自动控制原理第2章

合集下载

自动控制原理第2章

自动控制原理第2章
自动控制理论
电气信息学院
任课教师: 高秀梅
1
第二章 控制系统的数学模型
§2-1 微分方程 §2-2 传递函数 §2-3 动态结构图 §2-4 信号流图 §2-5 梅逊(Mason)公式 §2-6 自动控制系统的传递函数
2
一、什么是数学模型? 二、为什么要建立数学模型? 三、建立数学模型的方法? 四、数学模型的形式有哪些?
2) . 比例定理: f (t ) Kf1 (t ), L[ f1 (t )] F1 (s) 若 则 st
0
L[ f (t )] Kf1 (t )e dt KF1 ( s)
1)和2)为拉氏变换的线性特性。 3). 微分定理: 若 L df (t ) df (t ) e at dt sF (s) f (0 ) dt dt 0 则
1、系统输入量: F(t) 输出量: y(t) 2、列写方程组:
F(t)
k m f y(t)
11
§2-1 微分方程
3、消去中间变量并写成标准形式:
m d y (t ) f dy ( t ) 1 y (t ) F (t ) 2 k k dt k dt
令T
2 2
2
m f 1 , , K k k 2 mk

T
d y (t ) dt 2
dy ( t ) 2 T y ( t ) KF ( t ) dt
12
§2-1 微分方程
例3 求下图的微分方程
i1
i1
i
i2
13
§2-1 微分方程 二、线性微分方程式的求解
工程实践中常采用拉氏变换法求解线 性常微分方程。 拉氏变换法求解微分方程的基本思路:

自动控制原理第二章复习总结(第二版)

自动控制原理第二章复习总结(第二版)

⾃动控制原理第⼆章复习总结(第⼆版)第⼆章过程装备控制基础本章内容:简单过程控制系统的设计复杂控制系统的结构、特点及应⽤。

第⼀节被控对象的特性⼀、被控对象的数学描述(⼀)单容液位对象1.有⾃衡特性的单容对象2.⽆⾃衡特性的单容对象(⼆)双容液位对象1.典型结构:双容⽔槽如图2-5所⽰。

图2-5 双容液位对象图2-6 ⼆阶对象特性曲线2.平衡关系:⽔槽1的动态平衡关系为:3.⼆阶被控对象:1222122221)(Q K h dt dh T T dt h d T T ?=+++式(2-18)就是描述图2-5所⽰双容⽔槽被控对象的⼆阶微分⽅程式。

称⼆阶被控对象。

⼆、被控对象的特性参数(⼀)放⼤系数K(⼜称静态增益)(⼆)时间常数T(三)滞后时间τ(1).传递滞后τ0(或纯滞后):(2).容量滞后τc可知τ=τ0+τc。

三、对象特性的实验测定对象特性的求取⽅法通常有两种:1.数学⽅法2.实验测定法(⼀)响应曲线法:(⼆)脉冲响应法第⼆节单回路控制系统定义:(⼜称简单控制系统),是指由⼀个被控对象、⼀个检测元件及变送器、⼀个调节器和⼀个执⾏器所构成的闭合系统。

⼀、单回路控制系统的设计设计步骤:1.了解被控对象2.了解被控对象的动静态特性及⼯艺过程、设备等3.确定控制⽅案4.整定调节器的参数(⼀)被控变量的选择(⼆)操纵变量的选择(三)检测变送环节的影响(四)执⾏器的影响⼆、调节器的调节规律1.概念调节器的输出信号随输⼊信号变化的规律。

2.类型位式、⽐例、积分、微分。

(⼀)位式调节规律1.双位调节2.具有中间区的双位调节3.其他三位或更多位的调节。

(⼆)⽐例调节规律(P )1.⽐例放⼤倍数(K )2.⽐例度δ3.⽐例度对过渡过程的影响(如图2-24所⽰)4.调节作⽤⽐例调节能较为迅速地克服⼲扰的影响,使系统很快地稳定下来。

通常适⽤于⼲扰少扰动幅度⼩、符合变化不⼤、滞后较⼩或者控制精度要求不⾼的场合。

(三)⽐例积分调节规律(PI )1.积分调节规律(I )(1)概念:调节器输出信号的变化量与输⼊偏差的积分成正⽐==?t I t I dt t e T dt t e K t u 00)(1)()(式中:K I 为积分速度,T I 为积分时间。

