2018年中考数学真题三

合集下载

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总3

2018年中考数学-----几何综合题汇总31.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,= ;②当α=180°时,= .(2)拓展探究:试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF 与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC 的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE﹣CF).3.如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.4.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.5.【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF;试证明:AB=DB+AF。

(完整版)2018年辽宁省沈阳市中考数学试题含答案

(完整版)2018年辽宁省沈阳市中考数学试题含答案

辽宁省沈阳市2018年中考数学试卷一、选择题<每小题3分,共24分)1.<3分)<2018•沈阳)0这个数是< )A .正数B.负数C.整数D.无理数考点:有理数.分析:根据0的意义,可得答案.解答:解:A、B、0不是正数也不是负数,故A、B错误;C、是整数,故C正确;D、0是有理数,故D错误;故选:C.点评:本题考查了有理数,注意0不是正数也不是负数,0是有理数.2.<3分)<2018•沈阳)2018年端午节小长假期间,沈阳某景区接待游客约为85000人,将数据85000用科学记数法表示为< )b5E2RGbCAPA .85×103B.8.5×104C.0.85×105D.8.5×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将85000用科学记数法表示为:8.5×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<3分)<2018•沈阳)某几何体的三视图如图所示,这个几何体是< )A .圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.4.<3分)<2018•沈阳)已知一组数据:1,2,6,3,3,下列说法正确的是< )A .众数是3B.中位数是6C.平均数是4D.方差是5考点:众数;算术平均数;中位数;方差.分析:利用众数、算术平均数、中位数及方差的定义分别求解后即可确定正确的选项.解答:解:A、数据3出现2次,最多,故众数为3正确;B、排序后位于中间位置的数为3,故中位数为3,故选项错误;C、平均数为3,故选项错误;D、方差为2.4,故选项错误.故选A.点评:本题考查了众数、算术平均数、中位数及方差的定义,属于基础题,比较简单.5.<3分)<2018•沈阳)一元一次不等式x﹣1≥0的解集在数轴上表示正确的是< )A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6.<3分)<2018•沈阳)正方形是轴对称图形,它的对称轴有< )A .2条B.4条C.6条D.8条考点:轴对称图形.分析:正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.解答:解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.点评:本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.7.<3分)<2018•沈阳)下列运算正确的是< )A .<﹣x3)2=﹣x6B.x4+x4=x8C.x2•x3=x6D.xy4÷<﹣xy)=﹣y3考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;B、原式合并得到结果即可找出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可找出判断;D、原式利用单项式除以单项式法则计算即可得到结果.解答:解:A、原式=x6,故选项错误;B、原式=2x4,故选项错误;C、原式=x5,故选项错误;D、原式=﹣y3,故选项正确.故选:D.点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.<3分)<2018•沈阳)如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为< )p1EanqFDPwA .7.5B.10C.15D.20考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例求得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BD=2AD,∴=,∵DE=5,∴=,∴DE=15.故选C.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题<每小题4分,共32分)9.<4分)<2018•沈阳)计算:= 3 .考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.10.<4分)<2018•沈阳)分解因式:2m2+10m= 2m<m+5).考点:因式分解-提公因式法.分析:直接提取公因式2m,进而得出答案.解答:解:2m2+10m=2m<m+5).故答案为:2m<m+5).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.<4分)<2018•沈阳)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2= 40 °.DXDiTa9E3d考点:平行线的性质;垂线.分析:根据两直线平行,内错角相等,即可求得∠3=∠1,根据PM⊥l 于点P,则∠MPQ=90°,即可求解.解答:解:∵直线a∥b,∴∠3=∠1=50°,又∵PM⊥l于点P,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣50°=40°.故答案是:40.点评:本题重点考查了平行线的性质及垂直的定义,是一道较为简单的题目.12.<4分)<2018•沈阳)化简:<1+)=.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.解答:解:原式=•=•=.故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.13.<4分)<2018•沈阳)已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为 6 .RTCrpUDGiT考点:反比例函数与一次函数的交点问题.分析:把x=2代入一次函数的解读式,即可求得交点坐标,然后利用待定系数法即可求得k的值.解答:解:在y=x+1中,令x=2,解得y=3,则交点坐标是:<2,3),代入y=得:k=6.故答案是:6.点评:本题考查了用待定系数法确定函数的解读式,是常用的一种解题方法.同学们要熟练掌握这种方法.14.<4分)<2018•沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.5PCzVD7HxA考点:三角形中位线定理;几何概率.分析:先设阴影部分的面积是x,得出整个图形的面积是,再根据几何概率的求法即可得出答案.解答:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,∴==,∴S△CDE=S△CBA.同理,S△FPM=S△FDE=S△CBA.∴S△FPM=+S△CDE=S△CBA.则=.故答案是:.点评:本题考查了三角形中位线定理和几何概率.几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件<A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件<A)发生的概率.15.<4分)<2018•沈阳)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元<20≤x≤30,且x为整数)出售,可卖出<30﹣x)件.若使利润最大,每件的售价应为25 元.jLBHrnAILg考点:二次函数的应用.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=<x﹣20)<30﹣x)=﹣<x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.16.<4分)<2018•沈阳)如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点H,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM= 5 cm,AB= 13 cm.xHAQX74J0X考点:矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.专题:综合题.分析:由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm,EF=4cm可求出EM.易证△ADF≌△CBN,从而得到DF=BN;易证△AFD∽△AEB,从而得到4DF=3AF.设DF=3k,则AF=4k.AE=4<k+1),BE=3<k+1),从而有AD=5k,AB=5<k+1).由▱ABCD的周长为42cm可求出k,从而求出AB长.解答:解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,.∴△ADF≌△CBN<ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5<cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4<k+1),BE=3<k+1),∴AB=5<k+1).∵2<AB+AD)=42,∴AB+AD=21.∴5<k+1)+5k=21.∴k=1.6.∴AB=13<cm).故答案为:5、13.点评:本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题<17、18各8分,19题10分,共26分)17.<8分)<2018•沈阳)先化简,再求值:{<a+b)2﹣<a﹣b)2}•a,其中a=﹣1,b=5.LDAYtRyKfE考点:整式的混合运算—化简求值.分析:先利用完全平方公式和整式的乘法计算化简,再进一步代入求得数值即可.解答:解:[<a+b)2﹣<a﹣b)2]•a =<a2+2ab+b2﹣a2+2ab﹣b2)•a =4ab•a=4a2b;当a=﹣1,b=5时,原式=4×<﹣1)2×5=20.点评:此题考查整式的混合运算与化简求值,注意先利用公式计算化简,再进一步代入求得数值即可.18.<8分)<2018•沈阳)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.Zzz6ZB2Ltk考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:欲证明OE=OF,只需证得△ODE≌△OCF即可.解答:证明:如图,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,AC=BD,OD=BD,OC=AC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,即∠EDO=∠FCO,∴在△ODE与△OCF中,,∴△ODE≌△OCF<SAS),∴OE=OF.点评:本题考查了全等三角形的判定与性质,矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.<10分)<2018•沈阳)在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图<树形图)法求小明两次摸出的球颜色不同的概率.dvzfvkwMI1考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明两次摸出的球颜色不同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、每小题10分,共20分20.<10分)<2018•沈阳)2018年世界杯足球赛于北京时间6月 13日 2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:rqyn14ZNXI球队名称百分比意大利17%德国a西班牙10%巴西38%阿根廷0根据统计图表提供的信息,解答下列问题:<1)a= 30% ,b= 5% ;<2)根据以上信息,请直接在答题卡中补全条形统计图;<3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.考点:条形统计图;用样本估计总体.分析:<1)首先根据意大利有85人,占17%,据此即可求得总人数,则根据百分比的定义求得b的值,然后利用1减去其它各组的百分比即可求得a的值;<2)根据百分比的定义求得德国、西班牙的人数,即可解答;<3)利用总人数4800,乘以对应的百分比即可求解.解答:解:<1)总人数是:85÷17%=500<人),则b==5%,a=1﹣17%﹣10%﹣38%﹣5%=30%;<2)<3)4800×30%=1440<人).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.21.<10分)<2018•沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.EmxvxOtOco考点:一元二次方程的应用.专题:增长率问题.分析:设每月获得的利润的增长率是x,然后用x分别表示出2月份和3月份,根据“3月份的利润比2月份的利润增加4.8万元”列方程求解.解答:解:设这个增长率为x.依题意得:200<1+x)2﹣20<1+x)=4.8,解得 x1=0.2,x2=﹣1.2<不合题意,舍去).0.2=20%.答:这个增长率是20%.点评:本题考查了一元二次方程的应用.此题中要求学生能够根据利润率分别用x表示出每一年的利润.能够熟练运用因式分解法解方程.五、本题10分22.<10分)<2018•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.SixE2yXPq5<1)求证:AD=CD;<2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.分析:<1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;<2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:<1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;<2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD=OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.六、本题12分23.<12分)<2018•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为<2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.6ewMyirQFL<1)求证:△AOD是等边三角形;<2)求点B的坐标;<3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.kavU42VRUs①当直线l与x轴的交点在线段CD上<交点不与点C,D重合)时,请直接写出m 与t的函数关系式<不必写出自变量t的取值范围)y6v3ALoS89②若m=2,请直接写出此时直线l与x轴的交点坐标.考点:一次函数综合题.分析:<1)过点A作AM⊥x轴于点M,根据已知条件,依据三角函数求得∠AOM=60°,根据勾股定理求得OA=4,即可求得.<2)过点A作AN⊥BC于点N,则四边形AMCN是矩形,在Rt△ABN中,根据三角函数求得AN、BN的值,从而求得OC、BC 的长,得出点B的坐标.<3)①如图3,因为∠B=60°,BC=4,所以PC=12,EM=m,因为OC=8,所以PO=4,OF=t,DF=t﹣m,所以PD=4+<t﹣m),根据△PDE∽△PCB即可求得m=t+2;②如图4,△OEF是等边三角形所以OF=EF=m=2,在Rt△PCF'中∠CF'P=60°,∠BPE'=∠CPF'=30°,所以BP=PE'÷si n∠B=,PC=4﹣=,根据勾股定理求得CF'=,所以OF'=8+=.解答:解:<1)如图2,证明:过点A作AM⊥x轴于点M,∵点A的坐标为<2,2),∴OM=2,AM=2∴在Rt△AOM中,tan∠AOM===∴∠AOM=60°由勾股定理得,OA===4∵OD=4,∴OA=OD,∴△AOD是等边三角形.<2)如图2,解:过点A作AN⊥BC于点N,∵BC⊥OC,AM⊥x轴,∴∠BCM=∠CMA=∠ANC=90°∴四边形ANCM为矩形,∴AN=MC,AM=NC,∵∠B=60°,AB=4,∴在Rt△ABN中,AN=AB•SinB=4×=6,BN=AB•CosB=4×=2∴AN=MC=6,CN=AM=2,∴OC=OM+MC=2+6=8,BC=BN+CN=2+2=4,∴点B的坐标为<8,4).<3)①如图3,m=t+2;②如图4,<2,0),<,0).点评:本题考查了等边三角形的性质,矩形的性质,直角三角函数的应用以及勾股定理的应用.七、本题12分24.<12分)<2018•沈阳)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点<点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.M2ub6vSTnP<1)求AO的长;<2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;<3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.考点:四边形综合题.分析:<1)在RT△OAB中,利用勾股定理OA=求解,<2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在RT△ACM中tan∠M=,求出AC.<3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.解答:解:<1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在RT△OAB中,∵AB=13,∴OA===5,<2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在RT△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.<3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由<1)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF<SAS),∵△AEM的面积为40,△ABF的高为AO ∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.点评:本题主要考查四边形的综合题,解题的关键是灵活运用等过三角形的性质及菱形的性质.八、本题14分25.<14分)<2018•沈阳)如图1,在平面直角坐标系中,二次函数y=﹣x2+12的图象与y轴交于点A,与x轴交于B,C两点<点B在点C的左侧),连接AB,AC.0YujCfmUCw<1)点B的坐标为<﹣9,0),点C的坐标为<9,0);<2)过点C作射线CD∥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP<点M不与点A,点B重合),过点M作MN∥BC分别交AC于点Q,交射线CD于点N <点 Q不与点P重合),连接PM,PN,设线段AP的长为n.eUts8ZQVRd①如图2,当n<AC时,求证:△PAM≌△NCP;②直接用含n的代数式表示线段PQ的长;③若PM的长为,当二次函数y=﹣x2+12的图象经过平移同时过点P和点N 时,请直接写出此时的二次函数表达式.sQsAEJkW5T。

2018年陕西省中考数学试卷(带解析答案)

2018年陕西省中考数学试卷(带解析答案)

