江西省上饶四中1314学年上学期七年级期末考试数学(附答案)
七年级上册上饶数学期末试卷(培优篇)(Word版 含解析)
七年级上册上饶数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .2.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60°3.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a = D .若a bc c=(c ≠0),则a b = 4.下列比较大小正确的是( ) A .12-<13- B .4π-<2-C .()32--﹤0D .2-﹤5-5.下列说法不正确的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短6.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b --7.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .198.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20B .40C .60D .809.下列平面图形不能够围成正方体的是( ) A .B .C .D .10.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .11.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( ) A .0.45×108B .45×106C .4.5×107D .4.5×10612.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤13.在同一平面内,下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是( )A .81B .63C .54D .5515.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.方程2x+1=0的解是_______________.17.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.18.若3a b -=,则代数式221b a -+的值等于________. 19.已知76A ∠=︒,则A ∠的余角的度数是_____________. 20.若∠1= 42°36’,则∠1 的余角等于___________°.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.2018年12月8日2时23分,我国的探月卫星“嫦娥四号”由长征三号乙运载火箭在西昌卫星发射中心成功发射,并成功飞向距地球约384400000m 月球.384400000用科学记数法可表示为______.23.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.24.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分. 25.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 三、解答题26.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,是当时世界上最简练有效的应用数学.书中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少? 27.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 28.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、29.已知线段AB =12cm ,C 为线段AB 上一点,BC =5cm ,点D 为AC 的中点,求DB 的长度.30.小红周日花了76元买了四种食品,如下表格记录了她的支出,其中部分金额被油渍污染.若鲜奶和酸奶一共买了10盒,鲜奶4元/盒,酸奶5元/盒,则小红当天买了几盒鲜奶?31.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++= 探索以上等式的规律,解决下列问题: (1) 13549++++=…( 2); (2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 . 32.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm 秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm 秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且2PA PB =时,点Q 运动到的位置恰好是线段AB 的三等分点, 求点Q 的运动速度;(3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB APEF-的值.33.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级上册上饶数学期末试卷(培优篇)(Word版 含解析)
七年级上册上饶数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b -- 2.在有理数2,-1,0,-5中,最大的数是( ) A .2B .C .0D . 3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m n C .3m nD .32m n 4.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2abD .3ab 5.钟面上8:45时,时针与分针形成的角度为( ) A .7.5°B .15°C .30°D .45° 6.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .37.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个8.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°9.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定10.下列算式中,运算结果为负数的是( )A .()3--B .()33--C .()23-D .3--11.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上 12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .13.把方程213148x x --=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x )C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x14.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c =(c ≠0),则a b = 15.若关于x y 、的单项式33n x y -与22m x y 的和是单项式,则()n m n -的值是 ( )A .-1B .-2C .1D .2二、填空题16.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________.17.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.18.若∠α=70°,则它的补角是 .19.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.20.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.21.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.22.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.23.单项式345ax y -的次数是__________. 24.观察下面两行数第一行: 1,4,9,16,25,36---⋯第二行: 3,2,11,14,27,34---⋯则第二行中的第8个数是 __________.25.32-的相反数是_________; 三、解答题26.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.27.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动. ①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?30.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯- ⎪⎝⎭. 31.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯32.如图所示方格纸中,点,,O A B 三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA 交于格点O ,点C 是直线OB 上的格点,按要求画图并回答问题.(1)过点C 画直线OB 的垂线,交直线OA 于点D ;过点C 画直线OA 的垂线,垂足为E ;在图中找一格点F ,画直线DF ,使得//DF OB(2)线段CE 的长度是点C 到直线 的距离,线段CD 的长度是点 到直线OB 的距离.33.(1)化简:(53)2(2)a a b a b --+-(2)先化简,再求值:222(2)2(2)x xy x xy --+,其中12x =,1y =- 四、压轴题34.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.35.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值; (4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.36.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.37.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.38.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.39.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.40.点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数41.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.42.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据数轴可以判断a 、b 的正负,从而可以解答本题.【详解】解:由数轴可得,∵a<0,b>0, ∴|a |=-a ,|b |=b ,∴=a b -a-b.故选D.【点睛】本题考查绝对值,解答本题的关键是明确绝对值的意义.2.A解析:A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.4.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.5.A解析:A【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为: 4530307.5.60-⨯= 故选A. 6.A解析:A【解析】【分析】根据线段中点的性质,可得MC ,NC 的长,根据线段的和差,可得答案.【详解】解:(1)由点M 、N 分别是线段AC 、BC 的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.7.