自动控制原理第二章梅森公式-信号流图课件

自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。

02 自动控制原理—第二章

02 自动控制原理—第二章
Tm J
Tm
d dt
K u u a K m (Ta
dM c dt
Mc)
电感La较小,故电磁时间常数Ta可以忽略 ,则
Tm
d dt
K uua K m M c
如果取电动机的转角 (rad)作为输出,电枢电压ua (V),考 虑到 d ,可将上式改写成
2.举例 ①一个自变量:励磁电流成正 比,但if增加到某个范围后,磁路饱和,发电机的电势与励磁电流呈 现一种连续变化的非线性函数关系。 设:x—励磁电流, y—发电机的输出电势。 y=f(x)
设原运行于某平衡点(静态工作点) A点:x=x0 , y=y0 ,且y0=f(x0) B点:当x变化△ x, y=y0+△ y 函数在(x0 , y0 )点连续可微,在A 点展开成泰勒级数,即
y k x
df ( x ) k dx x x0
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f y f ( x10 , x 20 ) ( x1 x10 ) ( x 2 x 20 ) ( x1 x10 ) 2 ( x1 x10 )( x 2 x 20 ) ( x 2 x 20 ) 2 2 2 x 2! x x 2 x1x 2 x 2 1 1
例2-2
解 设回路电流i1和i2为中间变量。根据基尔霍夫电压定律对前一回 路,有
u i R1i1
对后一回路,有
1 C1
(i
1
i 2 ) dt
1 C2

自动控制原理_第二章

自动控制原理_第二章

Gk ( s) G ( s) H ( s)
B( s) G1 ( s)G2 ( s) H ( s) E ( s)
注意:这里的开环传递函数是针对闭环系统而言的,而不是指开环系 统的传递函数。
解:首先对小车进行受力分析,在水平方向应 用牛顿第二定律可写出:
dy(t ) d 2 y (t ) F (t ) f Ky (t ) m dt dt 2

2
T
m f , 可得 K 2 mK
图2 弹簧-质量-阻尼器系统图
d 2 y( t ) dy(t ) F (t ) T 2 T y ( t ) dt 2 dt K
用解析法列写系统或元部件微分方程的一般步骤是:
(1)根据系统的具体工作情况,确定系统或元部件的输
入、输出变量;
(2)从输入端开始,按照信号的传递顺序,依据各变量 所遵循的物理(或化学)定律,列写出各元部件的动态方程, 一般为微分方程组; (3)消去中间变量,写出输入、输出变量的微分方程; (4)将微分方程标准化。即将与输入有关的各项放在等 号右侧,与输出有关的各项放在等号左侧,并按降幂排列。
以工作点处的切线代替曲线,得到变量在工作点的增量方程, 经上述处理后,输出与输入之间就成为线性关系。
二、复频域模型 – 传递函数
(1)利用时域卷积获得:
如果已知系统单位脉冲响应为g(t),则任意输入r(t)的响应输出c(t):
c( t )


r ( ) g(t )d
c(t ) r ( ) g(t )d
0 t
考虑到物理可实现性,上式改为: 对上式做拉氏变换得:
C ( s) R( s)G( s) G( s)
C ( s) R( s )

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)

自动控制原理第二章2-2

自动控制原理第二章2-2

Uc(s)
超前校正装置
4
“由内而外”化简
R(s)
-
-
G1 H1
G2
H4
G3 H2 H3
G4
C(s)
思考:是否能用基本等效法则进行简化? H3 R(s) C(s) G1 G2 G3 G4 -
-
H1 H4
“支路交错”
H2
5
H2(s)
R(s) G1(s) G2(s) G3(s) G4(s) C(s)
H3(s)
E ( s) 1 Ger ( s ) = = R( s ) 1 + G1 ( s )G2 ( s ) H ( s)
- G2 ( s ) H ( s ) E( s) Gen ( s ) = = N ( s ) 1+ G1 ( s )G2 ( s ) H ( s )
24
第二章
d = s dt
小结
微分方程
干扰信号下的闭环传递函数 【令R(s)=0】
G2 ( s ) C ( s) GBN ( s ) = = N ( s ) 1 + G1 ( s )G2 ( s ) H ( s )
22
N(s) R(s) E(s)
G1(s) H(s)
C(s)
N
G2(s)
R
1
1 E
G1
1
G2
1
C
-H
二、系统误差传递函数
G2(s)
1
R 1
G1
G2
1
C
-H
E
一、系统开环传递函数
GK ( s) = G1( s)G2 ( s) H ( s)
21
N(s) R(s) E(s)
N C(s) 1 R 1