【解答】解:∵
t = =,
∴S1= S△AOB,S2= S△BOC. ∵点 O 是▱ ABCD 的对称中心, ∴S△AOB=S△BOC= S▱ ABCD,
t = =, hh
∴ = =.
即 S1 与 S2 之间的等量关系是 = . 故答案为 = .
三、解答题(共 11 小题,计 78 分。解答应写出过程)
∴AD= AC=4 . 在 Rt△ADB 中,AD=4 ,∠ABD=60°,
∴BD= AD= . ∵BE 平分∠ABC, ∴∠EBD=30°.
在 Rt△EBD 中,BD= ,∠EBD=30°,
∴DE= BD= ,
∴AE=AD﹣DE= . 故选:C.
第 3页(共 18页)
7.(3 分)若直线 l1 经过点(0,4),l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称, 则 l1 与 l2 的交点坐标为( ) A.(﹣2,0) B.(2,0) C.(﹣6,0) D.(6,0)
第 8页(共 18页)
∴△DPA∽△ABM.
18.(5 分)如图,AB∥CD,E、F 分别为 AB、CD 上的点,且 EC∥BF,连接 AD, 分别与 EC、BF 相交于点 G,H,若 AB=CD,求证:AG=DH.
【解答】证明:∵AB∥CD、EC∥BF, ∴四边形 BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE=CF, ∴∠AEG=∠DFH, ∵AB=CD, ∴AE=DF, 在△AEG 和△DFH 中,
A.15° B.35° C.25° D.45° 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°, ∵CD∥AB, ∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

2018年云南中考数学试卷(含解析)

2018年云南中考数学试卷(含解析)

2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。

2018年黑龙江齐齐哈尔市中考数学试卷(含解析)

2018年黑龙江齐齐哈尔市中考数学试卷(含解析)

2018年黑龙江省齐齐哈尔市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题(每小题3分,满分30分)2. (2018黑龙江省齐齐哈尔市,题号2,分值3)下列计算正确的是( )A. 236a a a =gB.224()a a =C.842a a a ÷=D.33()ab ab = 【答案】B 【解析】选项A ,根据同底数幂的乘法可知,23235a a a a +==g,此选项错误;选项B ,根据幂的乘方可知,22224()a a a ⨯==,故此选项正确;选项C,根据同底数幂的除法可知,84844a a a a -÷==,故此选项错误;选项D ,根据积的乘方可知,333()ab a b =,故此选项错误.故选B. 【知识点】同底数幂的乘法,幂的乘方,同底数幂的除法,积的乘方.3. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为 ( )A. 8.2xlO 13B. 8.2xl012C. 118.210⨯ D. 8.2xlO9 【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO 13 .【知识点】科学记数法.4. (2018黑龙江省齐齐哈尔市,题号4,分值3)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【解析】由图可知,∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∠EDF 是△BCD 的外角,∴∠ABC=∠BCD=30°,∠EDF=∠DBC+∠BCD ,解得∠DBC=15°.故选B.【知识点】平行线的性质,三角板各角的度数,互为补角的性质,三角形内角和定理,三角形外角的性质.5. (2018黑龙江省齐齐哈尔市,题号5,分值3)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某1. (2018黑龙江省齐齐哈尔市,题号1,分值3)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个【答案】C【解析】由轴对称图形的定义可知,图形0,1,8有对称轴所以是轴对称图形,由中心对称图形的定义可知,4个图形均有对称中心,均是中心对称图形,∴既是轴对称图形,又是中心对称图形是图形0,1,8,即有3个,故选C .【知识点】轴对称图形的性质,中心对称图形的性质.天气温T 如何随时间t 的变化而变化.下列从图象中得到的信息正确的是( )A. 0点时气温达到最低B.最低气温是零下4℃C. 0点到14点之间气温持续上升D.最高气温是8℃ 【答案】D【解析】选项A ,由图象可知,最低点在4点时出现,故此选项错误;选项B ,由图象可知,最低点表示的是4点时,气温是-3℃,故此选项错误;选项C ,由图象可知,0点到14点气温的变化是先降温到-3℃再升温,故此选项错误;选项D ,由图可知,图象的最高点在14点时出现,此时气温是8℃,故此选项正确. 故选D.【知识点】折现统计图的应用.6. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎.小明在平价米店记录了一周中不同包装(10 kg, 20 kg, 50 kg)的大米的销售量(单位:袋)如下:10 kg 装100袋;2kg 装 220袋;50 kg 装80袋.如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这呰数据(袋数)中的 ( )A.众数B.平均数C.中位数D.方差【答案】A【解析】此题考查的是数据分析的能力,在每千克大米的进价和销售价都相同的情况下,作为米店老板最应该关注的是哪种包装的大米销售量最高,即众数.平均数表示销售的平均情况,不能凸显应该多进哪种包装的大米.中位数只能表示销售情况的中间量,不能帮米店老板分析多进哪种包装的大米.方差表示数据的离散程度,在此问题中不适用.故答案选A.【知识点】数据的集中趋势,数据的离散程度.7. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不.正确..的是 ( ) A. 若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额B. 若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a 表示桌面受 到的压强,则3a 表示小木块对桌面的压力D.若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数【答案】D【解析】选项A ,根据“单价×数量=总价”可知3a 表示买a 千克葡萄的金额,此选项不符合题意;选项B ,由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;选项C ,由压强=压力接触面积得压力=压强×接触面积,可知3a 表示小木块对桌面的压力,此选项不符合题意;选项D ,由题可知,这个两位数用字母表示为10×3+a=30+a ,此选项符合题意.故选D.【知识点】用字母表示数的实际应用.8. (2018黑龙江省齐齐哈尔市,题号8,分值3)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A, 1种 B. 2种 C. 3种 D. 4种【答案】C【解析】由题可知,设参加活动的男生有a 人,参加活动的女生有b 人,可得5a+4b=56,解得4(14)5b b a -==56-45,∵a ,b 均为非负整数,∴b 只能被5整除,即为4,9,14.∴小张可以安排学生参加活动的方案共有3种.故选C.【知识点】二元一次方程的应用,能被5整除的数的特点.9.(2018黑龙江省齐齐哈尔市,题号9,分值3)下列成语中,表示不可能事件的是 ( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【答案】A【解析】不可能事件表示在生活中不可能出现的情况,即概率为0的事件,选项B 、C 、D 在生活中都能出现,只有选项A 在生活中不可能出现。

河北省2018年中考数学真题及参考答案

河北省2018年中考数学真题及参考答案

河北省二○一八年初中学业考试暨高中阶段统一招生考试数学试卷注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。

2.答第Ⅰ卷时,必须使用2B 铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。

务必在题号所指示的答题区域内作答。

卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500用科学记数法表示为108.155510 ,则原数中“0”的个数为( )A .4B .6C .7D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 4.将29.5变形正确的是( )A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+ 5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 图3是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB .①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D .①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是( ) A . B .C. D .8.已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个 C. 4个 D .5个11.如图6,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒ C.北偏西30︒ D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222n n n n+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= . 18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率; (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌; (2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围. 24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值. 26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v =.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v 乙的范围.参考答案1-10、ABCCC DABDA 11-16、ABADB D 17、2 18、0 19、14 2120、21、22、23、24、25、26、。

新疆自治区2018年中考[数学]考试真题与答案解析

新疆自治区2018年中考[数学]考试真题与答案解析

新疆自治区2018年中考[数学]考试真题与答案解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.的相反数是( )A.﹣B.2C.﹣2D.0.5【解答】解:的相反数是﹣.故选:A.2.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A.10℃B.6℃C.﹣6℃D.﹣10℃【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.的相反数是解题的关键.3.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A.B.C.D.【解答】解:从左边看竖直叠放2个正方形.故选:C.4.下列计算正确的是( )A.a2?a3=a6B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6D.5a﹣2a=3【解答】解:A、a2?a3=a2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a?a﹣a?2b+b?a﹣b?2b=a2﹣2ab+ab﹣2b2=a2﹣ab ﹣2b2.故此选项错误;C、(ab3)2=a2?(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.5.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为( )A.85°B.75°C.60°D.30°【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是( )A.①②B.②③C.①③D.①②③【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.7.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )A.6cm B.4cm C.3cm D.2cm【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.8.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:,故选:B.9.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A.B.1C.D.2【解答】解:如图作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.二、填空题10.点(﹣1,2)所在的象限是第 二 象限.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.11.如果代数式有意义,那么实数x的取值范围是 x≥1 .【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.12.如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是 .【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:13.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .【解答】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.14.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元.【解答】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.15.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是 ②③ (填写所有正确结论的序号).【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.三、解答题16.计算:﹣2sin45°+()﹣1﹣|2﹣|.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.17.先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.18.已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.19.如图,?ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是菱形.20.如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).21.杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了 20 名学生,其中C类女生有 2 名,D类男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.22.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO~△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==23.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB?QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF?OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).。

2018年浙江省舟山市中考数学试题(解析版)

2018年浙江省舟山市中考数学试题(解析版)