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.8.A解析:A【解析】由折叠的可知∠OGC=∠OGC′=100°,∴∠OGD=180°-∠OGC=80°,∴∠DGC′=∠OGC′-∠OGD=100°-80°=20°,故选 A.9.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.10.D解析:D【解析】【分析】根据有理数的运算即可依次求解判断.【详解】--=3>0,故错误;A. ()3--=27>0,故错误;B. ()33C. ()23-=9,>0,故错误;--=-3<0,故正确;D. 3故选D.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.11.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.12.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A 、B 、D 都可以拼成无盖的正方体,但C 拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C . 故选C .13.C解析:C【解析】分析:方程两边乘以8去分母得到结果,即可做出判断.详解:方程去分母得:2(2x ﹣1)=8﹣3+x .故选C .点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x 系数化为1,即可求出解.14.C解析:C【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x y a a =不成立,故此选项错误; D 、若a b c c=,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C .【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.15.C解析:C【解析】【分析】根据同类项的定义即可求出m 和n 的值,然后代入即可.【详解】解:∵关于x y 、的单项式33n x y -与22m x y 的和是单项式∴33n x y -与22m x y 是同类项,∴m=3,n=2将m=3,n=2代入()nm n -中,得原式=()2312=-故选C .【点睛】此题考查的是同类项的定义,根据同类项的定义求各字母指数中的参数是解决此题的关键. 二、填空题16.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于解析:55.6310⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.确定a×10n (1≤|a|<10,n 为整数)中n 的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0. 17.165【解析】【分析】设书的原价为x 元,根据关系式为:书的原价13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x 元,∴,解析:165【解析】【分析】设书的原价为x 元,根据关系式为:书的原价-13=书的原价×0.8+20,列出一元一次方程,解方程即可得到答案.【详解】解:根据题意,设小宇购买这些书的原价是x 元,∴130.820x x -=+,解得:165x =;故答案为:165.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.解析:110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.19.【解析】【分析】科学计数法就是把一个数写成的形式,其中,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,,由的范围可知,可得结论.【详解】解:.故答案为解析:62.510⨯【解析】【分析】科学计数法就是把一个数写成10n a ⨯的形式,其中110a ≤<,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,716n ,由 a 的范围可知 2.5a =,可得结论.【详解】解:62500000 2.510=⨯.故答案为:62.510⨯.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.20.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b解析:b+1【解析】【分析】根据图示,可知有理数a ,b 的取值范围b >a ,a <-1,然后根据它们的取值范围去绝对值并求|b-a|-|a+1|的值.【详解】解:根据图示知:b >a ,a <-1,∴|b-a|-|a+1|=b-a-(-a-1)=b-a+a+1=b+1.故答案为:b+1.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,绝对值的知识,正确把握相关知识是解题的关键.22.【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:解得:x =解析:【解析】【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =3,答:他们合作整理这批图书的时间是3h .故答案是:3.【点睛】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.23.5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.解析:5【解析】【分析】根据单项式的次数的定义进行判断即可.【详解】单项式345ax y的次数是:1+3+1=5故答案为:5【点睛】本题考查了单项式的次数的定义,掌握单项式的次数的定义是解题的关键.24.-62【解析】【分析】根据数字规律,即可求出第二行中的第个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+解析:-62【解析】【分析】根据数字规律,即可求出第二行中的第8个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+2,故第二行中的第8个数是- 82+2=-62故答案为: -62.【点睛】此题考查的是数字的探索规律题,找到数字的变化规律是解决此题的关键.25..【解析】【分析】利用相反数的概念,可得的相反数等于.【详解】的相反数是.故答案为:.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负解析:32. 【解析】【分析】 利用相反数的概念,可得32-的相反数等于32. 【详解】 32-的相反数是32. 故答案为:32. 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 三、解答题26.当12∠∠=时,//DM BC【解析】【分析】根据平行线的性质得到2CBD ∠∠=,等量代换得到1CBD ∠∠=,根据平行线的判定定理得到//GF BC ,证得//MD GF ,根据平行线的性质即可得到结论.【详解】当12∠∠=时,//DM BC ,理由://BD EF ,2CBD ∠∠∴=,12∠∠=,1CBD ∠∠∴=,//GF BC ∴,AMD AGF ∠∠=,//MD GF ∴,//DM BC ∴.【点睛】 本题考查了平行线的判定和性质,解题关键是熟练掌握平行线的判定和性质.27.23x y -+,589【解析】【分析】先把原代数式化简,再根据题意求出x 、y 的值代入化简后的代数式即可解答.【详解】2211312()()2323x x y x y --+-+ 解:原式=22123122323x x y x y -+-+ 21312(2)()2233x y =--++ 23x y =-+ ∵22(2)03x y ++-= ∴x+2=0,y-23=0 解得:x=-2,y=23, 当22,3x y =-=时, 原式223(2)()3=-⨯-+469=+ 589= 【点睛】本题考查化简代数式并求值的方法,解题关键是熟练掌握去括号法则:括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号变符号.28.(1)见详解;(2)CD ;(3)<,垂线段最短.【解析】【分析】(1)连接B 、C 两个端点即可;以A 为端点,过点B 画射线即可;利用方格特点可过点A 画BC 的平行线AM ;(2)根据题意作图,依据点到线的距离即为垂线段的长可得结论;(3)依据直线外一点与直线上各点连接的所有线段中垂线段最短可得线段CD 与CB 的长短.【详解】解:(1)如图,线段BC ,射线AB ,平行线AM 即为所求(2)如图由点到直线的距离即为垂线段的长可知点C 到AB 的距离是线段CD 的长.(3)线段CD 是点C 到直线AB 的垂线段,所以线段CD <线段CB ,理由是垂线段最短.【点睛】本题考查了在网格中作线段、射线、平行线、垂线,同时涉及了点到直线的距离、垂线段的性质,灵活利用网格的特点进行作图是解题的关键.29.(1)9,3;(2)2;(3)①118t =或254;②36 【解析】【分析】(1)由MN 的长及,OM ON 的数量关系可得OM 、ON 的长;(2)由图知MN MC CO ON =++,结合MC CO CN =+及线段MN 、ON 的长可得CO 的长;(3)①分类讨论,分点P 在线段OM 和射线ON 上两种情况,分别用含t 的代数式表示出OP 、OQ 的长,根据24cm OP OQ -=可列出关于t 的方程,求解即可;②点D 运动的时间即为点P 从点O 到停止运动所用的时间,求出点D 运动的时间再乘以其速度即为点D 运动的路程.【详解】 解:(1)12MN =,3OM ON =3412MN OM ON ON ON ON ∴=+=+== 3,39ON OM ON ∴===所以9,3OM cm ON cm ==.(2)如图12MN =,MC CO CN =+3212MN MC CO ON CO CO ON CO ON CO ON ∴=++=++++=+=由(1)知3ON =,3612CO ∴+=2CO ∴=所以CO 的长为2.(3)①如图,当点P 在线段MO 上时,93,32OP t OQ t =-=+,由24OP OQ -=得2(93)(32)4t t --+=解得118t =; 如图,当点P 在射线ON 上时,39,32OP t OQ t =-=+由24OP OQ -=得2(39)(32)4t t --+=解得254t = 综合上述,当118t s =或254s ,24OP OQ cm -=. ②点P 、Q 停止运动时,3122t t -=,解得12t =,点P 经过点O 时,39t =,解得3t =,4(123)36⨯-=所以在此过程中点D 运动的总路程是36cm.【点睛】本题考查了数轴上的动点问题,同时涉及了一元一次方程,灵活的将一元一次方程与数轴相结合是解题的关键.同时分类讨论的数学思想也在本题得以体现.30.(1)-8;(2)60.【解析】【分析】(1)先计算乘方和乘法,再计算减法,即可得到答案;(2)利用乘法分配律进行计算,即可得到答案.【详解】(1)解:原式=4-12=-8;(2)解:原式=-30+40+50=60.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.31.(1)-2;(2)-3【解析】【分析】(1)利用有理数的加减法法则进行运算;(2)运用有理数混合运算法则进行运算.【详解】解:(1)原式=12+8-7-15=20-7-15=13-15=-2;(2)原式=-1+2×9-5×2×2=-1+18-20=-3.【点睛】本题考查有理数的运算,熟练掌握运算法则和运算顺序是关键.32.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE 的长度是点C 到直线OA 的距离,线段CD 的长度是点D 到直线OB 的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.33.(1)2a b -- ;(2)8xy -,4【解析】【分析】(1)先去括号,然后合并同类项,即可得到答案;(2)先把代数式进行化简,然后把x 、y 的值代入计算,即可得到答案.【详解】解:(1)(53)2(2)a a b a b --+-=5324a a b a b -++-=2a b --;(2)222(2)2(2)x xy x xy --+=222424x xy x xy ---=8xy -; 当12x =,1y =-时, 原式=18(1)42-⨯⨯-=.【点睛】本题考查了整式的化简求值,整式的混合运算,解题的关键是熟练掌握整式混合运算的运算法则进行解题. 四、压轴题34.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x 元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x 的一元一次方程,解之即可得出结论;(3)设购物总额是x 元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x 元,由题意知x >500,列方程:0.88x =500×0.9+0.8(x -500)∴x =625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x 元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x -500)=482∴x =540∴0.88x =475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.35.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=;③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图。