自动控制原理第2章

自动控制原理第2章

略去高次项,
yy0 dfd(IT
第2章第20页
② 两个自变量
y=f(r1, r2)
静态工作点: y0=f(r10, r20)
在y0=f(r10, r20) 附近展开成泰勒级数,即
y
f
(r10,r20)rf1
(r1
r10)rf2
(r2
r20)
EXIT
第2章第14页
2.1.3 机电系统
图示为一他激直流电动机。 +
图中,ω为电动机角速度
( rad/s ) , Mc 为 折 算 到 电 ua 动机轴上的总负载力矩 _
( N·m ) , ua 为 电 枢 电 压 + (V)。设激磁电流恒定,
并忽略电枢反应。
_
ia La
ea Ra
Mc
负载
取得u: a为给定输入量, ω为输出量,Mc为扰动量,忽略电枢电感,
• 传递函数是在拉氏变换基础之上引入的描述线性定常系统或 元件输入、输出关系的函数。它是和微分方程一一对应的一 种数学模型,它能方便地分析系统或元件结构参数对系统响 应的影响。
EXIT
第2章第26页
1. 定义 零初始条件下,线性定常系统输出量的拉氏变
换与输入量的拉氏变换之比,称为该系统的传递函 数,记为G(s),即:
例 一个由弹簧-质量-阻尼器组成 的机械平移系统如图所示。m为物 体质量,k为弹簧系数,f 为粘性 阻尼系数,外力F(t)为输入量,位 移x(t)为输出量。列写系统的运动 方程。
F
k
m x
EXIT
第2章第10页
解 在物体受外力F的作用下,质量m相对于初始状态的位移、速 度、加速度分别为x、dx/dt、d2x/dt2 。设外作用力F为输入量,位 移 x 为输出量。根据弹簧、质量、阻尼器上力与位移、速度的关 系和牛顿第二定律,可列出作用在上的力和加速度之间的关系为

自动控制原理第2章

自动控制原理第2章
传递函数是在拉氏变换基础上的复域中的数学模型。
※传递函数不仅可以表征系统的动态特性,而且可以
用来研究系统的结构或参数变化对系统性能的影响。
微分方程 t (时域)
L
L
1
F
F 1
系统
传递函数
s j
j
频率特性
s
(复域)

s
(频域)
2.3.1拉氏变换相关知识
2.3.2传递函数的定义
线性定常系统在零初始条件下,输出量的拉氏变换
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f 2 ( x1 x10 ) 2 y f ( x10 , x20 ) ( x1 x10 ) ( x2 x20 ) ( x1 x10 )(x2 x20 ) 2 ( x2 x20 ) 2 x 2! x x2 x1x2 x2 1 1
例2.5试建立如图2.4所示系 统的微分方程。
R1
解:根据克希霍夫电压定律, 可写出下列方程组
u1
R2
ur
i1
C1 图2.4
i2
C2
uc
1 ur R1i1 C (i1 i2 )dt 1 1 1 (i1 i2 )dt R2i2 i2 dt C2 C1 1 uc i2 dt C2
用台劳级数展开为
df ( x) 1 d 2 f ( x) y f ( x) f ( x0 ) ( ) x 0 ( x x0 ) ( ) x 0 ( x x0 ) 2 ... dx 2! dx 2

自动控制原理-胡寿松-第二章

自动控制原理-胡寿松-第二章

G(s)