数学浙江省舟山市2018中考数学试题一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. 下列几何体中,俯视图...为三角形的是()A. B. C. D.【答案】C【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面)C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确.D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;2. 2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日点,它距离地球约.数1500000用科学记数法表示为()A. B. C. D.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|)10)n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1500000用科学记数法表示为: .故选B)【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|)10)n为整数,表示时关键要正确确定a的值以及n的值.3. 2018年1)4月我国新能源乘用车的月销售情况如图所示,则下列说法错误..的是()A. 1月份销售为2.2万辆B. 从2月到3月的月销售增长最快C. 4月份销售比3月份增加了1万辆D. 1)4月新能源乘用车销售逐月增加【答案】D【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C.) 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.4. 不等式的解在数轴上表示正确的是()A. B.C. D.【答案】A【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式.5. 将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. )A)B. )B)C. )C)D. )D)【答案】A【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A)【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.6. 用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.7. 欧几里得的《原本》记载,形如的方程的图解法是:画,使)),再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【答案】B【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.8. 用尺规在一个平行四边形内作菱形,下列作法中错误..的是()A. B. C. D.【答案】C【分析】根据菱形的判定方法一一进行判断即可.【解答】A.有一组邻边相等的平行四边形是菱形.B.有一组邻边相等的平行四边形是菱形.C.无法判断是菱形.D. 有一组邻边相等的平行四边形是菱形.故选C.【点评】考查菱形的判定,掌握菱形的判定方法是解题的关键.9. 如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点),且)的面积为1,则的值为()A. 1B. 2C. 3D. 4【答案】D【分析】过点C作轴,设点,则得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则得到点C的坐标为:的面积为1)即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.10. 某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁【答案】B【分析】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数)甲、乙、丙、丁四队的得分情况只能是进行分析即可.【解答】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数)甲、乙、丙、丁四队的得分情况只能是所以,甲队胜2场,平1场,负0场.乙队胜1场,平2场,负0场.丙队胜1场,平0场,负2场.丁队胜0场,平1场,负2场.与乙打平的球队是甲与丁,故选B.【点评】首先确定比赛总场数,然后根据“各队的总得分恰好是四个连续的奇数”进行分析是完成本题的关键.二、填空题(本题有6小题,每题4分,共24分)11. 分解因式:________.【答案】【分析】用提取公因式法即可得到结果.【解答】原式=.故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.12. 如图,直线,直线交))于点));直线交))于点)).已知,则__________)【答案】2【分析】根据,可以知道,即可求得.【解答】,根据)故答案为:2.【点评】考查平行线分线段成比例定理,熟练掌握定理是解题的关键.13. 小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是__________,据此判断该游戏__________(填“公平”或“不公平”))【答案】(1). (2). 不公平【分析】首先利用列举法列举出可能出现的情况,可能是两正,两反,一正一反、一反一正四种情况,用可能情况数除以情况总数即可得出都是正面朝上或者都是反面朝上和一正一反的可能性,可能性相同则公平,否则就不公平.【解答】抛两枚硬币可能会是两正,两反,一正一反、一反一正四种情况;小红赢的可能性,即都是正面朝上,赢的概率是:小明赢的可能性,即一正一反的可能性是:所以游戏对小红不公平.故答案为:(1). (2). 不公平【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.14. 如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点),量得,点在量角器上的读数为,则该直尺的宽度为____________)【答案】【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【解答】连接OC,OD,OC与AD交于点E)直尺的宽度:故答案为:【点评】考查垂径定理,熟记垂径定理是解题的关键.15. 甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________)【答案】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.16. 如图,在矩形中,),点在上,,点在边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是__________)【答案】0或或4【分析】在点F的运动过程中分别以EF为直径作圆,观察圆和矩形矩形边的交点个数即可得到结论.【解答】当点F与点A重合时,以为斜边恰好有两个,符合题意.当点F从点A向点B运动时,当时,共有4个点P使是以为斜边.当时,有1个点P使是以为斜边.当时,有2个点P使是以为斜边.当时,有3个点P使是以为斜边.当时,有4个点P使是以为斜边.当点F与点B重合时,以为斜边恰好有两个,符合题意.故答案为:0或或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.三、解答题17. )1)计算:))2)化简并求值:,其中).【答案】)1)原式))2)原式=-1【分析】)1)根据实数的运算法则进行运算即可.(2)根据分式混合运算的法则进行化简,再把字母的值代入运算即可.【解答】)1)原式(2)原式.当,时,原式.【点评】考查实数的混合运算以及分式的化简求值,掌握运算法则是解题的关键.18. 用消元法解方程组时,两位同学的解法如下:)1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.)2)请选择一种你喜欢的方法,完成解答.【答案】)1)解法一中的计算有误;(2)原方程组的解是.【分析】根据加减消元法和代入消元法进行判断即可.【解答】)1)解法一中的计算有误(标记略).(2)用消元法解方程组时,两位同学的解法如下:由①-②,得,解得,把代入①,得,解得,所以原方程组的解是.【点评】考查加减消元法和代入消元法解二元一次方程组,熟练掌握两种方法是解题的关键.19. 如图,等边的顶点)在矩形的边)上,且.求证:矩形是正方形.【答案】证明见解析.【分析】证明≌,得到,即可证明矩形是正方形.【解答】∵四边形是矩形,∴,∵是等边三角形,∴,,又,∴,∴,∴≌)∴,∴矩形是正方形.【点评】考查正方形的判定,熟练掌握判定方法是解题的关键.20. 某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:))甲车间:168)175)180)185)172)189)185)182)185)174)192)180)185)178)173)185)169)187)176)180.乙车间:186)180)189)183)176)173)178)167)180)175)178)182)180)179)185)180)184)182)180)183.整理数据:分析数据:应用数据:)1)计算甲车间样品的合格率.)2)估计乙车间生产的1000个该款新产品中合格产品有多少个?)3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.【答案】)1)甲车间样品的合格率为))2)乙车间的合格产品数为750个;(3)见解析.【分析】)1)用合格产品数除以抽样总是乘以即可确定.(2)用乙车间生产的1000个该款新产品乘以乙车间样品的合格率即可求解.(3)可以从合格率,方差等各方面综合分析.【解答】)1)甲车间样品的合格率为.(2)∵乙车间样品的合格产品数为(个),∴乙车间样品的合格率为.∴乙车间的合格产品数为(个).(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.【点评】考查用样本估计总体,数据的分析,方差等,注意方差越小,越稳定.21. 小红帮弟弟荡秋千(如图1),秋千离地面的高度与摆动时间之间的关系如图2所示.)1)根据函数的定义,请判断变量是否为关于的函数?)2)结合图象回答:①当时,的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?【答案】)1)见解析;(2)①见解析;②.【分析】根据函数的定义进行判断即可.①当时,根据函数的图象即可回答问题.②根据图象即可回答.【解答】)1)∵对于每一个摆动时间,都有一个唯一的的值与其对应,∴变量是关于的函数.(2)①,它的实际意义是秋千摆动时,离地面的高度为.②.【点评】本题型旨在考查学生从图象中获取信息、用函数的思想认识、分析和解决问题的能力.22. 如图1,滑动调节式遮阳伞的立柱垂直于地面)为立柱上的滑动调节点,伞体的截面示意图为)为中点,))).当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.)1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从上调多少距离?(结果精确到))2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离?(结果精确到)(参考数据:)))))【答案】)1)点需从上调))2)点在(1)的基础上还需上调.【分析】)1)如图2,当点位于初始位置时,. 10:00时,太阳光线与地面的夹角为,点上调至处,.,为等腰直角三角形,,即可求出点需从上调的距离.)2)中午12:00时,太阳光线与,地面都垂直,点上调至处,过点作于点)),根据即可求解.【解答】)1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴,∴.∵,∴.∵,∴,∴为等腰直角三角形,∴,∴,即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处,∴.∵,∴.∵,∴.∵,得为等腰三角形,∴.过点作于点,∴,∴,∴,即点在(1)的基础上还需上调.【点评】考查等腰三角形的性质,解直角三角形,熟练运用三角函数是解题的关键.可以数形结合.23. 已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点).)1)判断顶点是否在直线上,并说明理由.)2)如图1,若二次函数图象也经过点),且,根据图象,写出的取值范围.)3)如图2,点坐标为,点在内,若点)都在二次函数图象上,试比较与的大小.【答案】)1)点在直线上,理由见解析;(2)的取值范围为或.)3)①当时,)②当时,)③当时,.【分析】)1)写出点的坐标,代入直线进行判断即可.)2)直线与轴交于点为,求出点坐标,把在抛物线上,代入求得,求出二次函数表达式,进而求得点A的坐标,数形结合即可求出时,的取值范围.)3)直线与直线交于点,与轴交于点,而直线表达式为)联立方程组,得.点).分三种情况进行讨论.【解答】)1)∵点坐标是,∴把代入,得,∴点在直线上.(2)如图1,∵直线与轴交于点为,∴点坐标为.又∵在抛物线上,∴,解得,∴二次函数的表达式为,∴当时,得,,∴.观察图象可得,当时,的取值范围为或.(3)如图2,∵直线与直线交于点,与轴交于点,而直线表达式为,解方程组,得.∴点,.∵点在内,∴.当点,关于抛物线对称轴(直线)对称时,,∴.且二次函数图象的开口向下,顶点在直线上,综上:①当时,;②当时,;③当时,.【点评】考查一次函数图像上点的坐标特征,不等式,二次函数的性质等,注意数形结合思想和分类讨论思想在数学中的应用.24. 已知,中,)是边上一点,作,分别交边)于点).)1)若(如图1),求证:.)2)若,过点作,交(或的延长线)于点.试猜想:线段)和之间的数量关系,并就情形(如图2)说明理由.)3)若点与重合(如图3)),且.①求的度数;②设)),试证明:.【答案】)1)证明见解析;(2)猜想:,理由见解析;(3)①)②证明见解析.【分析】)1)根据平行线的判定,得到),证明.即可证明.)2)过点作的平行线交的延长线于点,证明≌得到.证明四边形是平行四边形,即可得到.)3)①设),根据三角形的内角和列出方程,求解即可.②延长至,使,连结,证明.根据相似三角形的性质得到,即可证明.【解答】)1)∵,,,∴,,∴,,,∴.∴.(2)猜想:,理由如下:过点作的平行线交的延长线于点,则,∵,∴,又,∴≌∴.∵,∴,∴四边形是平行四边形,∴.(3)①设,∵,,∴,又,即,∴,即.②延长至,使,连结,∵,.∴,∵,∴,∴,而,∴.∴,∴.∵,,,∴,∴.。

2018年度山东临沂中考数学试卷(规范标准答案解析版)

2018年度山东临沂中考数学试卷(规范标准答案解析版)

2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( ) A .﹣3 B .﹣1 C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( )A .(y +12)2=1B .(y ﹣12)2=1C .(y +12)2=34D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( )A .5B .4C .3D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元 45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是( ) A .平均数和众数 B .平均数和中位数 C .中位数和众数 D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC=BD ,则四边形EFGH 为矩形; ②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分; ④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等. 其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分) 15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= . 17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。

2018年湖南省长沙市中考数学试卷(带解析)

2018年湖南省长沙市中考数学试卷(带解析)

二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
13.(3 分)化简:
−1 −
1= −1
1

【解答】解:原式= 故答案为:1.
−−11=1.
14.(3 分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活 动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形
A.
B.
C.
D.
【解答】解:绕直线 l 旋转一周,可以得到圆台,
故选:D.
8.(3 分)下列说法正确的是( ) A.任意掷一枚质地均匀的硬币 10 次,一定有 5 次正面向上 B.天气预报说“明天的降水概率为 40%”,表示明天有 40%的时间都在降雨 C.“篮球队员在罚球线上投篮一次,投中”为随机事件 D.“a 是实数,|a|≥0”是不可能事件 【解答】解:A、任意掷一枚质地均匀的硬币 10 次,一定有 5 次正面向上,错
2.(3 分)据统计,2017 年长沙市地区生产总值约为 10200 亿元,经济总量迈 入“万亿俱乐部”,数据 10200 用科学记数法表示为( ) A.0.102×105B.10.2×103 C.1.02×104 D.1.02×103 【解答】解:10200=1.02×104, 故选:C.
3.(3 分)下列计算正确的是( ) A.a2+a3=a5 B.3 2 −2 2 = 1 C.(x2)3=x5 D.m5÷m3=m2 【解答】解:A、a2+a3,无法计算,故此选项错误; B、3 2﹣2 2= 2,故此选项错误; C、(x2)3=x6,故此选项错误; D、m5÷m3=m2,正确. 故选:D.
【解答】解:(1)共抽取:4+10+15+11+10=50(人), 故答案为 50;

2018年山东省烟台市中考数学试卷(含答案与解析)

2018年山东省烟台市中考数学试卷(含答案与解析)