江西省上饶四中七年级上学期期末考试数学试卷有答案
第3题图江西省上饶四中七年级上学期期末考试数学试卷一、选择题(每题3分,共30分) 1、51-的相反数是( )A 、51B 、51- C 、5 D 、-52、如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是 ( )A 、正方体、圆柱、三棱柱、圆锥B 、正方体、圆锥、三棱柱、圆柱C 、正方体、圆柱、三棱锥、圆锥D 、正方体、圆柱、四棱柱、圆锥 3、下列计算正确的是 ( )A 、326=B 、2416-=-C 、880--=D 、523--=-4、下列式子:12-x ,21+a ,732ab ,cab ,x 5-,3中,整式的个数有 ( ) A 、6 B 、5 C 、4 D 、35、对四舍五入得到的近似数 3.20亿,下列说法正确的 ( )A 、有三个有效数字,精确到百分位B 、有三个有效数字,精确到百万位C 、有两个有效数字,精确到亿位D 、有三个有效数字,精确到百位6、已知代数式y x 2+的值是3,则代数式142++y x 的值是( )A 、1B 、4C 、7D 、不能确定 7、某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个小朋友?设有x 个小朋友,则可列方程为 ( )A 、3x +1=4x -2B 、4231+=-x x C 、2413+=-x x D 、4132-=+x x 8、用平面去截下列几何体,不能截出三角形的是 ( )A 、长方体B 、三棱锥C 、圆柱D 、圆锥 9、下列说法中,正确的有 ( )①过两点有且只有一条直线; ②连接两点的线段叫做两点的距离;③两点之间,线段最短; ④若AB=BC ,则点B 是线段AC 的中点. A 、1 个 B 、2个 C 、3个 D 、4个A 、a -B 、aC 、b c -D 、a c + 二,填空题(每题3分,共24分) 11、计算: ()______248=-⨯+-。
12、计算:='︒+'︒82343418 。
江西省上饶市七年级上学期数学期末试卷含答案
七年级上学期数学期末试卷一、单选题(共6题;共12分)1.如图几何体的下部是一个三棱柱,下列各多边形与这个几何体的各面(包括底面)形状不相符的是()A. B. C. D.2.我们知道字母可代表任何数,那么对下列各式的叙述一定正确的是()A. 一定是负数B. 一定是负数C. 一定是负数D. 一定是负数3.单项式的系数、次数分别是()A. -3、5B. 、6C. -3、6D. 、54.下列关于0的说法错误的是()A. 任何情况下,0的实际意义就是什么都没有B. 0是偶数不是奇数C. 0不是正数也不是负数D. 0是整数也是有理数5.若方程是一元一次方程,那么m=()A. 3B. 2C. 1D. 2或16.计算:()A. B. C. D.二、填空题(共6题;共6分)7.计算:________.8.相反数仍是它本身的数是________9.中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为:________.10.若式子与式子的值相等,那么________.11.如图,有一个窗户,上部是半圆,下部是正方形,正方形的边长为,此窗户的面积是________.12.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
观察下面关于未知数x的方程:,请写出此方程的解:________。
三、解答题(共10题;共82分)13.如图,A、B、C、D是四边形的四个顶点,根据下列语句画图,并回答问题:①画直线;②在直线上找一点M,使线段与线段之和最小;③指出A、B、C、D四个点与直线的关系.14.先化简再求值:,其中,.15.计算:.16.如图,三条直线、、共点于O,三个交角的关系是、,求、、的大小.17.解关于未知数的方程:.18.(1)在小学我们就学过“三角形的内角和等于”,求四边形的内角和.(2)在下图的四边形中,,平分,平分,求的大小.19.在数轴上有A、B、C、D四个点表示的数分别为:-3、-1、2、4,如下图.(1)计算、、;再观察数轴,写出A、B的距离,C、D两点的距离,和A 、D两点的距离.(2)请用、或填空:A、B的距离________ ,C、D两点的距离________ ,A、D两点的距离________ .(3)如果点P、Q两点表示的数分别为x,y,那么P、Q两点的距离=________.(4)若,数x代表的点R在数轴上什么位置?x介于哪两个数之间?20.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?21.日历上的规律:表格是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角的四个数之和与九宫格中央那个数有什么关系?(2)请你自选一块九宫格进行计算,看四个角上的四个数之和与九宫格中央那个数是否还有这种关系?(3)试说明原理.22.如果把月亮绕地球旋转的轨迹看成一个圆,地心在圆心上。
江西省上饶市 七年级(上)期末数学试卷
2017-2018学年江西省上饶市广丰县七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共6小题,共18.0分)1.下列各单项式中,与x 2y 是同类项的是( )A. B. C. D. xy 210x 2x 2yz x 2y 22.下面四个图形中不能围成下边三棱锥的是( )A.B.C.D.3.下列有理数的关系叙述不正确的是( )A. 若,那么B. 倒数等于它自己的数是a <b 1a >1b±1C. 若,那么 D. 相反数等于它自己的数是00<a <1a 3<a 2<a 4.方程x +2=1的解是( )A. 1 B. C. 3 D. −1−35.单项式的系数、次数分别是( )−x 2y z 5A. ,2B. ,4C. ,2D. ,4−1−1−15−156.如图,数轴上AB 两点对应的数分别为a 、b ,那么下列四个关系中正确的是( )A. B. C. D. a <b <−b <−a −a <−b <a <b a <−b <b <−a a <|a |<|b |=b二、填空题(本大题共5小题,共15.0分)7.计算(4a 2b -3ab 2+5b 3)-(-3a 2b +5ab 2)=______8.图中,∠1与∠2的关系是______.9.a 与是互为倒数关系,即a 的倒数,的倒数是a ,据此计算=______1a 1a 1a 11−1210.所谓方程的解就是使方程中等号左右两边相等的未知数的值.观察方程:(x -1)2=4,请写出方程的解:x 1=______,x 2=______.11.整式(a +1)x 2-3x -(a -1)是关于x 的一次式,那么a =______.三、计算题(本大题共4小题,共31.0分)12.x 为何值时,3x -9与-x +4的值相等?1413.已知x 、y 满足关系(x -2)2+|y +2|=0,求y x 的值.14.(1)计算①(1-)×(1+)=______,1-()2=______;有(1-)×(1+)1212121212______,1-()2(用“ =”“<”“>”填空).12②(1-)×(1+)=______,1-()2=______;有(1-)×(1+)______1-()2131313131313(用“ =”“<”“>”填空).③猜测(1-)(1+)与1-()2有关系:(1-)(1+)______1-()2.1n 1n 1n 1n 1n 1n (2)计算:[1-()2]×[1-()2]×[1-()2]×…×[1-()2]121314110015.计算:(-10)3+[(-4)2×2-(1-3)2×4]四、解答题(本大题共5小题,共45.0分)16.如图,假若有两个人造地球卫星,它们的运行轨迹近似于以地球球心为圆心的圆,轨道面与赤道面重合,卫星甲以每小时15°的转速且与地球自转相反的方向绕地球旋转,卫星乙以每小时35°的转速且与地球自转相同的方向绕地球旋转,若2018年1月1日凌晨0点整,它们都恰好分别位于赤道上的某点A的正上方B、C处.当它们第二次又回到点A的正上方分别是什么时候?它们同时回到点A的正上方是什么时候?(注:转速为动点与圆心连结的半径在单位时间内所转的角度)17.有一个三位数,它的百位数上的数字是a,个位上的数字是c,十位上的数字是a+c.(1)这个三位数可表示为______;(2)若把这个数的个位上的数字与百位上的数字互换位置,得到另一个数,这两个数的和一定被11整除,试说明理由.18.(1)我们在小学已经学过:三角形的三个内角的和等于180°.如图1中,△ABC的内角和∠1+∠2+∠3=180°,那么在图2中,四边形的内角和∠1+∠2+∠3+∠4=______.(2)我们知道平角等于180°,图1中∠1+∠4=______;(3)求图1中∠4+∠5+∠6的大小;图2中∠5+∠6+∠7+∠8的大小.19.学校组织同学们去参观博物馆,在一块恐龙化石前,小明对小亮说:“这块化石距今已经230000001年了.”解说员听到后用略带嘲讽的口气对小明说:“小朋友!你比科学家厉害,知道得这么准确!”小明说:“我去年也参观了,去年是你说的,这块化石距今约230000000年了.”(1)用科学记数法表示230000000;(2)小明的说法正确吗?为什么?20.按下列语句画图在直线l上取不同的两点A、B(A左B右),连结AC、BD,并延长相交于P点,连结CD,延长交直线l于Q点.答案和解析1.【答案】D【解析】解:与x2y是同类项,故选:D.根据同类项的定义即可求出答案.本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.2.【答案】A【解析】解:B、C、D都能构成三棱锥,但A将各面折起,出现重叠,不能构成三棱锥,故选:A.对于能构成三棱锥的图形,将各面折起,不能重叠,也不能有空缺,据此进行判断.本题考查了三棱锥的展开图,熟记三棱锥展开图是解决问题的根本.3.【答案】A【解析】解:∵a<0,b>0时,a<b,而<,∴选项A符合题意;∵倒数等于它自己的数是±1,∴选项B不符合题意;∵若0<a<1,那么a3<a2<a,∴选项C不符合题意;∵相反数等于它自己的数是0,∴选项D不符合题意.故选:A.根据有理数大小比较的方法,倒数的含义和求法,以及相反数的含义和求法,逐项判定即可.此题主要考查了有理数大小比较的方法,倒数的含义和求法,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.【答案】B【解析】解:方程x+2=1,解得:x=-1,故选:B.方程移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.【答案】D【解析】【分析】本题考查单项式的概念,解题的关键是熟练正确理解单项式的概念,本题属于基础题型.根据单项式的系数、次数的概念即可求出答案.【解答】解:该单项式的系数为:,次数为4,故选D.6.【答案】C【解析】解:由数轴可得,a<0<b,|a|>|b|,∴a<-b<b<-a,故选项A、B、D错误,选项C正确,故选:C.根据数轴可以判断a、-a、b、-b的正负和大小,从而可以解答本题.