C(s) R(s)b0 s m a Nhomakorabea s n
b1sm1 a1sn1

bm1s bm an1s an

bm
(1s

1)(
2 2
s
2
222s 1)
式中, i
an (T1s 1)(T22s2 22T2s
、T j 称为时间常数;
1)
(is 1)
(2) t≥0 时 f(t)是分段连续的
(3) ∫ ∞ f(t)e -st dt <∞
0
f(t)的拉氏变换为:
F(s)=∫
∞ 0
f(t)e-stdt
记作 F(s)=L[f(t)]
拉氏反变换为:
f(t)=L-1 [F(s)]
第一节控制系统的时域数学模型
2.常用函数的拉氏变换
(3()1(6))单单指位位数斜阶函坡数跃函函数e-数att I(t)
(Tjs 1)
m
K bm
K*
(zi )
i
为传递系数或增益。
an
n
( p j )
j 1
第二节控制系统的复数域数学模型
三、 典型环节的传递函数
不同的物理系统,其结构差别很大。但若 从系统的数学模型来看,一般可将自动控制系 统的数学模型看作由若干个典型环节所组成。 研究和掌握这些典型环节的特性将有助于对系 统性能的了解。
第二节控制系统的复数域数学模型
1.比例环节
放大倍数
微分拉氏方反程变: 换得c(:t)=Kr(t) c(取t)=拉K氏变换:
单位阶跃响应曲线
得传递函数: Gcr(((tts)))
K

自动控制原理第2章 习题及解析

自动控制原理第2章 习题及解析

第二章 习题解析2-4 当系统处于零初始条件下时,给系统输入单位阶跃响应信号,其输出响应为2()1t t y t e e --=-+试求该系统的传递函数。

参考解答:2111421()()21(2)(1)s s Y s R s s s s s s s s++=-+==++++ 22()42()()32Y s s s G s R s s s ++==++2-5 某可控硅整流器的输出电压d 2cos U KU αΦ=式中,K 为常数;2U Φ为整流变压器副边相电压有效值;α为可控硅的控制角。

设α在0α附近作微小变化,试将d U 与α的关系式线性化。

参考解答:将非线性微分方程d 2cos U KU αΦ=进行线性化,即在平衡点α0 附近将其展为泰勒级数取一次近似,线性化后用变量增量的线性方程ΔU d = C Δα 代替原来的非线性方程,式中常数2020sin sin dd dU C KU U KU d ααααααΦΦ===-→∆=-∆略去增加量符号“Δ”,上式可简写为20sin d U KU ααΦ=- 2-6 试求图2-70所示电路的传递函数()/()y r U s U s 。

参考解答:图 a)可作出该无源电路的动态结构图(图a-1)亦可作成图(图a-2)所示由结构图等效变换可求得传递函数212()11()()11c r U s R Cs bTs U s R R Cs Ts ++==+++式中21212(),1R T R R C b R R =+=<+ ,该网络称为滞后网络。

图 b)由图(b )网络可作出其动态结构图(b-1),简化为(b-2)即可得传递函数:112221122112212()(1)(1)()()1y r U s R C s R C s U s R C R C s R C R C R C s ++=++++该网络称为滞后-超前网络(滞后-超前电路)。

2-7 试求图2-71所示有源电路的传递函数y r ()/()U s U s 。

自动控制原理(第二版)(赵四化)章 (2)

自动控制原理(第二版)(赵四化)章 (2)

第2章 控制系统的数学模型 图2-3 直流电动机系统
第2章 控制系统的数学模型
(2) 建立输入、 输出量的动态联系。
在他励直流电动机系统中有机械运动及电磁 运动, 二者之间还存在耦合。 根据几种关系建立的输 入、 输出量的动态联系为
机械运动:
J d f M
dt
(2-7)
电磁运动:
u
Ea
La
dIa dt
图中, A点为工作点, y0=f(x0)。 x、 y在 工作点附近做小范围增量变化, 即当x=x0+Δx 时, 有 y=y0+Δy。 则函数y=f(x)在工作点附近可以展开成泰勒 级数:
y
f
(x0 )
f
(x0)x
1 2!
f
(x0 )x2
(2-13)
第2章 控制系统的数学模型
当Δx很小时, 可以忽略上式的高次项 , 则式(2-13)可以改写为
Ra Ia
(2-8)
第2章 控制系统的数学模型
机电之间的耦合关系:
Ea=CeΩ
(2-9)
M=CmIa
(2-10)
其中, Ce为电动机电势常数; Cm为电动机力矩常数。
第2章 控制系统的数学模型
(3) 消去中间变量, 得到系统的数学模型。 消去中间变量Ea、 Ia和M, 得
La CeCm
d 2
dt2
第2章 控制系统的数学模型
G(s) Uo(s) 1 Ui (s) Ts 1
(2-23)
这一关系可以用图2-6所示的方框图表示, 输入信号经过G(s)动态传递到输出, 故称G(s)为RC电路 的传递函数。
第2章 控制系统的数学模型 图2-6 RC电路方框图