2018年⼭东省烟台市中考数学试卷(含答案与解析)数学试卷第1页(共22页)数学试卷第2页(共22页)绝密★启⽤前⼭东省烟台市2018年初中学业⽔平考试数学本试卷满分150分,考试时间120分钟.⼀、选择题(本⼤题共12⼩题,每⼩题3分,共36分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1.13-的倒数是()A.3B.3-C.13D.13-2.在学习《图形变化的简单应⽤》这⼀节时,⽼师要求同学们利⽤图形变化设计图案.下列设计的图案中,是中⼼对称图形但不是轴对称图形的是()ABCD3.2018年政府⼯作报告指出,过去五年来,我国经济实⼒跃上新台阶.国内⽣产总值从54万亿元增加到82.7万亿元,稳居世界第⼆,82.7万亿⽤科学记数法表⽰为()A.140.82710?B.1282.710?C.138.2710?D.148.2710?4.由5个棱长为1的⼩正⽅体组成的⼏何体如图放置,⼀⾯着地,两⾯靠墙.如果要将露出来的部分涂⾊,则涂⾊部分的⾯积为()A.9B.11C.14D.185.哪⽀仪仗队的⾝⾼更为整齐?()A.甲B.⼄C.丙D.丁6.下列说法正确的是() A.367⼈中⾄少有2⼈⽣⽇相同B.任意掷⼀枚均匀的骰⼦,掷出的点数是偶数的概率是13C.天⽓预报说明天的降⽔概率为90%,则明天⼀定会下⾬D.某种彩票中奖的概率是1%,则买100张彩票⼀定有1张中奖 7.利⽤计算器求值时,⼩明将按键顺序为显⽰结果记为a ,的显⽰结果记为b .则a ,b 的⼤⼩关系为()A.a b <B.a b >C.a b =D.不能⽐较8.如图所⽰,下列图形都是由相同的玫瑰花按照⼀定的规律摆成的,按此规律摆下去,第n 个图形中有120朵玫瑰花,则n 的值为()A.28B.29C.30D.319.对⾓线长分别为6和8的菱形ABCD 如图所⽰,点O 为对⾓线的交点,过点O 折叠菱形,使B ,B '两点重合,MN 是折痕.若'1B M =,则CN 的长为()A.7B.6C.5D.410.如图,四边形ABCD 内接于O ,点I 是ABC △的内⼼,124AIC ∠=?,点E 在AD毕业学校_____________ 姓名________________ 考⽣号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------⽆--------------------效----------------数学试卷第3页(共22页)数学试卷第4页(共22页)的延长线上,则CDE ∠的度数为()A.56°B.62°C.68°D.78°11.如图,⼆次函数2y ax bx c =++的图象与x 轴交于点1,0A (-),3,0B ().有下列结论:①20a b -=;②22a c b +()<;③当13x -<<时,0y <;④当1a =时,将抛物线先向上平移2个单位长度,再向右平移1个单位长度,得到抛物线222y x =-()-.其中正确的是()A.①③B.②③C.②④D.③④12.如图,矩形ABCD 中,8cm AB =,6cm BC =,点P 从点A 出发,以cm/s l 的速度沿A→D→C ⽅向匀速运动,同时点Q 从点A 出发,以2cm/s 的速度沿A→B→C ⽅向匀速运动,当⼀个点到达点C 时,另⼀个点也随之停⽌.设运动时间为s t (),APQ △的⾯积为2cm S (),下列能⼤致反映S 与t 之间函数关系的图象是()ABCD⼆、填空题(本⼤题共6⼩题,每⼩题3分,共18分.把答案填写在题中的横线上)13.3.14tan60π-+?=() .与最简⼆次根式a = .15.如图,反⽐例函数ky x=的图象经过ABCD 对⾓线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的⾯积为6,则k = .16.如图,⽅格纸上每个⼩正⽅形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条⽹格线的交点叫格点)上,以点O 为原点建⽴直⾓坐标系,则过A ,B ,C 三点的圆的圆⼼坐标为.数学试卷第5页(共22页)数学试卷第6页(共22页)17.已知关于x 的⼀元⼆次⽅程2410x x m +-=-的实数根1x ,2x ,满⾜121232x x x x -->,则m 的取值范围是 .18.如图,点O 为正六边形ABCDEF 的中⼼,点M 为AF 中点,以点O 为圆⼼,以OM的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆⼼,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底⾯半径记为1r ;将扇形DEF 以同样⽅法围成的圆锥的底⾯半径记为2r ,则12:r r = .三、解答题(本⼤题共9⼩题,共90分.解答应写出⽂字说明、证明过程或演算步骤)19.先化简,再求值:2221(1)244x x x x x +++÷--+,其中x 满⾜2250x x -=-.20.随着信息技术的迅猛发展,⼈们去商场购物的⽀付⽅式更加多样、便捷.某校数学兴趣⼩组设计了⼀份调查问卷,要求每⼈选且只选⼀种你最喜欢的⽀付⽅式.现将调查结果进⾏统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了⼈;在扇形统计图中,表⽰“⽀付宝”⽀付的扇形圆⼼⾓的度数为;(2)将条形统计图补充完整.观察此图,⽀付⽅式的“众数”是“ ”;(3)在⼀次购物中,⼩明和⼩亮都想从“微信”、“⽀付宝”、“银⾏卡”三种⽀付⽅式中选⼀种⽅式进⾏⽀付,请⽤画树状图或列表格的⽅法,求出两⼈恰好选择同⼀种⽀付⽅式的概率.21.汽车超速⾏驶是交通安全的重⼤隐患,为了有效降低交通事故的发⽣,许多道路在事故易发路段设置了区间测速如图,学校附近有⼀条笔直的公路l ,其间设有区间测速,所有车辆限速40千⽶/⼩时数学实践活动⼩组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进⾏区间测速.在l 外取⼀点P ,作P C l ⊥,垂⾜为点C .测得30PC =⽶,71APC ∠=?,35BPC ∠=?.上午9时测得⼀汽车从点A 到点B ⽤时6秒,请你⽤所学的数学知识说明该车是否超速.(参考数据:sin350.57?≈,cos350.82?≈,tan350.70?≈,sin710.95?≈,cos710.33?≈,tan71 2.90?≈)22.为提⾼市民的环保意识,倡导“节能减排,绿⾊出⾏”,某市计划在城区投放⼀批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.(1)今年年初,“共享单车”试点投放在某市中⼼城区正式启动投放A ,B 两种款型的单车共100辆,总价值36 800元.试问本次试点投放的A 型车与B 型车各多少辆?(2)试点投放活动得到了⼴⼤市民的认可,该市决定将此项公益活动在整个城区全⾯铺开.按照试点投放中A ,B 两车型的数量⽐进⾏投放,且投资总价值不低于184万元.请问城区10万⼈⼝平均每100⼈⾄少享有A 型车与B 型车各多少辆?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------⽆--------------------效----------------毕业学校_____________ 姓名________________ 考⽣号________________________________ _____________数学试卷第7页(共22页)数学试卷第8页(共22页)23.如图,已知D ,E 分别为ABC △的边AB ,BC 上两点,点A ,C ,E 在⊙D 上,点B ,D 在⊙E 上.F 为上⼀点,连接FE 并延长交AC 的延长线于点N ,交AB 于点M .(1)若EBD ∠为α,请将CAD ∠⽤含α的代数式表⽰;(2)若EM M B =,请说明当CAD ∠为多少度时,直线EF 为⊙D 的切线;(3)在(2)的条件下,若AD ,求MNMF的值.24.【问题解决】⼀节数学课上,⽼师提出了这样⼀个问题:如图1,点P 是正⽅形ABCD 内⼀点,1PA =,2PB =,3PC =.你能求出APB ∠的度数吗?⼩明通过观察、分析、思考,形成了如下思路:思路⼀:将BPC △绕点B 逆时针旋转90°,得到BP A '△,连接PP ',求出APB ∠的度数;思路⼆:将APB △绕点B 顺时针旋转90°,得到'CP B △,连接PP ',求出APB ∠的度数.请参考⼩明的思路,任选⼀种写出完整的解答过程. 【类⽐探究】如图2,若点P 是正⽅形ABCD 外⼀点,3PA =,1PB =,PC =,求APB ∠的度数.25.如图1,抛物线22y ax x c =++与x 轴交于4,0A (-),10B (,)两点,过点B 的直线2+3y kx =分别与y 轴及抛物线交于点C ,D .(1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,PDC △为直⾓三⾓形?请直接写出所有满⾜条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM M N +的值最⼩?若存在,求出其最⼩值及点M ,N 的坐标;若不存在,请说明理由.数学试卷第9页(共22页)数学试卷第10页(共22页)⼭东省烟台市2018年初中学业⽔平考试数学答案解析⼀、选择题 1.【答案】B【解析】解:13-的倒数是3-,故选:B .【考点】倒数 2.【答案】C【解析】解:A.是轴对称图形,不是中⼼对称图形,故此选项错误;B.是轴对称图形,也是中⼼对称图形,故此选项错误;C.不是轴对称图形,是中⼼对称图形,故此选项正确;D.是轴对称图形,也是中⼼对称图形,故此选项错误.故选:C .【考点】中⼼对称图形、轴对称图形 3.【答案】C【解析】解:82.7万亿138.2710=?,故选:C .【考点】科学记数法 4.【答案】B【解析】解:由图可知涂⾊部分是从上、前、右三个⽅向所涂⾯积相加,即涂⾊部分⾯积为44311++=,故选:B .【考点】⼏何体的表⾯积 5.【答案】D【解析】解:∵甲、⼄、丙、丁4⽀仪仗队队员⾝⾼的⽅差中丁的⽅差最⼩,∴丁仪仗队的⾝⾼更为整齐,故选:D .【考点】⽅差 6.【答案】A【解析】解:A.367⼈中⾄少有2⼈⽣⽇相同,正确;B.任意掷⼀枚均匀的骰⼦,掷出的点数是偶数的概率是12,错误;C.天⽓预报说明天的降⽔概率为90%,则明天不⼀定会下⾬,错误;D.某种彩票中奖的概率是1%,则买100张彩票不⼀定有1张中奖,错误;故选:A .【考点】概率 7.【答案】B【解析】解:由计算器知4(sin30)16a =?=﹣、26=123b =,∴a b >,故选:B .【考点】计算器的使⽤ 8.【答案】C【解析】解:由图可得,第n 个图形有玫瑰花:4n ,令4120n =,得30n =,故选:C .【考点】探索规律 9.【答案】D 【解析】解:连接AC 、BD ,如图,∵点O 为菱形ABCD 的对⾓线的交点,∴132OC AC ==,142OD BD ==,90COD =?∠,在Rt COD △中,CD ,∵AB CD ∥,∴MBO NDO ∠=∠,在OBM △和ODN △中MBO NDOOB ODOBM DON =??=??=?∠∠∠∠,∴OBM ODN △≌△,∴DN BM =,∵过点O 折叠菱形,使B ,B′两点重合,MN 是折痕,∴'1BM B M ==,∴1DN =,∴514CN CD DN ===--.故选:D .【考点】菱形的性质、折叠的性质、勾⽤定理、全等三⾓形的性质与判定数学试卷第11页(共22页)数学试卷第12页(共22页)10.【答案】C【解析】解:∵点I 是ABC △的内⼼,∴2BAC IAC ∠=∠、2ACB ICA ∠=∠,∵124AIC ∠=?,∴180B BAC ACB ∠=?-∠+∠()1802IAC ICA =?∠+∠-() 1802180AIC =?-?∠(-)68=?,⼜四边形ABCD 内接于⊙O ,∴68CDE B ∠=∠=?,故选:C .【考点】三⾓形内⼼的性质、圆内接四边形的性质 11.【答案】D【解析】解:①图象与x 轴交于点(10)A -,,30B (,),∴⼆次函数的图象的对称轴为1312x -+== ∴12ba-= ∴20a b +=,故①错误;②令1x =-,∴0y a b c =+=-,∴a c b +=,∴22a cb +=(),故②错误;③由图可知:当13x -<<时,0y <,故③正确;④当1a =时,∴21314y x x x =+=--()(-)()将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线22114222y x x =--+=()-(-)-,故④正确;故选:D .【考点】⼆次函数图象的性质及图象的平移 12.【答案】A【解析】解:由题意得:AP t =,2AQ t =,①当04t ≤≤时,Q 在边AB 上,P 在边AD 上,如图1,21=2122APQ S AP AQ t t t ==V g g ,故选项C 、D 不正确;②当46t <≤时,Q 在边BC 上,P 在边AD 上,如图2,118422APQ S AP AB t t ===V g g ,故选项B 不正确;故选:A .【考点】利⽤⼏何图形的等量关系确定函数的图象⼆、填空题 13.【答案】【解析】解:原式数学试卷第13页(共22页)数学试卷第14页(共22页)故答案为:【考点】实数的运算、特殊⾓的三⾓函数值 14.【答案】2与最简⼆次根式,∴13a +=,解得:2a =.故答案为2.【考点】⼆次根式的化简、同类⼆次根式的定义 15.【答案】3-【解析】解:过点P 做PE y ⊥轴于点E∵四边形ABCD 为平⾏四边形∴AB CD = ⼜∵BD x ⊥轴∴ABDO 为矩形∴AB DO =∴6ABCD ABDO S S ==Y 矩形∵P 为对⾓线交点,PE y ⊥轴∴四边形PDOE 为矩形⾯积为3 即3DO EO =g ∴设P 点坐标为,x y ()3k xy ==-故答案为:3-.【考点】平⾏四边形的性质、矩形的性质与判定以、反⽐例函数与⼏何图形的关系 16.【答案】1,2-(-)【解析】解:连接CB ,作CB 的垂直平分线,如图所⽰:在CB 的垂直平分线上找到⼀点D ,=CD DB DA =,所以D 是过A ,B ,C 三点的圆的圆⼼,即D 的坐标为1,2(--),故答案为:1,2(--).【考点】过三个点的圆的圆⼼就是三⾓形的外⼼、三⾓形外⼼的性质、勾股定理 17.【答案】35m <≤【解析】解:依题意得:2(4)4(m 1)03(m 1)42?---??--?≥>,解得35m <≤.故答案是:35m <≤.【考点】⼀元⼆次⽅程根的判别式、⼀元⼆次⽅程根与系数的关系 18.2 【解析】解:连OA数学试卷第15页(共22页)数学试卷第16页(共22页)由已知,M 为AF 中点,则OM AF ⊥∵六边形ABCDEF 为正六边形∴30AOM ∠=? 设AM a =∴2AB AO a ==,OM ∵正六边形中⼼⾓为60° ∴120MON ∠=? ∴扇形MONa =则1r =同理:扇形DEF 的弧长为:120241803a a =g g ππ则223r a =122r r :2.【考点】正多边形的性质、扇形的弧长公式、扇形和圆锥展开图之间的关系三、解析题19.【答案】解: 222222(2)21(1)(2)21(2)2x x x x x x x x x x x x x x-++-=-++-=-+=-=-原式gg ,由2250x x -=-,得到225x x =-,则原式5=20.【答案】(1)200 81° (2)微信(3)13【解析】解:(1)本次活动调查的总⼈数为455015115%30%200++÷-=()(-)⼈,则表⽰“⽀付宝”⽀付的扇形圆⼼⾓的度数为45360=81200,故答案为:200、81°;(2)微信⼈数为20030%60?=⼈,银⾏卡⼈数为20015%30?=⼈,补全图形如下:由条形图知,⽀付⽅式的“众数”是“微信”,故答案为:微信;(3)将微信记为A 、⽀付宝记为B 、银⾏卡记为C ,画树状图得:∵共有9种等可能的结果,其中两⼈恰好选择同⼀种⽀付⽅式的有3种,∴两⼈恰好选择同⼀种⽀付⽅式的概率为31=93.数学试卷第17页(共22页)数学试卷第18页(共22页)21.【答案】解:在Rt APC △中,tan 30tan 7130 2.9087AC PC APC =∠=?≈?=,在Rt APC △中,tan 30tan35300.7021BC PC BPC =∠=?≈?=,则872166AB AC BC =-==-,∴该汽车的实际速度为166s 61m/=,⼜∵40km/h 11.1m/s ≈,∴该车没有超速.22.【答案】解:(1)设本次试点投放的A 型车x 辆、B 型车y 辆,根据题意,得:10040032036800x y x y +=??+=?,解得:6040x y =??=?,答:本次试点投放的A 型车60辆、B 型车40辆;(2)由(1)知A 、B 型车辆的数量⽐为3:2,设整个城区全⾯铺开时投放的A 型车3a 辆、B 型车2a 辆,根据题意,得:340023201840000a a ?+?≥,解得:1000a ≥,即整个城区全⾯铺开时投放的A 型车⾄少3000辆、B 型车⾄少2000辆,则城区10万⼈⼝平均每100⼈⾄少享有A 型车100 3000=3100000辆、⾄少享有B 型车1002000=2100000辆.23.【答案】解:(1)连接CD 、DE ,⊙E 中,∵ED EB =,∴EDB EBD α∠=∠=,∴2CED EDB EBD α∠=∠+∠=,⊙D 中,∵DC DE AD ==,∴2CAD ACD DCE DEC α∠=∠∠=∠=,,ACB △中,180CAD ACD DCE EBD ∠+∠+∠+∠=?,∴180339022CAD αα-∠==?-;(2)设MBE x ∠=,∵EM M B =,∴EMB MBE x ∠=∠=,当EF 为⊙D 的切线时,90DEF ∠=?,∴90CED MEB ∠+∠=?,∴90CED DCE x ∠=∠=?-,ACB △中,同理得,180CAD ACD DCE EBD ∠+∠+∠+∠=?,∴218090CAD ∠=??-,∴45CAD ∠=?;(3)由(2)得:45CAD ∠=?;由(1)得:18032MBECAD ?-∠∠=;∴30MBE ∠=?,∴260CED MBE ∠=∠=?,∵CD DE =,∴CDE △是等边三⾓形,∴CD CE DE EF AD ==== Rt DEM △中,30EDM ∠=?,DE∴1EM =,1MF EF EM ==-, ACB △中,453075NCB ∠=?+?=?, CNE △中,30CEN BEF ∠=∠=?,∴75CNE ∠=?,∴75CNE NCB ∠=∠=?,∴EN CE =∴2MN NE EM MF MF +===+.数学试卷第19页(共22页)数学试卷第20页(共22页)24.【答案】解:(1)思路⼀、如图1,将BPC △绕点B 逆时针旋转90°,得到BP A '△,连接PP ',∴'ABP CBP △≌△,∴'90PBP ∠=?,'2BP BP ==,'3AP CP ==,在Rt 'PBP △中,'2BP BP ==,∴'45BPP ∠=?,根据勾股定理得,'PP =,∵1AP =,∴22'189AP PP +=+=,∵22'39AP ==,∴222''AP PP AP +=,∴'APP △是直⾓三⾓形,且'90APP ∠=?,∴''9045135APB APP BPP ∠=∠+∠=?+?=?;思路⼆、同思路⼀的⽅法;(2)如图2,将BPC △绕点B 逆时针旋转90?,得到BP A 'V ,连接PP ',∴'ABP CBP △≌△,∴'90PBP ∠=?,'1BP BP ==,'AP CP == 在Rt 'PBP V 中,'1BP BP ==,∴'45BPP ∠=?,根据勾股定理得,'PP = ∵3AP =,∴22'9211AP PP +=+=,∵22'11AP ==,∴222''AP PP AP +=,∴'APP △是直⾓三⾓形,且'90APP ∠=?,∴''904545APB APP BPP ∠=∠-∠=??=?-.25.【答案】解:(1)把4,0A(-),(1,0)B 代⼊22y ax x c =++,得 168=020a c a c -+??++=?,解得:2383a c ?==-??,∴抛物线解析式为:228233y x x =+-,∵过点B 的直线23y kx =+,∴代⼊1,0(),得:23k =-,∴BD 解析式为2233y x =-+;(2)由2282332233y x x y x ?=+-=+??得交点坐标为5,4D (-),如图1,过D 作DE x ⊥轴于点E ,作DF y ⊥轴于点F ,数学试卷第21页(共22页)数学试卷第22页(共22页)当11PD PC ⊥时,1PDC V 为直⾓三⾓形,则11DEP POC △∽△,∴DE PEPO OC=,即4523t t -=,解得t =当2P D DC ⊥于点D 时,2P DC V 为直⾓三⾓形由2P DB DEB △∽△得2P BDB EB DB=,=,解得:233t =;当3PC DC ⊥时,3DFC COP △∽△,∴3DF CFOC P O=,即1053=23t ,解得:49t =,∴t 的值为49、233.(3)由已知直线EF 解析式为:21033y x =--,在抛物线上取点D 的对称点D′,过点D′作D N EF '⊥于点N ,交抛物线对称轴于点M 过点N 作NH DD ⊥'于点H ,此时,DM MN D N +='最⼩.则EOF NHD '△∽△设点N 坐标为210,a 3()3a --,∴'OE OFNH HD =,即105321024(a )33a =----,解得:2a =-,则N 点坐标为2,2--(),求得直线ND′的解析式为3 12y x =+,当32x =-时,54y =-,∴M 点坐标为35(,)24--,此时,DM MN +。

