(北京专用)2019版高考数学一轮复习第八章立体几何第六节立体几何中的向量方法作业本理

合集下载

2019届高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算课件理北师大版

2019届高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算课件理北师大版

又因为向量(-3,-4,5)的模为 -32+-42+52=5 2,
所以与向量(-3,-4,5)共线的单位向量是
1 ±5
2(-3,-4,5)=±102(-3,-4,5).
123456
解析 答案
6.O 为空间中任意一点,A,B,C 三点不共线,且O→P=34O→A+81O→B+tO→C, 1
若 P,A,B,C 四点共面,则实数 t=_8__. 解析 ∵P,A,B,C四点共面,
第八章 立体几何与空间向量
§8.6 空间向量及其运算
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
1.空间向量的有关概念
知识梳理
名称 零向量 单位向

概念 模为 0 的向量
1 相同 相等
长度相(反模)为相的等 向量
相等向 方向平行或重且合模
的向量

平面
表示 0
a=b
_________a_21+_a_22_+_a_23 _________
cos〈a,b〉=
a1b1+a2b2+a3b3 a21+a22+a23· b21+b22+b23
___________________
【知识拓展】 1.向量三点共线定理 在平面中 A,B,C 三点共线的充要条件是:O→A=xO→B+yO→C(其中 x+y =1),O 为平面内任意一点. 几何画板展示 2.向量四点共面定理 在空间中 P,A,B,C 四点共面的充要条件是:O→P=xO→A+yO→B+zO→C(其 中 x+y+z=1),O 为空间中任意一点. 几何画板展示
123456
解析 答案
题组三 易错自纠
4. 在 空 间 直 角 坐 标 系 中 , 已 知 A(1,2,3) , B( - 2 , - 1,6) , C(3,2,1) ,

2019届高三数学课标一轮复习课件:8-6 立体几何中的向

2019届高三数学课标一轮复习课件:8-6 立体几何中的向

)
关闭
不妨令 CB=1,则 CA=CC1=2. 可得 A(2,0,0),B12 (0,2,1), 5 O(0,0,0),B(0,0,1),C 1(0,2,0), 5 5 A. B. 3 C. 5 ∴ ������������ 5 1 =(0,2,-1), ������������1 =(-2,2,1),
-5知识梳理 双击自测
3.利用空间向量求空间角 (1)两条异面直线所成的角 π 0 , ①范围:两条异面直线所成的角θ的取值范围是 2 . ②向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=|cos φ| . (2)直线与平面所成的角 π 0 , ①范围:直线和平面所成的角θ的取值范围是 . 2 ②向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平 面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ| 或cos θ=sin φ.
当 a=(1,1,2)时 ,a= n,则 l⊥α; 当 a=(-1,-1,1)时 ,a· n=(-1,-1,1)· (2,2,4)=0, 则 l∥α 或 l⊂α. l⊥α l∥α 或 l⊂α
解析
2
关闭
1
答案
-10知识梳理 双击自测
4.正三棱锥的三个侧面两两垂直,则它的侧面与底面所成的二面角 的余弦值为 .
关闭
设正三棱锥 A-BCD(如图所示), 以������������ , ������������ , ������������ 为基底 , 设 |������������ |=|������������ |=|������������ |=m, 取 CD 的中点为 E,则三棱锥侧面与底面所成角 θ=<������������, ������������ >. 1 1 而������������=- ( ������������ + ������������ ),������������ = ������������ − (������������ + ������������ ).

