复数ABC

合集下载

新教材高中数学第5章复数1复数的概念及其几何意义 复数的几何意义课件北师大版必修第二册

新教材高中数学第5章复数1复数的概念及其几何意义 复数的几何意义课件北师大版必修第二册
虚数不能比较大小,但它们的模表示非负实数,可以比较大小. (2)几何角度理解:表示复数的点 Z 到原点的距离.|z1-z2|表示复数
z1,z2 对应的点之间的距离.
思考2:复数模的几何意义是什么? 提示:复数z在复平面内对应的点为Z,r表示一个大于0的常数,则满足 条 件 |z| = r 的 点 Z 的 轨 迹 为 以 原 点 为 圆 心 , r 为 半 径 的 圆 , |z|<r 表 示 圆 的 内 部,|z|>r表示圆的外部.
C.(0,0)
D.(-1,-1)
3.向量a=(-2,1)所对应的复数是
A.z=1+2i
B.z=1-2i
C.Z=-1+2i
D.z=-2+i
(A ) (D )
4.已知复数 z=1+2i(i 是虚数单位),则 z =___1_-__2_i _.
[解析] 因为 z=1+2i,所以 z =1-2i.
5.已知复数 z=(m2-2)+(m-1)i 对应的点位于第二象限,则实数 m 的范围为__(_1_,___2_)_.
[分析] 根据复数与点、复数与向量的关系求解.
[解析] (1)两个复数对应的点分别为 A(10,7),B(-6,1),则 C(2,4).故 其对应的复数为 2+4i.
(2)①由复数的几何意义知: O→A=(1,0),O→B=(2,1),O→C=(-1,2), 所以A→B=O→B-O→A=(1,1),A→C=O→C-O→A=(-2,2),B→C=O→C-O→B= (-3,1),所以A→B,A→C,B→C对应的复数分别为 1+i,-2+2i,-3+i.
[解析] 因为复数 z=(m2-2)+(m-1)i 对应的点(m2-2,m-1)位于 第二象限,所以 m2-2<0,且 m-1>0,所以 1<m< 2.

名词变复数、形容词变副词、动词各种变化规则大全

名词变复数、形容词变副词、动词各种变化规则大全

名词变复数、形容词变副词、动词各种变化规则一、名词的常见5种复数变化形式
2.特殊名词的变化
二、形容词转化为副词的规律。

三、英语动词般现在时第三人称单数形式、现在分词、过去分词变化规律。

1.一般现在时第三人称单数形式的构成
2.现在分词的构成
3.规则动词的过去式、过去分词的构成
四、不规则动词变化规律
一、AAA型(原形→原形→原形)
二、ABA型(原形→过去式→原形)
三、ABC型
1. ow →ew →own
2. i→a →u
3. 原形→过去式→过去式+(e)n
4. 原形→过去式→原形+(e)n
5. 无规律
四、ABB型
1. 原形→ought →ought
2. 原形→aught →aught
3. 变其中一个元音字母
4. 原形→□lt→□lt
5. 变其中一个辅音字母
6.辅音字母和元音字母都变
五、AAB型
六、过去式、过去分词有两种形式
七、情态动词。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

(完整版)复数的基本概念和几何意义

(完整版)复数的基本概念和几何意义

复数一、考点、热点回顾1.复数的有关概念 (1)复数①定义:形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. ②表示方法:复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),这一表示形式叫做复数的代数形式.a 叫做复数z 的实部,b 叫做复数z 的虚部.注意:复数m +n i 的实部、虚部不一定是m 、n ,只有当m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部. (2)复数集①定义:全体复数所成的集合叫做复数集. ②表示:通常用大写字母C 表示.2.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0非纯虚数a ≠0(2)复数集、实数集、虚数集、纯虚数集之间的关系3.复数相等的充要条件设a 、b 、c 、d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为z =a +b i (a ,b ∈R )的形式,即分离实部和虚部.(2)只有当a =c 且b =d 的时候才有a +b i =c +d i ,a =c 和b =d 有一个不成立时,就有a +b i ≠c +d i. (3)由a +b i =0,a ,b ∈R ,可得a =0且b =0.4.复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.5.复数的两种几何意义 (1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R )←――→一一对应平面向量OZ →.6.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |= a 2+b 2.注意:复数a +b i (a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.二、典型例题考点一、复数的概念 例1、下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集.其中正确的是( )A.①B.②C.③D.④ 【解析】 对于复数a +b i (a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误.两个虚数不能比较大小,则②错误.对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,则③错误.显然,④正确.故选D.【答案】 D变式训练1、1.对于复数a +b i (a ,b ∈R ),下列说法正确的是( )A.若a =0,则a +b i 为纯虚数B.若a +(b -1)i =3-2i ,则a =3,b =-2C.若b =0,则a +b i 为实数D.i 的平方等于1解析:选C.对于A ,当a =0时,a +b i 也可能为实数; 对于B ,若a +(b -1)i =3-2i ,则a =3,b =-1; 对于D ,i 的平方为-1.故选C.2.若4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A.1 B.1或-4 C.-4 D.0或-4解析:选C.易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.考点二、复数的分类例2、已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?【解】 (1)要使z 为实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,m 需满足m (m +2)m -1=0,且m 2+2m -3≠0,解得m =0或-2.变式训练2、当实数m 为何值时,复数lg (m 2-2m -7)+(m 2+5m +6)i 是(1)纯虚数;(2)实数.解:(1)复数lg (m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4.(2)复数lg (m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m =-3.考点三、复数相等 例3、(1)若(x +y )+y i =(x +1)i ,求实数x ,y 的值;(2)已知a 2+(m +2i )a +2+m i =0(m ∈R )成立,求实数a 的值;(3)若关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.【解】 (1)由复数相等的充要条件,得⎩⎪⎨⎪⎧x +y =0,y =x +1,解得⎩⎨⎧x =-12,y =12.(2)因为a ,m ∈R ,所以由a 2+am +2+(2a +m )i =0,可得⎩⎪⎨⎪⎧a 2+am +2=0,2a +m =0,解得⎩⎨⎧a =2,m =-22或⎩⎨⎧a =-2,m =22,所以a =±2.(3)设方程的实根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,所以⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或-715.变式训练3、已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0, 即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1, 所以a =-1.考点四、复数与复平面内的点例4、已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎪⎨⎪⎧a 2-1<0,2a -1<0.解得-1<a <12.故a 的取值范围是⎝⎛⎭⎫-1,12. 变式训练4、求实数a 取什么值时,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点(1)位于第二象限; (2)位于直线y =x 上.解:根据复数的几何意义可知,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点就是点Z (a 2+a -2,a 2-3a +2).(1)由点Z 位于第二象限,得 ⎩⎪⎨⎪⎧a 2+a -2<0,a 2-3a +2>0,解得-2<a <1. 故满足条件的实数a 的取值范围为(-2,1). (2)由点Z 位于直线y =x 上,得 a 2+a -2=a 2-3a +2,解得a =1. 故满足条件的实数a 的值为1.考点五、复数与复平面内的向量例5、(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i ,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i ,3+2i ,-2-3i ,求点D 对应的复数.【解】 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ; OQ →表示的复数为-4.(2)复数1对应的向量为OA →,其中A (1,0);复数-1+2i 对应的向量为OB →,其中B (-1,2);复数-3i 对应的向量为OC →,其中C (0,-3);复数6-7i 对应的向量为OD →,其中D (6,-7). 如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3).设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题知,AD →=BC →,所以⎩⎪⎨⎪⎧x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.变式训练5、在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是_____________.解析:3-3i 对应向量为(3,-3),与x 轴正半轴夹角为30°,顺时针旋转60°后所得向量终点在y 轴负半轴上,且模为2 3.故所得向量对应的复数是-23i.答案:-23i考点六、复数的模 例6、(1)设(1+i )x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A.1B. 2C. 3D.2 (2)已知复数z 满足z +|z |=2+8i ,求复数z .【解】 (1)选B.因为x +x i =1+y i ,所以x =y =1, 所以|x +y i|=|1+i|=12+12= 2. (2)法一:设z =a +b i (a ,b ∈R ), 则|z |=a 2+b 2,代入原方程得a +b i +a 2+b 2=2+8i ,根据复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.所以z =-15+8i.法二:由原方程得z =2-|z |+8i (*). 因为|z |∈R ,所以2-|z |为z 的实部, 故|z |=(2-|z |)2+82,即|z |2=4-4|z |+|z |2+64,得|z |=17. 将|z |=17代入(*)式得z =-15+8i.变式训练6、已知复数z =3+a i (a ∈R ),且|z |<4,求实数a 的取值范围.解:法一:因为z =3+a i (a ∈R ),所以|z |=32+a 2, 由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7).法二:由|z |<4知z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z (3,a )的集合, 由图可知-7<a <7.三、课后练习1.若(x+y)i=x-1(x,y∈R),则2x+y的值为()A. B.2 C.0 D.1解析:由复数相等的充要条件知,x+y=0,x-1=0故x+y=0.故2x+y=20=1.答案:D2.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},则实数m的值为()A.4B.-1C.-1或4D.-1或6解析:由于M∩N={3},故3∈M,必有m2-3m-1+(m2-5m-6)i=3,所以得m=-1.答案:B3.给出下列复数:①-2i,②3+,③8i2,④isinπ,⑤4+i;其中表示实数的有(填上序号) ____________.解析:②为实数;③8i2=-8为实数;④i·sinπ=0·i=0为实数,其余为虚数.答案:②③④4.下列复数模大于3,且对应的点位于第三象限的为()A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i解析:A中|z|=<3;B中对应点(2,-3)在第四象限;C中对应点(3,2)在第一象限;D中对应点(-3,-2)在第三象限,|z|=>3.答案:D5.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为()A.一个圆B.线段C.两点D.两个圆解析:∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0,∴|z|=3,表示一个圆,故选A.答案:A6.已知在△ABC中,对应的复数分别为-1+2i,-2-3i,则对应的复数为____________.解析:因为对应的复数分别为-1+2i,-2-3i,所以=(-1,2),=(-2,-3).又=(-2,-3)-(-1,2)=(-1,-5),所以对应的复数为-1-5i.答案:-1-5i7.在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i的对应点,(1)在虚轴上,求复数z;(2)在实轴负半轴上,求复数z.答案:(1)若复数z的对应点在虚轴上,则m2-m-2=0,所以m=-1或m=2.此时z=6i或z=0.(2)若复数z的对应点在实轴负半轴上,则m2-3m+2=0,m2-m-2<0,∴m=1能力提升8.若复数z=cosθ+(m-sinθ-cosθ)i为虚数,则实数m的取值范围是____________.解析:∵z为虚数,∴m-sinθ-cosθ≠0,即m≠sinθ+cosθ.∵sinθ+cosθ∈[],∴m∈(-∞,)∪,+∞).答案:(-∞,)∪,+∞)9.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则a的取值范围是____________.解析:若复数为纯虚数,则有a2-a-2=0,|a-1|-1≠0即a=-1.故复数不是纯虚数时a≠-1.答案:{a|a≠-1}10.已知向量与实轴正向夹角为135°,向量对应复数z的模为1,则z=____________. 解析:依题意知Z点在第二象限且在直线y=-x上,设z=-a+ai(a>0).∵|z|=1,∴a2=12.而a>0,∴∴z=+答案:z=+11.已知复数z满足z+|z|=2+8i,则复数z=____________.解析:设z=a+bi(a,b∈R),则代入方程得,2+8i,∴解得a=-15∴z=-15+8i.答案:-15+8i12.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解析:M∪P=P,∴M⊆P,即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.由(m2-2m)+(m2+m-2)i=-1,得解得m=1;由(m2-2m)+(m2+m-2)i=4i,解得m=2.综上可知m=1或m=2.答案:m=1或m=213.已知复数z=2+cosθ+(1+sinθ)i(θ∈R),试确定复数z在复平面内对应的点的轨迹是什么曲线. 解析:设复数z=2+cosθ+(1+sinθ)i对应的点为Z(x,y),则x=2+cosθ,y=1+sinθ即cosθ=x-2,sinθ=y-1所以(x-2)2+(y-1)2=1.所以复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆. 答案:复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆.14. 已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R ). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围. 答案: (1)∵z 为实数,∴m 2+2m -3=0,解得m =-3或m =1.(2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3≠0.解得m =0.(3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0.解得-3<m <0.。