2018年河北省中考数学试卷(含答案与解析)

2018年河北省中考数学试卷(含答案与解析)

数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共28页)数学试卷 第6页(共28页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)5/14河北省2018年初中毕业文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性. 2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6, 故选:B .【考点】科学记数法. 3.【答案】C【解析】该图形的对称轴是直线3l , 故选:C .【考点】轴对称图形的概念和性质. 4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-, 故选:C .【考点】完全平方公式和平方差公式的运用. 5.【答案】C【解析】A 项,俯视图不符合题意.B 项,主视图和左视图均不符合题意.C 项,正确.D 项,俯视图不符合题意.【考点】立体图形与三视图的关系. 6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:6则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ. 故选:D .【考点】基本的尺规作图. 7.【答案】A 【解析】设的质量为x ,的质量为y ,的质量为a ,假设A 正确,则 1.5x y =,此时B ,C ,D 选项中都是2x y =,故A 选项错误,符合题意. 故选:A .【考点】等式的性质. 8.【答案】B【解析】A 、利用SAS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;C 、利用SSS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出PCA PCB △≌△,∴CA CB =,∴点P 在线段AB 的垂直平分线上,符合题意,B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B . 【考点】等腰三角形的三线合一. 9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁. 【考点】平均数和方差的概念及应用. 10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误; ③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m ÷-=-,原题正确,该同学判断正确;故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A7/14【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a ,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a +,则新正方形的周长为4(2)(a 8)cm 4a +=+, 因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-. 故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,8∵点I 为ABC △的内心, ∴AI 平分CAB ∠, ∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质. 16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点, ∴①如图1,抛物线与直线相切,联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220x x c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上,∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c =9/14故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数, ∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】14 21【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=. 【考点】正多边形的外角和等于360,每个外角等于360n. 三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+.10∵结果为常数,∴50a -=,解得5a =. 【解析】(1)原式去括号、合并同类项即可得; (2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册. (2)由题意,得总人数为24人,超过5册的学生人数为6410+=(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数; (2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率; (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数. 【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数).【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.11/14(2)解:由(1)知,APM BPN △≌△,∴PM PN =,∴2MN PN =.∴2MN BN =,∴BN PN =,∴50BPN B α=∠=∠=.(3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题.24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=,∴2m =.∴(2,4)C .设2l 的解析式为(0)y kx k =≠,∴点(2,4)C 在2l 上,24k =,∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点,∴(10,0),(0,5)A B ,即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOC c S OB x ==⨯⨯=△, ∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =. 【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值;(3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k 的值为32或2或12-. 【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=. ∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQ x ==,∴19.5x =. 故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥.∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ =. 设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a =.13/14∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==.故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题;(2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形.26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入k y x =,得18k =. 设2h mt =,当1t =时,5h =,∴5m =.∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①.根据题意,得18y h =-.∵25h t =,∴2185y t =-②. 由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=,解得126,4x x ==-(舍去).将6x =代入18y x=,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m .(3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙.【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。

2018年成都市中考数学试题及答案详解

2018年成都市中考数学试题及答案详解

四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析

福建省2018年中考[数学]考试真题与答案解析一、选择题本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在实数|﹣3|,﹣2,0,π中,最小的数是( )A.|﹣3|B.﹣2C.0D.π答案解析:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B. 2.某几何体的三视图如图所示,则该几何体是( )A.圆柱B.三棱柱C.长方体D.四棱锥答案解析:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.下列各组数中,能作为一个三角形三边边长的是( )A.1,1,2B.1,2,4C.2,3,4D.2,3,5答案解析:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.一个n边形的内角和为360°,则n等于( )A.3B.4C.5D.6答案解析:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15°B.30°C.45°D.60°答案解析:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12答案解析:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.已知m=+,则以下对m的估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<6答案解析:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.B.C.D.答案解析:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )A.40°B.50°C.60°D.80°答案解析:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根答案解析:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、填空题11.计算:()0﹣1= 0 .答案解析:原式=1﹣1=0,故答案为:0.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 120 .答案解析:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .答案解析:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3. 14.不等式组的解集为 x>2 .答案解析:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .答案解析:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .答案解析:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、解答题本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤17.解方程组:.答案解析:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.答案解析:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.先化简,再求值:(﹣1)÷,其中m=+1.答案解析:(﹣1)÷===,当m=+1时,原式=.20.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.答案解析:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.答案解析:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.答案解析:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.答案解析:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE 的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.答案解析:(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠AOB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.25.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N (x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C 的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.答案解析:(1)∵抛物线过点A(0,2),∴c=2,当x1<x2<0时,x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,∴当x<0时,y随x的增大而增大,同理当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,且开口向下,即b=0,∵以O为圆心,OA为半径的圆与抛物线交于另两点B,C,如图1所示,∴△ABC为等腰三角形,∵△ABC中有一个角为60°,∴△ABC为等边三角形,且OC=OA=2,设线段BC与y轴的交点为点D,则有BD=CD,且∠OBD=30°,∴BD=OB•cos30°=,OD=OB•sin30°=1,∵B在C的左侧,∴B的坐标为(﹣,﹣1),∵B点在抛物线上,且c=2,b=0,∴3a+2=﹣1,解得:a=﹣1,则抛物线解析式为y=﹣x2+2;(2)①由(1)知,点M(x1,﹣x12+2),N(x2,﹣x22+2),∵MN与直线y=﹣2x平行,∴设直线MN的解析式为y=﹣2x+m,则有﹣x12+2=﹣2x1+m,即m=﹣x12+2x1+2,∴直线MN解析式为y=﹣2x﹣x12+2x1+2,把y=﹣2x﹣x12+2x1+2代入y=﹣x2+2,解得:x=x1或x=2﹣x1,∴x2=2﹣x1,即y2=﹣(2﹣x1)2+2=﹣x12+4x1﹣10,作ME⊥BC,NF⊥BC,垂足为E,F,如图2所示,∵M,N位于直线BC的两侧,且y1>y2,则y2<﹣1<y1≤2,且﹣<x1<x2,∴ME=y1﹣(﹣1)=﹣x12+3,BE=x1﹣(﹣)=x1+,NF=﹣1﹣y2=x12﹣4x1+9,BF=x2﹣(﹣)=3﹣x1,在Rt△BEM中,tan∠MBE===﹣x1,在Rt△BFN中,tan∠NBF=====﹣x1,∵tan∠MBE=tan∠NBF,∴∠MBE=∠NBF,则BC平分∠MBN;②∵y轴为BC的垂直平分线,∴设△MBC的外心为P(0,y0),则PB=PM,即PB2=PM2,根据勾股定理得:3+(y0+1)2=x12+(y0﹣y1)2,∵x12=2﹣y2,∴y02+2y0+4=(2﹣y1)+(y0﹣y1)2,即y0=y1﹣1,由①得:﹣1<y1≤2,∴﹣<y0≤0,则△MBC的外心的纵坐标的取值范围是﹣<y0≤0.。

2018年北京市中考数学试卷包含答案

2018年北京市中考数学试卷包含答案

北京市2018年中考数学试卷第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是c b a 1032 14234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b -=,那么代数式22()2a b ab a a b+-⋅-的值为A B . C . D .【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵a b -=,∴原式=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-)时,表示左安门-,6的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-)时,表示左安门-,5的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移ED CBA二、填空题(本题共16分,每小题2分)9.右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,AFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠. 另:此题也可直接测量得到结果.【考点】等腰直角三角形10x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:________元. 【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元) 【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+--.【解析】解:原式4112=+-=. 【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD∥∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB CD∥∴四边形ABCD是平行四边形又∵AB AD=∴ABCDY是菱形(2)解:∵四边形ABCD是菱形,对角线AC、BD交于点O.∴AC BD⊥.12OA OC AC==,12OB OD BD==,∴112OB BD==.在Rt AOB△中,90AOB∠=︒.∴2OA==.∵CE AB⊥,∴90AEC∠=︒.在Rt AEC△中,90AEC∠=︒.O为AC中点.∴122OE AC OA===.【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.【解析】(1)证明:∵PC、PD与O⊙相切于C、D.∴PC PD=,OP平分CPD∠.在等腰PCD△中,PC PD=,PQ平分CPD∠.∴PQ CD⊥于Q,即OP CD⊥.(2)解:连接OC、OD.∵OA OD=∴50OAD ODA∠=∠=︒∴18080AOD OAD ODA∠=︒-∠-∠=︒同理:40BOC∠=︒∴18060COD AOD BOC∠=︒-∠-∠=︒.在等腰COD△中,OC OD=.OQ CD⊥∴1302DOQ COD∠=∠=︒.∵PD与O⊙相切于D.∴OD DP⊥.∴90ODP∠=︒.在Rt ODP△中,90ODP∠=︒,30POD∠=︒∴cos cos30OD OAOPPOD====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【解析】(1)解:∵点A(4,1)在kyx=(0x>)的图象上.∴14k=,∴4k=.QPDCOBA(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(21y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm . 【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤);b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5 c .A ,B 两门课程成绩的平均数、中位数、众数如下:(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C . (1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围. 【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=. 2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=.(3)解:①当抛物线过点C时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a<-或13a≥或1a=-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中. AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △. DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =. (2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒. ∵DAE △≌DFE △ ∴ADE FDE ∠=∠同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ABCDEFHG∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中 DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME ==∴BH =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC △)1=,直接写出k 的取值范围;(3)T 的圆心为T (,0),半径为1.若d (T ,ABC △)1=,直接写出的取值范围. 【解析】(1)如下图所示:∵B (2-,2-),C (6,2-) ∴D (0,2-)∴d (O ,ABC △)2OD == (2)10k -<≤或01k <≤(3)4t =-或04t -≤≤或4t =+.【考点】点到直线的距离,圆的切线。