2019届高考数学北师大版理大一轮复习讲义:第八章 立

2019届高考数学北师大版理大一轮复习讲义:第八章 立

§8.4 平行关系1.直线与平面平行的判定与性质2.面面平行的判定与性质知识拓展重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)题组二教材改编2.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊈α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊈平面ACE,EO 平面ACE,所以BD1∥平面ACE.题组三易错自纠4.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a α,b β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是________.(填上所有正确的序号)答案②④解析在条件①或条件③中,α∥β或α与β相交;由α∥γ,β∥γ⇒α∥β,条件②满足;在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质命题点1 直线与平面平行的判定典例 如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又F 是PC 的中点,∴FO ∥AP ,又FO 平面BEF ,AP ⊈平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点,∴FH ∥PD ,又PD 平面P AD ,FH ⊈平面P AD , ∴FH ∥平面P AD .又O 是BE 的中点,H 是CD 的中点,∴OH ∥AD ,又AD 平面P AD ,OH ⊈平面P AD , ∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD . 又GH 平面OHF ,∴GH ∥平面P AD .命题点2 直线与平面平行的性质典例 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC 平面PBC , 且平面PBC ∩平面GEFH =GH ,所以GH ∥BC . 同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 底面ABCD , 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊈平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a ⊈α,b α,a ∥b ⇒a ∥α). (3)利用面面平行的性质(α∥β,a α⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊈α,a ⊈β,a ∥α⇒a ∥β).跟踪训练 (2016·全国Ⅲ)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体N-BCM 的体积. (1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM , 所以四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT 平面P AB ,MN ⊈平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N-BCM 的体积 V 四面体N-BCM =13×S △BCM ×P A 2=453.题型二 平面与平面平行的判定与性质典例 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵G ,H 分别是A 1B 1,A 1C 1的中点, ∴GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别是AB ,AC 的中点, ∴EF ∥BC .∵EF ⊈平面BCHG ,BC 平面BCHG , ∴EF ∥平面BCHG . ∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB .又∵A 1E ⊈平面BCHG ,GB 平面BCHG , ∴A 1E ∥平面BCHG .又∵A 1E ∩EF =E ,A 1E ,EF 平面EF A ,∴平面EF A1∥平面BCHG.引申探究在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B 平面A1BD1,DM⊈平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊈平面A1BD1,BD1 平面A1BD1,∴DC1∥平面A1BD1.又∵DC1∩DM=D,DC1,DM 平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.跟踪训练(2018·唐山质检)如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊈平面DMF,MO 平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊈平面MNG,GN 平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊈平面MNG,MN 平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE 平面BDE,所以平面BDE∥平面MNG.题型三平行关系的综合应用典例如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF ∥平面β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长. (1)证明 ①当AB ,CD 在同一平面内时,由平面α∥平面β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD 知,AC ∥BD . ∵AE ∶EB =CF ∶FD ,∴EF ∥BD . 又EF ⊈β,BD β,∴EF ∥平面β.②当AB 与CD 异面时,如图所示,设平面ACD ∩平面β=DH ,且DH =AC ,∵平面α∥平面β,平面α∩平面ACDH =AC , ∴AC ∥DH ,∴四边形ACDH 是平行四边形,在AH 上取一点G ,使AG ∶GH =CF ∶FD , 连接EG ,FG ,BH .又∵AE ∶EB =CF ∶FD =AG ∶GH , ∴GF ∥HD ,EG ∥BH .又EG ∩GF =G ,BH ∩HD =H , ∴平面EFG ∥平面β.又EF 平面EFG ,∴EF ∥平面β. 综合①②可知,EF ∥平面β.(2)解 如图所示,连接AD ,取AD 的中点M ,连接ME ,MF .∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC , 且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°. ∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF =32+22±2×3×2×12=13±6,即EF =7或EF =19.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.跟踪训练 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG 平面ABD ,EF ⊈平面ABD , ∴EF ∥平面ABD .又∵EF 平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊈平面EFGH ,EF 平面EFGH , ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4), ∵EF ∥AB ,FG ∥CD , ∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x4. ∴FG =6-32x .∵四边形EFGH 为平行四边形,∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,即四边形EFGH 周长的取值范围是(8,12).1.若直线l 不平行于平面α,且l ⊈α,则( ) A .α内的所有直线与l 异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交答案 B解析因为l⊈α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.2.已知直线a和平面α,那么a∥α的一个充分条件是()A.存在一条直线b,a∥b且b αB.存在一条直线b,a⊥b且b⊥αC.存在一个平面β,a β且α∥βD.存在一个平面β,a∥β且α∥β答案 C解析在A,B,D中,均有可能a α,错误;在C中,两平面平行,则其中一个平面内的任一条直线都平行于另一平面,故C正确.3.(2018·攀枝花质检)平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.4.一条直线l上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l α答案 D解析当l∥α时,直线l上任意点到α的距离都相等;当l α时,直线l上所有的点到α的距离都是0;当l⊥α时,直线l上有两个点到α的距离相等;当l与α斜交时,也只能有两个点到α的距离相等.故选D.5.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是()A.若m∥α,n∥α,则m∥n B.若m∥α,n α,则m∥nC.若m∥α,n⊥α,则m∥n D.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是()A.垂直B.相交不垂直C.平行D.重合答案 C解析如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.7.(2018·重庆模拟)在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n β;②m∥γ,n∥β;③n∥β,m γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.(2017·承德模拟)如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件______时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN 平面FHN,∴MN∥平面B1BDD1.10.(2018·海口调研)将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填序号) 答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.11.(2017·南昌模拟)如图,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=23,且△P AD与△ABD均为正三角形,E为AD的中点,G为△P AD 的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G—PCD的体积.(1)证明 方法一 连接AG 并延长交PD 于点H ,连接CH .由梯形ABCD 中AB ∥CD 且AB =2DC 知,AF FC =21.又E 为AD 的中点,G 为△P AD 的重心,∴AG GH =21. 在△AHC 中,AG GH =AF FC =21,故GF ∥HC .又HC 平面PCD ,GF ⊈平面PCD , ∴GF ∥平面PDC .方法二 过G 作GN ∥AD 交PD 于N ,过F 作FM ∥AD 交CD 于M ,连接MN ,∵G 为△P AD 的重心,GN ED =PG PE =23,∴GN =23ED =233.又ABCD 为梯形,AB ∥CD , CD AB =12,∴CF AF =12, ∴MF AD =13,∴MF =233,∴GN =FM . 又由所作GN ∥AD ,FM ∥AD ,得GN ∥FM , ∴四边形GNMF 为平行四边形.∴GF ∥MN ,又∵GF ⊈平面PCD ,MN 平面PCD , ∴GF ∥平面PDC .方法三 过G 作GK ∥PD 交AD 于K ,连接KF ,GK ,由△P AD 为正三角形,E 为AD 的中点,G 为△P AD 的重心,得DK =23DE ,∴DK =13AD ,又由梯形ABCD 中AB ∥CD ,且AB =2DC , 知AF FC =21,即FC =13AC , ∴在△ADC 中,KF ∥CD , 又∵GK ∩KF =K ,PD ∩CD =D , ∴平面GKF ∥平面PDC ,又GF 平面GKF ,∴GF ∥平面PDC .(2)解 方法一 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE 平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 由(1)知GF ∥平面PDC ,∴V 三棱锥G —PCD =V 三棱锥F —PCD =V 三棱锥P —CDF =13×PE ×S △CDF . 又由梯形ABCD 中AB ∥CD ,且AB =2DC =23,知DF =13BD =233,又△ABD 为正三角形,得∠CDF =∠ABD =60°, ∴S △CDF =12×CD ×DF ×sin ∠BDC =32,得V 三棱锥P —CDF =13×PE ×S △CDF =32,∴三棱锥G —PCD 的体积为32. 方法二 由平面P AD ⊥平面ABCD ,△P AD 与△ABD 均为正三角形,E 为AD 的中点,知 PE ⊥AD ,BE ⊥AD ,又∵平面P AD ∩平面ABCD =AD ,PE 平面P AD , ∴PE ⊥平面ABCD ,且PE =3, 连接CE ,∵PG =23PE ,∴V 三棱锥G —PCD =23V 三棱锥E —PCD =23V 三棱锥P —CDE=23×13×PE ×S △CDE , 又△ABD 为正三角形,得∠EDC =120°, 得S △CDE =12×CD ×DE ×sin ∠EDC =334.∴V 三棱锥G —PCD =23×13×PE ×S △CDE=23×13×3×334=32, ∴三棱锥G —PCD 的体积为32. 12.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .(1)求证:PC ⊥BC ;(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.(1)证明 因为PD ⊥平面ABCD ,BC 平面ABCD , 所以PD ⊥BC .因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ,CD 平面PCD , 所以BC ⊥平面PCD .因为PC 平面PDC ,所以PC ⊥BC .(2)解 连接AC ,BD 交于点O ,连接EO ,GO ,延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .因为EO 平面MEG ,P A ⊈平面MEG , 所以P A ∥平面MEG . 因为△OCG ≌△OAM , 所以AM =CG =23,所以AM 的长为23.13.(2018·南昌质检)在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45° 答案 C解析 因为截面PQMN 是正方形,所以MN ∥QP , 又PQ 平面ABC ,MN ⊈平面ABC ,则MN ∥平面ABC , 由线面平行的性质知MN ∥AC ,又MN 平面PQMN ,AC ⊈平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.14.(2017·山西太原五中月考)过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条. 答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线只可能落在平面DEFG 中(其中D ,E ,F ,G 分别为AC ,BC ,B 1C 1,A 1C 1的中点).易知经过D ,E ,F ,G 中任意两点的直线共有C 24=6(条).15.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD—A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图像大致是()答案 C解析过M作MQ∥DD1,交AD于点Q,连接QN.∵MN∥平面DCC1D1,MQ∥平面DCC1D1,MN∩MQ=M,∴平面MNQ∥平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,∴NQ∥DC,可得QN=CD=AB=1,AQ=BN=x,∵MQAQ=DD1AD=2,∴MQ=2x.在Rt△MQN中,MN2=MQ2+QN2,即y2=4x2+1,∴y2-4x2=1(x≥0,y≥1),∴函数y=f(x)的图像为焦点在y轴上的双曲线上支的一部分.故选C.16.(2018·哈尔滨模拟)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG ,BG 平面SGB , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB 平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.。

