2015-2016年江苏省南通市海门市八年级(上)期末数学试卷及答案

合集下载

江苏省南通市初二数学上学期期末试卷

江苏省南通市初二数学上学期期末试卷

江苏省南通市初二数学上学期期末试卷 一、选择题 1.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形 B .一定是锐角三角形 C .可能是钝角三角形 D .一定是钝角三角形2.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 3.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .64.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .5.下列图案中,属于轴对称图形的是( )A .B .C .D .6.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 7.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .8.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1B .2C .4D .无数 10.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题11.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.12.如果点P(m+1,m+3)在y轴上,则m=_____.13.如图,直线l1:y=﹣12x+m与x轴交于点A,直线l2:y=2x+n与y轴交于点B,与直线l1交于点P(2,2),则△PAB的面积为_____.14.一次函数y=kx+b的图像如图所示,则关于x的不等式kx-m+b>0的解集是____. 15.计算222mm m+--的结果是___________16.已知,点(,1)A a和点(3,)B b关于原点O对称,则+a b的值为__________.17.36的算术平方根是.18.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是________.19.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是_______20.当x =_____时,分式22x x x-+值为0. 三、解答题21.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.22.如图,四边形ABCD 中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC 边的长;(2)求四边形ABCD 的面积.23.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.24.如图1,已知ED 垂直平分BC ,垂足为D ,AB 与EK 相交于点F ,连接CF .(1)求证:∠AFE =∠CFD ;(2)如图2.在△GMN 中,P 为MN 上的任意一点.在GN 边上求作点Q ,使得∠GQM =∠PQN ,保留作图痕迹,写出作法并作简要证明.25.解方程:21133x x x x =+++. 四、压轴题26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)27.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).28.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.29.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA .(模型应用)应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD 的长.应用2:如图 ③,在平面直角坐标系中,纸片△OPQ 为等腰直角三角形,QO =QP ,P (4,m ),点Q 始终在直线OP 的上方.(1)折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M ,当m =2时,求Q 点的坐标和直线l 与x 轴的交点坐标;(2)若无论m 取何值,点Q 总在某条确定的直线上,请直接写出这条直线的解析式 .30.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a、b,斜边为c.则满足a2+b2=c2.若各边都扩大k倍(k>0),则三边分别为ak、bk、ck(ak)2+(bk)2=k2(a2+b2)=(ck)2∴三角形仍为直角三角形.故选:A.【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.2.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.3.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM ,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB ,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.4.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,5.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D选项是轴对称图形,故本选项符合题意;故选D.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.6.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 7.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.8.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .二、填空题11.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯,解得,165 CD .故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.12.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.13.【解析】【分析】把点P(2,2)分别代入y=﹣x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,解析:【解析】【分析】把点P(2,2)分别代入y=﹣12x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,2)分别代入y=﹣12x+m和y=2x+n,得,m=3,n=﹣2,∴直线l1:y=﹣12x+3,直线l2:y=2x﹣2,对于y=﹣12x+3,令y=0,得,x=6,对于y=2x﹣2,令x=0,得,y=﹣2,∴A(6,0),B(0,﹣2),∵直线l 1:y =﹣12x+3与y 轴的交点为(0,3), ∴△PAB 的面积=12×5×6﹣12×5×2=10, 故答案为:10.【点睛】本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.14.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.15.