(完整版)复数的基本概念和几何意义

(完整版)复数的基本概念和几何意义

一、考点、热点回顾1. 复数的有关概念 (1)复数① 定义:形如 a + bi ( a , b ∈ R )的数叫做复数,其中 i 叫做虚数单位,满足 i 2=- 1. ② 表示方法:复数通常用字母 z 表示,即 z = a +bi ( a ,b ∈ R ),这一表示形式叫做复数的代数形式 .a 叫做复 数 z 的实部, b 叫做复数 z 的虚部 .注意:复数 m +ni 的实部、虚部不一定是 m 、 n ,只有当 m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部 . ( 2)复数集①定义:全体复数所成的集合叫做复数集 . ②表示:通常用大写字母 C 表示 .2. 复数的分类实数( b =0)2)复数集、实数集、虚数集、纯虚数集之间的关系3. 复数相等的充要条件设 a 、 b 、 c 、 d 都是实数,则 a +bi =c +di? a =c 且 b =d ,a +bi =0?a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为 z =a +bi (a , b ∈R )的形式,即分离实部和虚 部.2)只有当 a =c 且 b =d 的时候才有 a +bi =c +di ,a = c 和 b =d 有一个不成立时,就有 a +bi ≠c + di.3)由 a + bi = 0,a ,b ∈R ,可得 a =0 且 b = 0. 4.复平面的概念 建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴, y 轴叫做虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数 .6.复数的模复数 z =a +bi (a ,b ∈R )对应的向量为 O →Z ,则O →Z 的模叫做复数 z 的模,记作 |z|,且 |z|= a 2+b 2. 注意:复数 a +bi (a , b ∈R )的模 |a + bi|= a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以 比较大小 .考点一、复数的概念 例 1、下列命题:①若 a ∈ R ,则( a +1)i 是纯虚数; ②若 a ,b ∈R ,且 a>b ,则 a +i>b + i ;复数1)复数 z =a +bi (a , b ∈R )虚数( b ≠0)纯虚数 a = 0 非纯虚数5.复数的两种几何意义 ( 1)复数 z =a +bi (a , b ∈R )一一对应←一―一对―应→复平面内的点Z (a ,b ) 一一对应←―平面向量 O →Z.典型例题③若( x2- 4)+( x2+3x+ 2)i 是纯虚数,则实数 x=±2;④实数集是复数集的真子集 .其中正确的是( ) A. ① B.② C.③ D.④【解析】 对于复数 a +bi (a ,b ∈R ),当 a =0且 b ≠0 时,为纯虚数 .对于① ,若 a =- 1,则( a +1)i 不 是纯虚数,即 ①错误.两个虚数不能比较大小,则 ②错误.对于 ③,若 x =-2,则 x 2-4=0,x 2+3x +2=0,此时 (x 2-4)+( x 2+3x +2)i =0,不是纯虚数,则 ③错误 .显然,④正确 .故选 D.【 答案】 D 变式训练 1、 1.对于复数 a + bi ( a ,b ∈R ),下列说法正确的是( A. 若 a =0,则 a +bi 为纯虚数B. 若 a +( b -1)i =3-2i ,则 a = 3,b =- 2C. 若 b =0,则 a +bi 为实数D. i 的平方等于 1 解析: 选 C.对于 A ,当 a =0 时, a +bi 也可能为实数; 对于 B ,若 a +( b - 1) i = 3- 2i , 对于 D ,i 的平方为- 1.故选 C.2. 若 4-3a -a 2i =a 2+4ai ,则实数 A.1 C.-4 4 - 3a = a 2,解析: 选 C.易知 2 解得-a 2=4a , 考点二、复数的分类例 2、已知 m ∈R ,复数 z =m (m +2)m -1(1)z 为实数?( 2)z 为虚数?( 3) z 为纯虚数?则 a =3,b =- 1;a 的值为( ) B.1 或- 4D.0 或- 4 a =- 4. (m 2+2m -3)i ,当 m 为何值时,解】 2) 要使1)要使 z 为实数, m 需满足 m 2+2m -3=0,且 m ( m + 2)有意义,即 m -1≠0,解得 m =-3. m -1 z 为虚数, m 需满足 m 2+ 2m - 3≠ 0,且m ( m + 2)有意义,即 m -1≠ 0,解得 m ≠1 且m ≠-3. m -13) 要使z 为纯虚数, m 需满足m ( m + 2)变式训练 2、 当实数 m 为何值时,复数 纯虚数;( 2)实数 . =0,且 m 2+2m -3≠0,解得 m =0 或- 2. m -1lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是解:(1)复数 lg ( m 2- 2m - 7)+ m 2+5m +6)i 是纯虚数,则lg 2(m2-2m -7)=0,m 2+ 5m +6≠0,解得 m = 4.m2-2m -7>0 ,2)复数 lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是实数,则 m 2+5m +6=0,解得 m =- 2 或 m =- 3.考点三、复数相等 例 3、( 1) 3) 若( x +y )+ yi =( x +1)i ,求实数 x ,y 的值;已知 a 2+(m +2i )a +2+mi =0(m ∈R )成立,求实数 a 的值; 若关于 x 的方程 3x 2- a 2x - 1=( 10- x - 2x 2)求实数 a 的值 . x +y =0, 解】 ( 1)由复数相等的充要条件,得解得 y =x +1, 1 x =- 2, 2)因为 a ,m ∈ R ,所以由 a 2+ am +2+( 2a +m )i = 0,可得 1y =12. a 2+ am +2=0, 2a + m =0,解得a m ==-22,2或 a =- 2, m = 2 2, 所以 a = ± 2.( 3)设方程的实根为 x = m ,则原方程可变为 3m 2-a 2m -1=( 10-m -2m 2) i ,2a3m 2-m - 1=0, 712 解得 a = 11 或- 71. 25 10- m - 2m 2= 0,考点五、复数与复平面内的向量例 5、(1)已知 M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出 O →M ,O →N ,O →P , O →Q 所表示的复数;( 2)已知复数 1,- 1+2i ,- 3i ,6-7i ,在复平面内画出这些复数对应的向量;( 3)在复平面内的长方形 ABCD 的四个顶点中,点 A ,B ,C 对应的复数分别是 2+3i ,3+2i ,- 2-3i ,求 点 D 对应的复数 .【 解】 ( 1)O →M 表示的复数为 1+ 3i ; O →N 表示的复数为 4-i ; O →P 表示的复数为 2i ; O →Q 表示的复数为- 4.(2)复数 1 对应的向量为 O →A ,其中 A (1,0);复数- 1+2i 对应的向量为 O →B ,其中 B (- 1,2); 复数- 3i 对应的向量为 O →C ,其中 C (0,- 3);复数 6-7i 对应的向量为 O →D ,其中 D (6,-7). 如图所示 .所以 变式训练所以所以3、已知 A ={1,2,a 2-3a -1+(a 2-5a -6)i },B ={-1,3},A ∩B ={3} ,求实数 a 的值. 由题意知, a 2- 3a - 1+ a 2- 3a - 1= 3 , a 2- 5a - 6= 0 , a =- 1.a 2-5a -6)i =3(a ∈R ), a = 4或 a =- 1, 即 考点四、复数与复平面内的点例 4、已知复数 z =( a 2- 1)+ 的值(或取值范围) .( 1)在实轴上; ( 2)在第三象限 .【 解】 ( 1 )若对应的点在实轴上,则有12a -1= 0,解得 a = 2.( 2)若 z 对应的点在第三象限,则有 a 2 -1<0 , 1解得- 1<a<1.故 a 的取值范围是 - 1, 2a - 1<0. 2变式训练 4、求实数 a 取什么值时,复平面内表示复数( 1)位于第二象限;( 2)位于直线 y = x 上 .解: 根据复数的几何意义可知,复平面内表示复数 a 2- 3a + 2) .( 1)由点 Z 位于第二象限,得 a 2+a -2<0,2 解得- 2<a<1. a 2-3a +2>0,故满足条件的实数 a 的取值范围为(- 2,1).2a -1)i ,其中 a ∈R.