高考数学(理科)一轮复习:单元八 立体几何 8.6 空间向量及其运算

高考数学(理科)一轮复习:单元八 立体几何 8.6 空间向量及其运算

=
2×2-8 2√3×2√5
=-
√15 . 15
关闭
C
解析 答案
第八章
知识梳理 考点自测
8.6
空间向量及其运算
关键能力
必备知识
-10-
1
2
3
45Βιβλιοθήκη 5.如图,在一个60°的二面角的棱上,有两个点A,B,AC,BD分别是在 这个二面角的两个半平面内垂直于AB的线段,且AB=4,AC=6,BD=8, 则CD的长为 .
关键能力
必备知识
-6-
1
2
3
4
5
1.下列结论正确的画“√”,错误的画“×”. (1)若A,B,C,D是空间任意四点,则有 ������������ + ������������ + ������������ + ������������=0. ( (2)|a|-|b|=|a+b|是a,b共线的充要条件.( ) (3)空间中任意两非零向量a,b共面.( ) (4)对于空间非零向量a,b,a⊥b⇔a· b=0.( ) (5)对于非零向量b,由a· b=b· c,得a=c.( )
2 2 ������2 1 +������2 +������3 · ������1 +������2 +������3 2 2 2
(2)设 A(x1,y1,z1),B(x2,y2,z2),则������������= (x2-x1.y2-y1,z2-z1) |AB|=|������������|= (������1 -������2 )2 + (������1 -������2 )2 + (������1 -������2 )2 .
关闭

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。

近年高考数学一轮总复习第八章立体几何题组训练54空间向量的应用(一)平行与垂直理(2021年整理)

近年高考数学一轮总复习第八章立体几何题组训练54空间向量的应用(一)平行与垂直理(2021年整理)

2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮总复习第八章立体几何题组训练54 空间向量的应用(一)平行与垂直理的全部内容。

题组训练54 空间向量的应用(一)平行与垂直1.已知点O,A,B,C为空间不共面的四点,且向量a=错误!+错误!+错误!,向量b=错误!+错误!-错误!,则与a,b不能构成空间基底的向量是() A.错误!B。