自动控制原理(王万良)第二章

自动控制原理(王万良)第二章

18
考察单位脉冲输入信号下系统的输出
单位脉冲输入信号的拉氏变换为1
U (s) = L{δ (t)} = 1
U(s) 系统G(s) Y(s)
单位脉冲输入信号下系统的输出的拉氏变换为
Y(s) = G(s)
1 系统G(s) Y(s)
单位脉冲输入信号下系统的输出为
g(t) = L−1{Y(s)} = L−1{G(s)} δ(t)
2
2.1 系统数学模型的概念
自控理论方法是先将系统抽象完数学模型,然后用数学的方法处理。 控制系统的数学模型是描述系统内部各物理量(或变量) 之间关系的数学表达式或图形表达式或数字表达式。
F(t)
m
f
X(t)
d 2 X (t) m
+
f
dX (t)
+ kX (t)
=
F (t)
dt 2
dt
+ ur(t) -
相应的传递函数为: G (s) = C (s) = 3s 2 + 5s + 1 R(s) s3 + s2 + 4s
练习2
已知某系统传递函数为:
G(s) = C(s) = 3s2 + 2s +1 R(s) s3 + 4s +1
相应的微分方程为: c (t) + 4c(t) + c(t) = 3r(t) + 2r(t) + r(t)
惯性环节: 从输入开始时刻就已有输出,仅由于惯性,输出要经过一段
时间之后才接近所要求的输出值;
延迟环节: 从输入开始后在0-τ时间内没有输出,在t =τ之后,才有输出。
r(t) c(t)

24

自动控制原理第二章

自动控制原理第二章

1 ui (t ) 1(t ), U i ( s) s Ui 0.1s 0.2 1 1 u0 (t ) L [U 0 ( s )] L [ 2 2 ] s s 1 s s 1 1 0.1s 0.2 1 L [ 2 ] 2 s ( s s 1) s s 1
m=10, f=1, k=1
m=10, f=1, k=5
输入: Fi 1(t )
m=10, f=1, k=1
m=10, f=1, k=5
相似系统
RLC无源网络和弹簧-质量-阻尼器机械系 统的数学模型均是二阶微分方程,为相似 系统。 相似系统便于用一个简单系统去研究与其 相似的复杂系统,也便于控制系统的计算 机数字仿真。
化的过程。
4、线性系统的基本特性 叠加性:系统在几个输入信号同时作用 下的总响应,等于这几个输入信号单独 作用的响应之和。
如果元件输入为: r1(t)、r2(t)、r(t) ,
对应的输出为: c1(t)、c2(t)、c(t) 。
如果 r(t)=r1(t)+r2(t) 时, c(t)=c1(t)+c2(t) 满足叠加性。

满足齐次性。
满足叠加性和齐次性的元件才是线性元件
例如 y=kx 是线性元件
输入 x1 输出 y1=kx1 x2 输入x1 +x2 C为常数, Cx1 y2=kx2 y1 + y2 满足迭加性 Cy1 满足齐次性
所表示的元件 为线性元件
线性方程不一定满足迭加性和齐次性
y=kx+b(b为常数 0)线性方程,所表示的元件不是 线性元件 . 输入 x1y1 输出 y1= kx1+b x2 y2 y2 =kx2+b 输入 x1 + x2 输出 y=k(x1 + x2)+b =k x1 +kx2+b y1 +y2 不满足迭加性 k为常数 :kx1输出y=k(kx1)+b=k2x1+b ky1=k(kx1+b)= k2x1+kb yky1 不满足齐次方程。 所表示的元件不是线性元件。

《自动控制原理》第二章传递函数

《自动控制原理》第二章传递函数

输出信号的拉氏变换 传递函数 = 输入信号的拉氏变换 零初始条件
C ( s) G(s) = R( s)
autocumt@ 1 中国矿业大学信电学院
一、 传递函数的定义和主要性质
设线性定常系统由下述n阶线性常微分方程描述: 设线性定常系统由下述n阶线性常微分方程描述:
dn d n −1 d a 0 n c (t ) + a1 n −1 c (t ) + ⋅ ⋅ ⋅ + a n −1 c (t ) + a n c (t ) dt dt dt d m −1 d dm = b0 m r (t ) + b1 m −1 r (t ) + ⋅ ⋅ ⋅ + bm −1 r (t ) + bm r (t ) dt dt dt
autocumt@
15
中国矿业大学信电学院
自动控制原理
4、振荡环节
特点:包含两个独立的储能元件,当输入量发生变化时,两个 包含两个独立的储能元件,当输入量发生变化时, 包含两个独立的储能元件 储能元件的能量进行交换,使输出带有振荡的性质。 储能元件的能量进行交换,使输出带有振荡的性质。
z1 n 2 (t) = n1 (t) z2
G(s) = N 2 (s) z1 = =K N1 (s) z 2
传递函数: 传递函数:
autocumt@
9
中国矿业大学信电学院
其它一些比例环节
自动控制原理
R2 R1
r (t )
Ec
R
c (t )
ic (t )
r1
r2
r (t )
c(t )
C
例:积分电路 积分电路
i1 (t )
R1