当复数 z 在复平面内对应的点 Z 满足下列条件时,求 a 1 2.z =a 2+a -2+( a 2-3a +2)i z =a 2+a -2+( a 2-3a + 2)i 的点就是点 Z ( a 2+a -2,解析: 3- 3i 对应向量为( 3,- 3),与 x 轴正半轴夹角为 30°,顺时针旋转 60°后所得向量终点在 y 轴 负半轴上,且模为 2 3.故所得向量对应的复数是- 2 3i.答案: - 2 3i 考点六、复数的模例 6、( 1)设( 1+i )x =1+yi ,其中 x ,y 是实数,则 |x + yi|=( )A.1B. 2C. 3D.2( 2)已知复数 z 满足 z +|z|=2+8i ,求复数 z.【 解】 (1)选 B.因为 x + xi = 1+ yi ,所以 x = y =1, 所以 |x +yi|=|1+i|= 12+12= 2.( 2)法一: 设 z =a +bi ( a ,b ∈R ),则 |z|= a 2+ b 2 , 代入原方程得 a + bi + a 2+b 2=2+ 8i , a + a 2+ b 2= 2, 根据复数相等的充要条件,得 + 解得b =8, 所以 z =- 15+ 8i. 法二: 由原方程得 z =2-|z|+8i (* ). 因为|z|∈R ,所以 2-|z|为 z 的实部, 故 |z|= ( 2-|z|)2+82, 即|z|2=4-4|z|+|z|2+64,得 |z|=17. 将|z|=17代入( *)式得 z =- 15+8i. 变式训练 6、已知复数 z = 3+ ai ( a ∈ R ),且 |z|<4,求实数 解:法一: 因为 z =3+ ai (a ∈ R ),所以 | 由已知得 32+ a 2<4 2,所以 a 2<7,所以 a ∈ 法二:由|z|<4知z在复平面内对应的点在以原点为圆心,以 4为半径的圆内(不包括边界) ,由 z =3+ ai 知z 对应的点在直线 x = 3 上,所以线段 AB (除去端点)为动点 Z (3,由图可知- 7<a< 7.三、课后练习1.若(x+y)i=x-1(x,y ∈R),则 2x+y 的值为 ( )A. B.2 C.0 D.1 解析 :由复数相等的充要条件知 ,x+y =0,x-1=0 故 x+y=0. 故 2x+y =2 0=1. 答案 :D则A →D =(x -2,y -3),B →C =(- 5,-5). → → x - 2=- 5, 由题知, A →D =B →C ,所以 即 x =- 3,故点 D 对应的复数为- 3- 2i.变式训练 5 、在复平面内,把复数 3- 3i 对应的向量按顺时针方向旋转π3 ,所得向量对应的复a =-15, b = a 的取值范围 . = 32 +a 2,- 7,2.已知集合 M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3}, 且 M∩ N={3}, 则实数 m的值为 ( )A.4B.-1C.-1 或 4D.-1 或 6 解析 :由于 M∩N={3} ,故 3∈M, 必有 m2-3m-1+(m 2-5m-6)i=3, 所以得 m=-1.答案 :B3. _______________________________________________________________ 给出下列复数 :①-2i,②3+,③8i2,④isin π⑤,4+i;其中表示实数的有 (填上序号 ) __________ .解析 :②为实数 ;③8i2=-8 为实数 ;④i · sin π =0为·实i=数0 ,其余为虚数 .答案 :②③④4.下列复数模大于 3,且对应的点位于第三象限的为 ( )A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i 解析 :A 中 |z|=<3;B 中对应点 (2,-3) 在第四象限 ;C 中对应点 (3,2)在第一象限 ;D 中对应点 (-3,-2) 在第三象限,|z|=>3.答案 :D5.已知复数 z满足 |z|2-2|z|-3=0,则复数 z对应点的轨迹为 ( ) A.一个圆 B.线段 C.两点 D.两个圆解析 :∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0, ∴|z|=3,表示一个圆 ,故选 A.答案 :A6. _______________________________________________________ 已知在△ABC 中 ,对应的复数分别为 -1+2i,-2-3i, 则对应的复数为______________________________ .解析 : 因为对应的复数分别为 -1+2i,-2-3i,所以 =(-1,2),=(-2,-3). 又=(-2,-3)-(-1,2)=(-1,-5), 所以对应的复数为 -1-5i.答案 :-1-5i7.在复平面内 ,若复数 z=(m2-m-2)+(m 2-3m+2)i 的对应点 ,(1) 在虚轴上 ,求复数 z;(2)在实轴负半轴上 ,求复数 z. 答案 :(1) 若复数 z 的对应点在虚轴上 ,则 m2-m-2=0, 所以 m=-1或 m=2. 此时 z=6i 或 z=0.(2)若复数 z 的对应点在实轴负半轴上 ,则 m2-3m+2=0,m2-m-2<0,∴m=1能力提升8. _____________________________________________________ 若复数 z=cos θ +(-msin -θcosθ )i为虚数 ,则实数 m 的取值范围是________________________ .解析 :∵z 为虚数 ,∴ m-sin θ-cosθ≠ 0,即 m ≠ sin θ+cos θ.∵ sin θ +cos ∈θ[ - 2 , 2 ], ∴ m ∈ (-∞,- 2 )∪( 2 ,+ ∞). 答案 :(-∞,- 2 )∪( 2 ,+ ∞)9. _____________________________________________________ 若复数 (a 2-a-2)+(|a-1|-1)i(a ∈ R)不是纯虚数 ,则 a 的取值范围是 ________________________解析 :若复数为纯虚数 ,则有 a 2-a-2=0,|a-1|-1≠0 即 a=-1. 故复数不是纯虚数时 a ≠-1. 答案 :{a|a ≠-1} 10. _______________________________________________________ 已知向量与实轴正向夹角为 135°,向量对应复数 z 的模为 1,则 z= _________________________________ .解析 :依题意知 Z 点在第二象限且在直线 y=-x 上 , 设 z=-a+ai(a>0).1∵ |z|=1,∴ a 2= .而 a>0,2∴ a=22 答案 :z= i2211. ___________________________________ 已知复数 z 满足 z+|z|=2+8i, 则复数 z= . 解析 :设 z=a+bi(a,b ∈R), 则 |z|= a 2b2 ,代入方程得 ,a+bi+ a 2b 2= 2+8i,∴解得 a=-15∴ z=-15+8i. 答案 :-15+8i12. 已知 M= {1,(m 2-2m)+(m 2+m-2)i}, P={ -1,1,4i}, 若 M ∪ P=P ,求实数 m 的值. 解析 :M ∪P=P,∴M?P,即 (m 2-2m)+(m 2+m-2)i=-1 或 (m 2-2m)+(m 2+m-2)i=4i. 由 (m 2-2m)+(m 2+m-2)i=-1, 得解得 m=1;由 (m 2-2m)+(m 2+m-2)i=4i,解得 m=2. 综上可知 m=1 或 m=2. 答案 :m=1 或 m=213. 已知复数 z=2+cos θ +(1+sin θ∈)iR( ), θ试确定复数 z 在复平面内对应的点的轨迹是什么曲线 解析 : 设复数 z=2+cos θ +(1+sin θ对)i 应的点为 Z(x,y), 则 x=2+cos θ ,y=1+sin θ 即 cos θ =-x2,sin θ =-1y 所以 (x-2)2+(y-1) 2=1.∴z22所以复数 z 在复平面内对应点的轨迹是以 (2,1)为圆心 ,1 为半径的圆答案 :复数 z在复平面内对应点的轨迹是以 (2,1)为圆心 ,1为半径的圆14.已知复数 z= m(m- 1)+ (m2+ 2m-3)i( m∈ R ).(1)若 z 是实数,求 m 的值;(2)若 z是纯虚数,求 m 的值;(3)若在复平面 C 内, z所对应的点在第四象限,求答案 : (1)∵z 为实数,∴m2+2m-3=0,解得 m=-(2)∵z 为纯虚数,m m- 1 =0 , m2+ 2m- 3≠0.m 的取值范围.解得 m= 0.(3)∵z 所对应的点在第四象限,m m- 1 >0 ,∴ 2解得- 3<m<0. m2+ 2m- 3<0.。