错误!C.错误!D.错误!或错误!答案C解析根据题意得错误!=错误!(a-b),∴错误!,a,b共面.2.有4个命题:①若p=x a+y b,则p与a,b共面;②若p与a,b共面,则p=x a+y b;③若错误!=x错误!+y错误!,则P,M,A,B共面;④若P,M,A,B共面,则错误!=x错误!+y错误!.其中真命题的个数是( )A.1 B.2C.3 D.4答案B解析①正确,②中若a,b共线,p与a不共线,则p=x a+y b就不成立.③正确.④中若M,A,B共线,点P不在此直线上,则错误!=x错误!+y错误!不正确.3.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长|AB|=34,则B点坐标为( )A.(18,17,-17)B.(-14,-19,17)C.(6,错误!,1)D.(-2,-错误!,13)答案A解析设B点坐标为(x,y,z),则错误!=λa(λ>0),即(x-2,y+1,z-7)=λ(8,9,-12).由|错误!|=34,即错误!=34,得λ=2。

近年高考数学一轮复习第8章立体几何第6课时空间向量及运算练习理(2021年整理)

近年高考数学一轮复习第8章立体几何第6课时空间向量及运算练习理(2021年整理)

2019高考数学一轮复习第8章立体几何第6课时空间向量及运算练习理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第8章立体几何第6课时空间向量及运算练习理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第8章立体几何第6课时空间向量及运算练习理的全部内容。

第6课时空间向量及运算1.已知点O,A,B,C为空间不共面的四点,且向量a=错误!+错误!+错误!,向量b=错误!+错误!-错误!,则与a,b不能构成空间基底的向量是( )A.错误!B.错误!C.错误!D.错误!或错误!答案C解析根据题意得错误!=错误!(a-b),∴错误!,a,b共面.2.有4个命题:①若p=x a+y b,则p与a,b共面;②若p与a,b共面,则p=x a+y b;③若错误!=x错误!+y错误!,则P,M,A,B共面;④若P,M,A,B共面,则错误!=x错误!+y错误!。

其中真命题的个数是( )A.1 B.2C.3 D.4答案B解析①正确,②中若a,b共线,p与a不共线,则p=x a+y b就不成立.③正确.④中若M,A,B共线,点P不在此直线上,则错误!=x错误!+y错误!不正确.3.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长|AB|=34,则B点坐标为() A.(18,17,-17)B.(-14,-19,17)C.(6,错误!,1) D.(-2,-错误!,13)答案A解析设B点坐标为(x,y,z),则错误!=λa(λ>0),即(x-2,y+1,z-7)=λ(8,9,-12).由|错误!|=34,即错误!=34,得λ=2.∴x=18,y=17,z=-17。