本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.7.【答案】7a2b-3ab2+5b3【解析】解:原式=4a2b-3ab2+5b3+3a2b-5ab2=7a2b-3ab2+5b3,故答案为:7a2b-3ab2+5b3.先去括号,再合并同类项即可得.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.8.【答案】互余【解析】解:如图,∵EB⊥FB,∴∠EBF=90°,∵∠1+∠EBF+∠2=180°,∴∠1+∠2=90°,∴∠1与∠2互余.故答案为互余.如果两个角的和等于90°(直角),就说这两个角互为余角;主要考查了余角的概念.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而做出判断.9.【答案】2【解析】解:由题意得,是1-的倒数,∵1-=,的倒数是2,∴=2.故答案为:2.根据倒数的定义,式子为1-的倒数,然后进行计算即可得解.本题考查了倒数,读懂题目信息,理解倒数的定义是解题的关键.10.【答案】3;-1【解析】解:(x-1)2=4,x-1=±2,则x-1=2,x-1=-2,解得:x 1=3,x 2=-1,故答案为:3;-1.首先两边直接开平方可得x-1=±2,再解一元一次方程即可.此题主要考查了平方根,关键是确定x-1的值.11.【答案】-1【解析】解:∵整式(a+1)x 2-3x-(a-1)是关于x 的一次式,∴a+1=0,解得:a=-1.故答案为:-1.直接利用多项式的定义得出a+1的值.此题主要考查了多项式,正确得出a+1的值是解题关键.12.【答案】解:根据题意知3x -9=-x +4,1412x -36=-x +16,12x +x =16+36,13x =52,x =4,所以当x =4时,3x -9与-x +4的值相等.14【解析】根据题意列出关于x 的方程,根据解一元一次方程的一般步骤:去分母、移项、合并同类项、系数化为1即可得.本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤.13.【答案】解:∵(x -2)2+|y +2|=0,∴x -2=0且y +2=0,解得:x =2、y =-2,∴y x =(-2)2=4.【解析】根据绝对值和偶次乘方为非负数,求出x 、y 的值,代入原式利用乘方的运算法则可得答案.本题考查了非负数的性质,解决本题的关键是熟记绝对值和偶次乘方为非负数.14.【答案】;;=;;;=;=34348989【解析】解:(1)①(1-)×(1+)=,1-()2=;有(1-)×(1+)=1-()2 (用“=”“<”“>”填空).②(1-)×(1+)=,1-()2=;有(1-)×(1+)=1-()2 (用“=”“<”“>”填空).③猜测(1-)(1+)与1-()2有关系:(1-)(1+)=1-()2.故答案为:①、、=;②、、=;③=.(2)原式=(1-)×(1+)×(1-)×(1+)×(1-)×(1+) (1))×(1+)=××××××…××=×=.(1)根据有理数乘方运算法则逐一计算可得;(2)利用所得规律将原式展开,约分即可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数混合运算顺序和运算法则.15.【答案】解:原式=-1000+32-16=-984.【解析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】解:地球的自转的速度为360÷24=15度/小时,设卫星甲第二次又回到点A 的正上方的时间为x 小时,卫星乙第二次又回到点A 的正上方的时间为y 小时;由题意:(15+15)x =360,(35-15)y =360,解得x =12,y =18,∵12,18的最小公倍数为36,∴到第二天12时,18时两个卫星分别回到点A 的正上方;到第三天12时,它们同时到达点A是正上方,以后每隔一天后的12时,它们同时回到点A的正上方.【解析】设卫星甲第二次又回到点A的正上方的时间为x小时,设卫星甲第二次又回到点A的正上方的时间为x小时,卫星乙第二次又回到点A的正上方的时间为y小时;第二次又回到点A的正上方的时间为y小时;构建方程求出x、y即可解决问题;本题考查17.【答案】110a+11c【解析】解:(1)这个三位数为100a+10(a+c)+c=110a+11c,故答案为:110a+11c;(2)这个数的个位上的数字与百位上的数字互换位置得到的数为100c+10(a+c)+a=110c+11a,则这两个数的和为110a+11c+110c+11a=121a+121c=121(a+c)=112(a+c),即这两个数的和一定被11整除.(1)百位上的数字是a,十位上的数字是(a+c),个位上的数字为c,则这个三位数用代数式可以表示为100a+10(a+c)+c,然后合并即可;(2)先表示出调换位置后的三位数,根据题意列出算式,再整理即可得.本题考查了整式的加减、列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式注意:仔细辨别词义.认真审题,抓住关键词语,仔细辩析词义,分清数量之间的关系.18.【答案】360°;180°【解析】解:(1)由图2知,四边形的内角和∠1+∠2+∠3+∠4=180°×2=360°,故答案为:360°;(2)图1中∠1+∠4=180°,故答案为:180°;(3)∠4+∠5+∠6=180°-∠1+180°-∠2+180°-∠3=180°×3-180°=180°×2=360°,∠5+∠6+∠7+∠8=180°-∠1+180°-∠2+180°-∠3+180°-∠4=180°×4-180°×2=180°×2=360°.(1)将该四边形分割成两个三角形,利用三角形的内角和为180°求解可得;(2)根据平角的定义求解可得;(3)由∠4+∠5+∠6=180°-∠1+180°-∠2+180°-∠3及∠1+∠2+∠3=180°可得,同理得出∠5+∠6+∠7+∠8的度数.此题主要考查了多边形的内角与外角,利用多边形的内角与相邻的外角组成平角求出是解题关键.19.【答案】解:(1)230000000=2.3×108,(2)小明的说法错误,因为解说员说的“这块化石距今已经230000001年”中的230000000是一个近似数,它的精确数位是千万位,增加的这一年是忽略不计的.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【答案】解:如图所示:【解析】根据几何语句分别画出即可.本题考查了直线、射线、线段,主要考查了几何语句转化为图形的能力,是基础题.。
江西省上饶市七年级上学期数学期末考试试卷
江西省上饶市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2014·淮安) ﹣5的相反数为()A . ﹣B . 5C .D . ﹣52. (2分)从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值(结果保留两个有效数字)()A . 3.9×1013B . 4.0×1013C . 3.9×105D . 4.0×1053. (2分)单项式﹣8ab2的系数和次数分别是()A . 8与2B . 8与3C . ﹣8与2D . ﹣8与34. (2分)下列说法不正确的是()A . 对顶角相等B . 过任意一点可作已知直线的一条平行线C . 两点之间线段最短D . 过一点有且只有一条直线与已知直线垂直5. (2分)(2011·宜宾) |﹣5|的值是()A .B . 5C . ﹣5D . -6. (2分) (2017七上·和县期末) 若与kx﹣1=15的解相同,则k的值为()A . 8B . 2C . ﹣2D . 67. (2分)(2020·杭州模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程= =1.2中的分母化为整数,得 =12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七上·临川月考) 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温-4.6 3.813.1-19.4(单位℃)A . 北京B . 武汉C . 广州D . 哈尔滨9. (2分)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店()A . 赚了8元B . 赔了8元C . 不赔不赚D . 赚了24元10. (2分)如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2 , a3 , a4 ,…,a2010 ,则=()A .B . 2021054C . 2022060D .二、填空题 (共6题;共14分)11. (4分)绝对值等于本身的数是________ .相反数等于本身的数是________ ,绝对值最小的负整数是________ , 绝对值最小的有理数是________ .12. (1分) (2020七上·上海月考) 用代数式表示:x和y的平方和________.13. (1分)将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=________度.14. (6分) (2020七下·唐山期中) 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE ,经研究发现(1)如图2,当AB与DE重合时,∠CDF=________°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=________°;(3)拓展如图4,继续旋转使得AC垂直DE于点G ,此时AC与EF位置关系________,此时∠AED=________°;(4)探究如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=________°,图6中此时∠AED=________°.15. (1分) (2020七上·天心期末) 如图,直线AB、CD相交于点O , OB平分∠EOD ,∠COE=100°,则∠AOC=________°.16. (1分)(2017·揭西模拟) 如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F 是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________.三、解答题 (共9题;共84分)17. (10分) (2019七上·高县期中) 计算:(1)(2)18. (10分)解方程:(1) 3(2x+3)=11x-6;(2) 3x-6(x-1)=3-2(x+3).19. (5分) (2018七上·安图期末) 计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.20. (5分) (2019七上·鄱阳期中) 若a、b互为相反数,c、d互为倒数,m的绝对值为2,求代数式的值.21. (15分) (2019七下·赣榆期中) 四边形ABCD中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C,试求出∠C的度数;(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.22. (5分)如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?23. (15分) (2018七上·蕲春期中) 如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.24. (8分) (2020七上·福田期末) 有6位同学帮助美术老师装裱美术作品,其中有部分同学装裱过,是熟手,部分同学是生手,每20分钟,熟手可装裱3件,生手可装裱2件,经过2个小时,6位同学共装裱作品84件.(1)如果设熟手为x位,那么生手是________位(用x表示)(2) 2小时熟手共装裱________个,生手共装裱________个,(用含x的代数式表示)(3)列方程,求出熟手和生手各几位?25. (11分)(2020·牡丹江) 在等腰中,,点D,E在射线上,,过点E作,交射线于点F.请解答下列问题:(1)当点E在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点M.)(2)当点E在线段的延长线上,是的角平分线时,如图②;当点E在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则 ________.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共14分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、答案:14-2、答案:14-3、答案:14-4、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共84分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:第21 页共21 页。