复数的几何意义

复数的几何意义

复数的几何意义一、复数的几何意义1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。

2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。

复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=22b a +4、复数的加法与减法的几何意义加法的几何意义 减法的几何意义)ZZ 2Z1yz 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]如图:其对应的向量分别为oz oz oz 12→→→显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→逆时针旋转θ2角模变为oz 1→的r 2倍所得向量便是积z 1·z 2=z 的向量oz →。

< 2 >若θ2< 0 则由向量oz 1→顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。

为此,若已知复数z 1的辐角为α,z 2的辐角为β求α+β时便可求出z 1·z 2=z a z 对应的辐角就是α+β这样便可将求“角”的问题转化为求“复数的积”的运算。

复数知识点归纳

复数知识点归纳

复数【知识梳理】一、复数的基本概念1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念(1)定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。

全体复数所成的集合C 叫做复数集。

复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:#①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否则不是代数形式(2)分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数虚数纯虚数二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等?注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小例题:已知0)4()3(=-+-+i x y x 求y x ,的值三、四、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅五、复数的几何意义1、复平面的概念(建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量)相等的向量表示同一个复数例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上(2)复平面内)6,2(=→AB ,已知→→AB CD //,求→CD 对应的复数3、/4、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值五、六、复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±}②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(d c i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.七、常用结论(1)i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)!(3)i i 2)1(2=+,i i 2)1(2-=- (4)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比较大小.( )%(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )【考点自测】1.(2015·安徽)设i 是虚数单位,则复数(1-i)(1+2i)等于( )+3iB.-1++iD.-1+i2.(2015·课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z 等于( )A.-2-iB.-2+-+i]3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )++++i4.已知a ,b ∈R ,i 是虚数单位.若a +i =2-b i ,则(a +b i)2等于( )-+-+3i5.已知(1+2i)=4+3i ,则z =________.【题型分析】题型一 复数的概念例1 (1)设i 是虚数单位.若复数z =a -(a ∈R )是纯虚数,则a 的值为( ),A.-3B.-已知a ∈R ,复数z 1=2+a i ,z 2=1-2i ,若为纯虚数,则复数的虚部为( )若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件引申探究1.对本例(1)中的复数z,若|z|=,求a的值.2.在本例(2)中,若为实数,则a=________.^思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()A.-或1(2)(2014·浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的()A.充分不必要条件B.必要不充分条件(C.充分必要条件D.既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2(1)(2015·湖北)i为虚数单位,i607的共轭复数为().-.-1(2)(2015·北京)复数i(2-i)等于()+-2iC.-1+2iD.-1-2i]命题点2复数的除法运算例3(1)(2015·湖南)已知=1+i(i为虚数单位),则复数z等于()+-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2015·天津)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.(2)(2014·江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.!命题点4复数的综合运算例5(1)(2014·安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i·等于()A.-2B.-若复数z满足(3-4i)z=|4+3i|,则z的虚部为()A.-4B.-思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.、(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z满足=i,其中i为虚数单位,则z等于()-+iC.-1-iD.-1+i(2)2016=________.(3)+2016=________.题型三复数的几何意义^例6(1)(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z 对应的点为△ABC的()A.内心B.垂心C.重心D.外心思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.。

英语动词单三变化规则及名词单数变复数口诀

英语动词单三变化规则及名词单数变复数口诀

动词的第三人称单数现在式变化规则:1)一般由动词原形加-sget-gets play-plays2)以㊀结尾的动词,加-slike-likes make-makes3)以0结尾的动词加-esgo-goes do-does以s, x, ch, sh等字母结尾的动词,后面加-eskiss-kisses fix-fixes teach-teaches fish-fishes4)以辅音字母加丫结尾的动词,先将y变i,再加-es fly-flies study-studies5) have —has一般现在时主语+动词原型VI have a friend. You have a friend. We have a friend. They have a frie nd. 主语(第三人称单数)+动词V (三单)She / He / It has a friend.Tom / My mother has a friend.名词单数变复数口诀(一)规则变化名词单数变复数,直接加-s占多数;s, x, z, ch, sh来结尾,直接加上-es ;词尾是f或fe,加-s之前先变ve;辅母+ y在词尾,把y变i再加-es;词尾字母若是o,常用三个已足够,要力口-es 请记好,hero, tomato, potato。

(二)不规则变化男人女人a变e,鹅足牙oo变ee ;老鼠虱婆也好记,ous变ic;孩子加上ren,鱼鹿绵羊不用变。

This---these(这些)that -- those(那些)【解说】1.英语名词有单数和复数的区别,单数表示“一”,复数表示“多于一。

”名词由单数变复数,多数是规则的变,直接加-s,例如:book— books, girl — girls。

但以-s, -z, -x, -ch, -sh 结尾的名词,变成复数时加-es, 例如:bus—buses, buzz —buzzes, box— boxes, watch — watches, brush — brushes2.-f(e)结尾的名词单数变复数歌诀:①树叶半数自已黄,妻子拿刀去割粮,架后窜出一只狼,就像强盗逃命忙。

复数问题的题型与方法

复数问题的题型与方法

复数问题的题型与方法复数一节的题型主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等.一、数学规律: 1.共轭复数规律,;2.复数的代数运算规律(1)i 4n =1,i 41n +=i ,i 42n +=-1,i 43n +=-i ;(3)i n· i1n +· i2n +·i3n +=-1, i n +i1n ++i2n ++i3n +=0;;3.辐角的运算规律(1)Arg (z 1·z 2)=Argz 1+Argz 2(3)Argzn=nArgz (n ∈N )…,n -1。

或z ∈R 。

要条件是|z|=|a|。

(6)z 1·z 2≠0,则4.根的规律复系数一元n 次方程有且只有n 个根,实系数一元n 次方程的虚根成对共轭出现。

5.求最值时,除了代数、三角的常规方法外,还需注意几何法及不等式||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|的运用。

