《大高考》2016届高考复习数学理 五年高考真题 第八章 立体几何初步 第七节
高考复习数学立体几何初步第7章 第2节 空间几何体的表面积与体积
第二节空间几何体的表面积与体积————————————————————————————————[考纲传真]了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD.32 cmB [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4,∴r =2(cm).] 3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7-2-1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图7-2-1A .14斛B .22斛C .36斛D .66斛B [设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.]5.(2017·郑州质检)某几何体的三视图如图7-2-2所示(单位:cm),则该几何体的体积是________cm 3.图7-2-2323 [由三视图可知该几何体是由棱长为 2 cm 的正方体与底面为边长为 2 cm 的正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.](1)某几何体的三视图如图7-2-3所示,则该几何体的表面积等于( )图7-2-3A .8+22B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ)如图7-2-4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图7-2-4A .17πB .18πC .20πD .28π(1)B (2)A [(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.][规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.[变式训练1] (2016·全国卷Ⅲ)如图7-2-5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:31222245】图7-2-5A .18+36 5B .54+18 5C .90D .81B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.](1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7-2-6所示(单位:m),则该四棱锥的体积为________m 3.图7-2-6(1)C (2)2 [(1)过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π, V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.][规律方法] 1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.[变式训练2] 一个几何体的三视图如图7-2-7所示(单位:m),则该几何体的体积为________m 3.图7-2-783π [由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.]111V 的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π3B[由AB⊥BC,AB=6,BC=8,得AC=10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,则r=2.此时2r=4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.][迁移探究1]若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解]将直三棱柱补形为长方体ABEC-A′B′E′C′,则球O是长方体ABEC-A′B′E′C′的外接球,∴体对角线BC′的长为球O的直径.因此2R=32+42+122=13,故S球=4πR2=169π.[迁移探究2]若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解]如图,设球心为O,半径为r,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.[规律方法] 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大为13×12R2×R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.][思想与方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错与防范]1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.课时分层训练(三十九)空间几何体的表面积与体积A组基础达标(建议用时:30分钟)一、选择题1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.22π3 B.42π3C.22πD.42πB[依题意知,该几何体是以2为底面半径,2为高的两个同底圆锥组成的组合体,则其体积V=13π(2)2×22=423π.]2.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()【导学号:31222246】A.32π3B.4πC.2π D.4π3D[依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R=12+12+(2)2=2,解得R=1,所以V=4π3R3=4π3.]3.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图7-2-8所示,则该几何体的体积为()图7-2-8A.13+23πB.13+23πC.13+26πD .1+26πC [由三视图知,该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.故选C.]4.某几何体的三视图如图7-2-9所示,且该几何体的体积是3,则正视图中的x 的值是( )【导学号:31222247】图7-2-9A .2 B.92 C.32D .3D [由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=12×(1+2)×2=3,∴V=13x·3=3,解得x=3.]5.(2016·江南名校联考)一个四面体的三视图如图7-2-10所示,则该四面体的表面积是()图7-2-10A.1+ 3 B.2+ 3C.1+2 2 D.2 2B[四面体的直观图如图所示.侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是2的等腰直角三角形,SA=SC=AB=BC=2,AC=2.设AC的中点为O,连接SO,BO,则SO⊥AC,∴SO⊥平面ABC,∴SO⊥BO.又OS=OB=1,∴SB=2,故△SAB与△SBC均是边长为2的正三角形,故该四面体的表面积为2×1 2×2×2+2×34×(2)2=2+ 3.]二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.【导学号:31222248】7 [设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7.]7.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.12 [设正六棱锥的高为h ,棱锥的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.]8.某几何体的三视图如图7-2-11所示,则该几何体的体积为________.图7-2-11136π [由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=136π.]三、解答题9.如图7-2-12,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,求三棱锥D -ABC 的体积的最大值.图7-2-12[解] 由题意知,线段AB +BD 与线段AC +CD 的长度是定值,∵棱AD 与棱BC 相互垂直,设d 为AD 到BC 的距离,4分则V D -ABC=AD ·BC ×d ×12×13=2d , 当d 最大时,V D -ABC 体积最大.8分 ∵AB +BD =AC +CD =10, ∴当AB =BD =AC =CD =5时, d 有最大值42-1=15.此时V =215.12分10.四面体ABCD 及其三视图如图7-2-13所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图7-2-13(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.[解] (1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,3分∴四面体ABCD 的体积V =13×12×2×2×1=23.5分(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,8分∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG . ∴四边形EFGH 是矩形.12分B 组 能力提升 (建议用时:15分钟)1.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图7-2-14所示.若该几何体的表面积为16+20π,则r =( )图7-2-14A .1B .2C .4D .8B [如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.]2.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.14 [设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBEV A -PBC=13S △BDE ·h 13S △PBC ·h=14.] 3.(2016·全国卷Ⅰ)如图7-2-15,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G.图7-2-15(1)证明:G 是AB 的中点;(2)在图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.[解] (1)证明:因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.3分因为PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.5分(2)在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC内的正投影.7分理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.10分由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2,所以四面体PDEF的体积V=13×12×2×2×2=43.12分。
2016年数学立体几何高考试题及答案
2016年数学立体几何高考试题及答案1.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.2如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.4如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.解答:解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S△PCF•EG=.5如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解答:解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.6如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.解答:证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.7如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.8如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O 为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.解答:解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为9三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.解答:(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO=,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BC=PB=,CD=∴cos∠COD=.1111AD上一点,且AP=a3,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.2.如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B 到平面PCD 的距离;4.如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ; 若不存在,说明理由.5.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.6.如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°(1)求证:PC⊥BC(2)求点A到平面PBC的距离.1. 223a∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD=PQ,∴B1D1∥PQ,又B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ,∴PQPM=PDAP=2,即PQ=2PM,又△APM∽△ADP,∴PMBD=APAD=13,∴PM=13BD,又BD =2a ,∴PQ =223a .2.[答案] 22 ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(2)过A 作AF ⊥PD ,垂足为F .在Rt PAD 中,PA =2,AD =BC =4,PD =42+22=25,AF ·PD =PA ·AD ,∴AF =2×425=455,即点B 到平面PCD 的距离为455.4.[解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP ,∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合.取PO 的中点N ,连结EN 并延长交PB 于F ,∵EA =1,PO =2,∴NO =1, 又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB ,∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时即可. 5. (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B , ∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1, 又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1, 即CF ⊥平面EFB 1,且CF =BF =2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF=13×12·EF ·B 1F ·CF =13×12×3×6×2=1.6.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°知,BC ⊥DC ,∵PD ∩DC =D ,∴BC ⊥平面PDC ,∴BC ⊥PC . (2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1,∴V P -ABC =13S △ABC ·PD =13,∵PD⊥平面ABCD,∴PD⊥DC,∵PD=DC=1,∴PC=2,∵PC⊥BC,BC=1,∴S△PBC=12PC·BC=22,∵V A-PBC=V P-ABC,∴13S△PBC·h=13,∴h=2,∴点A到平面PBC的距离为 2.。
【高考数学专题复习】第八章 立体几何初步测试(解析版)
第八章 立体几何初步测试一.单选题(每题5分,共12题,共60分)1.在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( )A .43B .94 C .92 D .3【答案】B【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF =得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形,又3AB BD AD CD ====,4AC BC ==,可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<,则3FG x =,()31HG x =-,于是2199(1)9,0124EFGH S FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭ 当12x =时,四边形EFGH 的面积有最大值94.故选:B.2.如图,四边形ABCD 是边长为1的正方形,MD ⊥ABCD ,NB ⊥ABCD .且MD =NB =1.则下列结论中:①MC ⊥AN②DB ∥平面AMN③平面CMN ⊥平面AMN④平面DCM ∥平面ABN所有假命题的个数是( )A .0B .1C .2D .3【答案】B【解析】由题画出该几何体外接的正方体.对①,因为//MC EB ,AN EB ⊥,故MC ⊥AN 成立.故①正确.对②,因为//,DB MN MN ⊂平面AMN,故DB ∥平面AMN 成立.故②正确.对③,连接AC 易得A MNC -为正四面体.故平面CMN ⊥平面AMN 不成立.故③错误.对④,正方体中平面DCM 与平面ABN 分别为前后两面,故④正确.故选:B3.已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【答案】C【解析】由题意知,l l αββ⋂=∴⊂,,n n l β⊥∴⊥Q .故选C .4.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥【答案】C【解析】对于A 、B 、D 均可能出现//l β,而对于C 是正确的.5.已知正四棱柱中,,则CD 与平面所成角的正弦值等于( )A .B .C .D .【答案】A【解析】设 ,面积为6.在Rt ABC V 中,90ABC ∠=o ,P 为V ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P ABC -中直角三角形的个数为( )A .4B .3C .2D .1【答案】A【解析】由题意,知PA ⊥平面ABC 可得PAC PAB ∆∆,都是直角三角形,且PA BC ⊥,又90ABC ∠=o ,所以V ABC 是直角三角形,且BC ⊥平面PAB ,所以BC PB ⊥,即PBC △为直角三角形.故四面体P ABC -中共有4个直角三角形.7.已知直线//l α,直线a α⊂,则l 与α必定( )A .平行B .异面C .相交D .无公共点 【答案】D【解析】已知直线//l α,所以直线l 与平面α无公共点,又由a α⊂,所以直线l 与平面a 无公共点,故选D .8.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN //平面11ACC A ,则这样的MN 有 ( )A .1条B .2条C .3条D .无数条【答案】D 【解析】由题意得112A B CB a==.在11,BA CB 上分别取,M N ,使1BM B N =,过,M N 作11,MM AB NN BC ⊥⊥,垂足分别为11,M N ,则1111,MM AA NN BB P P ,故11111,BM B N BN BM BA BA B C BC==.由于111B N BM BA B C =,故11BM BN BA BC=,从而11M N AC P ,可得11M N P 平面11ACC A .又1MM P 平面11ACC A ,可得平面11MM N N P 平面11ACC A .由于MN ⊂平面11MM N N ,所以//MN 平面11ACC A ,从而满足条件的MN 有无数条.选D .9.正方体1111ABCD A B C D -中,直线AD 与平面11A BC 所成角正弦值为( )A .12B .32C .33D .63【答案】C【解析】如图所示,正方体1111ABCD A B C D -中,直线AD 与11B C 平行,则直线AD 与平面11A BC 所成角正弦值即为11B C 与平面11A BC 所成角正弦值.因为11A BC ∆为等边三角形,则1B 在平面11A BC 即为11A BC ∆的中心,则11B C O ∠为11B C 与平面11A BC 所成角.可设正方体边长为1,显然36=2=BO ⨯,因此2163=1()=3B O -,则1111103sin B B C O B C ∠==,故答案选C.10. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1D D .A 1D 1【答案】B 【解析】以A 为原点,1AB AD AA ,,所在直线分别为x y z ,,轴建立空间直角坐标系,设正方体棱长为1,则()000A ,,,()110C ,,,()100B ,,,()010D ,,, ()1001A ,,,11122E ⎛⎫ ⎪⎝⎭,, 11122CE ⎛⎫∴=-- ⎪⎝⎭u u u v ,, ()110AC =u u u v ,,,()110BD =-u u u v ,,,()1011A D =-u u u u v ,,,()1001AA =-u u u v ,,110022CE BD ∴=-+=u u u v u u u v n 则CE BD ⊥u u u v u u u v 即CE BD ⊥故选B11.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B 3C .23D .22【答案】A【解析】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=2333=,∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.12.已知正方体1111ABCD A B C D -的棱长为2,P 是底面ABCD 上的动点,1PA PC ≥,则满足条件的点P 构成的图形的面积等于( )A .12B .4πC .44π- D .72【答案】A【解析】如图,以,AB AD 为,x y 轴在平面ABCD 内建立平面直角坐标系,设(,)P x y ,由1PA PC ≥得22222(2)(2)2x y x y +-+-+30x y +-≥,设直线:30l x y +-=与正方形ABCD 的边交于点,M N ,则P 点在CMN ∆内部(含边界),易知(1,2)M ,(2,1)N ,∴1CM CN ==,111122CMN S ∆=⨯⨯=. 故选A .二.填空题(每题5分,共20分)13.已知在直角梯形ABCD 中,AB AD ⊥,CD AD ⊥,224AB AD CD ===,将直角梯形ABCD 沿AC 折叠,使平面BAC ⊥平面DAC ,则三棱锥D ABC -外接球的体积为__________. 【答案】323π 【解析】结合题意画出折叠后得到的三棱锥D ABC -如图所示,由条件可得在底面ACB ∆中,90,22ACB AC BC ∠=︒==。
2016理科数学高考真题分类第七单元 立体几何