江西省上饶市玉山县2023-2024学年七年级上学期期末数学试题(含解析)
A.B.2C.2--A.152B.151C.150D.149二、填空题(本大题共6小题,每小题3分,共18分)()2+-=25(1)如图,已知四个点A 、B ①连接,画射线.②画出一点P ,使P 到A 、理由是______.(1)若,则________(2)若,平分BC AD :4:5AOC BOD ∠∠=BOD ∠=()045AOC αα︒<≤∠=︒ON COD∠(1)当点B与点C相遇时,点A、D在数轴上表示的数分别为【点睛】本题考查了角平分线定义,平角的定义,正确的作出图形是解题的关键.②连接,交点即为点P ;两点之间线段最短,最短,故答案为:两点之间线段最短;BD AC 、 AP PC BP PD ∴+++故答案为:;(2)解:①补全图形如下:∵与互余,,,∵平分,,;②情形一:点D 在内.此时,,依题意可得:,解得:.情形二:点D 在外.在的条件下,补全图形如下:此时,依题意可得:,50︒BOD ∠AOC ∠90BOD AOC ∴∠+∠=︒90COD ∴∠=︒ON COD ∠45CON ∴∠=︒45AON α∴∠=+︒BOC ∠45,90AON COD α∠=+︒∠=︒4590180α+︒+︒=︒45α=︒BOC ∠045α︒<≤︒45,902AON COD α∠=︒∠=︒+45902180α︒+︒+=︒此时点B 在数轴上表示的数为;当点B 在点C 的右侧时,依题意得到:,解得,此时点B 在数轴上表示的数为;综上所述:点B 在数轴上表示的数为4或16.8624-+⨯=()6232t +=4t =86416-+⨯=。
上饶市人教版七年级上册数学期末试卷及答案-百度文库
上饶市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 3.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.54.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-7.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >011.3的倒数是( ) A .3B .3-C .13D .13-12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.若|x |=3,|y |=2,则|x +y |=_____.15.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 16.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 17.把53°24′用度表示为_____. 18.化简:2xy xy +=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 20.﹣30×(1223-+45)=_____. 21.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 22.52.42°=_____°___′___″. 23.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.计算:()1()20230---+ ()2()()2242314-÷--⨯-+26.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生; (2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______; (4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数. 27.计算(1)()547-- (2) 213(2)()24-⨯-28.解方程:4x+2(x ﹣2)=12﹣(x+4)29.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6. (1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.30.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体? ()2画出从正面看到的图形; ()3写出涂上颜色部分的总面积.四、压轴题31.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.32.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
上饶市人教版七年级上册数学期末试卷及答案-百度文库
上饶市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.﹣3的相反数是( ) A .13-B .13C .3-D .33.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .7.将图中的叶子平移后,可以得到的图案是()A .B .C .D .8.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个9.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 11.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x - D .3221x x -+ 12.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )213.3的倒数是( ) A .3 B .3-C .13D .13-14.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.若3750'A ∠=︒,则A ∠的补角的度数为__________. 20.当a=_____时,分式13a a --的值为0. 21.如果一个数的平方根等于这个数本身,那么这个数是_____. 22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.24.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.25.﹣225ab π是_____次单项式,系数是_____.26.当12点20分时,钟表上时针和分针所成的角度是___________.27.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.28.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 29.用度、分、秒表示24.29°=_____.30.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.33.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.34.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 35.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.36.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a++|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.37.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.38.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;7.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.8.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC ,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.11.B解析:B【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误;故选B.12.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.13.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论.【详解】解:∵AB =4,BC =2AB ,∴BC =8.∴AC =AB +BC =12.∵D 是AC 的中点,∴AD =12AC =6. ∴BD =AD ﹣AB =6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.20.1【解析】【分析】根据分式值为零的条件可得a −1=0,且a −3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.21.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.23.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+-∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面24.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.25.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 26.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.27.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.28.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.29.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.30.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC =12∠BOP , ∵∠AOQ +∠BOP =90°,∴∠BOP =90°﹣3t ,又∠BOC =180°﹣∠AOC =180°﹣30°﹣6t ,∴180﹣30﹣6t =12(90﹣3t ), 解得t =703. 【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.33.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.34.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.35.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++;()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 36.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).。
2013-2014年江西省初一上学期期末数学试卷及解析
22. (9 分)某城市按以下规定收取每月煤气费,用煤气如果不超过 60m3,按每 m30.8 元收费;如果超过 60m3,超过部分按每 m31.2 元收费.已知某用户 10 月份的煤气费平均每 m30.88 元,求该用户 10 月份应交的煤气费是多少元?