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)

九年级数学模拟试卷一、选择题(每小题3分,共30分)1.)A.±B. C. ±2 D. 2【答案】D【解析】分析:根据立方根的定义求解即可,如果一个数x 的立方等于a ,即x 3=a ,那么x 叫做a 的立方根,即x故选D. 点睛:本题考查了立方根的求法,熟练掌握立方根的定义是解答本题的关键.2. 太阳半径约为696 000 km ,将696 000用科学记数法表示为( )A. 6.96×105B. 69.6×104C. 6.96×103D. 0.696×108【答案】A【解析】 试题解析:696000=6.96×105. 故选A3. 下列计算,正确的是( )A. a 2-a =aB. a 2·a 3=5aC. a 9÷a 3=a 3D. (a 3)2=5a【答案】B【解析】 分析:根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则逐项及计算即可得到答案. 详解:A. ∵ a 2与a 不是同类项,不能合并,故不正确;B. ∵ a 2·a 3=5a ,故正确;C. ∵ a 9÷a 3=a 6 ,故不正确;D. (a 3)2=6a ,故不正确;故选B.点睛:本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则是解答本题的关键.4. 下列图形中既是轴对称图形又是中心对称图形的是()A. 正五角星B. 等腰梯形C. 平行四边形D. 矩形【答案】A【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A. 正五角星既是轴对称图形又是中心对称图形,故正确;B. 等腰梯形是轴对称图形,不是中心对称图形,故不正确;C. 平行四边形不是轴对称图形,是中心对称图形,故不正确;D. 矩形是轴对称图形,不是中心对称图形,故不正确;故选A.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6. 如图,圆锥的底面半径为3,母线长为6,则侧面积为()A. 8πB. 6πC. 12πD. 18π【答案】D【解析】分析:把圆锥的底面半径为3,母线长为6,代入圆锥的侧面积公式S=πrl计算即可.详解:由题意得,S=π×3×6=18π.故选D.点睛:本题考查了圆锥的侧面积计算公式,熟练掌握圆锥的侧面积公式S=πrl是解答本题的关键.7. 如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是()A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB,,根据作一个角等于已知角的作法,MN是以点E为圆心,DC为半径的弧.故选D.8. 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.9. 如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.23【答案】B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 90°D. 67.5°【答案】D【解析】分析:由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆,由AC=C E可得∠ADC=∠CDE,从而可求出∠CDE的度数,再根据直角三角形两直角互余求出∠DEC的度数.详解::由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆.∵点C为线段AB的中点,∴AC=BC.∵CE=CB,∴AC=CE,∴∠ADC=∠CDE,∵∠ADE=45º,∴∠DEC=45º÷2=22.5º,∴∠DEC =90º-22.5º=67.5º.故选D.点睛:本题考查了共圆的条件,圆周角定理的推论,直角三角形两锐角互余,判断出A 、C 、E 、D 共圆是解答本题的关键.二、填空题(每小题3分,共24分)11. 单项式3x 2y 的次数为 _____.【答案】3【解析】单项式.【分析】根据单项式的概念,把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数,所以单项式3x 2y 的系数为3.12. 分解因式:3m (2x ―y )2―3mn 2=______.【答案】()()322m x y n x y n -+--.【解析】先提取公因式3m ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a-b )(a+b ).解:3m (2x-y )2-3mn 2=3m[(2x-y )2-n 2]=3m (2x-y-n )(2x-y+n ).故答案为3m (2x-y-n )(2x-y+n ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数.详解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C .∵∠ADC =∠B +∠BAD ,∴∠ADC =∠C =2∠B .设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°,∴x +2x +102=180.解得:x =26.∴∠ADC =2x =52°.故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质.14. 设一元二次方程x 2-3x -1=0的两根分别为x 1,x 2,则x 1+x 2(x 22-3x 2)=____.【答案】3【解析】试题解析:有题意可知,222310,x x --=2223 1.x x ∴-= 由韦达定理可得,12123, 1.b c x x x x a a+=-=⋅==-2122212(3)x x x x x x --=-===故答案为 点睛:一元二次方程20(a 0)++=≠ax bx c 根与系数的关系满足: 1212,.b c x x x x a a+=-⋅= 15. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】【分析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16. 如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=°,l 不经过点C ,则AB 的最小值为_____.【答案】4【解析】分析:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC ; 由∠APB =90°可知点P 在以AB 为直径的圆上,则⊙O 与⊙C 相切时,OP 取得最小值,据此求解即可. 详解:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC . ∵∠APB =90°,OA =OB ,∴点P 在以AB 为直径的圆上,∴⊙O 与⊙C 相切时,OP 取得最小值,则OP ′=OC -CP ′=2,∴AB =2OP ′=4.故答案为4.点睛:本题考查了圆与圆的位置关系,两点之间线段最短,判断出当⊙O与⊙C相切时,OP取得最小值是解答本题的关键.17. 已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.【答案】11【解析】分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.详解:∵m-n2=2,即n2=m-2≥0,m≥2,∴原式=m2+2m-4+4m-1=m2+6m+9-14=(m+3)2-14,∴代数式m2+2n2+4m-1的最小值等于(2+3)2-14=11.故答案为11.点睛:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18. 当实数b0=_______,对于给定的两个实数m和n,使得对任意的实数b,有(m-b0)²+(n-b0)²≤(m-b)²+(n-b)².【答案】m n 2【解析】分析:由于b是任意的,所以可令b=x,把(m-b)²+(n-b)²整理配方,根据二次函数的性质即可求得答案. 详解:令b=x,则(m-b)²+(n-b)²=(m-x)²+(n-x)²=2x2-2mx-2nx+m2+n2=2x2-2mx-2nx+m2+n2=2[x2-(m+n)x] +m2+n2=2(x -2m n +)2 +m 2+n 2-2()2m n + =2(x -2m n +)2 + 2()2m n -, ∴当x =2m n +时,2(x -2m n +) + 2()2m n -取得最小值, ∴当b 0=2m n +时,有(m -b 0)²+(n -b 0)²≤ (m -b )²+(n -b )²总成立. 故答案为2m n +. 点睛:本题考查了配方法的应用和利用二次函数求最值,熟练掌握配方的方法和二次函数的性质是解答本题的关键.三、解答题(本大题共10小题,共96分)19. (1)计算(-2)2-tan45°+(-3)0-21()3-; (2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.【答案】(1)5;(2)12. 【解析】分析:(1)根据乘方的意义、特殊角的三角函数值、零指数幂和负整数幂的意义计算即可;(2)按照先算乘除,后算加减的顺序计算,根据多项式除以单项式的法则结算(4ab 3-8a 2b 2)÷4ab ,根据平方差公式计算(2a +b )(2a -b ),合并同类项后把a =2,b =1代入求值.详解:(1).原式=4-1+1-9=-5( 2).原式=b 2-2ab+4a 2-b2=4a 2-2ab ,当a=2,b=1时,原式=4×22-2×2×1=12点睛:本题考查了实数的运算和整式的混合运算,熟练掌握实数的运算法则是解(1)的关键,熟练掌握整式的运算法则是解(2)的关键. 20. 若关于x 的不等式组()x x 10{233x 544x 13a a++>++>++恰有三个整数解,求实数a 的取值范围. 【答案】312a <≤【解析】【分析】根据不等式组恰有三个整数解,即可确定不等式组的解集,从而即可得到一个关于a 不等式组,解之即可.【详解】解:解x x 1023++>得:2x 5>-; 解()3x 544x 13a a ++>++得:x 2a <.∴不等式组的解为2x 25a -<<. ∵关于x 的不等式组()x x 10233x 544x 13a a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,∴223a <≤,解得312a <≤. ∴实数a 的取值范围为312a <≤. 21. 为增强学生环保意识,某中学组织全校3000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第二组(69.5~79.5)”的扇形的圆心角 度;(2)若成绩在90分以上(含90分)的同学可获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为多少?【答案】(1)72°;(2)960名;(3)23.【解析】 试题分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.试题解析:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角=2050×360°=144°, (2)估计该校获奖的学生数=16100%50×2000=640(人); (3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P (选出的两名主持人“恰好为一男一女”)=812=23.故答案为23. 22. 如图,某测量船位于海岛P 的北偏西60°方向,距离海岛200海里的A 处,它沿正南方向航行一段时间后,到达位于海岛P 的西南方向上的B 处.求测量船从A 处航行到B 处的路程(结果保留根号). 【答案】3)海里.【解析】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.【分析】构造直角三角形,将AB 分为AE 和BE 两部分,分别在Rt△BEP 和Rt△BEP 中求解.23. 从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接写出优美线AD 的长.【答案】(1)证明见解析;(2)113°.(3)优美线AD 433或2-4 【解析】 试题分析:(1)根据三角形的优美线的定义,只要证明△ABD 是等腰三角形,△CAD ∽△CBA 即可解决问题,(2)如图2中,分两种情形讨论求解①若AB =AD ,△CAD ∽△CBA ,则∠B =∠ADB =∠CAD ,则AC ∥BC ,这与△ABC 这个条件矛盾, ②若AB =BD , △CAD ∽△CBA ,(3)如图3中,分三种情形讨论①若AD =BD , △CAD ∽△CBA ,则,AD CD AC AB AC BC==设BD =AD =x ,CD =y ,可得242x y x y ==+,解方程即可, ②若AB =AD =4,由AD CD AC AB AC BC==,设BD =AD =x ,CD =y ,可得2424x y y ==+,解方程即可, ③若AB =AD ,显然不可能.(1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°, ∴∠B=∠BAD=50°,∴DB=DA , ∴△ABD 是等腰三角形,∵∠C=∠C ,∠DAC=∠B=50°, ∴△CAD ∽△CBA ,∴线段AD 是△ABC 的优美线.(2)若AB=AD ,舍去,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,)若AB=BD,∠B=46°,∴∠BAD=∠BDA=67°,∵△CAD∽△CBA,∴∠CAD=∠B=46°,∴∠BAC=67°+46°=113°.(3)43AD=或42-4AD=.24. 如图1,已知抛物线2y ax bx c=++与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.(1)求抛物线的解析式;(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,PQ PQMQ NQ+是否为定值?请说明理由.图1 图2【答案】(1)y=12x2-x-4;(2)14或10;(3)是定值,理由见解析.【解析】分析:(1)由题意设抛物线解析式为y=a(x+2)(x-4),把(0,-4)代入求出a即可.(2)由tan∠ACB=OAOC=1,tan∠OAB=OBOA=12,可得tan∠OEA=13,即OAOE=13,从而根据正切函数的定义求出OE的值,进而可求BE的值;(3)设平移后的解析式为y=12(x+2-n)(x-4-n) ,点P的坐标为P(t,12(t+2-n)(t-4-n)),表示出PQ、MQ、NQ后,代入PQMQ+PQNQ化简即可.详解:设(1)y=a(x+2)(x-4),将(0,-4)代入,得-8a=-4a,∴a=12,∴y=12(x+2)(x-4),即y=12x2-x-4;(2). Rt△AOC中,tan∠ACB=OAOC=1;Rt△AOC中,tan∠OAB=OBOA=12,∵∠OEA=∠ACB-∠OAB,∴tan∠OEA=112111x2-+=13,即OAOE=13,∵OA=4,∴OE=12,∴BE=12+2=14或BE=12-2=10,答:BE的长为14或10;(3)平移后:y=12(x+2-n)(x-4-n) ,∴ M(-2+n,0), N(4+n,0),设P(t,12(t+2-n)(t-4-n)),则PQ=-12(t+2-n)(t-4-n),MQ=t-(-2-n)=t+2-n, NQ=4+n-t,∴PQMQ+PQNQ=()()1t2n t4n2t2n-+---+-+()()1t2n t4n24n t-+---+-=-12(t-4-n)+12(t+2-n)=3为定值.点睛:本题是二次函数综合题,考查了待定系数法求函数解析式,锐角三角函数的定义及性质,二次函数的平移变换,题目比较难,属于中考压轴题.。