第七单元 立体几何G1 空间几何体的结构 14.G1[2016·浙江卷] 如图1-3,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.14.12[解析] 在△ABC 中,因为AB =BC =2,∠ABC =120°,所以∠BAD =∠BCA =30°.由余弦定理可得AC 2=AB 2+BC 2-2AB ·BC cos 120°=22+22-2×2×2cos 120°=12,所以AC =2 3.设AD =x ,0<x <23,则DC =23-x ,S △PDC =12PD ·DC ·sin ∠PDC =12x (23-x )sin∠PDC ,易知当x =3,∠PDC =π2时,△PDC 的面积最大,此时AC ⊥BD ,AC ⊥PD ,且D 为AC 的中点,当BD ⊥平面PDC 时,高为最大,故四面体PBCD 的体积的最大值是13×12×3×3×1=12.17.G1、G7、B12[2016·江苏卷] 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m17.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍).当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 mG2 空间几何体的三视图和直观图 6.G2[2016·北京卷] 某三棱锥的三视图如图1-2所示,则该三棱锥的体积为( )图1-2A.16B.13C.12D .1 6.A [解析] 根据三视图得到如图所示的直观图.根据题意知三棱锥的底面三角形是直角边长为1的等腰直角三角形,三棱锥的高h 为1,故其体积V =13S △ABC ·h =13×12×1×1×1=16.6.G2[2016·全国卷Ⅰ] 如图1-1,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图1-1A .17πB .18πC .20πD .28π6.A [解析] 该几何体为一个球去掉八分之一,设球的半径为r ,则78×43πr 3=28π3,解得r =2,故该几何体的表面积为78×4π×22+34×π×22=17π.9.G2[2016·全国卷Ⅲ] 如图1-3,网格纸上小正方形的边长为1,粗实线画出的是某多A .18+36 5B .54+18 5C .90D .819.B [解析] 由三视图可知,该几何体为一个平行六面体,其上、下底面是边长为3的正方形,高为6,故其表面积S =2×(32+3×32+62+3×6)=54+18 5.13.G2,G7[2016·四川卷] 已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图1-2所示,则该三棱锥的体积是________.图1-213.33[解析] 由图易知正视图是腰长为2的等腰三角形,∵三棱锥的4个面都是腰长为2的等腰三角形,∴三棱锥的俯视图与其正视图全等,且三棱锥的高h =1,则所求体积V =13Sh =13×⎝⎛⎭⎫12×23×1×1=33. 6.G2[2016·全国卷Ⅱ] 图1-2是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )图1-2A .20πB .24πC .28πD .32π6.C [解析] 几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得l =22+(23)2=4,故S 表=πr 2+ch +πrl =4π+16π+8π=28π. 5.G2,G8[2016·山东卷] 一个由半球和四棱锥组成的几何体,其三视图如图1-2所示,则该几何体的体积为( )图1-2A.13+23πB.13+23πC.13+26π D .1+26π 5.C [解析] 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,半球的直径为2,∴该几何体的体积为13×1×1×1+12×43×π⎝⎛⎭⎫223=13+26π. 11.G2[2016·天津卷] 已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图1-2所示(单位:m),则该四棱锥的体积为________m 3.图1-211.2 [解析] 根据三视图可知,该四棱锥的底面积S =2×1=2,高h =3,故其体积V =2×3×13=2.11.G2[2016·浙江卷] 某几何体的三视图如图1-2所示(单位:cm),则该几何体的表面积是________cm 2,体积是311.72 32 [解析] 该几何体的直观图如图所示,该几何体是由两个相同的长方体放在一起构成的,而每个长方体的体积为2×2×4=16(cm 3),表面积为2×(2×2+2×4+4×2)=40(cm 2),故几何体的体积为16×232×40-2×2×2=72(cm 2).G3 平面的基本性质、空间两条直线 11.G3,G4[2016·全国卷Ⅰ] 平面α过正方体ABCD - A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32B.22C.33 D.1311.A [解析] 因为平面α∥平面CB 1D 1,所以平面α与平面ABCD 的交线m 平行于平面CB 1D 1与平面ABCD 的交线l .因为在正方体中平面ABCD 平行于平面A 1B 1C 1D 1,所以l ∥B 1D 1,所以m ∥B 1D 1.同理,n 平行于平面CB 1D 1与平面ABB 1A 1的交线.因为平面ABB 1A 1∥平面CDD 1C 1,所以平面CB 1D 1与平面ABB 1A 1的交线平行于平面CB 1D 1与平面CDD 1C 1的交线CD 1,所以n ∥CD 1.故m ,n 所成的角即为B 1D 1,CD 1所成的角,显然所成的角为60°,则其正弦值为32.6.G3,A2[2016·山东卷] 已知直线a,b分别在两个不同的平面α,β内,则“直线a 和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.A[解析] 当两个平面内的直线相交时,这两个平面有公共点,即两个平面相交;但当两个平面相交时,两个平面内的直线不一定有交点.G4 空间中的平行关系11.G3,G4[2016·全国卷Ⅰ] 平面α过正方体ABCD -A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22C.33 D.1311.A[解析] 因为平面α∥平面CB1D1,所以平面α与平面ABCD的交线m平行于平面CB1D1与平面ABCD的交线l.因为在正方体中平面ABCD平行于平面A1B1C1D1,所以l∥B1D1,所以m∥B1D1.同理,n平行于平面CB1D1与平面ABB1A1的交线.因为平面ABB1A1∥平面CDD1C1,所以平面CB1D1与平面ABB1A1的交线平行于平面CB1D1与平面CDD1C1的交线CD1,所以n∥CD1.故m,n所成的角即为B1D1,CD1所成的角,显然所成的角为60°,则其正弦值为3 2.14.G4,G5[2016·全国卷Ⅱ] α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)14.②③④[解析] 对于①,m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为n∥α,所以可过直线n作平面γ与平面α相交于直线c,则n∥c,因为m⊥α,所以m⊥c,所以m⊥n,故正确;对于③,由两个平面平行的性质可知其正确;对于④,由线面所成角的定义和等角定理可知其正确.故正确的有②③④.17.G4,G5,G11[2016·北京卷] 如图1-3所示,在四棱锥P-ABCD中,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面P AB.(2)求直线PB与平面PCD所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.17.解:(1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD ,所以PD ⊥平面P AB . (2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD . 如图建立空间直角坐标系O - xyz .由题意得,A (0,1,0),B (11,0),P (0,0,1). 设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB →=(1,1,-1),所以 cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33,所以直线PB 与平面PCD 所成角的正弦值为33. (3)设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0, 即(-1,-λ,λ)·(1,-2,2)=0, 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.16.G4、G5[2016·江苏卷] 如图1-4,在直三棱柱ABC - A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .16.证明:(1)在直三棱柱ABC - A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABC - A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1,因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1,又因为A 1C 1⊥A 1B 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又因为B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F . 19.G4、G11[2016·全国卷Ⅲ] 如图1-5,四棱锥P - ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求直线AN 与平面PMN19.解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,所以TN 綊AM ,故四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB . (2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-BC22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A - xyz ,由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N (52,1,2),PM →=(0,2,-4),PN →=(52,1,-2),AN →=(52,1,2).设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1),于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.故直线AN 与平面PMN 所成角的正弦值为85.18.G7,G4,G11[2016· - ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P - CD - A PCE 所成角的正弦值.18.解:(1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC =ED , 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一:易知P A ⊥平面ABCD .由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD , 从而CD ⊥PD ,所以∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 因为P A ⊥平面ABCD , 所以P A ⊥CE ,于是CE ⊥平面P AH , 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于点Q ,则AQ ⊥平面PCE , 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322, 所以sin ∠APH =AH PH =13.方法二:由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD ,于是CD ⊥PD ,从而∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.由P A ⊥AB ,P A ⊥CD ,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A - xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0,设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13,所以直线P A 与平面PCE 所成角的正弦值为13.17.G4,G5,G11[2016·AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F - BC - A 的余弦值.图1-417.解:(1)证明:设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF .又EF ∥OB , 所以GI ∥OB .在△CFB 中,因为H 是FB 的中点, 所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)方法一:连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O - xyz . 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0,可得平面BCF 的一个法向量为m =(-1,1,33). 因为平面ABC 的一个法向量为n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m|·|n|=77.所以二面角F - BC - A 的余弦值为77.方法二:连接OO ′,过点F 作FM 垂直OB 于点M , 则有FM ∥OO ′.又OO ′⊥平面ABC , 所以FM ⊥平面ABC ,可得FM =FB 2-BM 2=3.过点M 作MN 垂直BC 于点N ,连接FN , 可得FN ⊥BC ,从而∠FNM 为二面角F - BC - A 的平面角.又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62, 从而FN =422,可得cos ∠FNM =77. 所以二面角F - BC - A 的余弦值为77.17.G4、G11[2016·天津卷] 如图1-4,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2.(1)求证:EG ∥平面ADF ; (2)求二面角O - EF - C 的正弦值;(3)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.图1-417.解:依题意,OF ⊥平面ABCD ,如图所示,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD →=(2,0,0),AF →=(1,-1,2).设n 1=(x 1,y 1,z 1)为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧2x 1=0,x 1-y 1+2z 1=0.不妨设z 1=1,可得n 1=(0,2,1).又EG →=(0,1,-2),可得EG →·n 1=0.又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF .(2)易证OA →=(-1,1,0)为平面OEF 的一个法向量.依题意,EF →=(1,1,0),CF →=(-1,1,2).设n 2=(x 2,y 2,z 2)为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,-x 2+y 2+2z 2=0.不妨设x 2=1,可得n 2=(1,-1,1).因此有cos 〈OA →,n 2〉=OA →·n 2|OA →|·|n 2|=-63,于是sin 〈OA →,n 2〉=33,所以二面角O - EF - C 的正弦值为33. (3)由AH =23HF ,得AH =25AF .因为AF →=(1,-1,2),所以AH →=25AF →=(25,-25,45),进而有H (-35,35,45),从而BH →=(25,85,45),因此cos 〈BH →,n 2〉=BH →·n 2|BH →|·|n 2|=-721,所以直线BH 和平面CEF 所成角的正弦值为721.G5 空间中的垂直关系 14.G4,G5[2016·全国卷Ⅱ] α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)14.②③④ [解析] 对于①,m ⊥n ,m ⊥α,n ∥β,则α,β的位置关系无法确定,故错误;对于②,因为n ∥α,所以可过直线n 作平面γ与平面α相交于直线c ,则n ∥c ,因为m ⊥α,所以m ⊥c ,所以m ⊥n ,故正确;对于③,由两个平面平行的性质可知其正确;对于④,由线面所成角的定义和等角定理可知其正确.故正确的有②③④.17.G4,G5,G11[2016·北京卷] 如图1-3所示,在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.图1-317.解:(1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD ,所以PD ⊥平面P AB . (2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD . 如图建立空间直角坐标系O - xyz .由题意得,A (0,1,0),B (11,0),P (0,0,1). 设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB →=(1,1,-1),所以 cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33,所以直线PB 与平面PCD 所成角的正弦值为33. (3)设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →. 因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0, 即(-1,-λ,λ)·(1,-2,2)=0, 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.16.G4、G5[2016·江苏卷] 如图1-4,在直三棱柱ABC - A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .16.证明:(1)在直三棱柱ABC - A 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABC - A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1,因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1,又因为A 1C 1⊥A 1B 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又因为B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F . 18.G5,G11[2016·全国卷Ⅰ] 如图1-4,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D - AF - E 与二面角C - BE - F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E - BC - A 的余弦值.图1-418.解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,又DF ∩FE =F ,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G - xyz .由(1)知∠DFE 为二面角D - AF - E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C - BE - F 的平面角,故∠CEF =60°,从而可得C (-2,0,3),所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨n ·EB →=0,即⎩⎨4y =0,所以可取n =(3,0,-3).设m =(x 1,y 1,z 1)是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4), 则cos 〈n ,m 〉=n ·m |n||m |=-21919,结合图形得,二面角E - BC - A 的余弦值为-21919.19.G5,G11[2016·全国卷Ⅱ] 如图1-4,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B - D ′A - C 的正弦值.图1-419.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2, 故D ′H ⊥OH .又D ′H ⊥EF ,且OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H - xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则⎩⎪⎨m ·AD ′→=0,即⎩⎪⎨⎪113x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B - D ′A - C 的正弦值是29525.17.G4,G5,G11[2016·山东卷] 在如图1-4所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F - BC - A 的余弦值.图1-417.解:(1)证明:设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF .又EF ∥OB , 所以GI ∥OB .在△CFB 中,因为H 是FB 的中点, 所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)方法一:连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O - xyz . 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎨⎧-23x -23y =0,-3y +3z =0,可得平面BCF 的一个法向量为m =(-1,1,33). 因为平面ABC 的一个法向量为n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m|·|n|=77.所以二面角F - BC - A 的余弦值为77.方法二:连接OO ′,过点F 作FM 垂直OB 于点M , 则有FM ∥OO ′.又OO ′⊥平面ABC , 所以FM ⊥平面ABC ,可得FM =FB 2-BM 2=3.过点M 作MN 垂直BC 于点N ,连接FN , 可得FN ⊥BC ,从而∠FNM 为二面角F - BC - A 的平面角.又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62, 从而FN =422,可得cos ∠FNM =77. 所以二面角F - BC - A 的余弦值为77.17.G5、G10[2016·浙江卷] 如图1-4,在三棱台ABC - DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ; (2)求二面角B - AD - F17.解:(1)证明:延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,且AC ⊥BC , 所以AC ⊥平面BCK , 因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK .所以BF ⊥平面ACFD(2)方法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以,∠BQF 是二面角B - AD - F 的平面角.在Rt △ACK 中,AC =3,CK =2,易得FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34.所以,二面角B - AD - F 的平面角的余弦值为34.方法二:延长AD ,BE ,CF 相交于一点K取BC 的中点O ,连接KO ,则⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以OB →,OK →的方向为x ,z 轴的正方向,建立空间直角坐标系O - xyz (如图所示).由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E (12,0,32),F (-12,0,32).因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角B - AD - F 的平面角的余弦值为34.G6 三垂线定理 G7 棱柱与棱锥 13.G2,G7[2016·四川卷] 已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图1-2所示,则该三棱锥的体积是________.图1-213.33[解析] 由图易知正视图是腰长为2的等腰三角形,∵三棱锥的4个面都是腰长为2的等腰三角形,∴三棱锥的俯视图与其正视图全等,且三棱锥的高h =1,则所求体积V =13Sh =13×⎝⎛⎭⎫12×23×1×1=33.17.G1、G7、B12[2016·江苏卷] 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m17.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3),正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m18.G7,G4,G11[2016·四川卷] 如图1-4,在四棱锥P - ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P - CD - A PCE 所成角的正弦值.18.解:(1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC =ED , 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一:易知P A ⊥平面ABCD .由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD , 从而CD ⊥PD ,所以∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 因为P A ⊥平面ABCD , 所以P A ⊥CE ,于是CE ⊥平面P AH , 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于点Q ,则AQ ⊥平面PCE , 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322, 所以sin ∠APH =AH PH =13.方法二:由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD ,于是CD ⊥PD ,从而∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.由P A ⊥AB ,P A ⊥CD ,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A - xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0,设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13,所以直线P A 与平面PCE 所成角的正弦值为13.G8 多面体与球 10.G8[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2C .6π D.32π310.B [解析] 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意.当球与直三棱柱的上、下底面相切时,设球的半径为r 2,则2r 2=3,即r 2=32,∴球的体积V 的最大值为43π×⎝⎛⎭⎫323=92π.5.G2,G8[2016·山东卷] 一个由半球和四棱锥组成的几何体,其三视图如图1-2所示,则该几何体的体积为( )图1-2A.13+23πB.13+23πC.13+26π D .1+26π 5.C [解析] 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,半球的直径为2,∴该几何体的体积为13×1×1×1+12×43×π⎝⎛⎭⎫223=13+26π. G9 空间向量及运算G10 空间向量解决线面位置关系 17.G5、G10[2016·浙江卷] 如图1-4,在三棱台ABC - DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ; (2)求二面角B - AD - F 的平面角的余弦值.17.解:(1)证明:延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,且AC ⊥BC , 所以AC ⊥平面BCK , 因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK .所以BF ⊥平面ACFD(2)方法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以,∠BQF 是二面角B - AD - F 的平面角.在Rt △ACK 中,AC =3,CK =2,易得FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34.所以,二面角B - AD - F 的平面角的余弦值为34.