即|z 1±z 2|≤|z 1|+|z 2|等号成立的条件是:z 1,z 2所对应的向量共线且同向。

|z 1±z 2|≥|z 1|-|z 2|等号成立的条件是:z 1,z 2所对立的向量共线且异向。

二、主要的思想方法和典型例题分析:1.化归思想复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。

反之亦然。

这种化归的思想方法应贯穿复数的始终。

【分析】这是解答题,由于出现了复数z 和z ,宜统一形式,正面求解。

【解】解法一 设z =x +yi (x ,y ∈R ),原方程即为223313x y y xi i +--=+ 用复数相等的定义得:∴1z =-1,2z =-1+3i.两边取模,得:代入①式得原方程的解是1z =-1,2z =-1+3i.【例2】 (1993·全国·理)设复数 z=cos θ+isin θ(0<【解】 ∵z =cos θ+isin θ 4z =cos4θ+isin4θcos(2)sin(2)22tan 2cos 2sin 2i i ππθθθθθ-+-=+tan 2cos(4)sin(4)22i ππθθθ⎡⎤=-+-⎢⎥⎣⎦即3tan 23ωθ==,又∵0<θ<π,当3tan 23θ=时,12πθ=或712πθ=【说明】 此题转化为三角问题来研究,自然、方便。

复数的应用三角形

复数的应用三角形

复数的应用三角形复数的应用:三角形三角形是几何学中的一种基本图形,它由三条线段所围成。

在三角形的研究中,复数也有着广泛的应用。

一、复数表示三角形的顶点坐标在平面直角坐标系中,我们可以使用复数来表示三角形的顶点坐标。

设三角形的三个顶点分别为A、B、C,其坐标分别为z₁、z₂、z₃。

我们可以将复数的实部表示横坐标,虚部表示纵坐标,将顶点坐标表示为复数形式。

例如,对于三角形ABC的顶点坐标分别为A(1, 2),B(3, 4),C(5, 6),我们可以将其表示为复数形式:z₁ = 1 + 2i,z₂ = 3 + 4i,z₃ = 5 + 6i。

二、复数与三角形的相似关系利用复数与三角形的相似关系,我们可以进行三角形的形状分析与计算。

1. 三角形的边长比较设复数z₁、z₂、z₃表示三角形的顶点坐标,我们可以通过计算复数的模来求解三角形的边长。

三角形的边长分别为|z₁- z₂|、|z₂- z₃|、|z₃ - z₁|。

2. 三角形的面积计算三角形的面积可以通过复数的叉积来计算。

设复数z₁、z₂、z₃表示三角形的顶点坐标,三角形的面积可以表示为S = 0.5 * |Im((z₂ - z₁) * conj(z₃ - z₁))|其中,|Im|表示虚部的绝对值,*表示复数的乘法,conj表示共轭复数。

3. 三角形的重心计算三角形的重心是三条中线的交点,利用复数可以方便地计算三角形的重心坐标。

设复数z₁、z₂、z₃表示三角形的顶点坐标,三角形的重心坐标可以表示为G = (z₁ + z₂ + z₃) / 3其中,G表示重心的坐标。

三、复数与三角形的变换关系利用复数的加减、乘除运算,我们可以实现对三角形进行平移、旋转、缩放等变换操作。

1. 平移变换设复数z₁、z₂、z₃表示原始三角形的顶点坐标,假设我们将三角形沿向量v进行平移,那么平移后的三角形的顶点坐标可以表示为:z₁' = z₁ + vz₂' = z₂ + vz₃' = z₃ + v其中,z₁'、z₂'、z₃'表示平移后的三角形的顶点坐标。

复数的几何意义(课件)高一数学(人教A版2019必修第二册)

复数的几何意义(课件)高一数学(人教A版2019必修第二册)

2.复平面内向量对应的复数可以通过向量的坐标运算求得.
3.一个向量不管怎么平移,它所对应的复数是不变的,但其起点与终点对应的复
数可能改变.
3.已知复数 2 + − 2 + ( 2 − 3 + 2)( ∈ )是4 − 20的共轭复数,求的值.
2

解:由题意得,4 − 20的共轭复数为,则 2 + − 2 = 4,
或不等式(组)求解.
2.(1)向量1 对应的复数是5 − 4,向量2 对应的复数是−5 + 4,则1 + 2 对
应的复数是( ).
A.−10 + 8
B.10 − 8
C.0
D.10 + 8
答案:C.
(1)由复数的几何意义,得1 = (5, −4),2 = (−5,4),
数与复平面内的点按如下方式建立了一一对应关系
复数 = +
(, ).
这是复数的一种几何意义.
一一对应
复平面内的点
思考2:在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,
l
而有序实数对与复数是一一对应的.你能用平面向量来表示复数吗?
如图,设复平面内的点表示复数,连接,显然向量由点唯一确定;反过来,点
即|| = | + | = 2 + 2 ,其中, ∈ .
如果 = 0,那么 = + 是一个实数,它的模就等于||(的绝对值).
例2 设复数z1=4+3i,z2=4-3i.
(1) 在复平面内画出复数z1,z2对应的点和向量;
(2) 求复数z1,z2的模,并比较它们的模大小.
答案:D.
(2)由复数的几何意义,得 = (2, −3), = (−3,2),

复数知识点和方法总结

复数知识点和方法总结

复数知识点和方法总结一、英语复数的概念复数是英语名词的一种形式,用来表示两个或两个以上的人或物。

通常常见的复数形式是在词尾加-s或-es,例如:cat(猫)的复数形式是cats(猫咪们),而box(盒子)的复数形式是boxes(盒子们)。

复数形式可以是规则的,也可以是不规则的,需要根据具体的单词形式来记忆。

二、英语复数的构成1. 一般情况下,在名词词尾加-s构成复数,如:book(书)的复数形式是books(书籍)。

2. 名词词尾如果是s、x、z、ch、sh结尾,复数形式则是在词尾加-es,如:bus(公交车)的复数形式是buses(公交车辆)。

3. 以辅音字母+y结尾的单词,变复数时先将y改成i再加-es,如:baby(宝宝)的复数形式是babies(宝宝们)。

4. 以f或fe结尾的名词,变复数时通常将f或fe改成v再加-es,如:wolf(狼)的复数形式是wolves(狼群)。

5. 以不规则形式变复数的名词则需要特别记忆,如:man(男人)的复数形式是men(男人们)。

三、英语复数的用法1. 表示多个人或物英语复数形式用来表示多个人或物的情况,例如:trees(树木)表示多棵树,friends(朋友们)表示多个朋友。

2. 引出复数名词的量词在引出复数名词时,需要搭配相应的量词,如:a pair of shoes(一双鞋子)、three boxes of chocolates(三盒巧克力)。

3. 表示不可数名词的复数概念有些不可数名词在特定语境下也会出现复数形式,例如:waters(水域)表示多个水域、moneys(金钱)表示多种货币。

四、英语复数形式的记忆方法1. 规则单词的复数形式规则的复数形式可以根据单词的词尾来进行记忆,例如:以辅音字母+y结尾的单词变复数时,先将y变成i再加-es;以f或fe结尾的单词变复数时,通常将f或fe变成v再加-es。

2. 不规则单词的复数形式不规则单词的复数形式需要通过多读多记的方法来进行记忆,可以通过课文中的实际语境来帮助记忆。

英语单词abc形式变化规则表

英语单词abc形式变化规则表

英语单词abc形式变化规则表1. 引言1.1 概述本文旨在介绍英语单词abc的形式变化规则表。

作为学习英语的学生或者非英语母语使用者,了解单词形态变化的规律对于词汇掌握和语法应用至关重要。

在阅读、写作和口语交流中,熟悉英语单词变形规则能够帮助我们正确使用并灵活运用各类词汇。

1.2 文章结构本文将按照以下结构进行论述:引言、正文和结论。

引言部分将首先介绍文章的目的和重要性,并简要概述后续内容;正文部分将详细说明abc形式变化规则,包括a变为b、b变为c以及c变为d的规则,并补充其他字母的变化规则表述;最后,结论部分将对整个文章进行总结,并探讨应用及意义,并提出后续研究方向建议。