高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书

高考数学一轮总复习第6章立体几何第6节立体几何中的向量方法__证明平行与垂直教师用书

第六节 立体几何中的向量方法——证明平行与垂直考试要求:1.理解直线的方向向量及平面的法向量,能用向量语言表述线线、线面、面面的平行和垂直关系.2.能用向量方法证明立体几何中有关直线、平面位置关系的判定定理.一、教材概念·结论·性质重现1.直线的方向向量与平面的法向量直线的方向向量直线的方向向量是指和这条直线平行( 或重合) 的非零向量,一条直线的方向向量有无数个平面的法向量直线l⊥平面α,取直线l的方向向量a ,我们称向量a为平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量方向向量和法向量均不为零向量且不唯一.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔m·n=0 l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,m α∥ βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若a∥b,则a所在直线与b所在直线平行.( × )(6)若空间向量a平行于平面α,则a所在直线与平面α平行.( × ) 2.若直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有( )A.l∥α B.l⊥αC.l与α斜交 D.l⊂α或l∥αB 解析:由a=-n知,n∥a,则有l⊥α.故选B.3.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对C 解析:因为n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,所以α,β既不平行,也不垂直.4.如图,在正方体ABCD A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D 的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.垂直 解析:以A为原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系(图略).设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,所以ON与AM垂直.5.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是________.平行 解析:由题意得,AB=(-3,-3,3),CD=(1,1,-1),所以AB=-3CD,所以AB与CD共线.又AB与CD没有公共点,所以AB∥CD.考点1 利用空间向量证明平行问题——基础性如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:因为平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,所以AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0),则EF=(0,1,0),EG=(1,2,-1).设平面EFG的法向量为n=(x,y,z),则即令z=1,则n=(1,0,1)为平面EFG的一个法向量.因为PB=(2,0,-2),所以PB·n=0,所以n⊥PB.因为PB⊄平面EFG,所以PB∥平面EFG.本例中条件不变,证明:平面EFG∥平面PBC.证明:因为EF=(0,1,0),BC=(0,2,0),所以BC=2EF,所以BC∥EF.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.利用空间向量证明平行的方法线线平行证明两直线的方向向量共线线面平行(1)证明该直线的方向向量与平面的某一法向量垂直.(2)证明直线的方向向量与平面内某直线的方向向量平行面面平行(1)证明两平面的法向量为共线向量.(2)转化为线面平行、线线平行问题如图,在四棱锥P ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.求证:CM∥平面PAD.证明:由题意知,CB,CD,CP两两垂直,以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.因为PC⊥平面ABCD,所以∠PBC为PB与平面ABCD所成的角,所以∠PBC=30°.因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以DP=(0,-1,2),DA=(2,3,0),CM=.设n=(x,y,z)为平面PAD的一个法向量,由得取y=2,得x=-,z=1,所以n=(-,2,1)是平面PAD的一个法向量.因为n·CM=-×+2×0+1×=0,所以n⊥CM.又CM⊄平面PAD,所以CM∥平面PAD.考点2 利用空间向量证明垂直问题——应用性如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB.求证:平面BCE⊥平面CDE.证明:设AD=DE=2AB=2a,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a),所以BE=(a,a,a),BC=(2a,0,-a),CD=(-a,a,0),ED=(0,0,-2a).设平面BCE的法向量为n1=(x1,y1,z1),由n1·BE=0,n1·BC=0可得即令z1=2,可得n1=(1,-,2).设平面CDE的法向量为n2=(x2,y2,z2),由n2·CD=0,n2·ED=0可得即令y2=1,可得n2=(,1,0).因为n1·n2=1×+1×(-)=0,所以n1⊥n2,所以平面BCE⊥平面CDE.若本例中条件不变,点F是CE的中点,证明:DF⊥平面BCE.证明:由例2知C(2a,0,0),E(a,a,2a),平面BCE的法向量n1=(1,-,2).因为点F是CE的中点,所以f,所以DF=,所以DF=n1,所以DF∥n1,故DF⊥平面BCE.1.利用空间向量证明垂直的方法线线垂直证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示面面垂直证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示2.向量法证明空间垂直、平行关系时,是以计算为手段,寻求直线上的线段对应的向量和平面的基向量、法向量的关系,关键是建立空间直角坐标系(或找空间一组基底)及平面的法向量.如图,在四棱锥P ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz.设PA=AB=BC=1,则P(0,0,1).(1)因为∠ABC=60°,所以△ABC为正三角形,所以C,E.设D(0,y,0),由AC⊥CD,得AC·CD=0,即y=,则D,所以CD=.又AE=,所以AE·CD=-×+×=0,所以AE⊥CD,即AE⊥CD.(2)(方法一)由(1)知,D,P(0,0,1),所以PD=.又AE·PD=×+×(-1)=0,所以PD⊥AE,即PD⊥AE.因为AB=(1,0,0),所以PD·AB=0,所以PD⊥AB.又AB∩AE=A,AB,AE⊂平面AEB,所以PD⊥平面AEB.(方法二)由(1)知,AB=(1,0,0),AE=.设平面ABE的法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-)为平面ABE的一个法向量.因为PD=,显然PD=n.因为PD∥n,所以PD⊥平面ABE,即PD⊥平面ABE.考点3 利用空间向量解决探索性问题——应用性如图,在正方体ABCD A1B1C1D1中,E是棱DD1的中点.在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:在棱C1D1上存在一点F(C1D1的中点),使B1F∥平面A1BE.证明如下:依题意,建立如图所示的空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为1,则A1(0,0,1),B(1,0,0),B1(1,0,1),E,所以BA1=(-1,0,1),BE=.设n=(x,y,z)是平面A1BE的一个法向量,则由得所以x=z,y=z.取z=2,得n=(2,1,2).设棱C1D1上存在点F(t,1,1)(0≤t≤1)满足条件,又因为B1(1,0,1),所以B1F=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE⇔B1F·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为C1D1的中点.即说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.向量法解决与垂直、平行有关的探索性问题的思路在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.(1)求证:EF⊥CD;(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明:由题意知,DA,DC,DP两两垂直.如图所示,以DA,DC,DP所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AD=a,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),F,所以EF=,DC=(0,a,0).因为EF·DC=0,所以EF⊥DC,从而得EF⊥CD.(2)解:假设存在满足条件的点G,设G(x,0,z),则FG=.若使GF⊥平面PCB,则由FG·CB=·(a,0,0)=a=0,得x=.由FG·CP=·(0,-a,a)=+a=0,得z=0,所以点G坐标为,故存在满足条件的点G,且点G为AD的中点.。

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成 的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选 择一个合理的位置建立空间直角坐标系.
[易错防范] 1.利用向量求角,一定要注意将向量夹角转化为各空间 角.因为向量夹角与各空间角的定义、范围不同. 2.求二面角要根据图形确定所求角是锐角还是钝角.
答案:13
4.在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平 面 A1ED 与平面 ABCD 所成的锐二面角的余弦值为________.
解析:以 A 为原点建立如图所示的空间直角坐标系,设棱长 为 1,
则 A1(0,0,1),E1,0,12,D(0,1,0),
以 B 为原点,分别以
的方向为 x 轴、y 轴、z 轴的
正方向建立空间直角坐标系,则 A(0,0,2),B(0,0,0),E(2,0,0),
F(2,2,1).
因为 AB⊥平面 BEC,所以 =(0,0,2)为平面 BEC 的法向量. 设 n=(x,y,z)为平面 AEF 的法向量.
所以平面 AEF 与平面 BEC 所成锐二面角的余弦值为23.
A(0,- 3,0),E(1,0, 2),F-1,0, 22,C(0, 3,0),
所以直线
AE
与直线
CF
所成角的余弦值为
3 3.
[解题模板] 利用向量法求异面直线所成角的步骤
直三棱柱 ABC-A1B1C1 中,∠BCA=90°,M,N 分别是 A1B1,
A1C1 的中点,BC=CA=CC1,则 BM 与 AN 所成角的余弦值为( )
接 EG,FG,EF.在菱形 ABCD 中,不妨设 GB=1.
由∠ABC=120°,可得 AG=GC= 3.