2018年黑龙江省哈尔滨市中考数学试题及参考答案案

2018年黑龙江省哈尔滨市中考数学试题及参考答案案

哈尔滨市2018年初中升学考试数学试卷 一、选择题(每小题3分,共计30分)1.(2018黑龙江哈尔滨中考,1,3分,★☆☆)75-的绝对值是( ) A .75 B .57 C .75- D .57- 2. (2018黑龙江哈尔滨中考,2,3分,★★☆)下列运算一定正确的是( )A .(m +n )2=m 2+n 2B .(mn )3=m 3n 3C .(m 3)2=m 5D .m ·m 2=m 23. (2018黑龙江哈尔滨中考,3,3分,★☆☆)下列图形中既是轴对称图形又是中心对称图形的是( )A B C D4.(2018黑龙江哈尔滨中考,4,3分,★☆☆)六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )第4题图A B C D5. (2018黑龙江哈尔滨中考,5,3分,★★☆)如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P =30°,OB =3,则线段BP 的长为( )第5题图A .3B .33C .6D .96. (2018黑龙江哈尔滨中考,6,3分,★☆☆)将抛物线y =-5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y =-5(x +1)2-1B .y =-5(x -1)2-1C .y =-5(x +1)2+3D .y =-5(x -1)2+37. (2018黑龙江哈尔滨中考,7,3分,★☆☆)方程3221+=x x 的解为( ) A .x = -1 B .x =0 C .x =53 D .x =1 8. (2018黑龙江哈尔滨中考,8,3分,★★☆)如图,在菱形ABCD 中,对角线AC 、BD相交于点O ,BD =8,tan ∠ABD =43,则线段AB 的长为( )第8题图A 7B .7C .5D .109. (2018黑龙江哈尔滨中考,9,3分,★☆☆)已知反比例函数y =xk 32-的图象经过点(1,1),则k 的值为( )A .-1B .0C .1D .210. (2018黑龙江哈尔滨中考,10,3分,★★☆)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE //BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )第10题图A .AE AB =AD AG B .CF DF =AD DGC .AC FG =BDEG D .BE AE =DF CF 二、填空题(每小题3分,共计30分)11. (2018黑龙江哈尔滨中考,11,3分,★☆☆)将数920 000 000用科学记数法表示为_________________.12. (2018黑龙江哈尔滨中考,12,3分,★☆☆)函数y =45-x x 中,自变量x 的取值范围是_________________.13. (2018黑龙江哈尔滨中考,13,3分,★☆☆)把多项式x 3-25x 分解因式的结果是_________________.14. (2018黑龙江哈尔滨中考,14,3分,★☆☆)不等式组⎩⎨⎧--≥-1532512x x x >的解集为_________________.15. (2018黑龙江哈尔滨中考,15,3分,★☆☆)计算65-1051的结果是_________________.16. (2018黑龙江哈尔滨中考,16,3分,★☆☆)抛物线y =2(x +2)2+4的顶点坐标为_________________.17. (2018黑龙江哈尔滨中考,17,3分,★☆☆)一枚质地均匀的正方体骰子,骰子的六 个面上分别刻有1到6的点数.张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_________.18. (2018黑龙江哈尔滨中考,18,3分,★☆☆)一个扇形的圆心角为135°,弧长为3π cm ,则此扇形的面积是___________cm 2.19. (2018黑龙江哈尔滨中考,19,3分,★★☆)在△ABC 中,AB =AC ,∠BAC =100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_________________.20. (2018黑龙江哈尔滨中考,20,3分,★★☆)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF =45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN =10,则线段BC 的长为_________________.第20题图三.解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.(2018黑龙江哈尔滨中考,21,7分,★★☆)先化简,再求代数式(121--a )÷42962-+-a a a 的值,其中a =4cos 30°+3tan 45°.22. (2018黑龙江哈尔滨中考,22,7分,★★☆)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的项点上;(2)在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上.连接CE ,请直接写出线段CE 的长.第22题图23. (2018黑龙江哈尔滨中考,23,8分,★★☆)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书祛、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名.第23题图24.(2018黑龙江哈尔滨中考,24,8分,★★☆)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE =∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.第24题图25.(2018黑龙江哈尔滨中考,25,10分,★★☆)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B 型放大镜雷用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?26. (2018黑龙江哈尔滨中考,26,10分,★★★)已知:⊙O 是正方形ABCD 的外接圆,点E 在AB 上,连接BE 、DE ,点F 在AD 上,连接BF 、DF 、BF ,与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK ∥BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.第26题图27. (2018黑龙江哈尔滨中考,27,10分,★★★)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y =3 x +327与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB =60°,点E 在线段AP 上,点F 在线段BP 上,且BF =AF ,连接AF 、EF ,若∠AFE =30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE =AE 时,求点P 的坐标.第27题图哈尔滨市2018年初中升学考试数学试卷答案全解全析 1.答案:A解析:在数轴上,表示75-的点距离原点75个单位长度,根据绝对值的定义,75-的绝对值是75.故选:A. 考查内容:绝对值.命题意图:本题考查了绝对值的定义,难度较小.2.答案:B解析:根据完全平方公式,(m +n )2=m 2+2mn+n 2,选项A 错误;根据积的乘方性质,(mn )3=m 3n 3 ,选项B 正确;根据幂的乘方性质,(m 3)2=m 6,选项C 错误;根据同底数幂的乘法法则,m ·m 2=m 3,选项D 错误.故选:B.考查内容:同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.命题意图:本题考查完全平方公式与幂的性质的识记,难度较小.易错警示:此类问题容易出错的地方是分不清各种运算的法则,对符号、底数、指数处理不当,特别容易混淆幂的运算性质,如:同底数幂的乘法是底数不变,指数相加;而幂的乘方是底数不变,指数相乘.3.答案:C解析:选项A既不是轴对称图形,也不是中心对称图形,选项B是中心对称图形,不是轴对称图形,选项D是轴对称图形,不是中心对图形.故选:C.考查内容:轴对称图形;中心对称图形.命题意图:本题考查了轴对称图形和中心对称图形的识别能力,难度较小.4.答案:B解析:根据俯视图定义,俯视图有3列,从左到右分别是2,1,2个正方形,故选B.考查内容:简单几何体的三视图.命题意图:本题考查学生的观察能力和对几何体三种视图的识别能力,难度较小.5.答案:A解析:如图,连接OA,则OA= OB=3.∵PA为⊙O的切线,∴∠OAP=90°.∵∠P=30°,∴OP=2OA=6,∴BP= OP﹣OB =6﹣3=3.故选A.考查内容:切线的性质;直角三角形30°角的性质.命题意图:本题考查添加辅助线进行圆的有关计算的能力,难度较小.6.答案:A解析:根据抛物线的平移规律:“左加右减,上加下减”,将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,得到y=﹣5(x+1)2+1﹣2,即y=﹣5(x+1)2﹣1,故选A.考查内容:抛物线的平移命题意图:本题考查抛物线平移规律的识记能力,难度较小.7.答案:D解析:去分母,得x+3=4x,解方程,得x=1.检验:当x=1时,2x(x+3)≠0,x=1是分式方程的解,故选D.考查内容:分式方程的解法.命题意图:本题考查解分式方程以及转化思想的渗透,注意验根.难度较小.8.答案:C解析:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO=12AC ,BO=OD=12BD=4,在Rt △ABO 中,∵tan ∠ABO =AO BO,∴344AO =,∴AO=3.∴,故选C.考查内容:菱形的性质;勾股定理;锐角三角函数. 命题意图:本题考查综合利用几何图形的性质计算的能力,难度中等.9.答案:D解析:∵反比例函数y=x k 32-的图象经过点(1,1),∴2311k -=,即2k ﹣3=1×1, 解得k=2,故选D .考查内容:反比例函数图象上点的坐标特征.命题意图:本题考查反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键,难度较小.10.答案:D解析:∵GE ∥BD , ∴BE AE =GD AG .∵GF ∥AC ,∴GD AG =DF CF ,∴BE AE =DF CF .故选:D. 考查内容:平行线分线段成比例定理.命题意图:本题考查利用平行线分线段成比例定理确定成比例线段的能力,难度较小.11.答案:9.2×108解析:科学记数法是写成±a ×10n 的形式,其中1≤a <10,n 为整数.此数为九位整数,所以n =8,a =9.2.考查内容:科学记数法命题意图:本题考查学生掌握科学记数法的表示方法的能力,难度小.12.答案:x ≠4解析:根据分母不为0时,分式有意义,得x ﹣4≠0,解得x≠4.考查内容:函数自变量的取值范围命题意图:本题考查学生根据函数关系式确定自变量的取值范围的能力,难度较小.13.答案:x (x +5)(x -5)解析:x 3﹣25x=x (x 2﹣25)=x (x+5)(x ﹣5).考查内容:多项式的因式分解.命题意图:本题考查学生掌握因式分解的方法和步骤的能力,难度较小.14.答案:3≤x <4解析:2152315x x x -≥⎧⎨->-⎩①②,解不等式①,得x≥3,解不等式②,得x <4, 根据“大小小大中间找”,得不等式组的解集为3≤x <4.考查内容:一元一次不等式组的解法.命题意图:本题考查学生解一元一次不等式组的能力,难度中等.15.答案:45解析:65-1051=65-10×55=65-25=45. 考查内容:二次根式的加减法命题意图:本题考查学生二次根式的性质以及运算能力,难度中等.16.答案:(-2,4)解析:由顶点式y =a (x -h )2+k 可知,y =2(x +2)2+4中h =-2,k =4,所以顶点坐标为(-2,4).考查内容:二次函数的函数表达式.命题意图:本题考查由二次函数的顶点式直接写出顶点坐标的能力,难度较小.17.答案:31 解析:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 概率是26=31. 考查内容:概率公式.命题意图:本题考查利用概率公式求不确定事件的概率的能力,难度较小.18.答案:6π解析:设扇形的半径为Rcm ,由弧长公式,得135180R π⨯=3π,解得R=4, 所以扇形的面积为S=21354360π⨯=6π(cm 2). 考查内容:弧长的计算;扇形面积的计算.命题意图:本题考查利用扇形面积公式和弧长公式进行计算的能力,难度较小.一题多解:设扇形的半径为rcm ,由弧长公式,得135180r π⨯=3π,解得r=4,所以扇形的面积为S=12lr=12×3π×4=6π(cm2).19.答案:130°或90°.解析:△ABD为直角三角形,分两种情况考虑:①当∠ADB=90°时,如图1,∠ADC=180°﹣∠ADB=90°;②当∠BAD=90°时,如图2,在△ABC中,∵AB=AC,∠BAC=100°,∴∠B=∠C=1801002-=40°,∴∠ADC=∠BAD+∠B=90°+40°=130°.综合起来,∠ADC的度数为90°或130°.考查内容:等腰三角形的性质;三角形的外角.命题意图:本题考查利用等腰三角形的性质计算的能力,注意分类讨论的数学思想,难度中等.20.答案:42解析:连接BE,∵AB=OB,点E是OA的中点,∴BE⊥AO,∠BEC=90°.又∵点F是OD的中点,∴EF是△OAD的中位线,∴EF∥AD,EF=12AD.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴EF∥BC,EF=12BC,∴∠ACB=∠CEF=45°,∴∠EBC=180°﹣∠BEC﹣∠ACB=45°,∴EB=EC,△EBC是等腰直角三角形.∵EM⊥BC,∴EM=12BC=BM=CM.∴EF=EM= BM.∵EF∥BC,∴∠EFN=∠MBN.在△EFN与△MBN中,∵ENF MNBEFN MBNEF MB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFN≌△MBN(AAS),∴EN=MN=12EM,BN=FN=10.设EF=x,则BM=EM=EF=x,MN=12x,AD=BC=2x,在Rt△MBN中,由勾股定理,得BM2+MN2=BN2,∴x2+(12x)2=(10)2,解得x=22或﹣22(舍去),∴BC=2x=42.考查内容:平行四边形的性质;三角形的中位线;全等三角形的判定与性质;等腰直角三角形的判定与性质;勾股定理. 命题意图:本题考查综合利用平行四边形的性质、等腰直角三角形的性质、全等三角形的判定与性质计算线段长度的能力,注意方程思想的应用,难度较大.21.解析:原式=429621222-+-÷⎪⎭⎫ ⎝⎛----a a a a a a =9642232+--⋅--a a a a a =()()232223--⋅--a a a a =32-a ,当a= 4cos 30°+3tan 45°=4×23+3×1=32+3时, 原式=33322-+=33. 考查内容:分式的运算;特殊角的三角函数值.命题意图:本题考查熟练运用分式的运算法则进行运算的能力,难度中等.方法归纳:分式化简求值时需注意的问题:①化简求值,一般是先将分式化为最简分式或整式,再代入求值.化简时不能因跨度太大而缺少必要的步骤,代入求值的模式一般为“当……时,原式=……”.②代入求值,有直接代入法、整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式及化简过程中出现的分式都有意义,且除式的分子不能为0.22.解析:(1)如图所示,矩形ABCD 即为所求;(2)如图△ABE 即为所求,CE=4.考查内容:矩形的判定与性质;等腰三角形的性质;勾股定理.命题意图:本题考查利用等腰三角形的性质、勾股定理、矩形的判定和性质等知识进行作图的能力,难度中等.23.解析:(1)24÷20%=120(名),∴本次调查共抽取了120名学生.(2)120-24-40-16-8=32(名),∴最喜爱书法的学生有32名.补全条形统计图如图所示:(3)960×12040=320(名),∴估计该中学最喜爱国画的学生有320名. 考查内容:条形统计图;扇形统计图;用样本估计总体.命题意图:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,难度中等.24.解析:(1)证明:∵AC ⊥BD ,∴∠AED =∠DEC =∠BEG =90°,∴∠BGE +∠EBG =90°.∵BF ⊥CD ,∴∠BFD =90°,∴∠BDF +∠EBC =90°,∴∠BCE =∠BDF .∵∠BGE =∠ADE ,∴∠ADE =∠BDF .∵DE =DE ,∴△ADE ≌△CDE ,∴AD =CD . (2)△ACD ,△ABE ,△BCE ,△GBH .附理由:设DE=a ,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a . ∵BH 是△ABE 的中线,∴AH=HE=a .∵AD=CD ,AC ⊥BD ,∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a+2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵AED BEG DE GE ADE BGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△BGE (ASA ),∴BE=AE=2a ,∴S △ABE =12AE•BE=12(2a )•2a=2a 2,S △BCE =12CE•BE=12(2a )•2a=2a 2,S △BHG =12HG•BE=12(a+a )•2a=2a 2. 综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG . 考查内容:全等三角形的判定与性质;等腰三角形的判定与性质.命题意图:本题主要利用全等三角形的判定与性质和等腰三角形的判定与性质进行证明和计算的能力,难度中等偏上.25.解析:(1)解:设每个A 型放大镜x 元,每个B 型放大镜y 元.根据题意得⎩⎨⎧=+=+1526422058y x y x ,解得⎩⎨⎧==1220y x ,∴每个A 型放大镜20元,每个B 型放大镜12元.(2)解:设可以购买a 个A 型放大镜,则购买B 型放大镜(75-a )个. 根据题意得20a +12(75-a ) ≤1180,解得a ≤35.∴最多可以购买35个A 型放大镜. 考查内容:二元一次方程组的应用;一元一次不等式的应用.命题意图:本题考查利用二元一次方程组和一元一次不等式的知识解决实际问题的能力,难度中等偏上.26.解析:(1)证明:∵四边形ABCD 是正方形,∴∠A =∠ABC =90°.∵∠F =∠A =90°,∴∠F =∠ABC .∵DA 平分∠EDF ,∴∠ADE =∠ADF .∵∠ABE =∠ADE ,∴∠ABE =∠ADF .又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ,∴∠CBE =∠DHG .(2)证明:如图,过H 作HM ⊥KD ,垂足为点M .∵∠F =90°,∴HF ⊥FD .又∵DA 平分∠EDF ,∴HM =FH .∵FH =BP ,∴HM =BP .∵KH ∥BN ,∴∠DKH =∠DLN .∵∠ELP =∠DLN ,∴∠DKH =∠ELP .∵∠BED =∠A =90°,∴∠BEP +∠LEP =90°.∵EP ⊥BN ,∴∠BPE =∠EPL =90°,∴∠LEP +∠ELP =90°,∴∠BEP =∠ELP =∠DKH .∵HM ⊥KD ,∴∠KMH =∠BPE =90°,∴△BEP ≌△HKM (AAS ),∴BE =HK .(3)解:如图,连接BD ,∵3HF =2DF ,BP =FH ,∴设HF =2a ,DF =3a ,∴BP =FH =2a .由(2)得HM =BP ,∠HMD =90°.∵∠F =∠A =90°,∴tan ∠HDM =tan ∠FDH ,∴DM HM =DFFH=32 ,∴DM =3a ,∴四边形ABCD 是正方形,∴AB =AD ,∴∠ABD =∠ADB =45°. ∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ,∴∠DBF =∠BDE .∵∠BED =∠F ,BD =BD ,∴△BED ≌△DFB ,∴BE =FD =3a .过点H 作HS ⊥BD ,垂足为点S .∵tan ∠ABH =tan ∠ADE =ABAH =32,∴设AB =32m ,AH =22m , ∴BD =2AB =6m ,DH =AD -AH =2m ,sin ∠ADB =DH HS =22 ,∴HS =m ,∴ DS =22HS DH -=m ,∴BS =BD -DS =5m ,∴tan ∠BDE =tan ∠DBF =BSHS =51.∵∠BDE =∠BRE .∵tan ∠BRE =PR BP =51.∵BP =FH =2a ,∴RP =10a ,在ER 上截取ET =DK ,连接BT ,由(2)得∠BEP =∠HKD ,∴△BET ≌△HKD ,∴∠BTE =∠KDH ,∴tan ∠BTE =tan ∠KDH ,∴PT BP =32 ,∴PT =3a ,∴TR =RP -PT =7a .∵S △BER -S △KDH =47,∴21BP ·ER 21-HM ·DK =47,∴21BP (ER -DK )=21BP (ER -ET )=47,∴21×2a ×7a =47,∴a 2=41,解得a 1=21,a 2=21-(舍去),∴BP =1,PR =5,∴BR =22RP BP +=2251+=26.考查内容:圆的有关性质;正方形的性质;全等三角形的性质;三角形的面积公式;锐角三角函数定义.命题意图:本题考查综合利用圆的有关性质、三角形的性质、正方形的性质计算和证明的能力,综合性强,难度较大.27.解析:(1)∵y =3-x +327 ,∴B (27,0)C (0,273),∴BO = 27,CO =273 . 在Rt △BCO 中,BC =22CO BO +=2232727⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=7.∵四边形ABCD 为菱形,∴AB =BC =7 ,∴AO =AB -BO =727-=27 ,∴A (27-,0).(2) ∵AO =27=BO ,CO ⊥AB ,∴AC =BC =7,∴AB =AC =BC ,∴△ABC 为等边三角形, ∴∠ACB =60°.∵∠APB =60°,∴∠APB =∠ACB .∵∠PAG +∠APB =∠AGB =∠CBG +∠ACB ,∴∠PAG =∠CBG ,连接CE 、CF ,∵AE =BF ,∴△ACE ≌△BCF ,∴CE =CF ,∠ACE =∠BCF ,∴∠ECF =∠ACF +∠ACE =∠ACF +∠BCF =∠ACB =60°,∴△CEF 为等边三角形,∴∠CFE =60°,EF =FC .∵∠AFE =30°,∴∠AFC =∠AFE +∠CFE =90°.在Rt △ACF 中,∴AF 2+CF 2=AC 2=72=49,∴AF 2+EF 2=49.(3) 由(2)知△CEF 为等边三角形,∴∠CEF =60°,EC =EF ,延长CE 、FA 交于点H .∵∠AFE =30°,∠CEF =∠H +∠EFH ,∴∠H =∠CEF -∠EFH =30°,∴∠H =∠EFH ,∴EH =EF ,∴EC =EH .连接CP ,∵PE =AE ,∠CEP =∠HEA ,∴△CPE ≌△HAE ,∴∠PCE =∠H ,∴CP ∥FH , ∴∠HFP =∠CPF ,在BP 上截取TB =AP ,连接TC ,由(2)知∠CAP =∠CBT .∵AC =BC ,∴△ACP ≌△BCT ,∴CP =CT ,∠ACP =∠BCT ,∴∠PCT =∠ACP +∠ACT =∠BCT +∠ACT =∠ACB =60°,∴△CPT 为等边三角形,∴CT =PT ,∠CPT =∠CTP =60°.∵CP ∥FH ,∴∠HFP =∠CPT =60°. ∵∠APB =60°,∴∠APB =∠AFP ,∴AP =AF ,∴△APF 为等边三角形,∴∠CFP =∠AFC -∠AFP =90°-60°=30°,∴∠TCF =∠CTP -∠TFC =60°-30°=30°,∴∠TCF =∠TFC ,∴TF =TC =TP .连接AT ,则AT ⊥BP .设BF =m ,则AE =PE =m ,∴PF =AP =2m ,∴TF =TP =m ,TB =2m ,BP =3m ,在Rt △APT 中,AT =22TP AP -=()222m m -=3m ,在Rt △ABT 中,AT 2+TB 2=AB 2,∴(3m )2+(2m )2=72,∴m 1=-7(舍去),m 2=7.∴BF =7,AT =21,BP =37,sin ∠ABT =AB AT =721. 作PQ ⊥AB ,垂足为点Q ,作PK ⊥OC ,垂足为点K ,则四边形PQOK 为矩形,则OK =PQ =BP ·sin ∠PBQ =37×721=33,BQ =22PQ BP -=()()223373-=6 , OQ =BQ -BO =6-27=25,∴P (25-,33).考查内容:一次函数;等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质.命题意图:本题考查综合利用一次函数、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识解决问题的能力,注意构造全等三角形的应用,难度较大 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学真题三
一.选择题:(每小题3分,共30分)
1.的相反数是( )
A .
B .
C . ﹣
D . ﹣ 2.点P (-2,1)关于原点对称的点的坐标为
A .(2,1)
B .(1,-2)
C .(2,-1)
D .(-2,1)
3. 下列计算正确的是( ) A . a 2+a 2=2a 4 B . 4x ﹣9x+6x=1 C . (﹣2x 2y )3=﹣8x 6y 3 D .
a 6÷a 3=a 2 4.2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( )
A
. 1.2×10﹣9米 B . 1.2×10﹣8米 C . 12×10﹣8米 D . 1.2×10﹣7米
5.把如图中的三棱柱展开,所得到的展开图是( )
6. 五箱梨的质量(单位:kg )分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为() A .20和18 B . 20和19 C . 18和18 D .19和18
7.若2-=x 是关于x 的一元二次方程02
522=+-
a ax x 的一个根,则a
的值是( ) A 、1或4 B 、-1或-4 C 、-1或4 D 、1或-4
A .cm
B . cm
C . cm
D . cm
8.如图,四边形ABCD 是菱形,对角线AC=8cm ,BD=6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH=( )
A .cm
B . cm
C . cm
D .cm
9.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O1的直径,半圆O2过C 点且与半圆O1相切,则图中阴影部分的面积是( )
A .2367a π-
B .2365a π-
C .2367a
D .236
5a 10.如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2
y PC =,则y 关于x 的函数的图像大致为( )
A .
B .
C .
D .
A . B
. C . D
.
二.填空题:(每小题3分,共18分)
11.若代数式有意义,则x 的取值范围是 。