七、 (本大题有 2 小题,第 23 题 10 分,第 24 题 12 分,共 22 分) 23. (10 分)如图所示,点 E,F 分别是线段 AC,BC 的中点,若 EF=2.5 厘米, 求线段 AB 的长.
24. (12 分)阅读下面内容,并解答后面的问题. , (1)试问: (2)解方程: = , ; . …
第 3 页(共 13 页)
2013-2014 学年江西省初一上学期期末数学试卷
参考答案与试题解析
一、选择题(每小题 3 分,共 18 分) 1. (3 分)下列关于“0”的叙述正确的是( A.0 是正数 C.0 既是正数又是负数 ) B.0 是负数 D.0 既不是正数也不是负数
四、 (本大题有 2 小题,每小题 6 分,共 12 分) 17. (6 分)计算: (1) (﹣4)2÷(﹣8)﹣52; (2)﹣0.252÷( )4×(﹣1)27.
18. (6 分)先化简,后求值. (1) (5a+2a2﹣3﹣4a3)﹣(﹣a+3a3﹣a2) ,其中 a=﹣2; (2)3a2﹣(5a2﹣ab+b2)﹣(7ab﹣7b2﹣3a2) ,其中 a=3,b=﹣1.
3. (3 分)三角形的三边之比为 2:2:3,最长边为 15,则周长为( A.35 B.25 C.20 D.30
4. (3 分)已知点 A,B,C 共线,线段 AB=20cm,BC=8cm,则线段 AC=( A.28cm B.12cm C.28cm 或 12cm D.不确定 )
七年级上册上饶数学期末试卷(培优篇)(Word版 含解析)
七年级上册上饶数学期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 2.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养3.2019年12月15日开始投入使用的盐城铁路综合客运枢纽,建筑总面积约为324 000平方米.数据324 000用科学记数法可表示为( ) A .324×103B .32.4×104C .3.24×105D .0.324×1064.倒数是-2的数是( ) A .-2B .12-C .12D .25.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2.5B .2或10C .2.5或3D .36.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120207.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 68.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .9.对于代数式3m +的值,下列说法正确的是( ) A .比3大 B .比3小 C .比m 大 D .比m 小 10.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .811.3-的倒数是( ) A .3B .13C .13-D .3-12.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤ 13.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点14.单项式24x y 3-的次数是( ) A .43-B .1C .2D .315.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒二、填空题16.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.17.若 2230α'∠=︒,则α∠的余角等于________.18.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 19. 若32x +与21x --互为相反数,则x =__.20.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______. 21.已知22m n -=-,则524m n -+的值是_______.22.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.23.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.24.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________. 25.计算:3-|-5|=____________.三、解答题26.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)27.(探索新知)如图1,点C 将线段AB 分成AC 和BC 两部分,若BC =πAC ,则称点C 是线段AB 的圆周率点,线段AC 、BC 称作互为圆周率伴侣线段. (1)若AC =3,则AB = ;(2)若点D 也是图1中线段AB 的圆周率点(不同于C 点),则AC DB ;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 均为线段OC 的圆周率点,求线段MN 的长度.(4)图2中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数.28.定义:点C 在线段AB 上,若BC =π⋅AC ,则称点C 是线段AB 的一个圆周率点. 如图,已知点C 是线段AB 的一个靠近点A 的圆周率点,AC =3. (1)AB = ;(结果用含π的代数式表示)(2)若点D 是线段AB 的另一个圆周率点(不同于点C ),则CD = ;(3)若点E 在线段AB 的延长线上,且点B 是线段CE 的一个圆周率点.求出BE 的长.29.先化简,再求值:2a 2b ﹣3ab 2﹣2(a 2b +ab 2),其中a =1,b =﹣2.30.先化简,后求值:(23)2(2+2ab a a b ab )-+--,其中a=3,b=1. 31.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由. 32.解方程; (1)3(x +1)﹣6=0(2)1132x x +-= 33.按要求画图:如图,在同一平面内有三点A 、B 、C . (1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ; (3)画出点D 到直线AB 的垂线段DE .四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 36.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.37.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.38.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.39.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】根据图形和题意可以分别判断各个选项是否正确. 【详解】 解:由图可得,AD +BD =AB ,故选项A 中的结论成立, BD ﹣CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC ,故选项D 中的结论成立, 故选:C . 【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.2.D解析:D 【解析】 【分析】根据正方体的展开图即可得出答案. 【详解】根据正方体的展开图可知: “数”的对面的字是“养” “学”的对面的字是“核” “心”的对面的字是“素” 故选:D . 【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.3.C解析:C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 324 000=3.24×105. 故选:C. 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B解析:B 【解析】 【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解. 【详解】 解:12()12-⨯-=∴倒数是-2的数是12-故选:B 【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.5.C解析:C 【解析】 【分析】分两种情况讨论,①甲乙没有相遇过;②甲乙相遇过后,根据题意结合这两种情况分别列出关于t 的一元一次方程求解即可. 【详解】解:甲车行驶的路程为110t 千米,乙车行驶的路程为90t 千米 ①当甲乙没有相遇过时,根据题意得550(11090)50t t -+= 解得 2.5t =②当甲乙相遇过时,根据题意得(11090)55050t t +-= 解得3t =综合上述,t 的值为2.5或3. 故选:C 【点睛】本题主要考查了一元一次方程的应用,正确理解题意是解题的关键,难点在于要从相遇前和相遇后两方面去考虑,涉及到了分类讨论的数学思想.6.B解析:B 【解析】 【分析】根据相反数的定义可直接得出结论. 【详解】解:2020的相反数是−2020. 故选:B . 【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.7.B解析:B 【解析】 【分析】根据合并同类项的法则,进行求解即可. 【详解】解:222235a a a +=,故A 错误;B 正确;2xy xy xy -=,故C 错误;333235x x x +=,故D 错误;故选:B. 【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.8.B解析:B 【解析】 【分析】根据正方体的表面展开图的常见形式即可判断. 【详解】选项A 、C 、D 经过折叠均不能围成正方体; 只有B 能折成正方体. 故选B. 【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.9.C解析:C 【解析】 【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3. 【详解】解:∵3+m=m+3,m+3表示比m 大3, ∴3+m 比m 大. 故选:C. 【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.10.B解析:B根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4. 故选B.11.C解析:C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C12.C解析:C 【解析】 【分析】根据数轴上点的距离判断即可. 【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>; ∴②③⑤正确 故选C. 【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.13.D解析:D 【解析】 【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a. 【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°. 故选:D. 【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】单项式43x2y的次数是2+1=3.故选D.【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.15.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.二、填空题16.过一点有且只有一条直线与已知直线垂直 【解析】 【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论. 