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。

高考数学一轮复习第八章立体几何6空间向量及其运算课件新人教A版2

高考数学一轮复习第八章立体几何6空间向量及其运算课件新人教A版2
a1b1+a2b2+a3b3=0
12 + 22 + 32
1 1 + 2 2 + 3 3
12 + 22 + 32 · 12 +22 +32
-6知识梳理
双基自测
1
2
3
4
5
5.常用结论
(1)对空间任一点 O,若=x+y(x+y=1),则 P,A,B 三点共线.
是( A )
1
1
1
1
A.-2a+2b+c B.2a+2b+c
1
1
C.-2a-2b+c
1
1
D.2a-2b+c
-10知识梳理
双基自测
1
2
3
4
5
4.在空间直角坐标系O-xyz中,a=(x-2,2y,-2),b=(3x,2y,-3x),且
0
1
a·b=12,则m=x2+y2+2x的最小值是
,最大值是
.
-11知识梳理
1
+ 3 .
-18考点1
考点2
考点3
考点 2
共线定理、共面定理的应用
例2已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的
中点,用向量方法证明:
(1)E,F,G,H四点共面;
(2)BD∥平面EFGH.
思考共线定理、共面定理有哪些应用?
-19考点1
考点2
考点3
证明 (1)连接 BG,EG,则 = + =
解 = + =
2
2
+ 3

2019届高考数学人教A版理科第一轮复习课件:第八章+立体几何+8.7

2019届高考数学人教A版理科第一轮复习课件:第八章+立体几何+8.7

2.(教材习题改编P113T11)在正三棱柱ABC-A1B1C1中,AB=AA1,则 AC1与平面BB1C1C所成角的正弦值为 ( )
关闭
|������������1 · ������| 所以 AC 与平面 BB C C 所成角的正弦值为 1 1 1 C |������������1 ||������|
8 .7
立体几何中的向量方法
知识梳理
双基自测
1 2 3 4 5
1.直线的方向向量与平面的法向量 e共线 (1)直线l上的非零向量e以及与 的非零向量叫做直 线l的方向向量. (2)如果表示非零向量n的有向线段所在直线 垂直于 平面α, 那么称向量n垂直于平面α,记作 n⊥α .此时把 向量n 叫 做平面α的法向量.
∴ BC1 与AB1 的夹角即为直线 BC1 与直线 AB1 的夹角,
=
√3 √8
=
√6
关闭
4
.
解析
-9-
答案
知识梳理
双基自测
1 2 3 4 5
3.
关闭
不妨令 CB=1,则 CA=CC1=2. 已知直三棱柱 ABC-A ,如图所示,且 可得 O(0,0,0), B(0,0,1), C 1(0,2,0),A(2,0,0),B1(0,2,1), 1B1C 1在空间直角坐标系中 CA=CC 2CB,则直线BC1( 与直线 AB1夹角的余弦值为( ) 1= ∴ ������������ -2,2,1), 1 =(0,2,-1),������������1 =
如图所示,已知 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量, 则点 B 到平面 α 的距离为|������������|= |������| .
-6-

旧教材适用2023高考数学一轮总复习第八章立体几何第6讲空间向量及其运算课件

旧教材适用2023高考数学一轮总复习第八章立体几何第6讲空间向量及其运算课件
→ D.BD1
→→ → →→ → → → → 解析 BA+BC+DD1=CD+BC+DD1=BD+DD1=BD1.故选 D.
4.若直线 l 的方向向量为 a=(1,0,2),平面 α 的法向量为 n=(-2,0,-
4),则( )
A.l∥α
B.l⊥α
C.l⊂ α
D.l 与 α 相交但不垂直
答案 B
三点(P,A,B)共线
空间四点(M,P,A,B)共面
→→ PA=λPB且同过点 P
→→→ MP=xMA+yMB
→→ →
→→ → →
对空间任一点 O,OP=OA+tAB 对空间任一点 O,OP=OM+xMA+yMB
→→
→→→
对空间任一点 O,OP=xOA+(1 对空间任一点 O,OP=xOM+yOA+(1
角度
基向量法
例 4 已知平行六面体 ABCD-A1B1C1D1 中,底面 ABCD 是边长为 1 的 正方形,AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段 AC1 的长;
→ 解 (1) 如图所示,设AB=a,


AD=b,AA1=c,
则|a|=|b|=1,|c|=2.
a·b=0,
a·c=b·c=2×1×cos120°=-1.
(3)空间向量基本定理
如果三个向量 a,b,c 不共面,那么对空间任一向量 p,存在有序实数 组{x,y,z},使得 □03 p=xa+yb+zc .其中,{a,b,c}叫做空间的一
个 □04 基底

推论:设 O,A,B,C 是不共面的四点,则对空间任一点 P,都存在唯 一的三个有序实数 x,y,z,使O→P=□05 xO→A+yO→B+zO→C .