1.3 目的本文目的是通过介绍英语单词abc形式变化规则表,帮助读者更好地理解并掌握英语单词形态上的变化规律。

通过了解这些规则,读者可以有效地运用它们在听、说、读、写方面的英语表达中。

同时,本文还致力于促进对英语语法规则的学习和掌握,提高英语水平,并为后续相关研究提供基础和参考。

通过阐述变化规则表,读者将能够更有自信地应对各种英语交流场景,为其在学习、工作和生活中发展提供有益帮助。

2. 正文:2.1 abc的变化规则介绍在英语中,字母abc以及其后续字母在特定情况下可能会经历形式上的变化。

这种变化是根据一定的规则进行的,它们可以帮助我们理解和学习英语单词的形态变化。

本节将详细介绍关于abc形式变化规则的内容。

2.2 a变为b的规则首先,当一个单词以字母a结尾时,它有可能在特定条件下变为b。

这种转换通常发生在以下几种情况下:- 当前单词需要构成过去时态或者名词复数时,a可能会被替换为b。

例如:- 单数名词"cat"(猫)在复数形式下变为"cats"(猫们)。

- 动词"go"(去)在过去时态下变为"goed"(去了)。

- 在某些特殊单词中,a可能会由于音韵调整而发生改变。

数学问题中的复数方法

数学问题中的复数方法

当 1 2 时, xn xn 1 n 2 ( x2 1 x1 ) xn ( n 1)n 2 x2 ( n 2)n 1 x1 。
例 4.求递推数列 xn 1
axn b 的通项k 0 n 1 n 1

设 i
n 1 2mi , mi 是整数。对任意 m1 , m2 , sin( k1 ) cos( k 2 ) 0 。 n k 0 n 1 n 1
当n | ( m1 m2 ) 且 n | (m1 m2 ) 时, sin( k1 )sin( k 2 ) cos( k1 ) cos( k 2 ) 0 。

r sin r n 1 sin( n 1) r n 2 sin n 。 r 2 2r cos 1
例 7.求第一类 Chebyshev 多项式 Tn ( x ) , cos n Tn (cos ) 。
2k k (cos ) nk (i sin ) k Cn (cos ) n2 k (cos 2 1) k 解:cos n Re(cos i sin ) n Re Cn k 0 k 0 n/2 n/2
3
3 k 1 3 k 1 n 1 此时, Cn ci 3 。 i k x k 0 i 1
n
4
(2)当 x 3
27 4 4(1 2i) 4(1 2i) 时, 1 2 x,3 x,4 x, 256 3 3 3
2 3 d1 d2 d3 d4 1 λ3 21 ,其中 , , d d 1 3 1 y 3 xy 4 (1 1 y ) 2 1 2 y 1 3 y 1 4 y f (1 ) f ( λ3 ) 4 n 3 n 1 3 k 1 3 k 1 3 n 1 4 , d 2 1 d1 d3 d 4 。此时, Cn x ( 3 n 2 ) d di 3 。 1 1 k i f (4 ) k 0 i2

复数知识点归纳

复数知识点归纳

复数【知识梳理】一、复数的基本观点1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②i 2 1;这样方程x2 1 就有解了,解为x i 或 x i2、复数的观点(1)定义:形如 a bi ( a,b∈ R) 的数叫做复数,此中 i 叫做虚数单位, a 叫做, b 叫做。

全体复数所成的会合 C 叫做复数集。

复数往常用字母z表示,即 z a bi ( a,b∈R)对于复数的定义要注意以下几点:① z a bi ( a,b∈R) 被称为复数的代数形式,此中bi 表示 b 与虚数单位i 相乘②复数的实部和虚部都是实数,不然不是代数形式(2)分类:知足条件( a,b为实数 )a+ b i 为实数b=0复数的分类a+ b i 为虚数b≠0a+ b i 为纯虚数a=0且b≠0(m 5m 6) ( m2 3m)i 是实数虚数纯虚数例题:当实数m 为什么值时,复数二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等注意:只有两个复数全部是实数,才能够比较大小,不然没法比较大小例题:已知 (x y 3) ( x 4)i 0 求x, y的值三、共轭复数a bi 与 c di 共轭 a c,b d (a, b, c, d R)_ _a2 b2z a bi 的共轭复数记作 z a bi ,且 z z四、复数的几何意义1、复平面的观点成立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y轴叫做虚轴。