【详解】 ∵OM⊥l,ON⊥l,∴OM 与ON 重合(平面内,经过一点有且只有解析:过一点有且只有一条直线与已知直线垂直 【解析】 【分析】平面内,经过一点有且只有一条直线与已知直线垂直,据此可得结论. 【详解】∵OM ⊥l ,ON ⊥l ,∴OM 与ON 重合(平面内,经过一点有且只有一条直线与已知直线垂直), 故答案为:平面内,经过一点有且只有一条直线与已知直线垂直. 【点睛】本题考查了垂线,利用了垂线的性质:平面内过一点有且只有一条直线与已知直线垂直.17.【解析】 【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可. 【详解】 解:∵ 的余角为. 故答案为:. 【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此 解析:'6730︒【解析】 【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可. 【详解】解:∵ 2230α'∠=︒α∠的余角为9022306730''-︒=︒.故答案为:'6730︒. 【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此题的关键.18.【解析】 【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值. 【详解】 解:∵ ,, ,, ,, ,, ∴商的最小值为. 故答案为:. 【点睛】 本题考 解析:52-【解析】 【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值. 【详解】 解:∵1242,422,2255,5522, 3344,4433,3355,5533, ∴商的最小值为52-. 故答案为:52-. 【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.19.-1 【解析】 【分析】由于与互为相反数,由此可以列出方程解决问题. 【详解】解:∵与互为相反数,∴+()=0, 解得:x=-1. 故答案为:-1. 【点睛】此题主要考查了一元一次方程的解法解析:-1 【解析】 【分析】由于32x +与21x --互为相反数,由此可以列出方程解决问题. 【详解】解:∵32x +与21x --互为相反数, ∴32x ++(21x --)=0, 解得:x=-1. 故答案为:-1. 【点睛】此题主要考查了一元一次方程的解法,解题时首先正确理解同一,然后利用题目的数量关系列出方程解决问题.20.同角的补角相等. 【解析】 【分析】根据同角的余角性质解答即可. 【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角, ∴根据同角的余角相等可得∠1=∠3. 故答案为:同角的余角相等解析:同角的补角相等. 【解析】 【分析】根据同角的余角性质解答即可. 【详解】解:根据题意可得∠1和∠2互为余角,∠2和∠3互为余角, ∴根据同角的余角相等可得∠1=∠3. 故答案为:同角的余角相等. 【点睛】本题考查同角的余角的性质.21.9 【解析】【分析】根据整体代入法即可求解. 【详解】 ∵∴=5-2()=5+4=9 故答案为:9. 【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.解析:9 【解析】 【分析】根据整体代入法即可求解. 【详解】 ∵22m n -=-∴524m n -+=5-2(2m n -)=5+4=9 故答案为:9. 【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.22.2 【解析】 【分析】设小长方形的长为x ,宽为y ,根据大长方形的长及宽,可得出关于x 、y 的二元一次方程组,解之即可得出结论. 【详解】设小长方形的长为x ,宽为y , 根据题意得: , 解得:, ∴解析:2 【解析】 【分析】设小长方形的长为x ,宽为y ,根据大长方形的长及宽,可得出关于x 、y 的二元一次方程组,解之即可得出结论. 【详解】设小长方形的长为x ,宽为y , 根据题意得:21028x yx y⎧⎨⎩+=+=,解得:42xy⎧⎨⎩==,∴宽为2.故答案为:2.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.【解析】【分析】由线段AB的中点对应的数为15,可知点A、B两点分别在点M的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a+b的值为30.【详解】解:如图所示:解析:【解析】【分析】由线段AB的中点对应的数为15,可知点A、B两点分别在点M的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a+b的值为30.【详解】解:如图所示:∵点A、B对应的数为a、b,∴AB=a﹣b,∴152a ba--=,解得:a+b=30,故答案为:30.【点睛】本题主要考查数轴,线段中点,数形结合是解题的关键.24.【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】由上述两个方程可以得出:x=y-1,将代入,解得y=5.故答案为:5.【点睛】本题考查一元一次方程与解的关系,关解析:【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】+=+x a x2020342019-+=-+y a y2020(1)34(1)2019x=代入,解得y=5.由上述两个方程可以得出:x=y-1,将4故答案为:5.【点睛】本题考查一元一次方程与解的关系,关键在于由题意看出x与y的关系. 25.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.三、解答题26.(1)72a =;(2)2222a ab -+,452【解析】 【分析】(1)由差解方程的定义可知13x a =+-,将x 的值代入方程可求得a 的值; (2)由差解方程的定义可3x a b a =+-=,可得b 的值,再将x a =代入方程可得a 的值,然后去括号化简代数式求值即可. 【详解】解:(1)由差解方程的定义可知132x a a =+-=-, 代入31x a =+得3(2)1a a -=+, 解得72a =. (2)由差解方程的定义可3x a b a =+-=得3b = 将x a =,3b =代入3x a b =+得33a a =+ 解得32a =()22224222a b a ab a b ⎡⎤---⎣⎦22224(224)a b a ab a b =--+ 22224224a b a ab a b =-+- 2222a ab =-+将32a =,3b =代入得 222233452()2322222a ab =-⨯⨯+=-+⨯.所以代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值452.【点睛】本题属于一元一次方程的实践创新题,同时涉及了整式的加减混合运算,正确理解差解方程的定义是解题的关键.27.(1)3π+3;(2)=;(3)π-1,(4)1、π、π+1π+2、π2+2π+1. 【解析】 【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.【详解】(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1;(4)设点D表示的数为x,如图3,若CD=πOD,则π+1-x=πx,解得x=1;如图4,若OD=πCD,则x=π(π+1-x),解得x=π;如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+1π+2;如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π+1π+2、π2+2π+1.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(1)33π+;(2)3-3;(3)3或3π.【解析】【分析】(1)根据AB=AC+BC 计算即可;(2)根据点D 是线段AB 的另一个圆周率点得到AD= BD ,由此求出BD=3,再用AB-AC-BD 求出CD ;【详解】(1)AB=AC+BC=3+3π;(2) ∵点D 是线段AB 的另一个圆周率点(不同于点C ),且AB=AD+BD ,∴AD= BD ∴BD BD AB ,∴(1)33BD , ∴BD=3∴CD=AB-AC-BD=3+3π-3-3=3π-3;(3)∵点B 是线段CE 的一个圆周率点,∴BC BE =或BE BC =, 当BC BE =时,BE= 33BC , 当BE BC =时,BE=233.∴BE 的长是3或23π.【点睛】此题考查代数式的计算,正确理解线段的圆周率点列式计算,注意当点B 是线段CE 的一个圆周率点时应分为两种情况讨论,不要忽略掉某一种.29.﹣5ab 2,﹣20.【解析】【分析】先将原式去括号、合并同类项化简,再将a 和b 的值代入计算可得.【详解】原式=2a 2b ﹣3ab 2﹣2a 2b ﹣2ab 2=﹣5ab 2,当a =1,b =﹣2时,原式=﹣5×1×(﹣2)2=﹣5×4=﹣20.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.30.-1.【解析】试题分析:原式去括号合并得到最简结果,把,a b 的值代入计算即可.试题解析:原式 234222.ab a a b ab a b =-+-++=-+当3,1a b == 时,原式 32 1.=-+=-31.(1) 51°48′,(2). OG 是EOB ∠的平分线,理由详见解析.【解析】【分析】(1)根据平角,直角的性质,解出∠BOG 的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:∠AOC=38°12′,∠COG=90°,∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.(2) OG 是∠EOB 的平分线,理由如下:由题意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,∵OC 是∠AOE 的平分线,∴∠AOC=∠COE∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG∴OG 是∠EOB 的平分线.【点睛】本题考查角度的计算,关键在于对角度认识及角度基础运算.32.(1)x =1;(2)x =﹣0.25.【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:3x +3﹣6=0,移项合并得:3x =3,解得:x =1;(2)去分母得:2(x +1)﹣6x =3,去括号得:2x +2﹣6x =3,移项合并得:﹣4x =1,解得:x =﹣0.25.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.33.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)根据直线和射线的概念作图可得;(2)根据线段的概念和中点的定义作图可得;(3)过点D作DE⊥AB于点E,连接DE即可.【详解】解:(1)如图所示,直线AB和射线BC即为所求;(2)如图线段AC和点D即为所求;(3)线段DE为所求垂线段.【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB值的不随着时间t的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x元,由题意知x>500,列方程:0.88x=500×0.9+0.8(x-500)∴x=625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.36.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】。
七年级上册上饶数学期末试卷(培优篇)(Word版 含解析)
(1)画线段 BC ,画射线 AB ,过点 A 画 BC 的平行线 AM ;
(2)过点 C 画直线 AB 的垂线,垂足为点 D ,则点 C 到 AB 的距离是线段______的长
度;
(3)线段 CD ______线段 CB (填“>”或“<”),理由是______.