高中数学一轮复习 第八章 立体几何

高中数学一轮复习 第八章 立体几何

第八章 立体几何考点1 空间几何体的结构及其三视图与直观图1.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+185C.90D.812.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12 D.14.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π5.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.大于5 B.等于5 C.至多等于4 D.至多等于36.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3 C.323cm 3 D.403 cm 38.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱10.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )11.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②12.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.413.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.考点2 空间几何体的表面积和体积1.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6π D.32π32.(2016·全国Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π3.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+44.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 25.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π6.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π7.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π8.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.159.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169π C.4(2-1)3π D.12(2-1)3π10.(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.7211.(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 212.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B.16π C.9π D.27π413.(2014·安徽,7)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.1814.(2014·陕西,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3 B.4π C.2π D.4π315.(2014·湖北,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511316.(2014·新课标全国Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.1317.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.18.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.19.(2015·江苏,9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.20.(2014·江苏,8)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.考点3 点、线、面的位置关系1. (2016·全国Ⅰ,11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.132.(2015·安徽,5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(2014·辽宁,4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(2015·浙江,13)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.考点4 线面平行的判定与性质1.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.2.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.6.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.考点5 线面垂直的判定与性质1.(2016·浙江,2)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′CDB的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α3.(2014·广东,7)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定4.(2016·全国Ⅱ,14)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).5.(2016·全国Ⅰ,18)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥EFDC;(2)求二面角E-BC-A的余弦值.6.(2016·江苏,16)如图,在直三棱柱ABC-A 1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.7.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E =D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.8.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.9.(2014·新课标全国Ⅰ,19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.10.(2014·广东,18)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角DAFE的余弦值.11.(2014·辽宁,19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角EBFC的正弦值.12.(2014·江西,19)如图,四棱锥P-ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.13.(2014·湖南,19)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.考点6 空间向量与立体几何1.(2014·广东,5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)2.(2014·四川,8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,13.(2014·新课标全国Ⅱ,11)直三棱柱ABCA 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.224.(2014·江西,10)如图,在长方体ABCD-A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )5.(2015·四川,14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.6.(2016·全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上, AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.7.(2015·陕西,18)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.8.(2015·天津,17)如图,在四棱柱ABCD-A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点. (1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.9.(2015·安徽,19)如图所示,在多面体A1B1D1-DCBA,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角E-A1D-B1的余弦值.10.(2015·重庆,19)如图,三棱锥P ABC中,PC⊥平面ABC,PC=3,∠ACB=π2.D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角APDC的余弦值.11.(2015·北京,17)如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1) 求证:AO⊥BE;(2) 求二面角F AEB的余弦值;(3)若BE⊥平面AOC,求a的值.12.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角AEGM 的余弦值.13.(2015·江苏,22)如图,在四棱锥P ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.14.(2015·山东,17)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.15.(2014·陕西,17)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.16.(2014·天津,17)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC 的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F ABP的余弦值.17.(2014·四川,18)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值;。