明显,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的几何意义复数 z a bi 与复平面内的点 Z ( a, b) 及平面向量 OZ (a, b) (a, b R) 是一一对应关系(复数的本质是有序实数对,有序实数对既能够表示一个点,也能够表示一个平面向量)相等的向量表示同一个复数例题: (1)当实数 m 为什么值时,复平面内表示复数z (m 28m 15)( m 2 5m 14)i 的点①位于第三象限;②位于直线 y x 上( 2)复平面内 AB ( 2,6) ,已知 CD// AB ,求 CD 对应的复数 3、复数的模:向量 OZ 的模叫做复数 z a bi 的模,记作 z 或 a bi ,表示点 ( a,b) 到原点的距离,即 za bia 2b 2 , zz若 z 1 a bi , z 2 c di ,则 z 1 z 2 表示 (a,b) 到 (c, d ) 的距离,即 z 1 z 2 ( a c) 2 (b d) 2例题: 已知 z 2 i ,求 z 1 i 的值 五、复数的运算(1)运算法例:设 z 1=a +b ,z 2= c + d ,a ,b ,c ,d ∈ R i i ① z 1 z 2 a bi c di ( a c) (b d )i② z 1 z 2 (a bi ) ( c di ) ( ac bd )(bc ad )i③z1( a bi ) (a bi )(c di )( ac bd ) (bc ad )iz 2( c di ) (c di ) (c di )c 2d 2(2)几何意义:复数加减法可按向量的平行四边形或三角形法例进行 . 如图给出的平行四边形 OZ 1ZZ 2 能够直观地反应出复数加减法的几何意义,即=+,=- . 六、常用结论(1) i , i 21, i 3 i , i 4 1求 i n ,只需将 n 除以 4 看余数是几就是 i 的几次例题: i 675(2) (1 i )2 2i , (1 i) 22i(3) (13i)31, (13 i )3 12222【思虑辨析】判断下边结论能否正确 ( 请在括号中打“√”或“×”)(1) 方程 x 2+x + = 0 没有解 .()1 (2) 复数 z =a +ba ,b ∈R) 中,虚部为 bi(i.()(3) 复数中有相等复数的观点,所以复数能够比较大小 .()(4) 原点是实轴与虚轴的交点 .()(5) 复数的模本质上就是复平面内复数对应的点到原点的距离, 也就是复数对应的向量的模 .()【考点自测】1.(2015 ·安徽 ) 设 i 是虚数单位,则复数 (1 -i)(1 +2i) 等于 ()+ 3iB. -1++ iD. -1+i2.(2015 ·课标全国Ⅰ ) 已知复数 z 知足 ( z -1)i =1+i ,则 z 等于 ()A. - 2- iB. -2+-+ i3. 在复平面内,复数 6+5i ,- 2+3i 对应的点分别为 A ,B. 若 C 为线段 AB 的中点,则点 C 对应的复数是()++++ i4. 已知 a ,b ∈ , 是虚数单位 . 若 a + = -b ,则a +b 2 等于 ()R i i 2 i( i)-+-+ 3i5. 已知 (1 + 2i) =4+3i ,则 z =________.【题型剖析】题型一 复数的观点例 1 (1) 设 i 是虚数单位 . 若复数 z = a - ( a ∈R) 是纯虚数,则 a 的值为 ( )A. - 3B. -已知 a ∈R ,复数 z 1 =2+ai , z 2 =1-2i ,若为纯虚数,则复数的虚部为 ()z 1= 2 + 2 m ∈ , z 2 = - ,则“ m = ”是“ z 1=z 2”的若 m +m +1) m + m -4)i( R) ( )( ( 3 2i 1A. 充足不用要条件B. 必需不充足条件C.充要条件D.既不充足又不用要条件引申研究1. 对本例 (1) 中的复数 z ,若 | z| =,求 a 的值 .2. 在本例 (2) 中,若为实数,则 a =________.思想升华 解决复数观点问题的方法及注意事项(1) 复数的分类及对应点的地点都能够转变为复数的实部与虚部应当知足的条件问题,只需把复数化为代数形式,列出实部和虚部知足的方程 ( 不等式 ) 组即可 .(2) 解题时必定要先看复数能否为 a +b a ,b ∈ R) 的形式,以确立实部和虚部.i((1) 若复数 z =( x 2-1) + ( x -1)i 为纯虚数,则实数 x的值为 ( )A.-或 1(2)(2014 ·浙江 ) 已知 i 是虚数单位, a , b ∈ ,则“ a =b = ”是“ ( a +b 2 = 2i ”的()R 1 i) A. 充足不用要条件 B. 必需不充足条件 C.充足必需条件 D.既不充足也不用要条件 题型二 复数的运算命题点 1复数的乘法运算例 2 (1)(2015 ·湖北 )i 为虚数单位, i 607 的共轭复数为 ( ).-.-1(2)(2015 ·北京 ) 复数 i(2 -i) 等于 ( )+- 2iC. - 1+ 2iD. - 1- 2i 命题点 2 复数的除法运算例 3 (1)(2015 ·湖南 ) 已知= +为虚数单位 ) ,则复数 z 等于 ()1 i(i+- iC. -1+iD. -1-i(2)()6+= ________.命题点 3复数的运算与复数观点的综合问题例 4 (1)(2015 ·天津 )i 是虚数单位,若复数 (1 - 2i)( a +i) 是纯虚数,则实数 a 的值为 ________.(2)(2014 ·江苏 ) 已知复数 z =(5 +2i) 2(i为虚数单位 ) ,则 z 的实部为 ________.命题点 4 复数的综合运算例 5 (1)(2014 ·安徽 ) 设 i 是虚数单位,表示复数 z 的共轭复数. 若 z = + ,则+ ·等于 ()1 i i A. - 2B. -若复数 z 知足 (3 -4i) z =|4 +3i| ,则 z 的虚部为 ()A. - 4B. -思想升华 复数代数形式运算问题的常有种类及解题策略(1) 复数的乘法 . 复数的乘法近似于多项式的四则运算, 可将含有虚数单位 i 的看作一类同类项, 不含 i 的看作另一类同类项,分别归并即可 .(2)复数的除法 . 除法的重点是分子分母同乘以分母的共轭复数,解题中要注意把 i 的幂写成最简形式.(3) 复数的运算与复数观点的综合题,先利用复数的运算法例化简,一般化为a+b i( a,b∈R) 的形式,再联合有关定义解答.(4)复数的运算与复数几何意义的综合题 . 先利用复数的运算法例化简,一般化为 a+bi( a,b∈R)的形式,再联合复数的几何意义解答.(5)复数的综合运算 . 分别运用复数的乘法、除法法例进行运算,要注意运算次序,要先算乘除,后算加减,有括号要先算括号里面的 .(1)(2015 ·山东 ) 若复数 z 知足= i ,此中 i 为虚数单位,则 z 等于 ()-+ iC. -1-iD. -1+i(2) 2016= ________.(3) +2016=________.题型三复数的几何意义例 6 (1)(2014 ·重庆 ) 实部为- 2,虚部为 1 的复数所对应的点位于复平面的()A. 第一象限B. 第二象限C.第三象限D.第四象限(2) △ABC的三个极点对应的复数分别为z1,z2, z3,若复数 z 知足z-z1 =z-z2|=z- z3|,则| | | |z 对应的点为△ ABC的 ()A. 心里B. 垂心C.重心D.外心思想升华由于复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只需找出所求向量的始点和终点,或许用向量相等直接给出结论即可.(1) 如图,在复平面内, 点 A 表示复数 z ,则图中表示 z的共轭复数的点是 ()已知 z 是复数, z +2i 、均为实数 (i 为虚数单位 ) ,且复数 ( z +ai) 2 在复平面内对应的点在第一象限,务实数 a 的取值范围 .【思想与方法】 解决复数问题的实数化思想 典例 已知 x ,y 为共轭复数,且 ( x + y ) 2- xy = - ,求 x , y.3 i4 6i思想点拨(1) x , y 为共轭复数,可用复数的基本形式表示出来;(2) 利用复数相等,将复数问题转变为实数问题 .温馨提示(1) 复数问题要掌握一点,即复数问题实数化,这是解决复数问题最基本的思想方法 .(2) 此题求解的重点是先把 x 、y 用复数的基本形式表示出来,再用待定系数法求解 . 这是常用的数学方法 .(3) 此题易错原由于想不到利用待定系数法,或不可以将复数问题转变为实数方程求解.【方法与技巧】1. 复数的代数形式的运算主要有加、减、乘、除及求低次方根. 除法其实是分母实数化的过程 .2. 复数 z =a +bi( a ,b ∈R) 是由它的实部和虚部独一确立的,两个复数相等的充要条件是复数问题转变为实数问题的主要方法 . 对于一个复数 z = a + bi( a , b ∈ R) ,既要从整体的角度去认识它,把复数当作一个整体,又要从实部、虚部的角度分解成两部分去认识.3. 在复数的几何意义中, 加法和减法对应向量的三角形法例, 其方向是应注意的问题, 平移常常和加法、减法相联合 .【失误与防备】1. 判断复数是实数,仅着重虚部等于 0 是不够的,还需考虑它的实部能否存心义 .2. 两个虚数不可以比较大小 .3. 注意复数的虚部是指在 a +bi( a , b ∈ R) 中的实数 b ,即虚部是一个实数 .【稳固练习】1.(2015 ·福建 ) 若 (1 + i) + (2 - 3i) = a + b a ,b ∈ , 是虚数单位 ) ,则 a ,b 的值分别等于()i( R i,- 2 ,2 ,- 3D.-1,4 2. 设 z =+ i ,则 | z| 等于 ()3.(2015 ·课标全国Ⅱ ) 若 a 为实数,且 (2 +a a - 2i) =- 4i ,则 a 等于( ) i)( A. -若 i 为虚数单位,图中复平面内点 Z 表示复数 z ,则表示复数的点是 ( ) 江西 是 z 的共轭复数,若 z += , z - )i = 2(i 为虚数单位 ) ,则 z 等于( )) 2 (+ i B. - 1- iC. -1+- i6.(2015 ·江苏 ) 设复数 z 知足 z 2= + 是虚数单位 ) ,则 z 的模为________. 3 4i(i7. 若= a +b a ,b 为实数,i 为虚数单位 ) ,则 a +b =________.i(8. 复数 (3 + i) m -(2 + i) 对应的点在第三象限内,则实数 m 的取值范围是 ________.9. 计算: (1) ; (2) ;(3) +; (4).10. 复数 z 1=+ (10 -a 2)i , z 2=+ (2 a -5)i ,若 1+ z 2 是实数,务实数 a 的值 .【能力提高】211. 复数 z 1,z 2 知足 z 1= m + (4 -m)i ,z 2=2cos θ+( λ+ 3sin θ )i( m , λ,θ∈ R) ,而且 z 1= z 2 ,则 λ 的取值范围是 ()A.[ -1,1]12. 设 f n = n +n ( n ∈ * ,则会合 f ( n 中元素的个数为 ()( ) N) { )}无数个13. 已知复数 z = x + yi ,且 | z -2| =,则的最大值为 ________.14. 设 a ∈ ,若复数 z =+在复平面内对应的点在直线 x +y = 0 上,则 a 的值为 ____________. R15. 若 + 是对于 x 的实系数方程 x 2+bx +c =0 的一个复数根,则 b =,c =________.1 i________ 【稳固练习参照答案】解 (1) ==- 1- 3i.(2) ====+ i.(3) +=+=+=- 1.(4) ====-- i.10. 解1+z 2=+ ( a 2 -10)i ++ (2 a -5)i =+ [( a 2- 10) +(2 a -5)]i=+ ( a 2+ 2a -15)i.∵1 +z 2 是实数,∴ a 2+2a - 15=0,解得 a =- 5 或 a =3.又( a +5)( a -1) ≠0,∴ a ≠- 5 且 a ≠1,故 a =3.11. 分析 由复数相等的充要条件可得化简得 4-4cos 2θ= λ+3sin θ,由此可得 λ =- 4cos 2θ -2 223sin θ+4=- 4(1 -sin θ ) -3sin θ+ 4= 4sin θ-3sin θ=4 -,由于 sin θ∈[ - 1,1] ,所以4sin2θ- 3sin θ ∈. 答案C12. 分析f n =n + n = i n + - i) n ,( ) (ff(2) =- ,f(3) = , f (4)= ,f(5)= , ∴会合中共有 3 个元素 . 答案C(1) =0,20 2 013. 分析z -2| ==,∴(x -2) 2+y 2=3. 由图可知 max ==.∵|14. 分析 ∵ z =+=+ i ,∴依题意得+= ,∴ a =0.15. 分析 ∵实系数一元二次方程 x 2+ bx +c =0 的一个虚根为 1+i ,∴其共轭复数 1-i 也是方程的根 . 由根与系数的关系知,∴b =- 2, c = 3.。