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.16.【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点和点关于原点对称,∴,,∴;故答案为:.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记解析:4-【解析】【分析】根据关于原点对称的点坐标的特点,即可得到答案.【详解】解:∵点(,1)A a 和点(3,)B b 关于原点O 对称,∴3a =-,1b =-,∴3(1)4a b +=-+-=-;故答案为:4-.【点睛】本题考查了关于原点对称的点坐标特点,解题的关键是熟记平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数,比较简单.17.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.18..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.19.—1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴AC=,∵A 点表示-1,∴E 点表示的数为:1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.20.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x 2+x =x (x +1)≠0,所以x ≠0或x ≠﹣1;而分式值为0,即分子2﹣x =0,解得:x =2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.三、解答题21.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.22.(1)3;(2)36.【解析】【分析】(1)先根据勾股定理求出BC 的长度;(2)根据勾股定理的逆定理判断出△ACD 是直角三角形,四边形ABCD 的面积等于△ABC 和△ACD 的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4∴BC= 2222543AC AB -=-=,(2)在△ACD 中,AC 2+CD 2= 52+122=169AD 2 =132=169,∴AC 2+CD 2= AD 2,∴△ACD 是直角三角形,∴∠ACD=90°;由图形可知:S 四边形ABCD =S △ABC +S △ACD = 12AB•BC+ 12AC•CD , =12×3×4+ 12×5×12, =36.【点睛】 本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.23.(1)证明见解析;(2)21.【解析】【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△AD′C.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴A B=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.24.(1)证明见解析;(2)答案见解析.【解析】【分析】(1)根据垂直平分线的性质证明三角形CFB是等腰三角形,进而证明∠AFE=∠CFD;(2)作点P关于GN的对称点P′,连接P′M交GN于点Q,结合(1)即可证明∠GQM =∠PQN.【详解】(1)∵ED垂直平分BC,∴FC=FB,∴△FCB是等腰三角形.∵FD⊥BC,由等腰三角形三线合一可知:FD 是∠CFB 的角平分线,∴∠CFD =∠BFD .∵∠AFE =∠BFD ,∴∠AFE =∠CFD .(2)作点P 关于GN 的对称点P ',连接P 'M 交GN 于点Q ,点Q 即为所求.∵QP =QP ',∴△QPP '是等腰三角形.∵QN ⊥PP ',∴QN 是∠PQP '的角平分线,∴∠PQN =∠P 'QN .∵∠GQM =∠P 'QN ,∴∠GQM =∠PQN .【点睛】本题考查了作图−复杂作图,解决本题的关键是掌握线段垂直平分线的性质.25.32x =- 【解析】【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+,解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.四、压轴题26.(1)2,7,4;(2)83x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+, 解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.27.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O 是AC 边的垂直平分线与BC 的交点,∴OC=OA ,∴∠EAC=∠DCB=α,∵AC=BC ,AE=CD ,∴△AEC ≌△CDB ,∴∠E=∠D ,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒.②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=, ()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.29.模型建立:见解析;应用1:2:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H (4,y ),那么KQ =PH =y ﹣m =y ﹣2,OK =QH =4﹣KQ =6﹣y ,又∵OK =y ,∴6﹣y =y ,y =3,∴Q (1,3),∵折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M , ∴点M 是OP 的中点,∵P(4,2),∴M(2,1),设直线Q M 的函数表达式为:y =kx+b ,把Q (1,3),M(2,1),代入上式得:213k b k b +=⎧⎨+=⎩,解得:25k b =-⎧⎨=⎩∴直线l 的函数表达式为:y =﹣2x +5,∴该直线l 与x 轴的交点坐标为(52,0); (2)∵△OKQ ≌△QHP ,∴QK =PH ,OK =HQ ,设Q (x ,y ),∴KQ =x ,OK =HQ =y ,∴x +y =KQ +HQ =4,∴y =﹣x +4,∴无论m 取何值,点Q 总在某条确定的直线上,这条直线的解析式为:y =﹣x +4, 故答案为:y =﹣x +4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.30.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC ∴+=,BC BD =,BF BP BD ∴+=;(3)如图③,BF BD BP =+,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点, BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠+∠=∠+∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中,DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BC BP =+,BF BC BP ∴=+,BC BD =,BF BD BP ∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF ∆≅∆,是一道中等难度的中考常考题.。