2019届高考数学人教A版理科第一轮复习课件:第八章+立体几何+8.6

2019届高考数学人教A版理科第一轮复习课件:第八章+立体几何+8.6
其中真命题的个数是( ) 关闭 A.1 ,②中若 a,B.2 C.3 ,则 p=x D.4 ①正确 b 共线,p 与 a 不共线 a+yb 就不成立.③正
确.④中若 M,A,B 共线,点 P 不在此直线上,则������������=x������������+y������������ 不正 确
B
-3-
知识梳理
双基自测
1 2 3 4 5
3.两个向量的数量积 (1)两个向量的夹角 已知两个非零向量a,b,在空间任取一点O,作 ������������=a,������������=b, 则 ∠AOB叫做向量a,b的夹角,记作 <a,b> ,其范围 π 0 ≤ < a , b > ≤ π 互相垂直 是 ,若<a,b>= ,则向量a,b , 2 记作a⊥b. (2)两个向量的数量积 已知两个非零向量a,b,则 |a||b|cos<a,b> 叫做向量a,b的数量积, b ,即 a · 记作 a· b= |a||b|cos<a,b> .
-2-
知识梳理
双基自测
1 2 3 4 5
2.空间向量的有关定理 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R, 使a=λb. (2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面 ⇔存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任 一向量p,存在一个唯一的有序实数组{x,y,z}使得p=xa+yb+zc.其中 {a,b,c}叫做空间的一个基底.
)
关闭
(1)× (2)× (3)√ (4)× (5)×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节立体几何中的向量方法
A组基础题组
1.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.
2.(2018北京东城期中,17)在四棱锥P-ABCD中,PA⊥平面
ABCD,AB∥CD,AB⊥AD,PA=AB,AB∶AD∶CD=2∶∶1.
(1)证明BD⊥PC;
(2)求二面角A-PC-D的余弦值;
(3)设点Q为线段PD上一点,且直线AQ与平面PAC所成角的正弦值为,求的值.
B组提升题组
3.(2017北京东城二模,17)如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M为BC的中点.
(1)求证:FM∥平面BDE;
(2)求直线CF与平面BDE所成角的正弦值;
(3)在棱CF上是否存在点G,使得BG⊥DE?若存在,求的值;若不存在,说明理由.
4.(2017北京东城一模,17)如图,在三棱锥P-ABC中,平面PAB⊥平面
ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB的中点,E,F分别为PD,PC的中点.
(1)求证:AE⊥平面PCD;
(2)求二面角B-PA-C的余弦值;
(3)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求的值;若不存在,说明理由.
答案精解精析
A组基础题组
1.解析(1)证明:因为底面ABCD是菱形,所以AB∥CD.
又因为AB⊄平面PCD,CD⊂平面PCD,所以AB∥平面PCD.
又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,
所以AB∥EF.
(2)取AD的中点G,连接PG,GB.
因为PA=PD,所以PG⊥AD.
又因为平面PAD⊥平面ABCD,
且平面PAD∩平面ABCD=AD,
所以PG⊥平面ABCD.所以PG⊥GB.
在菱形ABCD中,因为AB=AD,
∠DAB=60°,G是AD中点,所以AD⊥GB.
如图,建立空间直角坐标系G-xyz,设PA=PD=AD=2a,
则A(a,0,0),B(0,a,0),C(-2a,a,0),D(-a,0,0),P(0,0,a). 又CD∥EF,点E是棱PC的中点,所以点F是棱PD的中点,
E,F.
所以=,
=.
设平面AFE的法向量为n=(x,y,z),
则有所以
令x=3,则平面AFE的一个法向量为n=(3,,3).
易知BG⊥平面PAD,所以=(0,a,0)是平面PAF的一个法向量.
因为cos<n,>===,
所以平面PAF与平面AFE所成的锐二面角的余弦值为.
2.解析以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系A-xyz.
设AB=2,则有B(2,0,0),D(0,,0),P(0,0,2),C(1,,0),A(0,0,0).
(1)证明:=(-2,,0),=(1,,-2),
∵·=0,∴BD⊥PC.
(2)=(1,,0),=(0,0,2),
设平面PAC的法向量为m=(x1,y1,z1),则即令x1=,得y1=-1,所以平面PAC 的一个法向量为m=(,-1,0).
=(0,-,2),=(1,,-2),设平面DPC的法向量n=(x2,y2,z2),则即
令y2=-,得z2=-1,x2=0,所以平面DPC的一个法向量为n=(0,-,-1).
cos<m,n>==,
∴二面角A-PC-D的余弦值为.
(3)设=t,t∈[0,1],∴=+=+t,∴=(0,0,2)+t(0,,-2)=(0,t,2-2t),设θ为直线AQ与平面PAC所成的角,则sin θ=|cos <,m>|==,
=⇒3t2=6t2-8t+4,解得t=2(舍)或.所以=t=.
B组提升题组
3.解析(1)证明:如图,取CD的中点N,连接MN、FN.
因为N,M分别为CD,BC的中点,
所以MN∥BD.
又BD⊂平面BDE且MN不在平面BDE内,
所以MN∥平面BDE,
因为四边形ABCD为菱形,所以AB∥CD,
又因为EF∥AB,AB=2EF,
所以EF∥CD,EF=DN.
所以四边形EFND为平行四边形.
所以FN∥ED.
又ED⊂平面BDE且FN不在平面BDE内,
所以FN∥平面BDE,
又N为FN和MN的交点,
所以平面MFN∥平面BDE.
又FM⊂平面MFN,
所以FM∥平面BDE.
(2)如图,取AD的中点O,连接EO,BO.
因为EA=ED,所以EO⊥AD.
因为平面ADE⊥平面ABCD,
所以EO⊥平面ABCD,EO⊥BO.
因为AD=AB,∠DAB=60°,
所以三角形ADB为等边三角形.
因为O为AD的中点,
所以AD⊥BO.
EO,BO,AO两两垂直,以O为原点,OA,OB,OE所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.
设AB=4,则A(2,0,0),B(0,2,0),C(-4,2,0),D(-2,0,0),E(0,0,2),F(-1,,2),所以=(3,-,2),=(2,0,2),=(0,-2,2).
设平面BDE的法向量为n=(x,y,z),
则即
令z=1,则y=1,x=-.
所以n=(-,1,1).
设直线CF与平面BDE所成角为α,
则sin α=|cos<,n>|=,
所以直线CF与平面BDE所成角的正弦值为.
(3)存在.设G是CF上一点,且=λ,λ∈[0,1],
因此点G(3λ-4,-λ+2,2λ),
=(3λ-4,-λ,2λ).
由·=0,解得λ=.
所以在棱CF上存在点G,使得BG⊥DE,
此时=.
4.解析(1)证明:在Rt△ABC中,因为∠ABC=45°,D为AB的中点,所以CD⊥AB.又因为平面PAB⊥平面ABC,且平面PAB∩平面ABC=AB,
所以CD⊥平面PAB.
因为AE⊂平面PAB,
所以CD⊥AE.
因为AP⊥BP,D为AB的中点,
所以DP=AD,又∠PAB=60°,
所以△PAD为等边三角形,
又E为PD的中点,
所以AE⊥PD.
因为PD∩CD=D,
所以AE⊥平面PCD.
(2)在△PAB中,取AD的中点O,
连接PO,所以PO⊥AB.
在平面ABC中,过O作CD的平行线,交AC于G.
因为平面PAB⊥平面ABC,
所以PO⊥平面ABC,
所以PO⊥OG,
所以OG,OB,OP相互垂直,
如图,建立空间直角坐标系O-xyz.
设AB=4a,则A(0,-a,0),B(0,3a,0),C(2a,a,0),P(0,0,a),D(0,a,0),所以=(2a,2a,0),=(0,-a,-a).
设平面PAC的法向量n=(x,y,z),
则即
令z=1,则y=-,x=.
所以n=(,-,1).
平面PAB的法向量=(2a,0,0),
设n与的夹角为α,
则cos α==,
所以二面角B-PA-C的余弦值为.
(3)设M是棱PB上一点,则存在λ∈[0,1],使得=λ. 则M(0,3aλ,a(1-λ)),=(-2a,a(3λ-1),a(1-λ)).由(1)知CD⊥平面PAB,PD⊂平面PAB,
所以CD⊥PD.
因为EF∥CD,所以EF⊥PD.
又AE⊥PD,AE∩EF=E,
所以PD⊥平面AEF.
所以为平面AEF的法向量.
因为平面AEF的法向量=(0,a,-a),
所以·=0,
即a·a(3λ-1)-a·a(1-λ)=0,
解得λ=.
所以在棱PB上存在点M,使得CM∥平面AEF,
此时=.。

相关文档
最新文档