自动控制原理-第二章全

自动控制原理-第二章全

其中: fs (t) Kx(t)
弹簧力
fd (t)
阻尼力
B
dx(t dt
)
m
K
B
所以有:
m
d 2 x(t) dt 2
B
dx(t) dt
Kx(t)
f
(t)
特点:f (t) 为作用于各部件的诸力之和,而每一个部件变化
了相同的位移x(t) 。
第二章 自动控制系统的数学模型
2.1 元件和系统微分方程的建立
A1(0.5 j0.866) A2 (0.5 j0.866)
使等号两端的实部和虚部分别相等有 解之得 A1 1, A2 0
0.5.866
所以
F (s)
1 s
s2
s s 1
1 s
(s
s 0.5 0.5)2 (0.866 )2
(4)对部分分式进行拉式反变换,即得微分方程 的解。
第二章 自动控制系统的数学模型
2.2 用拉普拉斯变换方法解微分方程
例:已知
d 2 xc dt 2
5 dxc dt
6xc
6u(t)
u(t) 1(t)
设初始条件为 xc (0) 2, xc (0) 2 求输出量 xc (t)
解: 将微分方程取拉氏变换
(s
0.5 0.5)2 (0.866 )2
所以 f (t) 1 e0.5t cos 0.866 t 0.57e0.5t sin 0.866 t
第二章 自动控制系统的数学模型
2.2 用拉普拉斯变换方法解微分方程
例:已知
F (s)
s2 s2
9s 33 6s 34
求 f (t) L1 F (s)
F (s) M (s) A1 A2 An

自动控制原理第二章

自动控制原理第二章

解 根据系统的物理特性,可写出以下微 分方程
ui (t ) − uc (t ) = uo (t ) duc (t ) uc (t ) + i (t ) = C dt R1 uc (t ) = R2i (t )
进而可得
U i ( s) − U c ( s) = U o (s) R1Cs + 1 U c ( s) I (s) = R1 U o ( s ) = R2 I ( s )
2.2传递函数 传递函数
引言: 引言:传递函数是在拉氏变换基础上引 申出来的复数域数学模型。传递函数不 仅可以表征系统的动态特性,而且可以 用来研究系统的结构或参数变化对系统 性能的影响。经典控制理论中广泛应用 的根轨迹法和频域法,就是以传递函数 为基础建立起来的。因此,传递函数是 经典控制理论中最基本也是最重要的数 学模型。
传递函数的零点和极点 零点:传递函数中分子多项式为零的值称为传 递函数的零点,通常用Zi 表示,在复平面坐标 中用“0”表示。 极点:传递函数中分母多项式为零的值,称为 传递函数的极点,通常用Pj表示,在复平面坐 标中用“X”表示。
零、极点可以是实数、复数(若为复数则 共轭成对出现),在复平面上总能找到 相对应的一点,故系统的传递函数与复 平面有相应的对应关系。因此在传递函 数分子多项式和分母多项式互质时,传 递函数的零、极点分布图也表征了系统 的动态性能。
(2-2)
传递函数是在零初始条件下定义的。零 初始条件有两方面含义:一是指输入是 在 t = 0 以后才作用于系统,因此,系统 输入量及其各阶导数在 t ≤ 0 时均为零; 二是指输入作用于系统之前,系统是 “相对静止”的,即系统输出量及各阶 t≤0 导数在 时的值也为零。