方法二:延长AD ,BE ,CF 相交于一点K取BC 的中点O ,连接KO ,则⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以OB →,OK →的方向为x ,z 轴的正方向,建立空间直角坐标系O - xyz (如图所示).由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E (12,0,32),F (-12,0,32).因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角B - AD - F 的平面角的余弦值为34.G11 空间角与距离的求法6.G11[2016·上海卷] 如图1-1所示,在正四棱柱ABCD - A 1B 1C 1D 1中,底面ABCD 的边长为3,BD 1与底面所成的角的大小为arctan 23,则该正四棱柱的高等于________.图1-16.22 [解析] 连接BD ,由题意得BD =32,tan ∠DBD 1=DD 1BD =23⇒DD 132=23⇒DD 1=2 2.19.G11[2016·上海卷] 将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图1-4所示,长为2π3,长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C - O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.图1-419.解:(1)由题意可知,圆柱的高h =1,底面半径r =1. 由的长为π3,可知∠A 1O 1B 1=π3,所以S △O 1A 1B 1=12O 1A 1·O 1B 1·sin ∠A 1O 1B 1=34,所以V 三棱锥C - O 1A 1B 1=13S △O 1A 1B 1·h =312.(2)设过点B 1的母线与下底面交于点B ,则BB 1∥AA 1,连接CB ,OB ,所以∠CB 1B 或其补角为直线B 1C 与AA 1所成的角.由长为2π3,可知∠AOC =2π3,又∠AOB =∠A 1O 1B 1=π3,所以∠COB =π3,从而三角形COB 为等边三角形,得CB =1.因为B 1B ⊥平面AOC ,所以B 1B ⊥CB . 在△CB 1B 中,因为∠B 1BC =π2,CB =1,B 1B =1,所以∠CB 1B =π4, 从而直线B 1C 与AA 1所成的角的大小为π4.17.G4,G5,G11[2016·北京卷] 如图1-3所示,在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.17.解:(1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD ,所以PD ⊥平面P AB . (2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥AD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD . 如图建立空间直角坐标系O - xyz .由题意得,A (0,1,0),B (11,0),P (0,0,1). 设平面PCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB →=(1,1,-1),所以 cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33,所以直线PB 与平面PCD 所成角的正弦值为33. (3)设M 是棱P A 上一点,则存在λ∈[0,1]使得AM →=λAP →. 因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0, 即(-1,-λ,λ)·(1,-2,2)=0, 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.18.G5,G11[2016·全国卷Ⅰ] 如图1-4,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D - AF - E 与二面角C - BE - F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E - BC - A 的余弦值.图1-418.解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,又DF ∩FE =F ,所以AF ⊥平面EFDC . 又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G - xyz .由(1)知∠DFE 为二面角D - AF - E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C - BE - F 的平面角,故∠CEF =60°,从而可得C (-2,0,3),所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m =(x 1,y 1,z 1)是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4), 则cos 〈n ,m 〉=n ·m |n||m |=-21919,结合图形得,二面角E - BC - A 的余弦值为-21919.19.G4、G11[2016·全国卷Ⅲ] 如图1-5,四棱锥P - ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求直线AN 与平面PMN19.解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,所以TN 綊AM ,故四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB . (2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-BC22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A - xyz ,由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N (52,1,2),PM →=(0,2,-4),PN →=(52,1,-2),AN →=(52,1,2).设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1),于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.故直线AN 与平面PMN 所成角的正弦值为85.18.G7,G4,G11[2016· - ABCD 中,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .E 为棱AD 的中点,异面直线P A 与CD 所成的角为90°.(1)在平面P AB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由; (2)若二面角P - CD - A PCE 所成角的正弦值.18.解:(1)在梯形ABCD 中,AB 与CD 不平行.延长AB ,DC ,相交于点M (M ∈平面P AB ),点M 即为所求的一个点.理由如下: 由已知,BC ∥ED ,且BC =ED , 所以四边形BCDE 是平行四边形, 从而CM ∥EB .又EB ⊂平面PBE ,CM ⊄平面PBE , 所以CM ∥平面PBE .(说明:延长AP 至点N ,使得AP =PN ,则所找的点可以是直线MN 上任意一点)(2)方法一:易知P A ⊥平面ABCD .由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD , 从而CD ⊥PD ,所以∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.设BC =1,则在Rt △P AD 中,P A =AD =2.过点A 作AH ⊥CE ,交CE 的延长线于点H ,连接PH . 因为P A ⊥平面ABCD , 所以P A ⊥CE ,于是CE ⊥平面P AH , 所以平面PCE ⊥平面P AH .过A 作AQ ⊥PH 于点Q ,则AQ ⊥平面PCE , 所以∠APH 是P A 与平面PCE 所成的角. 在Rt △AEH 中,∠AEH =45°,AE =1, 所以AH =22. 在Rt △P AH 中,PH =P A 2+AH 2=322, 所以sin ∠APH =AH PH =13.方法二:由已知,CD ⊥P A ,CD ⊥AD ,P A ∩AD =A , 所以CD ⊥平面P AD ,于是CD ⊥PD ,从而∠PDA 是二面角P - CD - A 的平面角,所以∠PDA =45°.由P A ⊥AB ,P A ⊥CD ,可得P A ⊥平面ABCD . 设BC =1,则在Rt △P AD 中,P A =AD =2.作Ay ⊥AD ,以A 为原点,以AD →,AP →的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A - xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0),所以PE →=(1,0,-2),EC →=(1,1,0),AP →=(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·PE →=0,n ·EC →=0,得⎩⎪⎨⎪⎧x -2z =0,x +y =0,设x =2,解得n =(2,-2,1).设直线P A 与平面PCE 所成角为α,则sin α=|n ·AP →||n |·|AP →|=22×22+(-2)2+12=13,所以直线P A 与平面PCE 所成角的正弦值为13.19.G5,G11[2016·全国卷Ⅱ] AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B - D ′A - C 的正弦值.图1-419.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2, 故D ′H ⊥OH .又D ′H ⊥EF ,且OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H - xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,。
2016立体几何高考题及答案【最新资料】
2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
《大高考》2016届高考复习数学理 五年高考真题 第八章 立体几何初步 第四节
第四节空间中平行的判定与性质考点空间中平行的判定与性质1.(2013·广东,6)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β解析A项中,m与n还可能平行或异面,故不正确;B项中,m与n还可能异面,故不正确;C项中,α与β还可能平行或相交,故不正确;D项中,∵m⊥α,m∥n,∴n⊥α.又n∥β,∴α⊥β,故选D.答案 D2.(2012·四川,6)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B不正确;如图,平面α∩β=b,a∥α,a∥β,过直线a作平面ε∩α=c,过直线a作平面γ∩β=d,∵a∥α,∴a∥c,∵a∥β,∴a∥d,∴d∥c,∵c⊂α,d⊄α,∴d∥α,又∵d⊂β,∴d∥b,∴a∥b,选项C正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D不正确.答案 C3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为BC的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.4.(2014·江苏,16)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.证明(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,P A=6,BC=8,所以DE∥P A,DE=12P A=3,EF=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又P A⊥AC,DE∥P A,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.(1)证明连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)解因为P A⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12. 设B (m ,0,0)(m >0),则C (m ,3,0),AC→=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎨⎧mx +3y =0,32y +12z =0,可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12,三棱锥E -ACD 的体积V =13×12×3×32×12=38.6.(2014·湖北,19)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.法一(几何法)(1)证明 如图1,连接AD 1,由ABCD -A 1B 1C 1D 1是正方体,知BC 1∥AD 1. 当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1. 所以BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)解 如图2,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1,于是EQ =FP =1+λ2,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG ,则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN ,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点,所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝ ⎛⎭⎪⎫222=λ2+12,OG 2=1+(2-λ)2-⎝ ⎛⎭⎪⎫222=(2-λ)2+12, 由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.法二(向量方法)以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图3所示的空间直角坐标系D -xyz .由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0). (1)证明 当λ=1时,FP→=(-1,0,1), 又因为BC 1→=(-2,0,2), 所以BC 1→=2FP →,即BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0,可得⎩⎨⎧x +y =0,-x +λz =0. 于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1).若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则m·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角.7.(2013·江苏,16)如图,在三棱锥S ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .证明 (1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点,又因为E 是SA 的中点,所以EF ∥AB .因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .同理EG ∥平面ABC .又EF ∩EG =E ,所以平面EFG ∥平面ABC .(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC .因为BC ⊂平面SBC ,所以AF ⊥BC .又因为AB ⊥BC ,AF ∩AB =A ,AF ,AB ⊂平面SAB ,所以BC ⊥平面SAB .因为SA ⊂平面SAB ,所以BC ⊥SA .8.(2013·新课标全国Ⅱ,18)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C E 的正弦值.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点.又D 是AB 的中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,CB→的方向为y 轴正方向, CC 1→的方向为z 轴正方向, 建立如图所示的空间直角坐标系C xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2). CD→=(1,1,0),CE →=(0,2,1), CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0. 可取n =(1,-1,-1).同理,设m =(x 2,y 2,z 2)是平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0, 即⎩⎨⎧2y 2+z 2=0,2x 2+2z 2=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C E 的正弦值为63.。
立体几何专题(大题)(理科)(2016高考真题分专题复习)
2016立体几何专题(大题)(理)
1.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB 的中点,AB=BE=2.
(1)求证:EG∥平面ADF;
(2)求二面角O﹣EF﹣C的正弦值;
(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
2.如图,在三棱台ABC-DEF中,已知平面BCFE⊥平面ABC,∠
ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的余弦值.
3.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值,若不存在,说明理由.
4.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,
BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角
为90°.
(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并
说明理由;
(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
圆O′的直径,FB是圆台的一条母线.
(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F-BC-A的余
弦值.。
2016年全国各地高考数学试题及解答分类大全(立体几何 )
2016 年全国各地高考数学试题及解答分类大全(立体几何 )一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D.1 【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱 锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【名师点睛】由三视图还原几何体的方法:6.(2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+(B )54185+(C)90 (D)81【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7. (2016全国Ⅲ文、理) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )123+π (C )123+π (D )21+π 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D【解析】只有11B C 与EF 在同一平面内,是相交的,其他A ,B ,C 中直线与EF 都是异面直线,故选D . 考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理) 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1. (2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin1201323V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos 1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219-试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =.从而可得(C 3-.所以(C 3E =,()0,4,0EB =,(C 3,3A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取(3,0,3n =-.设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xyF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C '--的正弦值是29525. 考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;(Ⅱ)453. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ......3分 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB , 所以//MN 平面PAB . ........6分(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S , 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D 是AC 的中点,EF ∥DB . (I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析. 【解析】试题分析:(Ⅰ))根据BD EF //,知EF 与BD 确定一个平面, 连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF , 证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在CEF ∆,CFB ∆中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC . 试题解析:(Ⅰ))证明:因BD EF //,所以EF 与BD 确定一个平面,连接DE ,因为E EC AE ,=为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥,又因为D DE BD = ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,FB AC ⊥。
2016理科数学高考真题分类第八单元 解析几何