②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操
作;
③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述
操作.可得
1 4
1 42Βιβλιοθήκη 1 431 4
2020
的值最接近的数是(
)
A. 1 3
B. 1 2
C. 2 3
D.1
25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________
三、解答题
26.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四 十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出
5 文,则差 45 文;每人出 7 文,则差 3 文.
A. 7 2
10.若
B. 7 2
,
C. 2 7
,则多项式
D. 2 7
与
的值分别为( )
A.6,26
B.-6,26
C.-6,-26
D.6,-26
11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从 A 地到 B 地架设
电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013—2014学年第一学期期末考试
七年级数学试卷
命题人:徐钦
一、选择题(每题3分,共30分) 1、51
-
的相反数是 ( ) A 、5
1
B 、5
1
-
C 、5
D 、-5
2、如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是 ( ) A 、正方体、圆柱、三棱柱、圆锥
B 、正方体、圆锥、三棱柱、圆柱
C 、正方体、圆柱、三棱锥、圆锥
D 、正方体、圆柱、四棱柱、圆锥
3、下列计算正确的是 ( ) A 、3
26=
B 、2
416-=-
C 、880--=
D 、523--=-
4、下列式子:12
-x ,21+a ,7
32ab ,c ab
,x 5-,3中,整式的个数有 ( )
A 、6
B 、5
C 、4
D 、3
5、对四舍五入得到的近似数3.20亿,下列说法正确的 ( )
A 、有三个有效数字,精确到百分位
B 、有三个有效数字,精确到百万位
C 、有两个有效数字,精确到亿位
D 、有三个有效数字,精确到百位
6、已知代数式y x 2+的值是3,则代数式142++y x 的值是 ( )
A 、1
B 、4
C 、7
D 、不能确定
7、某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个小朋友?设有x 个小朋友,则可列方程为 ( )
A 、3x +1=4x -2
B 、
4
2
31+=-x x C 、2413+=-x x D 、
4
1
32-=+x x 8、用平面去截下列几何体,不能截出三角形的是 ( ) A 、长方体 B 、三棱锥 C 、圆柱
D 、圆锥
9、下列说法中,正确的有 ( )
①过两点有且只有一条直线; ②连接两点的线段叫做两点的距离;
③两点之间,线段最短; ④若AB=BC ,则点B 是线段AC 的中点. A 、1 个 B 、2个
C 、3个
D 、4个
10、已知有理数a 、b 、d 在数轴上的位置如图,则在:
a
1
,a -,b c -,a c +四个数中,最大的一个是 ( ) A 、a - B 、
a
1 C 、b c -
D 、a c +
二,填空题(每题3分,共24分) 11、计算: ()______248=-⨯+-。
12、计算:='︒+'︒82343418 。
13、一个角是它的余角的2倍,则这个角的补角是 。
14、已知代数式1
3
2+n b
a 与2
13b a
m --的和是23b a -,则=-n m 5 。
15、如右图是由一些相同的小正方体构成的几何体
从不同方向看得到的平面图形,则在这个几何 体中,小正方体的个数是 。
16、已知点C 在直线AB 上,AB=10,AC=4, 则BC= 。
17、一列方程如下排列:1214=-+
x x
的解是x=2,1226=-+x x 的解是x=3, 12
3
8=-+x x 的解是x=4,……,根据观察得到的规律,写出其中解是x=6的方程: 。
18、在右列方格图当中,需要添加哪几个正方形, 才能使其构成正方体的展开图,它们为: 。
(填序号)
三、计算题(3题,共24分) 19、计算(每题4分,共8分)
(1))2(6)4()3(-⨯--⨯- (2)2
3
2)2(4)3(2--⨯--⨯
20、解方程(每题5分,共10分)
(1))2(128-=x x (2)16
133=--x x
21、化简求值(6分):)83()3(222xy y x xy y x ---,其中2
1
,1=-=y x 。
四、解答题(5题,共42分)
22、(7分)如图,已知M 是线段AB 的中点,P 是线段MB 的中点,如果cm MP 3=,求AP 的长。
23、(7分)一项工作,甲单独做20小时完成,乙单独做 12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合作,问还有多少小时可以完成?
24、(8分)如图,将两块三角板的顶点重合.
(1)请写出图中所有以O点为顶点且小于平角的角;
(2)请从第(1)问的答案中找出两个相等的角;
(3)若∠DOC=33°,试求∠AOB的度数;
(4)当三角板AOC绕点O适当旋转(保持两三角板有重合部分)时,∠AOB与∠DOC之间具有怎样的数量关系?(直接写答案)
25、(8分)如图是一个由6个正方形构成的长方形,如果最小的正方形的面积是1;
(1)若设A正方形的边长为x,请用含x的代数式分别表示出C,D,E三个正方形的边长。
(2)求长方形的面积。
26、(12分)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,5秒后,两点相距25个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动5秒时的位置;
(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从A点位置出发向B 运动,当遇到B后,立即返回向A点运动,遇到A点后立即返回向B点运动,如此往返,直到B 追上A时,C立即停止运动.若点C一直以15单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.
2013~2014学年度第一学期七年级数学
期末试卷参考答案
一.单项选择题(每题3分,共30分)
二,填空题(每题3分,共24分)
三,计算题(3题,共24分
四、解答题(5题,共42分)
24、(1)∠AOD ;∠AOC ; ∠AOB ; ∠DOC ;∠DOB ; ∠COB
(2) ∠AOD和∠BOC
(3) ∠AOD=147°
(4)∠AOB+∠DOC=180°。