高中数学7.1.2《复数的几何意义》基础过关练习题

高中数学7.1.2《复数的几何意义》基础过关练习题

第七章 7.1 7.1.2A 级——基础过关练1.(2019年北京海淀区二模)已知复数z 在复平面上对应的点为(1,-1),则( ) A .z =-1+i B .z =1+i C .z +i 是实数D .z +i 是纯虚数【答案】C 【解析】∵复数z 在复平面上对应的点为(1,-1),∴z =1-i.∴z +i =1-i +i =1,即z +i 是实数.故选C .2.已知0<a <2,复数z =a -i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)【答案】B 【解析】|z |2=a 2+1,∵0<a <2,0<a 2<4⇒1<a 2+1<5,∴1<|z |< 5.故选B . 3.(2019年陕西三模)在复平面内,表示复数z =5a +(6-a 2)i 的点在第二象限,则实数a 满足( )A .-6<a <0B .a <-6C .0<a <6D .-6<a <6【答案】A【解析】∵z =5a +(6-a 2)i对应的点在第二象限,∴⎩⎪⎨⎪⎧5a <0,6-a 2>0,解得-6<a <0.故选A .4.复平面内,向量OA →表示的复数为1+i ,将OA →向右平移一个单位后得到向量O ′A ′→,则向量O ′A ′→与点A ′对应的复数分别为( )A .1+i,1+iB .2+i,2+iC .1+i,2+iD .2+i,1+i【答案】C 【解析】向量OA →向右平移一个单位后起点O ′(1,0),∵OA ′→=OO ′→+O ′A ′→=OO ′→+OA →=(1,0)+(1,1)=(2,1),∴点A ′对应复数2+i.又O ′A ′→=OA →,∴O ′A ′→对应复数为1+i.故选C .5.(2020年宜宾模拟)已知i 是虚数单位,复数m +1+(2-m )i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2)C .(2,+∞)D .(-∞,-1)∪(2,+∞)【答案】A 【解析】∵复数m +1+(2-m )i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧m +1<0,2-m >0,解得m <-1.∴实数m 的取值范围是(-∞,-1).故选A . 6.(2020年重庆月考)已知实数m ,n 满足m -2i =n (2+i),则在复平面内,复数z =m +n i 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】∵m -2i =n (2+i),∴m -2i =2n +n i.∴⎩⎪⎨⎪⎧ m =2n ,n =-2,解得⎩⎪⎨⎪⎧m =-4,n =-2.∴复数z =m +n i =-4-2i.∴复数z =m +n i 所对应的点位于第三象限.故选C .7.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2的共轭复数为________.【答案】-2-3i 【解析】∵z 1=2-3i ,∴z 1对应的点为(2,-3),关于原点的对称点为(-2,3).∴z 2=-2+3i.z 2的共轭复数为-2-3i.8.已知复数z =1-2m i(m ∈R ),且|z |≤2,则实数m 的取值范围是________. 【答案】⎣⎡⎦⎤-32,32 【解析】|z |=1+4m 2≤2,解得-32≤m ≤32. 9.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 满足下列条件? (1)对应点在x 轴上方; (2)对应点在直线y =-x -5上.解:(1)由m 2-2m -15>0,得当m <-3或m >5时,z 的对应点在x 轴上方. (2)由(m 2+5m +6)+(m 2-2m -15)+5=0,得当m =-3-414或m =-3+414,z 的对应点在直线y =-x -5=0上.10.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值.解:因为OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i ,所以OZ 1→=(-3,4),OZ 2→=(2a,1).因为OZ 1→与OZ 2→共线,所以-3×1-4×2a =0,解得a =-38,即a 的值为-38.B 级——能力提升练11.(2020年合肥月考)设复数z 满足|z -1|=|z -i|(i 为虚数单位),z 在复平面内对应的点为(x ,y ),则( )A .y =-xB .y =xC .(x -1)2+(y -1)2=1D .(x +1)2+(y +1)2=1【答案】B 【解析】由z 在复平面内对应的点为(x ,y ),且|z -1|=|z -i|,得|x -1+y i|=|x +(y -1)i|,∴(x -1)2+y 2=x 2+(y -1)2,整理得y =x .故选B .12.已知复数z 满足|z |=2,则|z +3-4i|的最小值是( ) A .5 B .2 C .7D .3【答案】D 【解析】|z |=2表示复数z 在以原点为圆心,以2为半径的圆上,而|z +3-4i|表示圆上的点到(-3,4)这一点的距离,故|z +3-4i|的最小值为(-3)2+42-2=3.13.(多选)下列命题中,正确的是( ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|【答案】ABC 【解析】①任意复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,故A 正确;②由复数相等的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;③设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),若z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|,故C 正确;④虚部不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,故D 错.14.设A ,B 为锐角三角形的两个内角,则复数z =(cos B -tan A )+itan B 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为A ,B 为锐角三角形的两个内角,所以A +B >π2,即A >π2-B ,sin A >cos B ,cos B -tan A =cos B -sin Acos A <cos B -sin A <0.又tan B >0,所以点(cos B -tan A ,tan B )在第二象限.故选B .15.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别是A ,B ,C ,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的值是________.【答案】5 【解析】由复数的几何意义可知,OC →=xOA →+yOB →,即3-2i =x (-1+2i)+y (1-i),∴3-2i =(y -x )+(2x -y )i.由复数相等可得⎩⎪⎨⎪⎧ y -x =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4.∴x +y=5.16.已知两向量a ,b 对应的复数分别是z 1=-3,z 2=-12+m i(m ∈R ),且a ,b 的夹角为60°,求m 的值.解:因为a ,b 对应的复数分别为z 1=-3,z 2=-12+m i(m ∈R ),所以a =(-3,0),b =⎝⎛⎭⎫-12,m .又a ,b 的夹角为60°, 所以cos 60°=(-3,0)·⎝⎛⎭⎫-12,m (-3)2+02·⎝⎛⎭⎫-122+m 2,即12=32314+m 2,解得m =±32.17.已知复数z 对应的向量为OZ →(O 为坐标原点),OZ →与实轴正方向的夹角为120°,且复数z 的模为2,求复数z .解:根据题意可画图形如图所示,设点Z 的坐标为(a ,b ),∵|OZ →|=|z |=2,∠xOZ =120°,∴a =-1,b =±3,即点Z 的坐标为(-1,3)或(-1,-3).∴z =-1+3i 或z =-1-3i.C 级——探索创新练18.已知t 为实数,复数z =(t 2+t -2)+(t 2+3t +2)i. (1)当t 为何值时,复数z 为纯虚数?(2)当t =0时,复数z 在复平面内对应的点Z 落在直线y =-mx +n 上,其中mn >0,求1m +1n的最小值及取得最值时的m 和n 值. 解:(1)复数z 为纯虚数,∴⎩⎪⎨⎪⎧t 2+t -2=0,t 2+3t +2≠0,解得t =1.(2)当t =0时,点Z (-2,2),复数z 在复平面内对应的点Z 落在直线y =-mx +n 上,∴2m +n =2,∵mn >0,∴1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +n 2=32+m n +n 2m ≥32+2,当且仅当n 2=2m 2等号成立. 又2m +n =2,∴m =2-2,n =22-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复 数
[基础训练A组]
一、选择题
1.下面四个命题
(1) 0比?i大
(2)两个复数互为共轭复数,当且仅当其和为实数
(3) x?yi?1?i的充要条件为x?y?1
(4)如果让实数a与ai对应,那么实数集与纯虚数集一一对应,
其中正确的命题个数是( )
A.0 B.1 C.2 Байду номын сангаас.3
3. 若复数z?sin2a?i(1?cos2a)是纯虚数,则a= .
4. 设z?log2(m?3m?3)?i?log2(m?3)(m?R),若z对应的点在直线x?2y?1?0上,则m的值是 .
5. 已知z?(2?i),则z?z 1 / 8
322????222?2?2?
2.(i?i?1)3的虚部为( )
A.8i B.?8i C.8 D.?8
3.使复数为实数的充分而不必要条件是由 ( )
A.z?z B.z?z C.z为实数 D.z?z为实数
4.设z1?i4?i5?i6???i12,z2?i4?i5?i6???i12,则z1,z2的关系是( )
二、填空题
1. 如果z?a?bi(a,b?R,且a?0)是虚数,则z,z,z,z,z,z?z,z,z,z中是 虚数的有 _______个,是实数的有 个,相等的有 组.
2. 如果3?a?5,复数z?(a?8a?15)?(a?5a?14)i在复平面上的 对应点z在 象限.
A.z1?z2 B.z1??z2 C.z1?1?z2 D.无法确定
5. (1?i)20?(1?i)20的值是( )
A. ?1024 B. 1024 C. 0 D.1024
6.已知f(n)?in?i?n(i2??1,n?N)集合?f(n)?的元素个数是( )
A. 2 B. 3 C. 4 D. 无数个
相关文档
最新文档