第八单元 解析几何H1 直线的倾斜角与斜率、直线的方程 16.H1、H4[2016·全国卷Ⅲ] 已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.16.4 [解析] 直线l :m (x +3)+y -3=0过定点(-3,3),又|AB |=23,∴|3m -3|1+m 22+(3)2=12,解得m =-33.直线方程中,当x =0时,y =2 3.又(-3,3),(0,23)两点都在圆上,∴直线l 与圆的两交点为A (-3,3),B (0,23).设过点A (-3,3)且与直线l 垂直的直线为3x +y +c 1=0,将(-3,3)代入直线方程3x +y +c 1=0,得c 1=2 3.令y =0,得x C =-2,同理得过点B 且与l 垂直的直线与x 轴交点的横坐标为x D =2,∴|CD |=4.H2 两直线的位置关系与点到直线的距离12.E5、H2[2016·江苏卷] 已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.12.45,13 [解析] 可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即|-2|52=45,最大值为OB 2=22+32=13.H3 圆的方程 3.H2[2016·上海卷] 已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1与l 2的距离是________.3.255 [解析] 由两平行线间的距离公式得d =|-1-1|22+12=255.18.H3、H4[2016·江苏卷] 如图1-6,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.18.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. (1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离 d =|2×6-7+m |5=|m +5|5.因为BC =OA =22+42=25, 而MC 2=d 2+BC22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t ,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].H4 直线与圆、圆与圆的位置关系 16.H1、H4[2016·全国卷Ⅲ] 已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.16.4 [解析] 直线l :m (x +3)+y -3=0过定点(-3,3),又|AB |=23,∴|3m -3|1+m 22+(3)2=12,解得m =-33.直线方程中,当x =0时,y =2 3.又(-3,3),(0,23)两点都在圆上,∴直线l 与圆的两交点为A (-3,3),B (0,23).设过点A (-3,3)且与直线l 垂直的直线为3x +y +c 1=0,将(-3,3)代入直线方程3x +y +c 1=0,得c 1=2 3.令y =0,得x C =-2,同理得过点B 且与l 垂直的直线与x 轴交点的横坐标为x D =2,∴|CD |=4.4.H4[2016·全国卷Ⅱ] 圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .24.A [解析] 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4),圆心到直线的距离d =|a +4-1|a 2+1=1,解得a =-43. 12.H4[2016·天津卷] 如图1-3,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为________.图1-312.233 [解析] 设圆的圆心为O ,连接OD ,可得BO =32,△BOD ∽△BDE ,∴BD 2=BO ·BE =3,∴BD =DE = 3.连接AC ,易知△AEC ∽△DEB ,∴AE DE =CE BE ,即13=EC2,∴EC=233.18.H3、H4[2016·江苏卷] 如图1-6,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.18.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. (1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离 d =|2×6-7+m |5=|m +5|5.因为BC =OA =22+42=25, 而MC 2=d 2+BC22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t ,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].H5 椭圆及其几何性质10.H5,H8[2016·江苏卷] 如图1-2,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.10.63 [解析] 方法一:由⎩⎨⎧y =b2,x 2a 2+y2b 2=1,可得B (-32a ,b 2),C (32a ,b 2).又由F (c ,0),得FB →=(-32a -c ,b 2),FC →=(32a -c ,b 2).又∠BFC =90°,所以FB →·FC →=0,化简可得2a 2=3c 2,即e 2=c 2a 2=23,故e =63.方法二:同方法一可得B (-32a ,b 2),C (32a ,b2),所以BC =3a ,由椭圆的焦半径公式得BF =a -ex B =a +e ·32a ,CF =a -ex C =a -e ·32a ,又∠BFC =90°,所以BF 2+CF 2=BC 2,即(a +e ·32a )2+(a -e ·32a )2=(3a )2,式子两边同除以a 2可得e 2=23,即e =63.11.H5[2016·全国卷Ⅲ] 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.3411.A [解析] 设M (-c ,y 0),则AM 所在直线方程为y =y 0-c +a(x +a ),令x =0,得E (0,ay 0-c +a ).BM 所在直线方程为y =y 0-c -a (x -a ),令x =0,得y =-ay 0-c -a.由题意得-ay 0-c -a =12×ay 0-c +a,解得a =3c ,故离心率e =c a =13.19.H5,H8[2016·北京卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN |·|BM |为定值.19.解:(1)由题意得⎩⎨⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=2+x 0y 0-1.所以|AN |·|BM |=2+x 0y 0-1·1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值.20.H5[2016·四川卷] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .(1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P ,证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值.20.解:(1)由已知得,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1,点T 的坐标为(2,1).(2)证明:由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3,所以P 点坐标为(2-2m 3,1+2m 3),|PT |2=89m 2.设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2),由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123,所以|P A |=2-2m 3-x 12+1+2m 3-y 12=52|2-2m3-x 1|,同理|PB |=52|2-2m3-x 2 | . 所以|P A |·|PB |=54|(2-2m 3-x 1)(2-2m 3-x 2)|=54|(2-2m 3)2-(2-2m3)(x 1+x 2)+x 1x 2|=54|(2-2m 3)2-(2-2m 3)(-4m 3)+4m 2-123|=109m 2.故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2.因为抛物线E 的焦点F (0,12),所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1. (2)(i)证明:设P (m ,m 22)(m >0),由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0), 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m <2+5(或0<m 2<2+5)(*), 且x 1+x 2=4m 34m 2+1.因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因此y 0x 0=-14m,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.(ii)由(i)知直线l 的方程为y =mx -m 22.令x =0,得y =-m 22,所以G (0,-m 22).又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1),所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1(t >1),则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t+2, 当1t =12,即t =2时,S 1S 2取到最大值94, 此时m =22,满足(*)式,所以P 点坐标为(22,14). 因此S 1S 2的最大值为94,此时点P 的坐标为(22,14).19.H5、H8[2016·天津卷] 设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A ,已知1|OF |+1|OA |=3e|F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.19.解:(1)设F (c ,0),由1|OF |+1|OA |=3e |F A |,即1c +1a =3ca (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0,解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k ,因此直线MH 的方程为y =-1k x+9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k ,得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64, 所以直线l 的斜率的取值范围为(-∞,-64]∪[64,+∞). 19.H5[2016·浙江卷] 如图1-5,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示); (2)若任意以点A (0,1)求椭圆离心率的取值范围.图1-519.解:(1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k1+a 2k 2.因此|AP |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AΡ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2.由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22,故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此(1k 21+1)(1k 22+1)=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a 得,所求离心率的取值范围为0<e ≤22.H6 双曲线及其几何性质13.H6[2016·北京卷] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.13.2 [解析] 不妨令B 为双曲线的右焦点,A 在第一象限,如图所示.因为四边形OABC 为正方形,|OA |=2,所以c =2 2.因为直线OA 是双曲线的一条渐近线,∠AOB =π4,所以ba =tan π4=1,即a =b ,又a 2+b 2=c 2=8,所以a =2.3.H6[2016·江苏卷] 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.3.210 [解析] 由题目所给方程可得a 2=7,b 2=3,故c 2=10,所以焦距为210.5.H6[2016·全国卷Ⅰ] 已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)5.A [解析] 若已知方程表示双曲线,则(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2.又4=4m 2,所以m 2=1,所以-1<n <3.11.H6[2016·全国卷Ⅱ] 已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .211.A [解析] 易知离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.13.H6[2016·山东卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.13.2 [解析] 将x =-c 代入x 2a 2-y 2b 2=1,得y =±b 2a .∵2|AB |=3|BC |,∴2×2b 2a =3×2c ,整理得2c 2-2a 2-3ac =0,即2e 2-3e -2=0,解得e =2或e =-12(舍去).6.H6[2016·天津卷] 已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1 6.D [解析] 由题意及双曲线的对称性画出示意图如图所示,渐近线OB :y =b 2x .设Bx 0,b 2x 0,则12·x 0·b 2x 0=2b 8,∴x 0=1,∴B (1,b 2),∴12+b 24=22,∴b 2=12,∴双曲线方程为x 24-y 212=1.21.H6,H8,F3[2016·上海卷] 双曲线x 2-y 2b2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =3,若l 的斜率存在,且(F 1A →+F 1B →)·AB →=0,求l 的斜率.21.解:(1)设A (x A ,y A ),F 2(c ,0),c =1+b 2,由题意,y 2A =b 2(c 2-1)=b 4, 因为△F 1AB 是等边三角形,所以2c =3|y A |, 即4(1+b 2)=3b 4,解得b 2=2.故双曲线的渐近线方程为y =±2x . (2)由已知,F 1(-2,0),F 2(2,0).设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2),显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0.因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ).由(F 1A →+F 1B →)·AB →=0,即F 1M →·AB →=0,知F 1M ⊥AB ,故kF 1M ·k =-1. 又x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,所以kF 1M =3k 2k 2-3,所以3k 2k 2-3·k =-1,得k 2=35,故l 的斜率为±155.H7 抛物线及其几何性质 10.H7[2016·全国卷Ⅰ] 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .810.B [解析] 设抛物线方程为y 2=2px (p >0),点A 在第一象限,点D 在第二象限.根据抛物线的对称性可得点A 的纵坐标为22,代入抛物线方程得x =4p ,即点A (4p,22).易知点D (-p 2,5),由于点A ,D 都在以坐标原点为圆心的圆上,所以16p 2+8=p 24+5,解得p =4,此即为抛物线的焦点到准线的距离.8.H7[2016·四川卷] 设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1 8.C [解析] 如图,由题可知F ⎝⎛⎭⎫p 2,0,设P 点坐标为⎝⎛⎭⎫y 22p ,y 0. 显然,当y 0<0时,k OM <0;当y 0>0时,k OM >0.所以要求k OM 的最大值,不妨设y 0>0. 因为OM → = OF → + FM → = OF → + 13FP → = OF →+ 13(OP →-OF →) = 13OP → + 23OF → =⎝⎛⎭⎫y 206p+ p 3,y 03,所以k OM =y 03y 206p + p 3 = 2y 0p + 2p y 0≤222 = 22,当且仅当y 20=2p 2时,等号成立. 14.H7[2016·天津卷] 设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.14.6 [解析] 由题意得,抛物线的普通方程为y 2=2px ,∴F (p2,0),∴|CF |=3p ,∴|AB |=|AF |=32p ,∴A (p ,±2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32,∴p 2=6.∵p >0,∴p = 6.9.H7[2016·浙江卷] 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.9.9 [解析] 由题意得,p =2,则p2=1,即原点到准线的距离是1.由点M 到焦点的距离与到准线的距离相等,知点M 到准线的距离为10,故M 到y 轴的距离为10-1=9.20.H7[2016·上海卷] 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图1-5所示.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1的面积是S 2面积的两倍,由此得到S 1面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于S 面积的“经验值”.图1-520.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形EFGH 内的部分,其方程为y 2=4x (0<y <2).(2)依题意,点M 的坐标为(14,1).所求的矩形面积为52,所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为|52-83|=16,而五边形面积与“经验值”之差的绝对值为|114-83|=112,所以五边形面积更接近于S 1面积的“经验值”.22.H7、H8[2016·江苏卷] 如图1-8,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.22.解:(1)抛物线C :y 2=2px (p >0)的焦点为p2,0,由点p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ ,于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明:由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x 得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0.方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b 上, 所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围为0,43.20.H7、H9[2016·全国卷Ⅲ] 已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.20.解:由题设知F (12,0).设l 1:y =a ,l 2:y =b ,则ab ≠0,且A (a 22,a ),B (b 22,b ),P (-12,a ),Q (-12,b ),R (-12,a +b2).记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,所以1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =k 2, 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2.因为抛物线E 的焦点F (0,12),所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1. (2)(i)证明:设P (m ,m 22)(m >0),由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0), 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5)(*), 且x 1+x 2=4m 34m 2+1.因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因此y 0x 0=-14m,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.(ii)由(i)知直线l 的方程为y =mx -m 22.令x =0,得y =-m 22,所以G (0,-m 22).又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1),所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1(t >1),则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t+2, 当1t =12,即t =2时,S 1S 2取到最大值94, 此时m =22,满足(*)式, 所以P 点坐标为(22,14). 因此S 1S 2的最大值为94,此时点P 的坐标为(22,14).H8 直线与圆锥曲线(AB 课时作业)10.H5,H8[2016·江苏卷] 如图1-2,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.10.63 [解析] 方法一:由⎩⎨⎧y =b2,x 2a 2+y2b 2=1,可得B (-32a ,b 2),C (32a ,b2).又由F (c ,0),得FB →=(-32a -c ,b 2),FC →=(32a -c ,b 2).又∠BFC =90°,所以FB →·FC →=0,化简可得2a 2=3c 2,即e 2=c 2a 2=23,故e =63.方法二:同方法一可得B (-32a ,b 2),C (32a ,b2),所以BC =3a ,由椭圆的焦半径公式得BF =a -ex B =a +e ·32a ,CF =a -ex C =a -e ·32a ,又∠BFC =90°,所以BF 2+CF 2=BC 2,即(a +e ·32a )2+(a -e ·32a )2=(3a )2,式子两边同除以a 2可得e 2=23,即e =63.19.H5,H8[2016·北京卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN |·|BM |为定值.19.解:(1)由题意得⎩⎨⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=2+x 0y 0-1.所以|AN |·|BM |=2+x 0y 0-1·1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值.22.H7、H8[2016·江苏卷] 如图1-8,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.22.解:(1)抛物线C :y 2=2px (p >0)的焦点为p2,0,由点p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ ,于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明:由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x 得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0.方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b 上, 所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围为0,43.20.H8,H9[2016·全国卷Ⅰ] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.20.解:(1)证明:因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4. 由题设得A (-1,0),B (1,0),|AB |=2.由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3, |PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).20.H8[2016·全国卷Ⅱ] 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 20.解:(1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,椭圆E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4,因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449. (2)由题意知t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得 (3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2. 由题设知,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k 3k 2+t,即(k 3-2)t =3k (2k -1). 当k =32时上式不成立,因此t =3k (2k -1)k 3-2. t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0, 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).19.H5、H8[2016·天津卷] 设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A ,已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.19.解:(1)设F (c ,0),由1|OF |+1|OA |=3e |F A |,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4.所以椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k 4k 2+3. 由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=9-4k 24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k ,因此直线MH 的方程为y =-1k x+9-4k 212k. 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k ,得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64, 所以直线l 的斜率的取值范围为(-∞,-64]∪[64,+∞). 21.H6,H8,F3[2016·上海卷] 双曲线x 2-y 2b2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b =3,若l 的斜率存在,且(F 1A →+F 1B →)·AB →=0,求l 的斜率.21.解:(1)设A (x A ,y A ),F 2(c ,0),c =1+b 2,由题意,y 2A =b 2(c 2-1)=b 4,因为△F 1AB 是等边三角形,所以2c =3|y A |,即4(1+b 2)=3b 4,解得b 2=2.故双曲线的渐近线方程为y =±2x .(2)由已知,F 1(-2,0),F 2(2,0).设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2),显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0. 因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0.设AB 的中点为M (x M ,y M ).由(F 1A →+F 1B →)·AB →=0,即F 1M →·AB →=0,知F 1M ⊥AB ,故kF 1M ·k =-1.又x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,所以kF 1M =3k 2k 2-3, 所以3k 2k 2-3·k =-1,得k 2=35,故l 的斜率为±155.H9 曲线与方程20.H8,H9[2016·全国卷Ⅰ] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.20.解:(1)证明:因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2.由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1, 所以|PQ |=242-2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).20.H7、H9[2016·全国卷Ⅲ] 已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.20.解:由题设知F (12,0).设l 1:y =a ,l 2:y =b ,则ab ≠0,且A (a 22,a ),B (b 22,b ),P (-12,a ),Q (-12,b ),R (-12,a +b 2). 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.(1)证明:由于F 在线段AB 上,所以1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =k 2, 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1). 而a +b 2=y ,所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.H10 单元综合7.H10[2016·浙江卷] 已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 7.A [解析] 由题意知,m 2-1=n 2+1,即m 2-n 2=2,故m >n .易知e 1e 2=m 2-1m ·n 2+1n =m 2n 2+m 2-n 2-1mn =m 2n 2+1mn>1,故选A.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2. 因为抛物线E 的焦点F (0,12), 所以b =12,a =1, 所以椭圆C 的方程为x 2+4y 2=1.(2)(i)证明:设P (m ,m 22)(m >0), 由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22. 设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5)(*),且x 1+x 2=4m 34m 2+1. 因此x 0=2m 34m 2+1, 将其代入y =mx -m 22, 得y 0=-m 22(4m 2+1), 因此y 0x 0=-14m, 所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14, 所以点M 在定直线y =-14上. (ii)由(i)知直线l 的方程为y =mx -m 22. 令x =0,得y =-m 22, 所以G (0,-m 22). 又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)), 所以S 1=12·|GF |·m =(m 2+1)m 4, S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1), 所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2. 设t =2m 2+1(t >1),。