12. 计算:︒+---45sin 2822
)(= 。

13. 如图,AC 、BD 相交于O ,AB ∥DC ,AB =BC ,∠D=40°,∠ACB=35°,则∠AOD= .
14.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是 .
15.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD 的边长为 .
16.二次函数y=ax 2+bx+c 的图象如图所示,给出下列结论:①2a+b >0;②b >a >c ;③若﹣1<m <n <1,则m+n <﹣;④3|a|+|c|<2|b|.其中正确的结论是 (写出你认为正确的所有结论序号).
三.解答题:(共72分)
17.(8分)先化简,再求值:﹣,其中x=﹣1.
18.(8分)有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b 、c 分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x 的方程x 2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
O
O A P
B C
19.(8分)如图10,直线y =ax +1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x
(x >0)相交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为2,0 ().
(1)求双曲线的解析式;
(2)若点Q 为双曲线上点P 右侧的一点,且QH ⊥x 轴于H ,当以点Q 、C 、H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.
20.(8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
21(9分)如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B 、F 、C 在一条直线上)
⑴求教学楼AB 的高度;
⑵学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数).
(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25

22.(9分)如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠BPC=60°,过点A 作⊙O 的切线交BP 的延长线于点D .
(1)求证:△ADP ∽△BDA ; (2)若AD=2,PD=1,求线段BC 的长.
21题
23.(11分)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE 交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;(2)求DF的值;
(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求
出其最大值.
24.(12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.。

相关文档
最新文档