南通市八年级上学期期末数学试卷

南通市八年级上学期期末数学试卷

南通市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是:① 对角线互相垂直且相等的平行四边形是正方形② 平行四边形、矩形、等边三角形、正方形既是中心对称图形,也是轴对称图形。

③ 旋转和平移都不改变图形的形状和大小④ 底角是45°的等腰梯形,高是h,则腰长是。

A . ①②③④B . ①②④C . ①②③D . ①③④2. (2分)若a、b、c是三角形三边的长,则代数式的值()A . 小于零B . 等于零C . 大于零D . 非正数3. (2分) (2015七下·常州期中) 若一个多边形的内角和等于1620°,则这个多边形的边数为()A . 9B . 10C . 11D . 124. (2分) (2016八上·宁阳期中) 已知两个分式:A= ,B= ,其中x≠±2.下面的结论正确的是()A . A=BB . A,B互为相反数C . A,B互为倒数D . 以上结论都不对5. (2分)在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是()A . (﹣4,﹣3)B . (4,3)C . (﹣4,3)D . (4,﹣3)6. (2分) (2016九上·达州期末) 如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3 cm,那么AE等于()A . 3 cmB . cmC . 6 cmD . cm7. (2分)下列语句:①两点之间,线段最短.②线段AB是点A与点B两点间的距离.③对顶角相等.④同位角相等.其中正确的有()A . ①②③④B . ②③④C . ①③D . ②④8. (2分)(2016·遵义) 下列运算正确的是()A . a6÷a2=a3B . (a2)3=a5C . a2•a3=a6D . 3a2﹣2a2=a29. (2分) (2020八上·长兴期末) 不等式1+x≥2-3x的解是()A . x≥B . x≥C . x≤D . x≤10. (2分)如图,在四边形ABCD中,AB=4,CD=13,DE=12,∠DAB=∠DEC=90°,∠ABE=135°, 四边形ABCD 的面积是()A . 94B . 90C . 84D . 78二、填空题。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)2.下列无理数中,在﹣1与2之间的是( ) A .﹣3 B .﹣2 C .2D .5 3.如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于( )A .25°B .30°C .45°D .60° 4.下列各组数不是勾股数的是( ) A .3,4,5B .6,8,10C .4,6,8D .5,12,13 5.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .1,3,2C .6,8,10D .3,4,5 6.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA 7.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒8.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 9.下列各数中,无理数的是( )A .0B .1.01001C .πD .410.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题11.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.12.已知点P 的坐标为(4,5),则点P 到x 轴的距离是____.13.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.14.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.15.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.使函数6y x =-有意义的自变量x 的取值范围是_______.18.若某个正数的两个平方根分别是21a +与25a -,则a =_______.19.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.三、解答题21.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注..相关数据....) 22.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.23.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .24.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .25.如图,将一张边长为8的正方形纸片OABC 放在直角坐标系中,使得OA 与y 轴重合,OC 与x 轴重合,点P 为正方形AB 边上的一点(不与点A 、点B 重合).将正方形纸片折叠,使点O 落在P 处,点C 落在G 处,PG 交BC 于H ,折痕为EF .连接OP 、OH .初步探究(1)当AP =4时①直接写出点E 的坐标 ;②求直线EF 的函数表达式.深入探究(2)当点P 在边AB 上移动时,∠APO 与∠OPH 的度数总是相等,请说明理由. 拓展应用(3)当点P 在边AB 上移动时,△PBH 的周长是否发生变化?并证明你的结论.四、压轴题26.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范围.27.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.28.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由29.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.C解析:C【解析】试题分析:A31,故错误;B2<﹣1,故错误;C.﹣12<2,故正确;52,故错误;故选C.【考点】估算无理数的大小.3.B解析:B【解析】【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.【点睛】本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4.C解析:C【解析】【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.5.A解析:A【解析】【分析】根据勾股定理的逆定理,分别判断即可.【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形;故选:A.【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.6.B解析:B【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意.故选B .考点:全等三角形的判定.7.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.8.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;,是整数,属于有理数.2故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.10.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.二、填空题11.x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x<1【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点:一次函数与一元一次不等式.12.5【解析】【分析】根据点到x轴的距离等于该点纵坐标的绝对值即可得出答案.【详解】解:∵点P的坐标为(4,5),∴点P到x轴的距离是5;故答案为:5.【点睛】本题主要考查了点到坐标轴解析:5【解析】【分析】根据点到x轴的距离等于该点纵坐标的绝对值即可得出答案.【详解】解:∵点P的坐标为(4,5),∴点P到x轴的距离是5;故答案为:5.【点睛】本题主要考查了点到坐标轴的距离的计算,解题的关键是熟记点到坐标轴的距离. 13.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a). 14.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键. 15.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+- ∴3302k a b k a k +=⎧⎪-=⎨⎪=⎩,解得:6202a b k =⎧⎪=⎨⎪=⎩,∴26a b +=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条x≤解析:6【解析】【分析】a≥0,可得6-x≥0,解不等式即可.【详解】解:∵y=∴6-x≥0x≤∴6x≤故答案为:6【点睛】,被开方数a≥0是解题的关键.18.1【解析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.19.8【解析】【分析】【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为604x+,乙做40个所用的时间为40x,列方程为:604x+=40x,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.20.