近三年高考全国卷理科立体几何真题
新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD 90 ,且二面角D- AF- E与二面角C- BE- F 都是60 .(I)证明:平面ABEF 平面EFDC;(II)求二面角E- BC- A 的余弦值.2、(2016 年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB 5, AC 6,点E, F分别在AD ,CD 上,5AE CF ,EF 交BD 于点H .将4DEF 沿EF 折到'D EF 位置,OD 10 .(Ⅰ)证明: D H 平面ABCD ;(Ⅱ)求二面角 B D A C 的正弦值.3【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014 ·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD=3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1 中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1 - C1 的余弦值.6、(2017?新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD= ∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ﹣AB ﹣D 的余弦值.7、(2017?新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD ,AB=BD .(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE ﹣C 的余弦值.8、(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.1【解析】⑴∵ABEF 为正方形∴AF EF ∵AFD 90 ∴AF DF∵DF EF =F ∴AF 面EFDC AF 面ABEF∴平面ABEF 平面EFDC⑵由⑴知DFE CEF 60∵AB∥EF AB 平面EFDCEF 平面EFDC ∴AB∥平面ABCDAB 平面ABCD∵面ABCD 面EFDC CD∴AB∥CD ,∴CD ∥EF∴四边形EFDC 为等腰梯形以E为原点,如图建立坐标系,FD aE 0,0 ,0 B 0 ,2a,0a 3C ,0 , a A 2a,a2,02 2EB 0 ,2a,0 ,a 3BC ,2a, a ,AB 2a ,0 ,02 2设面BEC 法向量为m x,y,z .m EB m BC 0,即2a y 01a 3x 2ay a z 01 1 12 2x1 3 ,y1 0 ,z1 1 m 3 ,0 , 1 设面ABC 法向量为n x ,y ,z2 2 2n BC n AB =0.即a 3x 2ay az 02 2 22 22ax 02x2 0,y2 3,z2 4n 0, 3 ,4设二面角 E BC A的大小为.cos m nm n4 2 19193 1 3 16∴二面角 E BC A的余弦值为2 1992【解析】⑴证明:∵ 5AE CF ,∴4 AE CF AD CD,∴EF∥AC .∵四边形ABCD为菱形,∴AC BD ,∴EF BD ,∴EF DH ,∴EF D H .∵AC 6,∴AO 3;又AB 5,AO OB ,∴OB 4 ,∴OH AE OD 1AO ,∴DH D H 3 ,∴ 2 2 2OD OH D H ,'∴D'H OH .又∵OH I EF H ,∴D 'H 面ABCD.⑵建立如图坐标系H xyz.B 5,0,0 ,C 1,3,0 ,D ' 0,0,3 ,A 1,3,0 ,u u u r A Buuur uuru,,,AD ' 1,3,3 ,AC 0,6 ,0 ,4 3 0设面ABD ' 法向量u rn x,y,z1,由n AB1n AD1得4x 3y 0x 3y 3z 0,取xyz354 ,∴u rn1 3,4,5.同理可得面AD 'C 的法向量u u rn2 3,0 ,1 ,∴cos u r u u rn n1 2 9 5 7 5u r u u r,∴5 2 10 25n n1 2sin2 9525.3,【答案】(Ⅰ)见解析(Ⅱ)3 3又∵AE⊥EC,∴EG= 3 ,EG⊥AC,在Rt△EBG 中,可得BE= 2 ,故DF=2 2.在Rt△FDG 中,可得FG=6 2.在直角梯形BDFE 中,由BD =2,BE= 2 ,DF=22可得EF=3 22,∴ 2 2 2EG FG EF ,∴EG⊥FG,∵AC∩FG=G,∴EG⊥平面AFC,∵EG 面AEC,∴平面AFC⊥平面AEC. ⋯⋯6分(Ⅱ)如图,以G 为坐标原点,分别以GB, GC 的方向为x轴,y 轴正方向,|GB| 为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-3,0),E(1,0,2 ),F(-1,0,22),C(0, 3 ,0),∴AE =(1,3, 2 ),CF =(-1,- 3,22). ⋯10分故cos , 3AE CFAE CF| AE || CF | 3.所以直线A E 与CF 所成的角的余弦值为 33 . ⋯⋯12分4,解:(1)证明:连接B D 交AC 于点O,连接E O. 因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO∥PB.因为EO? 平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD 为矩形,所以AB,AD,AP 两两垂直.→如图,以A 为坐标原点,AB,AD,AP 的方向为x 轴、y轴、z轴的正方向,→|为单位长,建立空间直角坐标系A-xyz,则D (0,3,0),E 0, 3|AP,2 12,A→E=0,3 1,2 2.→设B( m,0,0)( m>0),则C( m,3,0),AC=(m,3,0).设n1=(x,y,z)为平面ACE 的法向量,→n1·AC=0,则即→n1·AE=0,m x+3y=0,3 12 y+2z=0,可取n1=3,-1, 3 . m又n2=(1,0,0)为平面DAE 的法向量,1由题设易知|cos〈n1,n2〉|=,即23 1 32=,解得m=3+4m 22.=1 1 3 1××3×=×3 2 2 238 .125 解:(1)证明:连接B C1,交B1C 于点O,连接A O,因为侧面BB1C1C 为菱形,所以B1C⊥BC1,且O 为B1C 及BC1 的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO? 平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O 为B1C 的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|O B|为单位长,建立如图所示的空间直角坐标系O- xyz.因为∠CBB1 =60°,所以△CBB1 为等边三角形,又AB=BC ,则A 0,0,33,B(1,0,0),B1 0,3,0 ,C 0,-33,0 .3→AB1=0,3,-333→,A1B1=AB=1,0,-33,→B1C1=BC=-1,-3,0 . 3设n=(x,y,z)是平面AA1B1 的法向量,则n·AB1=0,即→n·A1B1=0,333 y-3 z=0,x-33 z=0.所以可取n=(1,3,3).设m是平面A1B1C1 的法向量,→m·A1B1=0,则同理可取m=(1,-3,3).→m·B1C1=0,则c os〈n,m〉=n·m 1=7.|n||m|13.6、【答案】(Ⅰ)证明:取PA 的中点F,连接E F,BF,因为 E 是PD 的中点,13所以EF AD ,AB=BC= AD ,∠BAD= ∠ABC=90°,∴BC∥AD ,∴BCEF 是平行四边形,可得CE∥BF,BF? 平面PAB,CF?平面PAB,∴直线C E∥平面PAB;P﹣A BCD 中,(Ⅱ)解:四棱锥侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD= ∠ABC=90°,E 是PD 的中点.A D=2 ,则A B=BC=1 ,OP= ,取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设∴∠PCO=6°0,直线B M 与底面ABCD 所成角为45°,可得:BN=MN ,CN= MN ,BC=1,可得:1+ BN 2=BN 2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接M Q ,A B﹣D的平面角,MQ=所以∠MQN 就是二面角M﹣= ,A B﹣D的余弦值为:= .二面角M﹣7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接B O,OD.∵△ABC 是等边三角形,∴OB⊥AC .△ABD 与△CBD 中,AB=BD=BC ,∠ABD= ∠CBD,∴△ABD ≌△CBD ,∴AD=CD .∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=9°0.∴DO= AC .∴DO 2+BO 2=AB 2=BD 2 .∴∠BOD=9°0 .∴OB⊥OD.又DO∩AC=O ,∴OB⊥平面ACD .又OB? 平面ABC ,∴平面ACD ⊥平面ABC .(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D ,h E .则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴= = =1.∴点 E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2 .则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE ﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP= ∠CDP=90°,∴PA⊥AB ,PD⊥CD,∵AB ∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA? 平面PAD,PD? 平面PAD,∴AB ⊥平面PAD,又AB ? 平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB ∥CD,AB=CD ,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB ⊥AD ,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a ,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA 、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB ⊥平面PAD,AD ? 平面PAD,∴AB ⊥AD ,又PD⊥PA,PA∩AB=A ,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= = .由图可知,二面角 A ﹣PB﹣C 为钝角,∴二面角 A ﹣PB﹣C 的余弦值为.。
全国通用版高中数学第八章立体几何初步知识点题库
(名师选题)全国通用版高中数学第八章立体几何初步知识点题库单选题1、已知平面α内的∠APB =60°,射线PC 与PA,PB 所成的角均为135°,则PC 与平面α所成的角θ的余弦值是( )A .−√63B .√63C .√33D .−√33 答案:B分析:作出图形,如图,通过分析,可得∠CPD 为PC 与平面α所成的角的补角,利用余弦定理可以计算. 作出如下图形,令PA =PB =PC =2,则∠CPA =∠CPB =135∘,∴AC =BC ,取AB 中点D ,连接PD ,则∠CPD 即为PC 与平面α所成的角的补角,在△APC 中,AC 2=PA 2+PC 2−2PA ⋅PC ⋅cos135∘=8+4√2,∴在△PCD 中,CD 2=AC 2−AD 2=7+4√2,∵PD =√3,∴cos∠CPD =PC 2+PD 2−CD 22PC⋅PD =−√63, ∴ PC 与平面α所成的角θ的余弦值是√63.故选:B.小提示:本题考查线面角的求法,找出所成角,构造三角形是解题的关键.2、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.3、若一个正方体的体对角线长为a,则这个正方体的全面积为()A.2a2B.2√2a2C.2√3a2D.3√2a2答案:A分析:设正方体的棱长为x,求出正方体的棱长即得解.a2,解:设正方体的棱长为x,则√3x=a,即x2=13a2=2a2.所以正方体的全面积为6x2=6×13故选:A4、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.5、《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,AC⊥CD,AC=BC+CD=2,当△BCD的面积最大时,鳖臑ABCD的表面积为()A .√3+√62B .3+√62C .2+√3+√62D .3+√3+√62答案:D分析:根据题意可证明CD ⊥BC ,从而说明三角形BCD 是直角三角形,求得BD ,进而求得四个直角三角形的面积,可得答案.由题意可知:AB ⊥平面BCD ,CD ⊂平面BCD ,故AB ⊥CD ,又AC ⊥CD ,AC ∩AB =A,AB,AC ⊂平面ABC ,故CD ⊥平面ABC ,BC ⊂平面ABC ,故CD ⊥BC ,所以S △BCD =12BC ⋅CD ≤12×(BC+CD 2)2=12 ,当且仅当BC =CD =1时取得等号, 故BD =√1+1=√2 ,由AB ⊥平面BCD ,可知AB ⊥BD,AB ⊥BC ,故AB =√AC 2−BC 2=√4−1=√3 ,所以S △ABD =12AB ⋅BD =√62,S △ABC =12AB ⋅BC =√32 , S △BCD =12BC ⋅CD =12,S △ACD =12AC ⋅CD =1,所以鳖臑ABCD 的表面积为√62+√32+12+1=3+√3+√62 ,故选:D6、如图,△O ′A ′B ′是水平放置的△OAB 的直观图,A ′O ′=6,B ′O ′=2,则△OAB 的面积是( )A.6B.12C.6√2D.3√2答案:B分析:由直观图和原图的之间的关系,和直观图画法规则,还原△OAB是一个直角三角形,其中直角边OA= 6,OB=4,直接求解其面积即可.解:由直观图画法规则,可得△OAB是一个直角三角形,其中直角边OA=6,OB=4,∴S△OAB=12OA⋅OB=12×6×4=12.故选:B.7、鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为()A.8(6+6√2+√3)B.6(8+8√2+√3)C.8(6+6√3+√2)D.6(8+8√3+√2)答案:A解析:该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可.由题图可知,该鲁班锁玩具可以看成是一个棱长为2+2√2的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为√2,则该几何体的表面积为S =6×[(2+2√2)2−4×12×√2×√2]+8×12×2×√3 =8(6+6√2+√3).故选:A.小提示:本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.8、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.9、下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3答案:A分析:①②③④均可举出反例.①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;②如图2,满足两侧面ABB1A1与底面垂直,但不是直棱柱,②错误;③如图3,四边形ACC1A1为矩形,即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误. 故选:A10、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D11、下列说法中正确的是( )A .如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B .平面α内△ABC 的三个顶点到平面β的距离相等,则α与β平行C .α//β,a//α,则a//βD .a//b ,a//α,b ⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A 选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图1,D,E,F,G分别为正方体中所在棱的中点,平面DEFG设为平面β,易知正方体的三个顶点A,B,C到平面β的距离相等,但△ABC所在平面α与β相交,故错误;对于选项C,a可能在平面β内,故错误;对于选项D,正确.故选:D.12、已知球O的体积为36π,则该球的表面积为()A.6πB.9πC.12πD.36π答案:D分析:根据球的体积公式求出半径,即可求出表面积.πR3=36π,解得R=3,设球的体积为R,则由题可得43则该球的表面积为4π×32=36π.故选:D.填空题13、设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①若m⊥n,n⊂α,则m⊥α;②若m⊥α,m⊂β,则α⊥β;③若m⊥α,n⊥α,则m//n;④若m⊂α,n⊂β,α//β,则m//n.其中真命题的序号为__.答案:②③分析:由直线与直线、直线与平面、平面与平面的位置关系判断即可.解:①由线面垂直的判定定理可得,若要使m⊥α,则m要垂直α中的两条相交的直线,通过分析,m只垂直来α中的一条直线,故不能做出判断,故①错误;②根据面面垂直的判定定理可得,若m⊥α,m⊂β,则α⊥β,故②正确;③由线面垂直的性质定理可得,两条不同的直线都垂直同一个平面,则这两条直线必平行,故③正确;④由面面平行的性质定理可得,只有若m⊂α,n⊂β,α//β,不能得出m//n,如果加上条件m,n在同一平面内,则可得线线平行,故④错误,所以答案是:②③14、2021年7月,某学校的学生到农村参加劳动实践,一部分学生学习编斗笠,一种用竹篾或苇蒿等材料制作外形为圆锥形的斗笠,称为“灯罩斗笠”(如图),一部分学生学习制作泥塑几何体,现有一个棱长为6的正方体形状泥块,其各面的中心分别为点E,F,G,H,M,N,将正方体削成正八面体形状泥块G−EMHF−N,若用正视图为正三角形的一个“灯罩斗笠”罩住该正八面体形状泥块G−EMHF−N,使得正八面体形状泥块G−EMHF−N可以在“灯罩斗笠”中任意转动,则该有底的“灯罩斗笠”的表面积的最小值为___________.答案:81π分析:由题意,只需正八面体形状泥块G−EMHF−N位于圆锥的内切球内即可.如图所示:设正方体ABCD−A1B1C1D1的中心O满足OE=OF=OH=OF=OH=OM=ON=3,则几何体GEMHFN的外接球的球心为O,半径为3.当“灯罩斗笠”的表面积最小时,正八面体形状泥块G−EMHF−N的外接球即为圆锥的内切球,故圆锥的底面圆的半径r=3tan30°=3√3,所以该“灯罩斗笠”的表面积的最小值为S=πr2+πlr=π(3√3)2+π⋅3√3⋅6√3=81π.所以答案是:81π15、已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为______.答案:π3分析:设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,根据面积关系可得122πrl=2⋅π⋅r2,即可得到答案;设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,则122πrl=2⋅π⋅r2⇒rl=12,∴cosθ=12⇒θ=60°,所以答案是:π316、如图,在正方体ABCD−A1B1C1D1中,O是侧面A1ADD1的中心,则异面直线B1O与BD的夹角大小为______.答案:30°##π6分析:平移直线,找出异面直线所成角,利用三角形的知识求解.如图,连接D1B1,则D1B1//BD,则∠D1B1O即为所求异面直线夹角(或其补角),连接B1A,A1D,AD1,则AD1=D1B1=B1A,所以△AD1B1是等边三角形,则∠AB1D1=60°.O是AD1中点,则由等边三角形的性质可知B1O平分∠AB1D1,即∠D1B1O=30°.所以答案是:30°17、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④解答题18、如图,在三棱锥P−ABC中,D,E分别为AB,PB的中点,EB=EA,且PA⊥AC,PC⊥BC.求证:BC⊥平面PAC.答案:证明见解析.分析:由题可得PA⊥AB,利用线面垂直的判定定理可得PA⊥平面ABC,进而可得PA⊥BC,然后利用线面垂直的判定定理即得.∵在△AEB中,D是AB的中点,EB=EA,∴ED⊥AB,∵E是PB的中点,D是AB的中点,∴ED∥PA,∴PA⊥AB,又PA⊥AC,AB∩AC=A,AB⊂平面ABC,AC⊂平面ABC,∴PA⊥平面ABC,∵BC⊂平面ABC,∴PA⊥BC,又PC⊥BC,PA∩PC=P,PA⊂平面PAC,PC⊂平面PAC,∴BC⊥平面PAC.19、长方体ABCD−A1B1C1D1的体积为V,P是DD1的中点,Q是AB上的动点,求四面体P−CDQ的体积.答案:112V.分析:因为Q是AB上的动点,且AB//CD,可求出S△CDQ,再根据V P−CDQ=13S△CDQ·PD,即可求出四面体P−CDQ的体积.设长方体的长、宽、高分别为AB=a,BC=b,AA1=c,则有V=abc.P是DD1的中点,所以PD=12c,因为Q是AB上的动点,且AB//CD,所以S△CDQ=12CD⋅AD=12ab,所以V P−CDQ=13S△CDQ·PD=13×12ab×12c=112abc=112V.20、如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M , N分别为BC , B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO//平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值..答案:(1)证明见解析;(2)√1010分析:(1)先求出线线平行,可得线线垂直,即可求线面垂直,最后可得面面垂直;(2)连接NP,先求证四边形ONPA是平行四边形,根据几何关系求得EP,在B1C1截取B1Q=EP,由(1)BC⊥平面A1AMN,可得∠QPN为B1E与平面A1AMN所成角,即可求得答案.证明:(1)由题意知AA1//BB1//CC1,又∵侧面BB1C1C是矩形且M,N分别为BC,B1C1的中点,∴MN//BB1,BB1⊥BC,∴MN//AA1,MN⊥B1C1,又底面是正三角形,∴AM⊥BC,AM⊥B1C1,又∵MN∩AM=M,AM⊂平面A1AMN,MN⊂平面A1AMN,∴B1C1⊥平面A1AMN,∵B1C1⊂平面EB1C1F,∴平面A1AMN⊥平面EB1C1F;(2)连接NP,因为AO//平面EB1C1F,平面AONP∩平面EB1C1F=NP,所以AO//NP,根据三棱柱上下底面平行,其面A1NMA∩平面ABC=AM,面A1NMA∩平面A1B1C1=A1N,所以ON//AP,故:四边形ONPA是平行四边形.设△ABC边长是6m (m>0),可得:ON=AP,NP=AO=AB=6m,因为O为△A1B1C1的中心,且△A1B1C1边长为6m,所以ON=13×6×sin60°=√3m,故:ON=AP=√3m.又EF//BC,所以APAM =EPBM,所以√33√3=EP3,解得:EP=m,在B1C1截取B1Q=EP=m,故QN=2m,又B1Q=EP,B1Q//EP,所以四边形B1QPE是平行四边形,所以B1E//PQ.由(1)B1C1⊥平面A1AMN,故∠QPN为B1E与平面A1AMN所成角,在Rt△QPN,根据勾股定理可得:PQ=√QN2+PN2=√(2m)2+(6m)2=2√10m,∴sin∠QPN=QNPQ =2√10m=√1010,所以直线B1E与平面A1AMN所成角的正弦值:√1010.小提示:本题考查了空间位置关系,线面平行,线面垂直,面面垂直,线面角的计算,考查了运算能力和空间想象能力,属于中档题.。
2016高考理科立体几何复习答案