《自动控制原理》第2章自动控制系统的数学模型

《自动控制原理》第2章自动控制系统的数学模型

dt
t 0
[
d
nf dt
(t
n
)
]
snF(s)
sn1
f
(0)
sn2
f
(1) (0)...
f
(n1) (0)
定理4 积分定理
2021年2月
t
[
f ( )d ] F (s)
0
s
自动控制原理
定理6 初值定理
设F(s)为f(t)的拉氏变换,且
lim
s
sF
(s)
存在
lim f (t) lim sF(s)
实验求取
2021年2月
自动控制原理
例2-1试列写图2-1所示电路
输入量 u r (t) 与输出量 u c (t) 的微分方程。
1. 确定输入、输出量 2. 列写与输入、输出有
关的微分方程
L
di(t) dt
Ri(t)
u
c
(t)
u
r
(t)
i(t) C du c (t)
dt
3. 消去中间变量
LC
d
2u c (t) dt 2
G(s) Ks1 Ks2 ... Ksn
s s1 s s2
s sn

Ks1 [(s
….
si )G(s)]ss1
(s2
Q( s1 ) s1)(s3 s1)...(sn
s1)
2021年2月
自动控制原理
例:已知函数
1 设因式展开为 G(s) s(s 1)3 (s 2)
G(s) K1 K2 K3 K4 K5 s s 2 s 1 (s 1)2 (s 1)3
u(c’t)
+

自动控制原理(王万良)第二章

自动控制原理(王万良)第二章
惯性环节: 从输入开始时刻就已有输出,仅由于惯性,输出要经过一段
时间之后才接近所要求的输出值;
延迟环节: 从输入开始后在0-τ时间内没有输出,在t =τ之后,才有输出。
r(t) c(t)

24
2.4 结构图
2.4.1 结构图的基本组成 控制系统的结构图是系统数学模型的图解形式; 结构图可以形象直观地描述系统中各元件间的相互
2
2.1 系统数学模型的概念
自控理论方法是先将系统抽象完数学模型,然后用数学的方法处理。 控制系统的数学模型是描述系统内部各物理量(或变量) 之间关系的数学表达式或图形表达式或数字表达式。
F(t)
m
f
X(t)
d 2 X (t) m
+
f
dX (t)
+ kX (t)
=
F (t)
dt 2
dt
+ ur(t) -
ห้องสมุดไป่ตู้
±
Q(s)
1/G (s)
C(s) = [R(s) ± Q(s) ]G(s) G(s)
30
◆ 比较点后移:
R(s)
±
C(s) G (s)
Q(s) C (s) = [R(s) ± Q(s)]G(s)
R(s) G (s)
Q(s) G (s)
C(s)
±
C (s) = R(s)G (s) ± Q(s)G (s)
G1(s)
U1
+
C(s)
+
G2(s) U2
思考:多个环节并联?
? R(s)
C(s) G1(s)+G2(s)
结论:并联的总传递函数等于各个方框传递函数的代数和。
27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立系统数学模型的方法
实验法 解析法
第一节 动态微分方程的编写
用解析法建立系统微分方程的一般步骤 根据基本的物理定律,列写出系统中一个元件的输入与 输出的微分方程式 确定系统的输入量与输出量,消去其余的中间变量,求 得系统输出与输入的微分方程式
例2-1求Uc与Ur的微分方程式 解:由基尔霍夫定律得
y
f x
f
x0


df dx
1 d2f
xx0 x x0 2! dx2
xx0 x x0 2
由于增量Δx x x0较小,故可略去式中的(x x0)2项及 其后面的所有的高阶项,于是得线性化方程
或写为
y y0 Kx x0
y Kx
式中y f x0 ,
K df dx
, x x0
y y y0, x x x0
举例
上节在推导直流他励发电动机的微分方程式时,曾假设其磁化曲线为 直线,实际上发电机的磁化曲线如图2-10所示。
设发电机原工作于磁化曲线的A点,若发电机的励磁电压增加△U1, 求其增量电势△EG的变化规律。
第二章 控制系统的数学模型
2.1列写系统微分方程 2.2非线性数学模型的线性化 2.3 传递函数 2.4 对控制系统的基本要求 2.5 信号流程图 2.6 脉冲响应函数
描述系统运动的数学模型 输入-输出描述
微分方程是这种描述的最基本形式。传递函数、 方框图等其它模型均由它而导出
状态变量描述 状态方程是这种描述的最基本形式
1
1
C2 i2dt i2 R2 C1 (i1 i2 )dt
1
C2 i2dt uc
消去中间变量i1 、 i2 得
i1
图2-2 R-C滤波网络
R1R2C1C2
d 2uc dt 2