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.三、解答题21.(1)2500,100;(2)100500y x =+;(3)见解析【解析】【分析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分 ∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩. ∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中, ∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键.22.(1)y =x +3;(2)x ≤3.【解析】试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k +3,∴ k =1,∴ 这个一次函数的解析式是:y =x +3.(2)∵ k =1,∴ x +3≤6,∴ x ≤3,即关于x 的不等式kx +3≤6的解集是:x ≤3.23.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定.24.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20 【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.25.(1)①(0,5);②152y x =-+;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.【解析】【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:185k bb=+⎧⎨=⎩,解得:125kb⎧=-⎪⎨⎪=⎩,故直线EF的表达式为:y=﹣12x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,APO OPHA OQPOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOP≌△QOP(AAS),∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.四、压轴题26.(1)点A坐标为(0,9);(2)△BOC的面积=18;(3)①当t<8时,d=﹣98t+9,当t>8时,d=98t﹣9;②12≤t≤1或7617≤t≤8017.【解析】【分析】(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得:83xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t t t t ⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩, ∴12≤t≤1或7617≤t≤8017. 【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.27.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.28.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-,0);②D 点的坐标为(-1,3)或(45,125) 【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b,得b =4,∴直线BC为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为y kx b=+,把D(-2,2),B1(0,-4)代入,得224k bb-+=⎧⎨=-⎩,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D的坐标为(45,125).综上所述:D点的坐标为(-1,3)或(45,125)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.29.(1)(73,2);(2)y=x﹣13;(3)E的坐标为(32,72)或(6,8)【解析】【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2),则点T 的坐标为(33a +,23a +), 当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32, 此时点E 的坐标为(32,72), 当∠TDH =90°时,点T 与点D 的横坐标相同, ∴33a +=3, 解得,a =6,此时点E 的坐标为(6,8),当∠DTH =90°时,该情况不存在,综上所述,当△DTH 为直角三角形时,点E 的坐标为(32,72)或(6,8) 【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨30.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =22+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,∴AB=+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,一棵大树在离地面3m ,5m 两处折成三段,中间一段AB 恰好与地面平行,大树顶部落在离大树底部6m 处,则大树折断前的高度是( )A .9mB .14mC .11mD .10m 2.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 3.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 4.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6D .3,4,8 5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .6.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.12cm B.1cm C.2cm D.32cm8.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.下列各组数是勾股数的是()A.6,7,8 B.1,3,2C.5,4,3 D.0.3,0.4,0.510.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.二、填空题11.1﹣π的相反数是_____.12.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.14.若某个正数的两个平方根分别是21a +与25a -,则a =_______.15.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.16.已知直角三角形的两边长分别为3、4.则第三边长为________.17.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.18.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.19.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.如图,一次函数y =﹣x +7的图象与正比例函数y =34x 的图象交于点A ,点P (t ,0)是x 正半轴上的一个动点.(1)点A 的坐标为( , );(2)如图1,连接PA ,若△AOP 是等腰三角形,求点P 的坐标:(3)如图2,过点P 作x 轴的垂线,分别交y =34x 和y =﹣x +7的图象于点B ,C .是否存在正实数,使得BC =32OA ,若存在求出t 的值;若不存在,请说明理由.22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .24.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.25.已知直线AB :y=kx+b 经过点B (1,4)、A (5,0)两点,且与直线y=2x-4交于点C .(1)求直线AB的解析式并求出点C的坐标;(2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.四、压轴题26.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.图1 图2(1)求直线BC的解析式;(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;27.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由;(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= ゜.∆中,线段AM为BC边上的中线.动点D在直线AM上时,以28.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE∠的度数;(1)求CAM∆≅∆;(2)若点D在线段AM上时,求证:ADC BEC∠是否(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB为定值?并说明理由.29.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.30.