答案例1-5 DA CC C 例6C训练1(1)证明 ∵折起前AD 是BC 边上的高,∴当△ABD 折起后,AD ⊥DC ,AD ⊥BD ,又DB ∩DC =D , ∴AD ⊥平面BDC ,∵AD ⊂平面ABD , ∴平面ABD ⊥平面BDC .(2)解 由(1)知,DA ⊥DB ,DC ⊥DA ,∵DB =DA =DC =1,DB ⊥DC ,∴AB =BC =CA =2, 从而S △DAB =S △DBC =S △DCA =12×1×1=12,S △ABC =12×2×2×sin 60°=32,∴三棱锥DABC 的表面积S =12×3+32=3+32.例7D例8 (1)证明如图,取PD 中点E ,连接EM 、AE , ∴EM 綉12CD ,而AB 綉12CD , ∴EM 綉AB .∴四边形ABME 是平行四边形. ∴BM ∥AE .∵AE ⊂平面ADP ,BM ⊄平面ADP , ∴BM ∥平面P AD .(2)解 ∵P A ⊥平面ABCD ,∴P A ⊥AB .而AB ⊥AD ,P A ∩AD =A , ∴AB ⊥平面P AD ,∴AB ⊥PD .∵P A =AD ,E 是PD 的中点,∴PD ⊥AE .AB ∩AD =A . ∴PD ⊥平面ABME .作MN⊥BE,交AE于点N.∴MN⊥平面PBD.易知△BME∽△MEN.而BM=AE=2,EM=12CD=1,由ENEM=EMBM,得EN=(EM)2BM=12=22,∴AN=22.即点N为AE的中点.例9A例10. (1)证明如图,因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.而OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)解由(1)知,AC⊥平面POD,又AC⊂平面P AC,所以平面POD⊥平面P AC.在平面POD中,如图,过O作OH⊥PD于H,则OH⊥平面P AC.连接CH,则CH是OC在平面P AC上的射影,所以∠OCH是直线OC和平面P AC所成的角.在Rt△ODA中,OD=OA·sin 30°=1 2.在Rt△POD中,OH=PO·ODPO2+OD2=2×122+14=23.在Rt△OHC中,sin∠OCH=OHOC=23.故直线OC和平面P AC所成角的正弦值为2 3.例11A【训练】(1)证明因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE ⊄平面BCP,所以DE∥平面BCP.(2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.(3)解存在点Q满足条件,理由如下:如图,连接DF,EG,设Q为EG的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG . 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,所以Q 为满足条件的点.例12. 解 (1)建立如图所示的空间直角坐标系,连接EF ,AF ,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1), 于是CA 1→=(0,-4,4),EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ).AE→=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得 ⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0), 于是由θ为锐角可得cos θ=|m·n ||m|·|n|=3λ2λ2+4, sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.故0<λ≤4,得1λ≥14,即tan θ≥13+13=63.故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.例13【答案】1.1答案1-5BCADA 6-10DBCBC 11-15DCCCA16-20 CBDDB 21-26BACBCA27.22 28.20π3 29.3π 30.24 31.1616π- 32.12 33.83π34.解:(1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩ 平面ABC=EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. 2.2答案1-5CCCAB 6-9 CBCC 10.16π 11.1:24 12.12π 14.415.解:(1)证明:由已知得△ABC ≌△DBC , 因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC·h =13×12·BD ·BC ·sin 120°·32=12. 16.解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos 6= 3.设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝⎛⎭⎫122-2×2×12×cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,解得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32 =5 38.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO ·PO =13×5 38×32=516.17.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π.在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==,从而2ABC S BC ∆==因此该三棱柱的体积为16ABC V S AA ∆=⋅==18.解:(1)证明:如图所示,因为四边形ABCD 为菱形,O 为菱形的中心,连接OB ,则AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin ∠OAB =2sin π6=1.又因为BM =12,且∠OBM =π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+⎝⎛⎭⎫122-2×1×12×cos π3=34,所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内的两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)由(1)可得,OA =AB ·cos ∠OAB =2×cos π6= 3.设PO =a ,由PO ⊥底面ABCD ,知△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝⎛⎭⎫122-2×2×12×cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,解得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32 =5 38.所以四棱锥P -ABMO 的体积V 四棱锥P -ABMO =13·S 四边形ABMO ·PO =13×5 38×32=516. 19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点, ∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD ,∴三棱锥C - ABM 的高h =CD =1,因此三棱锥A - MBC 的体积 V A - MBC =V C ABM =13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD . 且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N , 则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A - MBC 的体积V A MBC =V A BCD -V M BCD =13AB ·S △BCD -13MN ·S △BCD =112. 20.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)方法一:设AA 1=x .在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理,A 1C =A 1C 21-CC 21=3-x 2. 在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C =-x 2(4-x 2)(3-x 2),sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2),所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22.从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.(2)方法二:过A 1作BC 的垂线,垂足为D ,连接AD .由AA 1⊥BC ,A 1D ⊥BC ,得BC ⊥平面AA 1D ,故BC ⊥AD .又∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,得AD =2217.设AA 1=x .在Rt △A 1D =AD 2-AA 21S △A 1BC =12A 1D ·从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367,所以当x =67=427,即AA 1=427时,体积V 取到最大值377.21【答案】(1)详见解析;(2)24. 【解析】试题分析:(1)建立空间直角坐标系,求得相关点的坐标可知问题等价于证明1=0AB PQ ⋅;(2)根据条件 二面角P-QD-A 的余弦值为37,利用空间向量可将四面体ADPQ 视为以ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,从而求解试题解析:解法一 由题设知,1AA ,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图b 所示的空间直角坐标系,则相关各点的坐标为)0,0,0(A ,1(3,0,6)B ,)0,6,0(D ,1(0,3,6)D , )0,,6(m Q ,其中BQ m =,06m ≤≤,(1)若P 是1DD 的中点,则9(0,,3)2P ,1(3,0,6)AB = ,于是118180AB PQ ⋅=-= ,∴1AB ⊥PQ ,即1AB PQ ⊥;(2)由题设知,(6,6,0)DQ m =-,1(0,3,6)DD =- 是平面PQD 内的两个不共线向量.设1(,,)n x y z = 是平面PQD 的一个法向量,则1110n DQ n DD ⎧⋅=⎪⎨⋅=⎪⎩,即6(6)0360x m y y z +-=⎧⎨-+=⎩,取6=y ,得1(6,6,3)n m =- ,又平面AQD 的一个法向量是2(0,0,1)n =,∴>=<21,cos n n 1212||||n n n n ⋅=⋅=,而二面角A QD P --的余弦值为37,=37,解得4=m ,或者8=m (舍去),此时)0,4,6(Q ,设1(01)DP DD λλ=<≤ ,而1(0,3,6)DD =-,由此得点)6,36,0(λλ-P ,(6,32,6)PQ λλ=--,∵//PQ 平面11ABB A ,且平面11ABB A 的一个法向量是3(0,1,0)n =,∴PQ 30n ⋅= ,即023=-λ,亦即λ=23,从而)4,4,0(P ,于是,将四面体ADPQ 视为以A D Q ∆为底面的三棱锥ADQ P -,则其高4=h ,故四面体ADPQ 的体积11166424332A D Q V S h =⋅=⨯⨯⨯⨯= .解法二 (1)如图c ,取1A A 的中点R ,连结PR ,BR ,∵1A A ,1D D 是梯形11A AD D 的两腰,P 是1D D 的中点,∴AD PR //,于是由BC AD //知,BC PR //,∴P ,R ,B ,C 四点共面,由题设知,AB BC ⊥,1BC A A ⊥,∴BC ⊥平面11ABB A ,因此1BC AB ⊥①, ∵tan ABR ∠=AR AB =36=11tan AB A A=11A AB ∠,∴tan tan ABR ∠=11A AB ∠,因此1ABR BAB ∠+∠=111A AB BAB ∠+∠=90 ,于是1AB BR ⊥,再由①即知1AB ⊥平面PRBC ,又PQ ⊂平面PRBC ,故1AB PQ ⊥;(2)如图d ,过点P 作1//PM A A 交AD 于点M ,则//PM 平面11ABB A ,∵1A A ⊥平面ABCD ,∴OM ⊥平面ABCD ,过点M 作MN QD ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠为二面角A QD P --的平面角,∴3cos 7PNM ∠=,即MN PN =37,从而PM MN =连结MQ ,由//PQ 平面11ABB A ,∴AB MQ //,又ABCD 是正方形,所以ABQM 为矩形,故6==AB MQ ,设t MD =,则MN ==④,过点1D 作11//D E A A 交AD 于点E ,则11AA D E 为矩形,∴1D E =16A A =,113AE A D ==,因此3=-=AE AD ED ,于是1623D E PM MD ED ===,∴t MD PM 22==,再由③④得3=,解得2=t ,因此4=PM ,故四面体ADPQ 的体积11166424332ADQ V S h =⋅=⨯⨯⨯⨯= .3.1答案 1-5DADBB 6-7BC 8【答案】9.【解析】(1)点F 、G 、H 的位置如图所示.(2)连结BD ,设O 为BD 的中点.C因为M 、N 分别是BC 、GH 的中点, 所以//OM CD ,且12OM CD =, //NH CD ,且12NH CD =, 所以//,OM NH OM NH =, 所以MNHO 是平行四边形, 从而//MN OH ,又MN ⊄平面BDH ,OH ⊂平面BDH , 所以//MN 平面BDH .(3)连结AC ,过M 作MP AC ⊥于P .在正方形ABCD EFGH -中,//AC EG , 所以MP EG ⊥.过P 作PK EG ⊥于K ,连结KM , 所以EG ⊥平面PKM , 从而KM EG ⊥.所以PKM ∠是二面角A EG M --的平面角.CC设2AD =,则1,2CM PK ==,在Rt CMP 中,sin 452PM CM ==.在Rt KMP 中,2KM ==.所以cos PK PKM KM ∠==即二面角A EG M --10【解析】(解法1)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥, 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D = , 所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥.而PC BC C = ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E = ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB D FB ∠∠,. (Ⅱ)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线. 由(Ⅰ)知,PB DEF ⊥平面,所以PB DG ⊥.又因为PD ⊥底面ABCD ,所以PD DG ⊥. 而PD PB P = ,所以DG PBD ⊥平面. 故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD D C ==,BC λ=,有BD = 在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 πtan tan 3BD DPF PD=∠==解得λ=.所以1DC BC λ==故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =11【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC 同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC(2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SABAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA12.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.13.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH=GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.14.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO =DOAD=322=34. 故异面直线BC 与OD 所成角的余弦值为34.15.解: (1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在平面ABCD 内,所以PO ⊥平面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥平面ABCD . 又EF ⊂平面ABCD ,所以GK ⊥EF , 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4,从而KB =14DB =12OB ,即K 是OB 的中点.再由PO ∥GK 得GK =12PO ,所以G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.16.解:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F ,G 分别是A 1C 1,BC ,AB 的中点, 所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.17.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1. 而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN . 18.证明: (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,所以DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .19.解:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)V =13×12×P A ×AB ×AD =36AB ,由V =34,可得AB =32. 作AH ⊥PB 交PB 于点H .由题设知BC ⊥平面P AB ,所以BC ⊥AH , 因为PB ∩BC =B ,所以AH ⊥平面PBC . 又AH =P A ·AB PB =31313,所以点A 到平面PBC 的距离为31313.20.证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)由题意知,ED ∥BC ,ED =BC , 所以四边形BCDE 为平行四边形, 所以BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE . 因为四边形ABCE 为菱形, 所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .21.解:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形, 所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线, 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线, 所以BC ⊥平面ACC 1A 1.(2)取线段AB 的中点M ,连接A 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC ,因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC . 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .22.解:(1)证明:如图所示,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE=1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111.23.解:(1)证明:在三棱柱ABC - A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1.所以平面ABE ⊥平面B 1BCC 1.(2)证明:取AB 的中点G ,连接EG ,FG .因为E ,F ,G 分别是A 1C 1,BC 所以FG ∥AC ,且FG =12AC ,EC 1=12A 1C 1.因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E - ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.24.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD .∵AB =BD =1,∴S △ABD =12. ∵M 是AD 的中点,∴S △ABM =12S △ABD =14. 由(1)知,CD ⊥平面ABD ,∴三棱锥C - ABM 的高h =CD =1,因此三棱锥A - MBC 的体积V A - MBC =V C ABM =13S △ABM ·h =112.方法二:(1)同方法一.(2)由AB ⊥平面BCD ,得平面ABD ⊥平面BCD .且平面ABD ∩平面BCD =BD .如图所示,过点M 作MN ⊥BD 交BD 于点N ,则MN ⊥平面BCD ,且MN =12AB =12. 又CD ⊥BD ,BD =CD =1,∴S △BCD =12. ∴三棱锥A - MBC 的体积V A MBC =V A BCD -V M BCD=13AB ·S △BCD -13MN ·S △BCD =112. 25.证明:(1)连接AD 1,由ABCD - A 1B 1C 1D 1是正方体,知AD 1∥BC 1.因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1.从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)如图,连接AC ,BD ,A 1C 1由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD .又AC ∩CC 1=C ,所以BD ⊥平面ACC 1A 1.而AC 1⊂平面ACC 1A 1,所以BD ⊥AC 1.因为M ,N 分别是A 1B 1,A 1D 1的中点,所以MN ∥BD ,从而MN ⊥AC 1.同理可证PN ⊥AC 1.又PN ∩MN =N ,所以直线AC 1⊥平面PQMN .26.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以ADO 是BC与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32. 连接AO ,在Rt △AOD 中,cos ∠ADO =DO AD= 322=34. 故异面直线BC 与OD 所成角的余弦值为34. 27.证明:(1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以O 为AC 的中点.又在△P AC 中,F 为PC 的中点,所以AP ∥OF .又OF ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)由题意知,ED ∥BC ,ED =BC ,所以四边形BCDE 为平行四边形,所以BE ∥CD .又AP ⊥平面PCD ,所以AP ⊥CD ,所以AP ⊥BE .因为四边形ABCE 为菱形,所以BE ⊥AC .又AP ∩AC =A ,AP ,AC ⊂平面P AC ,所以BE ⊥平面P AC .28.解:(1)证明:由AA 1⊥BC 知BB 1⊥BC .又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,所以BB 1⊥A 1C .又BB 1∥CC 1,所以A 1C ⊥CC 1.(2)方法一:设AA 1=x .在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2.同理,A 1C =A 1C 21-CC 21=3-x 2.在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C= -x 2(4-x 2)(3-x 2), sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2), 所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22. 从而三棱柱ABC - A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22. 因为x 12-7x 2=12x 2-7x 4=-7⎝⎛⎭⎫x 2-672+367, 所以当x =67=427,即AA 1=427时,体积V 取到最大值377. 29.解:(1)证明:由已知得△ABC ≌△DBC ,因此AC =DC .又G 为AD 的中点,所以CG ⊥AD ,同理BG ⊥AD .又BG ∩CG =G ,所以AD ⊥平面BGC . 又EF ∥AD ,所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 的中点,所以G 到平面BDC 的距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°=3,所以V 三棱锥D -BCG =V 三棱锥G -BCD =13·S △DBC ·h =13×12·BD ·BC ·sin 120°·32=12. 30.解:(1)证明:因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内的两条相交直线,所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内的两条相交直线,所以BC ⊥平面ACC 1A 1.(2)取线段AB 的中点M ,连接A 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC , 因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,所以DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC .所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .31.解:(1)证明:如图所示,取,AM .因为F 为PC 中点,所以MF ∥BC ,且MF =12BC .由已知有BC ∥AD ,BC =AD ,又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)(i)证明:连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,所以PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P - AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60˚,由余弦定理,可解得PB =3,从而∠PBE =90˚,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .(ii)连接BF ,由(i)知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角,而MB =12PB =32,可得AM =112,故EF =112.又BE =1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111.所以直线EF 与平面PBC 所成角的正弦值为21111. 32.解:(1)证明:连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE .(2)在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC .又平面ABC ⊥平面BCDE ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 的延长线交于点F ,连接AF ,则EF ⊥平面ABC .所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22,BF =22; 在Rt △ACF 中,由AC =2,CF =322, 得AF =262. 在Rt △AEF 中,由EF =22,AF =262, 得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313. 4-1答案1B 2.25 3.87. 4.3π 5试题解析:(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E AE ⊥,∵AB AC =,∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且 1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥ 平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F = ,连结1B F ,由AE EB ==1190A EA A EB ∠=∠= ,得114AB A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1AF BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠= ,得BD = 1143A F B F ==,由余弦定理得,111cos 8A FB ∠=-.6(I)证法一:连接,DG CD ,设CD GF O = ,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC =所以四边形DFCG 为平行四边形则O 为CD 的中点又H 为BC 的中点所以//OH BD又OH ⊂平面,FGH BD ⊂/平面,FGH所以//BD 平面FGH .7解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T.在三棱台DEF ABC -中,2,AB DE =则2,AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG//FC.又在BDC ∆,H 是BC 的中点,则TH//DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH ;(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而AB 则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点,,,GA GB GC 所在的直线分别为,,x y z 轴建立空间直角坐标系,设2AB =,则1,DE CF AC AG ===(((22B C F H -则平面ACFD 的一个法向量为1(0,1,0)n = ,设平面FGH 的法向量为2222(,,)n x y z = ,则220n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩ ,即220z ⎨⎪+=⎩取21x =,则221,y z ==2(1,1n = ,121cos ,2n n <>== ,故平面FGH 与平面ACFD 所成角(锐角)的大小为60 . 8.9.(Ⅰ)连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF ,在菱形ABCD 中,不妨设GB =1,由∠ABC =120°,可得AG =GC =3.由BE ⊥平面ABCD ,AB =BC 可知,AE =EC ,又∵AE ⊥EC ,∴EG EG ⊥AC ,在Rt △EBG 中,可得BE DF .在Rt △FDG 中,可得FG在直角梯形BDFE 中,由BD =2,BE DF =2可得EF =2, ∴222EG FG EF +=,∴EG ⊥FG ,∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (00),E(1,0, ,F (-1,0,2),C (00),∴AE =(1,CF =(-1,2).…10分故cos ,||||AE CF AE CF AE CF ∙<>== . 所以直线AE 与CF. ……12分 10.【解析】(1)证明:∵ 且点为的中点,∴ ,又平面平面,且平面平面,平面,∴ 平面,又平面,∴ ;(2)∵ 是矩形, ∴ ,又平面平面,且平面平面,平面,∴ 平面,又、平面,∴ ,,∴ 即为二面角的平面角,在中,,, ∴ 即二面角; PD PC =E CD PE DC ⊥PDC ⊥ABCD PDC ABCD CD =PE ⊂PDC PE ⊥ABCD FG ⊂ABCD PE FG ⊥ABCD AD DC ⊥PDC ⊥ABCD PDC ABCD CD =AD ⊂ABCD AD ⊥PCD CD PD ⊂PDC AD DC ⊥AD PD ⊥PDC ∠P AD C --Rt PDE ∆4PD =132DE AB ==PE tan PE PDC DE ∠==P AD C --P C D E F G(3)如下图所示,连接, ∵ ,即, ∴ ,∴ 为直线与直线所成角或其补角, 在中,,,由余弦定理可得∴ 直线与直线.11【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P O Q H P Q OH ∴,且OH BCD ⊂,所以//PQ 面BDC ; (Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===AC 2AF FB =2CG GB =2AF CGFB GB==//AC FG PAC ∠PA FG PAC ∆5PA ==AC =222cos 2PA AC PCPAC PA AC+-∠==⋅PA FG,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中2133HG α=∴=,所以在RT CHG ∆中222cos sin tan tan 60322sin CG CHG HG ααα∠==== tan (0,90)6060BDC ααα∴=∈∴=∴∠=12【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG . (3) 以点A 为坐标原点建立如图所示的坐标系,则3(0,0,0),(1,0,0),(,22A B C D ,(4)3(0,0,)2P ,故1333(0),(),(2222BC CP CD ==-=-设平面BCP 的法向量111(1,,)n y z = ,则11110233022y y z ⎧+=⎪⎪⎨⎪-+=⎪⎩ ,解得1123y z ⎧=⎪⎪⎨⎪=⎪⎩,即12(1,)3n = . 设平面DCP 的法向量222(1,,)n y z = ,则22230233022y y z ⎧-=⎪⎪⎨⎪-+=⎪⎩,解得222y z ⎧=⎪⎨=⎪⎩,即2(1n =.从而平面BCP 与平面D C P 的夹角的余弦值为12124cos 4n n n n θ⋅===13【答案】(1)3(2)514【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1ABC 外,BC 在平面1ABC 内,由直线与平面平行的判定定理可知, l //平面1ABC . 由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADDA 内,且AD 与1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF AM ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1AM AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A AM N --的平面角(设为θ). 设11AA =,则由12A B A CA A ==,120BAC ∠= ,有60BAD ∠= ,2,1AB AD ==.又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AAP 中, 1AP =;在1Rt A AM 中, 1AM =从而,11AA AP AE A P ∙==11AA AM AF A M ∙==所以sin AE AF θ==.所以cos θ===.故二面角1A AM N --的余弦值为515解:(1)以{}1,,AA 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=A ,)4,1,1(1--=A∴10103182018,cos 11==>=<C A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(= 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x =,∵)0,1,1(=,)4,2,0(1=AC 由1,AC m AD m ⊥⊥ ∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-==><=θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为3516【答案】118【答案】解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩7【答案】1515arcsin19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,平面AA 1C 1C ∩平面ABC =AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3. 因为A 1C 为∠ACC 1的平分线,故A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB , 故∠A 1FD 为二面角A 1 AB C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,所以DF =55,tan ∠A 1FD =A 1DDF=15, 所以cos ∠A 1FD =14.所以二面角A 1 AB C 的大小为arccos 14.20.5.1答案1. 2.【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1ADC ∆中,11AC DC AD ===故132AD C S ∆=所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23. 3.解:(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO , 由于BC 1∩AO =O ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,且AO ∩OD =O , 故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,且AD ∩BC =D , 所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 因为AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABC - A 1B 1C 1的高为217.4.解:(1)证明:设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)V =13×12×P A ×AB ×AD =36AB ,由V =34,可得AB =32.。
2016届高考数学5年真题备考题库第七章第1节空间几何体的结构特征及三视图与直观图理(含解析)
第7章 立体几何第1节 空间几何体的结构特征及三视图与直观图1.(2014新课标全国卷Ⅰ,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .6 2B .4 2C .6D .4解析:如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =22+22=6,选C.答案:C2.(2014安徽,5分)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18解析:由三视图可知该几何体的直观图如图所示,其是棱长为2的正方体从后面右上角和前面左下角分别截去一个小三棱锥后剩余的部分,其表面积为S =6×4-12×6+2×34×(2)2=21+ 3.答案:A2.(2014福建,5分)某空间几何体的正视图是三角形,则该几何体不可能是( )A .圆柱B .圆锥C .四面体D .三棱柱解析:选A 圆柱的正视图是矩形,则该几何体不可能是圆柱. 答案:A3.(2014浙江,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2解析:由三视图画出几何体的直观图,如图所示,则此几何体的表面积S =S 1-S正方形+S 2+2S 3+S斜面,其中S 1是长方体的表面积,S 2是三棱柱的水平放置的一个侧面的面积,S 3是三棱柱的一个底面的面积,则S =(4×6+3×6+3×4)×2-3×3+3×4+2×12×4×3+5×3=138(cm 2),选D.答案:D4.(2014辽宁,5分)某几何体三视图如图所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4解析: 直观图为棱长为2的正方体割去两个底面半径为1的14圆柱,所以该几何体的体积为23-2×π×12×2×14=8-π.答案:B5.(2014湖南,5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c=2×12×6×86+8+10=2,故选B.答案:B5.(2014重庆,5分)某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .72解析:题中的几何体可看作是从直三棱柱ABC -A 1B 1C 1中截去三棱锥E -A 1B 1C 1后所剩余的部分(如图所示),其中在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =4,AC =3,则BC =5,Rt △ABC 的面积等于12×3×4=6.AA 1⊥平面ABC ,则直角梯形ABEA 1的面积等于12×(2+5)×4=14,矩形ACC 1A 1的面积等于3×5=15.过点E 作EF ⊥AA 1于点F ,则EF =AB =4,A 1F =B 1E =BB 1-BE =3,则A 1E =5,所以△A 1C 1E 的面积等于12×3×5=152,直角梯形BCC 1E 的面积等于12×(2+5)×5=352,因此题中的几何体的表面积为6+14+15+152+352=60,选B.答案:B6.(2014江西,5分)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.答案:B7.(2014天津,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:该几何体是一个组合体,上半部分是一个圆锥,下半部分是一个圆柱.因为V 圆锥=13π×22×2=83π,V 圆柱=π×12×4=4π,所以该几何体体积V =83π+4π=203π. 答案:203π8.(2013北京,5分)如图,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.解析:本题考查空间几何体、点到直线的距离等基础知识,意在考查等价转化的数学思想和考生的空间想象能力.点P 到直线CC 1的距离等于点P 在平面ABCD 上的射影到点C 的距离,设点P 在平面ABCD 上的射影为P ′,显然点P 到直线CC 1的距离的最小值为P ′C 的长度的最小值.当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+1=255. 答案:2559.(2013新课标全国Ⅰ,5分)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:本题考查空间组合体的三视图及组合体的体积计算,意在考查考生的识图能力、空间想象能力以及计算能力.先根据三视图判断出组合体的结构特征,再根据几何体的体积公式进行计算.根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12π×22×4=16+8π,选择A.答案:A10.(2013新课标全国Ⅱ,5分)一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )解析:选A 本题考查三视图的基本知识.作出空间直角坐标系,在坐标系中标出各点的位置,然后进行投影,分析其正视图形状.易知选A.答案:A11.(2013广东,5分)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143 C.163D .6解析:本题考查三视图及几何体体积的计算,考查考生的空间想象能力及运算能力.由四棱台的三视图可知,台体上底面积S 1=1×1=1,下底面积S 2=2×2=4,高h =2,代入台体的体积公式V =13(S 1+S 1S 2+S 2)h =13×(1+1×4+4)×2=143.答案:B12.(2013湖南,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A .1 B. 2 C.2-12D.2+12解析:本小题主要考查三视图及考生的空间想象能力,考查函数与方程思想.由题可知正方体的底面与水平面平行,先把正方体正放,然后将正方体按某一侧棱逆时针旋转,易知当正方体正放时,其正视图的面积最小,为1×1=1;当正方体逆时针旋转45°时,其正视图的面积最大,为1×2= 2.而2-12<1,所以正方体的正视图的面积不可能等于2-12. 答案:C13.(2013湖北,5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V 1,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .V 1<V 2<V 4<V 3B .V 1<V 3<V 2<V 4C .V 2<V 1<V 3<V 4D .V 2<V 3<V 1<V 4解析:本题考查三视图以及几何体的体积计算问题,意在考查考生空间想象能力和运算求解能力.由题意可知,由于上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体.根据三视图可知,最上面一个简单几何体是上底面圆的半径为2,下底面圆的半径为1,高为1的圆台,其体积V 1=13π×(12+22+1×2)×1=73π;从上到下的第二个简单几何体是一个底面圆半径为1,高为2的圆柱,其体积V 2=π×12×2=2π;从上到下的第三个简单几何体是边长为2的正方体,其体积V 3=23=8;从上到下的第四个简单几何体是一个棱台,其上底面是边长为2的正方形,下底面是边长为4的正方形,棱台的高为1,故体积V 4=13×(22+2×4+42)×1=283,比较大小可知答案选C.答案:C14.(2013陕西,5分)某几何体的三视图如图所示,则其体积为________.解析:本题考查三视图和空间几何体之间的关系,涉及体积的计算方法,考查考生的空间想象能力及运算求解能力.易知原几何体是底面圆半经为1,高为2的圆锥体的一半,故所求体积为V =12×13×(π×12)×2=π3.答案:π315.(2012新课标全国,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18解析:由三视图可知该几何体为底面是斜边为6的等腰直角三角形,高为3的三棱锥,其体积为13×12×6×3×3=9.答案:B16.(2012广东,5分)某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π解析:由三视图可知,该几何体是由底面直径为6,高为5的圆柱与底面直径为6,母线长为5的圆锥组成的组合体,因此,体积为V =π×32×5+13×π×32×52-32=57π.答案:C17.(2011山东,5分)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( )A.3 B.2C.1 D.0解析:把底面为等腰直角三角形的直三棱柱的一个直角边所在侧面放在水平面上,就可以使得这个三棱柱的正视图和俯视图符合要求,故命题①是真命题;把一个正四棱柱的一个侧面放置在水平面上,即可使得这个四棱柱的正视图和俯视图符合要求,命题②是真命题;只要把圆柱侧面的一条母线放置在水平面即符合要求,命题③也是真命题.答案:A18.(2011广东,5分)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )A.18 3 B.12 3C.9 3 D.6 3解析:该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V=3×3×3=9 3.答案:C19.(2011浙江,5分)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )解析:从俯视图看,B和D符合,从正视图看D符合,而从侧视图看D也是符合的.答案:D20.(2011陕西,5分)某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2π D. 2π3解析:圆锥的底面半径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V =22×2-13×π×12×2=8-23π,正确选项为A.答案:A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节 空间角与距离考点一 直线与平面所成的角及二面角1.(2014·广东,5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)解析 设选项中的向量与a 的夹角为θ,对于选项A ,由于cos θ=1×(-1)+0×1+(-1)×012+02+(-1)2×(-1)2+12+02=-12,此时夹角θ为120°,不满足题意;对于选项B ,由于cos θ=1×1+0×(-1)+(-1)×012+02+(-1)2×12+(-1)2+02=12,此时夹角θ为60°,满足题意.故选B. 答案 B2.(2014·四川,8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎢⎡⎦⎥⎤33,1B.⎣⎢⎡⎦⎥⎤63,1 C.⎣⎢⎡⎦⎥⎤63,223 D.⎣⎢⎡⎦⎥⎤223,1解析 易证AC 1⊥平面A 1BD ,当点P 在线段CC 1上从C 运动到C 1时,直线OP 与平面A 1BD 所成的角α的变化情况:∠AOA 1→π2→∠C 1OA 1(点P 为线段CC 1的中点时,α=π2),由于sin ∠AOA 1=63,sin ∠C 1OA 1=223>63,sin π2=1,所以sin α的取值范围是[63,1]. 答案 B3.(2014·新课标全国Ⅱ,11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22解析 以C 1为坐标原点,建立如图所示的空间直角坐标系,设BC =CA =CC 1=2,则A (2,0,2),N (1,0,0),M (1,1,0),B (0,2,2),∴AN →=(-1,0,-2),BM→=(1,-1,-2),∴cos 〈AN →,BM →〉=AN →·BM →|AN →||BM →|=-1+45×6=330=3010,故选C.答案 C4.(2013·山东,4)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,由棱柱体积为94,底面正三角形的边长为3,可求得棱柱的高为 3.设P 在平面ABC 上射影为O ,则可求得AO 长为1,故AP 长为12+(3)2=2.故∠P AO =π3,即P A与平面ABC 所成的角为π3. 答案 B5.(2013·大纲全国,10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23B.33C.23D.13解析 设AB =1,则AA1=2,分别以D 1A 1→、D 1C 1→、D 1D →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.如右图所示:则D (0,0,2),C 1(0,1,0),B (1,1,2),C (0,1,2).DB →=(1,1,0),DC 1→=(0,1,-2),DC →=(0,1,0),设n =(x ,y ,z )为平面BDC 1的一个法向量,则⎩⎪⎨⎪⎧n ·DB →=0n ·DC 1→=0即⎩⎨⎧x +y =0y -2z =0,取n=(-2,2,1).设CD 与平面BDC 1所成角为θ 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23,故选A. 答案 A6.(2011·辽宁,8)如图,四棱锥S -ABCD 的底面为正方形,SD⊥底面ABCD ,则下列结论中不正确的是( ) A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角 解析 ∵四边形ABCD 是正方形,∴AC ⊥BD . 又∵SD ⊥底面ABCD ,∴SD ⊥AC . 其中SD ∩BD =D ,∴AC ⊥面SDB ,从而AC ⊥SB . 故A 正确;易知B 正确; 设AC 与DB 交于O 点,连接SO . 则SA 与平面SBD 所成的角为∠ASO , SC 与平面SBD 所成的角为∠CSO , 又OA =OC ,SA =SC , ∴∠ASO =∠CSO .故C 正确,由排除法可知选D. 答案 D7.(2015·四川,14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.解析 建立空间直角坐标系如图所示,设AB =1,则AF →=⎝ ⎛⎭⎪⎫1,12,0, E ⎝ ⎛⎭⎪⎫12,0,0, 设M (0,y ,1)(0≤y ≤1), 则EM →=⎝ ⎛⎭⎪⎫-12,y ,1,∴cos θ=-12+12y 1+1414+y 2+1=-1-y 52·4y 2+5.设异面直线所成的角为α, 则cos α=|cos θ|=1-y 52·4y 2+5=255·1-y 4y 2+5, 令t =1-y ,则y =1-t , ∵0≤y ≤1,∴0≤t ≤1,那么cos α=|cos θ|=255·t4t 2-8t +9=255t 24t 2-8t +9=25514-8t +9t 2, 令x =1t ,∵0≤t ≤1,∴x ≥1, 那么cos α=25514-8x +9x 2,又∵z =9x 2-8x +4在[1,+∞)上单增, ∴x =1,z min =5,此时cos α的最大值=255·15=255·55=25.答案 258.