R1C1 R2C2 R1C2
duc dt

uc

ur
或写作
T1T2
d 2uc dt 2
称为电动机的电气时间常数
当TL 0时,电动机空载运行至稳态时,
式2 8便蜕化为n0

1 Ce
EG
(n0为电动机的空载转速)
( 2 - 9)
测速发电机
输入量是电动机的转速n,输出量是测速发电 机的电压Ufn ,假设测速发电机的磁场恒定不
变,则Ufn与n成线性关系即有 ufn an ,
TL

GD2 375
dn dt
Te Cuia
消去上述方程中的中间变量Te和ia, 求得
m a
d 2n dt 2
m
dn dt
n1 CeEG Nhomakorabea
R CeCu

TL
a
dTL dt

( 2 - 8)
式中, m

GD2 375
R Cu
称为电动机的机电时间常数;
a
L R
Ug

R CeCu
τGτa
d 2TL dt 2

τa TG
dTL dt

TL

(2-12)
式中, K K1K 2 , R R G R m
第二节 非线性数学模型的线性化
非线性数学模型线性化的假设
变量对于平衡工作点的偏离较 非线性函数不仅连续,而且其多阶导数均存在
图2-3 弹簧-质量阻尼器系统
式中,f——为阻尼第数;k——为弹簧的弹性系数。
k y(t)——弹性拉力
dy f
——阻尼器阻力
dt
例2-4. 试写出图2-4所示直流调速系统的微分方程式 图2-4 G-M 直流调速系统原理图 图2-5 G-M 直流调速系统的框图
写微分方程式的一般步骤: 列写元件和系统方程式前,首先要明确谁是输入量和输出 量,把与输出量有关的项写在方程式等号的左方,与输 入量有,关系的项写在等号的右方,列写系统中各元件 输入-输出微分方程式,消去中间变量,求得系统的输 出与输入的微分方程式
di iR l dt uc ur
1
uc C idt,
即i C duc dt
消去中间变量 i,则有:
图2-1 R-L-C电路
LC
d 2uc dt 2

RC
duc dt

uc

ur
例2-2. 试写出图2-2电路的微分方程 解:由基尔霍夫定律列出下列方程组
1
C1 (i1 i2 )dt i1R1 ur
如果发电机在小信号励磁电压的作用下,工作点A的偏离就较小,这样 就可通过点A作一切线CD,且以此切线CD近似代替原有的曲线EAF。 在平衡点A处,直流电机的方程为
放大器
u1 ue

K1
(2-4)
图2-6 直流他励发电机电路图
直流他励发电机
假设驱动发电机的转
速n0恒定不变,发电 机没有磁滞回线和剩
磁,发电机的磁化曲
线为一直线 ,即Φ/ib =L。
图2-7 直流他励电动机电路图
由电机学原理得:
L diB dt
iBR

U1
EG C1 C1LiB C2iB

T1 T2 T3
duc dt

uc

ur
例2-3. 求外力F(t)与质量块m位移 y(t)之间的微分方程
解:由牛顿第二定律列出方程
dy(t) d 2 y(t) F (t) ky(t) f dt m dt 2
即 d 2 y(t) dy(t)
m dt 2 f dt ky(t) F (t)
微偏法
在给定工作点领域将此非线性函数展开泰勒级数,并略去二阶及二阶以上 的各项,用所得的线性化方程代替原有的非线性方程。
设一非线性元件的输入为x、输出为y,它们间的 关系如图2-9所示,相应的数学表达式为
y=f(x)
(2-13)
图 2-9 非线性特性的线性化
在给定工作点A(x0,y0)附近,将上式展开为泰勒级数
(2-5) (2-6)
把式(2-6)代入(2-5),则得
τG
dEG dt

EG

K 2U1
(2-7)
式中
G

L R
;
K2

C1L R
直流他励电动机被控制量是电动机的转速n控制量: 发电机的电动势EG和负载转矩TL。 由基尔霍夫定律和牛顿第二定律得
ia R
L dia dt

Cen

EG
Te
而 ue ug - ufn (2- 11) 引起系统运动的输入量是经定电压ug 和负载转矩TL(扰动),电动机的转速, n为系统的输出量,经消元后得
τ
mτaτG
d 3n dt 3

τm
τa

τG

d 2n dt 2

τG

τm

dn dt


1

Ka Ce
n

K Ce
相关文档
最新文档