2(b a b ab a b a +=+-+,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式” .小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差).” 小明说:“还有,我发现左边那个二项式和最后的结果有点像.” 小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍.”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系.”…… ……亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗? (1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算)42)(2(22y xy x y x +---吗?十、(本大题3±0.5分)本学期中,你最感兴趣的数学思想、数学知识或数学方法是什么?你能用它设计一个数学问题或者发现一个现实生活中与之相关的数学问题吗?请写下来.数学参考答案注:卷面分4分记入总分,每题根据书写情况上下浮动 0.5分,但总分不超过120分. 一、1、略 2、22+--x x 3、60 4、3 5、甲 6、红7、平行 8、60 9、38,142 10、相等 11、-212、()()()x c x b x a 222---二、BBADC CDCDB三、1、原式=1×21×21+9×8 ………………………2分=41+72 ………………………3分 =7241………………………4分2、原式=33428a a a a ⋅+⋅ ………………………2分 =668a a + ………………………3分 =69a ………………………4分 3、原式=()122-+b a ………………………2分=14422-++b ab a ………………………4分 4、原式=⎪⎭⎫⎝⎛-÷+⎪⎭⎫ ⎝⎛-÷-⎪⎭⎫ ⎝⎛-÷ab ab ab b a ab b a 212213213223……………2分 =22462b ab a -+- ………………………4分 四、原式=()()xy y x y x ÷+--4242222………………………1分=()()xy yx ÷-22 ………………………2分=xy - ………………………3分 当10=x ,251-=y 时 ………………………4分 原式=52………………………5分 五、连对一条线得1分0个红球 2个红球 5个红球 9个红球 10个红球10个白球 8个白球 5个白球 1个白球 0个白球初一数学期中考试题答案第1页一定摸到红球 很可能摸到红球 可能摸到红球 不太可能摸到红球 不可能摸到红球六、∠1与∠3,∠2与∠4 ………………………1分∠B 与∠2,∠E 与∠2 ………………………2分 ∠B 与∠4,∠E 与∠4 ………………………3分 ∠B 与∠1,∠E 与∠3 ………………………4分 七、a ∥b ………………………1分同旁内角互补,两直线平行 ………………………2分 1 ………………………3分 两直线平行,内错角相等 ………………………4分 a ∥b ………………………5分 同位角相等,两直线平行 ………………………6分 八、∵AB ∥CD∴∠A +∠ADC =180° ………………………2分 ∵∠A =∠C∴∠C +∠ADC =180° ………………………4分 ∴AD ∥BC ………………………5分 ∴∠DBC =∠ADB =65° ………………………6分 九、()()3322b a b ab a b a ±=+± ………………………2分原式=()()332y x -+- ………………………4分=338y x -- ………………………6分十、略 ………………………3分(以上各解答题只提供其中一种解法的评分标准,若出现不同的解法可参照上述各题的解法评分标准给分)±第二学期期中考 七年级数学科试卷(参赛试题)(时间:120分钟 满分:100分)命题人:cyj431友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,祝你考出好的成绩。

一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ; 2.若直线a//b ,b//c ,则 ,其理由是 ; 3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 , COF ∠的邻补角是 。

4.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。

关于原点对称点的坐标是 。

6.把“对顶角相等”写成“如果……那么……”的形式为 。

7.一个等腰三角形的两边长分别是3cm 和6cm,则它的周长是 cm. 8.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。

9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第___象限 。

相关文档
最新文档