(2015·安徽,19)如图所示,在多面体A 1B 1D 1DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C . (2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.9.(2015·重庆,19)如图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.(1)证明 由PC ⊥平面ABC ,DE ⊂平面ABC ,故PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD .(2)解 由(1)知,△CDE 为等腰直角三角形,∠DCE =π4,如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED→=(1,-1,0),DP→=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面P AD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角A -PD -C 的余弦值为36.10.(2015·北京,17)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点. (1) 求证:AO ⊥BE ;(2) 求二面角F -AE -B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.(1)证明 因为△AEF 是等边三角形,O 为EF 的中点, 所以AO ⊥EF .又因为平面AEF ⊥平面EFCB .AO ⊂平面AEF , 所以AO ⊥平面EFCB . 所以AO ⊥BE .(2)解 取BC 中点G ,连接OG .由题设知EFCB 是等腰梯形, 所以OG ⊥EF .由(1)知AO ⊥平面EFCB . 又OG ⊂平面EFCB , 所以OA ⊥OG .如图建立空间直角坐标系O -xyz , 则E (a ,0,0),A (0,0,3a ),B (2,3(2-a ),0),EA →=(-a ,0,3a ), BE→=(a -2,3(a -2),0). 设平面AEB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,(a -2)x +3(a -2)y =0. 令z =1,则x =3,y =-1, 于是n =(3,-1,1).平面AEF 的法向量为p =(0,1,0).所以cos 〈n ,p 〉=n·p|n ||p |=-55.由题知二面角F -AE -B 为钝角,所以它的余弦值为-55. (3)解 因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE→·OC →=0,因为BE→=(a -2,3(a -2),0),OC →=(-2,3(2-a ),0), 所以BE→·OC →=-2(a -2)-3(a -2)2. 由BE →·OC →=0及0<a <2,解得a =43.11.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ; (3)求二面角A -EG -M 的余弦值. (1)解 点F ,G ,H 的位置如图所示.(2)证明 连接BD ,设O 为BD 的中点, 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD , HN ∥CD ,且HN =12CD , 所以OM ∥HN ,OM =HN ,所以MNHO 是平行四边形,从而MN ∥OH , 又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH .(3)解 法一 连接AC ,过M 作MP ⊥AC 于P , 在正方体ABCD -EFGH 中,AC ∥EG ,所以MP ⊥EG ,过P 作PK ⊥EG 于K ,连接KM , 所以EG ⊥平面PKM ,从而KM ⊥EG , 所以∠PKM 是二面角A -EG -M 的平面角, 设AD =2,则CM =1,PK =2,在Rt △CMP 中,PM =CM sin 45°=22, 在Rt △PKM 中,KM =PK 2+PM 2=322, 所以cos ∠PKM =PK KM =223, 即二面角A -EG -M 的余弦值为223.法二 如图,以D 为坐标原点,分别以DA→, DC →,DH →方向为x ,y ,z 轴的正方向,建立空间直角坐标系D -xyz , 设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0),所以,GE→=(2,-2,0),MG →=(-1,0,2),设平面EGM 的一个法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,⎩⎨⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1),在正方体ABCD -EFGH 中,DO ⊥平面AEGC , 则可取平面AEG 的一个法向量为n 2=DO→=(1,1,0),所以cos<n 1,n 2>=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=223,故二面角A -EG -M 的余弦值为223.12.(2014·陕西,17)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. (1)证明 由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC , BD =DC =2,AD =1. 由题设,BC ∥平面EFGH , 平面EFGH ∩平面BDC =FG , 平面EFGH ∩平面ABC =EH , ∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥DC ,AD ⊥BD , ∴AD ⊥平面BDC , ∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.(2)解 法一 如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA→=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ), ∵EF ∥AD ,FG ∥BC , ∴n ·DA →=0,n ·BC→=0, 得⎩⎨⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA→·n |BA →||n | =25×2=105.法二 建立以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E (1,0,12),F (1,0,0),G (0,1,0). ∴FE→=⎝ ⎛⎭⎪⎫0,0,12, FG→=(-1,1,0),BA→=(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ), 则n ·FE →=0,n ·FG→=0, 得 ⎩⎪⎨⎪⎧12z =0,-x +y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n | =25×2=105. 13.(2014·天津,17)如图,在四棱锥P -ABCD 中,P A⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 法一 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),DC →=(2,0,0), 故BE→·DC →=0. 所以,BE ⊥DC .(2)解 向量BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量.则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎨⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有 cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33. 所以直线BE 与平面PBD 所成角的正弦值为33.(3)解 向量BC→=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF→=λCP →,0≤λ≤1.故BF→=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34.即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面F AB 的法向量,则 ⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0. 不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.法二 (1)证明 如图,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD ⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD . (2)解 连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33.所以直线BE 与平面PBD 所成角的正弦值为33.(3)解 如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H .因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG .所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010.所以,二面角F -AB -P 的余弦值为31010. 14.(2013·湖南,19)如图,在直棱柱ABCD -A1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3. (1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.法一 (1)证明 如图,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1. 又AC ⊥BD ,所以AC ⊥平面BB 1D . 而B 1D ⊂平面BB 1D ,所以AC ⊥B 1D .(2)解 因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).如图,连接A 1D ,因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°,所以A 1B 1⊥平面ADD 1A 1. 从而A 1B 1⊥AD 1.又AD =AA 1=3,所以四边形ADD 1A 1是正方形,于是A 1D ⊥AD 1.故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D , 所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ.在直角梯形ABCD 中,因为AC ⊥BD , 所以∠BAC =∠ADB . 从而Rt △ABC ∽Rt △DAB , 故AB DA =BCAB .即AB =DA ·BC = 3. 连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217,即cos(90°-θ)=217. 从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.法二 (1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为:A (0,0,0),B (t ,0,0),B 1(t ,0,3),C (t ,1,0),C 1(t ,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0).因为AC ⊥BD ,所以AC→·BD →=-t 2+3+0=0.解得t =3或t =-3(舍去). 于是B 1D →=(-3,3,-3),AC →=(3,1,0). 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设n =(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧n ·AC→=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈n ,B 1C 1→〉| ⎪⎪⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217.15.(2012·新课标全国,19)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1BD C 1的大小.(1)证明 由题设知,三棱柱的侧面为矩形, 由于D 为AA 1的中点,故DC =DC 1. 又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,DC ∩BD =D , 所以DC 1⊥平面BCD . BC ⊂平面BCD ,故DC 1⊥BC .(2)解 由(1)知BC ⊥DC 1,且BC ⊥CC 1, 则BC ⊥平面ACC 1A 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA→的方向为x 轴的正方向,|CA →|为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则A 1D →=(0,0,-1),BD →=(1,-1,1),DC 1→=(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0,n ·A 1D →=0,即⎩⎨⎧x -y +z =0,z =0.可取n =(1,1,0).同理,设m =(x 1,y 1,z 1)是平面C 1BD 的法向量. 则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0.即⎩⎨⎧x 1-y 1+z 1=0,-x 1+z 1=0,可取m =(1,2,1).从而cos 〈n ,m 〉=n ·m |n ||m |=32. 故二面角A 1BD C 1的大小为30°. 考点二 空间距离1.(2014·江西,10)如图,在长方体ABCD -A1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )解析 根据反射的对称性,质点是在过A ,E ,A 1的平面内运动.因为711<34,所以过A 、E ,A 1作长方体的截面AA 1NM 如图所示.设点A关于平面A1B1C1D1的对称点为A′,易知它在z轴上,且A′A1=AA1=12,连接A′E并延长交平面ABCD于点E1,因为A1E=5,所以AE1=10,且E1到AB,AD的距离分别为6,8,即E1(8,6,0),而它在线段AM上,从而知L1=AE=EE1=L2;事实上,只需要在AA1NM内,过E1作AE的平行线交MN 于点E2,再过E2作E1E的平行线交A1N于点E3,可知EE1>E2E3=L4>E1E2=L3,故L1=L2>L4>L3,故选C.答案 C2.(2012·全国,4)已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=22,E为CC1的中点,则直线AC1与平面BED的距离为()A.2 B. 3 C. 2 D.1解析连接AC交BD于点O,连接OE,∵AB=2,∴AC=2 2.又CC1=22,则AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为CH的中点.由BD⊥AC,EC⊥BD知,BD⊥平面EOC,∴CM⊥BD.∴CM⊥平面BDE.∴HM为直线AC1到平面BDE的距离.又△ACC1为等腰直角三角形,∴CH=2.∴HM=1.答案 D3.(2011·重庆,9)高为24的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.24 B.22C.1 D. 2解析如图所示,过S点作SE⊥AC交AC的延长线于E点,则SE ⊥面ABCD ,故SE =24.设球心为O ,A ,B ,C ,D 所在圆的圆心为O 1, 则O 1为AC ,BD 的交点.在Rt △OAO 1中,AO 1=22,AO =1, 故OO 1=1-⎝ ⎛⎭⎪⎫222=22.故OO 1=2SE . 过S 点作SO 2⊥O 1O 于点O 2,则O 2为O 1O 的中点.故△OSO 1为等腰三角形,则有O 1S =SO =1. 答案 C4.(2011·大纲全国,6)已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23B.33C.63D .1解析 由题意可作图: ∵AB =2,AC =BD =1, ∴BC =AB 2-AC 2=3, ∴CD =BC 2-BD 2=2,作DE ⊥BC 于点E ,则DE 即为D 到平面ABC 的距离. ∵DC ·DB =BC ·DE , ∴DE =DC ·DB BC =2×13=63.答案 C5.(2013·北京,14)如图,在棱长为2的正方体ABCD -A1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.解析 过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1, 连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H ,P 点到直线CC 1的距离就是C 1H ,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小, 此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1·C 1H =C 1D 1·C 1E 1, ∴C 1H =25=255. 答案255v6.(2015·江苏,22)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解 以{AB→,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0), P (0,0,2).(1)因为AD ⊥平面P AB ,所以AD→是平面P AB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD→||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33.(2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ→=CB →+BQ →=(-λ,-1,2λ), 又DP→=(0,-2,2), 从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.7.(2015·山东,17)如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE, ∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证明 法一 连接DG ,CD ,设CD ∩GF =O ,连接OH ,在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD,又OH ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .法二 在三棱台DEF -ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB . 又GH ∩HF =H ,所以平面FGH ∥平面ABED .因为BD ⊂平面ABED ,所以BD ∥平面FGH .(2)解 法一 设AB =2,则CF =1.在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC ,又FC ⊥平面ABC ,所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点.所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1), 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1). 设n =(x ,y ,z )是平面FGH 的一个法向量,则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0. 可得平面FGH 的一个法向量n =(1,-1,2).因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0).所以cos 〈GB →,n 〉=GB →·n |GB →|·|n|=222=12. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.法二 作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH .由FC ⊥平面ABC ,得HM ⊥FC ,又FC ∩AC =C ,所以HM ⊥平面ACFD .因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF ,可得MN FC =GM GF ,从而MN =66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH =HM MN =3,所以∠MNH =60°,所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.8.(2014·四川,18)三棱锥A -BCD 及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A-NP-M的余弦值;(1)证明如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,因此AO⊥BD,OC⊥BD.因为AO、OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH,又M,N分别为线段AD,AB的中点,所以NH∥AO,MN//BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO的中点,故P为BC中点.(2)解法一如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A NP M 的一个平面角.由(1)知,△ABD ,△BCD 是边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰Rt △AOC 中,AC =6,作BR ⊥AC 于R .在△ABC 中,AB =BC ,所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,因此NQ =BR 2=104.同理,可得MQ =104.所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A -NP -M 的余弦值是105.法二 由俯视图及(1)可知,AO ⊥平面BCD .因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB .又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图,以O 为坐标原点,以OB→,OC →,OA →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点,又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0. 于是AB→=(1,0,-3),BC →=(-1,3,0), MN →=(1,0,0),NP →=⎝⎛⎭⎪⎫0,32,-32. 设平面ABC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥AB →,n 1⊥BC →,即⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,有⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0,从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0. 取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1).连接MP ,设平面MNP 的法向量n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2⊥MN →,n 2⊥NP →,即⎩⎪⎨⎪⎧n 2·MN →=0,n 2·NP →=0,有⎩⎨⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎨⎧x 2=0,32y 2-32z 2=0.取z 2=1,所以n 2=(0,1,1).设二面角A -NP -M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2| =⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105. 故二面角A -NP -M 的余弦值是105.9.(2012·重庆,19)如图,在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求点C 到平面A 1ABB 1的距离;(2)若AB 1⊥A 1C ,求二面角A 1CD C 1的平面角的余弦值.解 (1)由AC =BC ,D 为AB 的中点,得CD ⊥AB . 又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)法一 如图,取D 1为A 1B 1的中点,连接DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1CD C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C , 由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1, 即AA 21=AD ·A 1B 1=8,得AA 1=2 2. 从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中,cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.法二 如图,过D 作DD 1∥AA 1交A 1B 1于D 1, 在直三棱柱中,易知DB ,DC ,DD 1两两垂直. 以D 为原点,射线DB ,DC ,DD 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ),由AB 1→⊥A 1C →,有8-h 2=0,h =2 2.故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →=(0,5,0). 设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1).设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即⎩⎨⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以cos 〈m ,n 〉=m ·n |m |·|n |=22+1×1=63. 所以二面角A 1CD C 1的平面角的余弦值为63.。