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】作BD⊥OC于点D,首先由题意得:AO=BD=3m,AB=OD=2m,然后根据OC=6米,得到DC=4 m,最后利用勾股定理得BC的长度即可.【详解】解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=5-3=2m,∵OC=6m,∴DC=6-2=4m,∴由勾股定理得:2234,∴旗杆的高度为5+5=10m,故选:D.【点睛】本题考查了勾股定理的应用,正确作出辅助线,构造直角三角形是解答本题的关键.2.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a、b,斜边为c.则满足a2+b2=c2.若各边都扩大k倍(k>0),则三边分别为ak、bk、ck(ak)2+(bk)2=k2(a2+b2)=(ck)2∴三角形仍为直角三角形.故选:A.【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.6.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.7.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.8.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.9.C解析:C【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k <0,然后根据一次函数的性质得到一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,∴k <0,∵一次函数y=x+k 的一次项系数大于0,常数项小于0,∴一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.故选A .【点睛】本题考查了一次函数图象:一次函数y=kx+b (k 、b 为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).二、填空题11.π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是.故答案为:π﹣1.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.【解析】【分析】根据相反数的定义即可得到结论.【详解】1﹣π的相反数是()11ππ=﹣﹣﹣. 故答案为:π﹣1.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.12.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 14.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a -5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.17.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.【解析】【分析】根据SAS 定理判定△FBD≌△DCE,然后根据全等三角形的性质求得∠FDB=∠DEC,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【解析:70︒【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【详解】解:∵BF CD =,B C ∠=∠,BD CE =∴△FBD ≌△DCE∴∠FDB=∠DEC∵55FDE ∠=︒∴∠FDB++∠EDC=∠DEC+∠EDC=180°-55°=125°∴∠C=180°-125°=55°∴∠A=180°-2×55°=70°【点睛】本题考查全等三角形的判定和性质及等腰三角形的性质,掌握判定定理正确推理论证是本题的解题关键.19.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)(4,3);(2)P(5,0)或(8,0)或(258,0);(3)t=587.【解析】【分析】(1)解方程组即可得到结论;(2)根据勾股定理得到OA5,当OP=OA=5时,△AOP是等腰三角形,当AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;(3)由P(t,0),得到B(t,34t),C(t,﹣t+7),根据BC=32OA,解方程即可得到结论.【详解】解:(1)解734y xy x=-+⎧⎪⎨=⎪⎩得43xy=⎧⎨=⎩,∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),∴OA5,当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),当AP=OA=5时,△AOP是等腰三角形,则OP=8,∴P(8,0);当OP=PA时,△AOP是等腰三角形,则点P在OA的垂直平分线上,如图1,设OA 的垂直平分线交OA 于H , ∴OH =12OA =52, 过A 作AG ⊥x 轴于G ,∴△OPH ∽△OAG ,∴OH OP OG OA=, ∴5245OP =, ∴OP =258, ∴P (258,0), 综上所述,P (5,0)或(8,0)或(258,0); (3)∵P (t ,0),∴B (t ,34t ),C (t ,﹣t+7), ∵BC =32OA , ∴﹣t+7﹣34t =32×5或34t+t ﹣7=32×5, 解得:t =﹣27或t =587, ∵t >0,∴t =587.【点睛】本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.24.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF 的周长为10,∴AD +DF +FC =10,∴BC =BD +DF +FC =AD +DF +FC =10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.25.(1)y=-x+5;点C (3,2);(2)S=272;(3)P 点坐标为(2,3)或(4,1). 【解析】【分析】 (1)根据待定系数法求出直线AB 解析式,再联立两函数解出C 点坐标;(2)依次求出y=-x+5和y=2x-4与y 轴交点坐标,根据三角形的面积公式即可求解;(3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4),根据线段PQ 的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴ 504k b k b +⎧⎨+⎩== 解得 15k b =-⎧⎨=⎩∴直线AB 的解析式为:y=-x+5;∵若直线y=2x-4与直线AB 相交于点C ,∴ 524y x y x =-+⎧⎨-⎩= 解得 32x y =⎧⎨=⎩∴点C (3,2);(2)∵y=-x+5与y 轴交点坐标为(0,5),y=2x-4与y 轴交点坐标为(0,-4),C 点坐标为(3,2)∴S=932722⨯= (3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4)则-m+5-(2m-4)=3 或者2m-4-(-m+5)=3解得m= 2 或m=4∴P 点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.四、压轴题26.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得:304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+; (2)连接OM ,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩, 解得:65125x y ⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M ; (3)∵FA=FB ,A (-2,0),B (0,4),∴F (-1,2),设G (0,n ),①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .∵四边形FGQP 是正方形,易证△FMG ≌△GNQ ,∴MG=NQ=1,FM=GN=n-2,∴Q (n-2,n-1),∵点Q 在直线443y x =-+上, ∴41(2)43n n -=--+, ∴23=7n , ∴23(0,)7G . ②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+,∴n=-1,∴(0,-1)G .综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.28.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.29.模型建立:见解析;应用1:652:(1)Q (1,3),交点坐标为(52,0);(2)y =﹣x+4【解析】【分析】根据AAS 证明△BEC ≌△CDA ,即可;应用1:连接AC ,过点B 作BH ⊥DC ,交DC 的延长线于点H ,易证△ADC ≌△CHB ,结合勾股定理,即可求解;应用2:(1)过点P 作PN ⊥x 轴于点N ,过点Q 作QK ⊥y 轴于点K ,直线KQ 和直线NP 相交于点H ,易得:△OKQ ≌△QHP ,设H (4,y ),列出方程,求出y 的值,进而求出Q (1,3),再根据中点坐标公式,得P(4,2),即可得到直线l 的函数解析式,进而求出直线l 与x 轴的交点坐标;(2)设Q (x ,y ),由△OKQ ≌△QHP ,KQ =x ,OK =HQ =y ,可得:y =﹣x +4,进而即可得到结论.【详解】如图①,∵AD ⊥ED ,BE ⊥ED ,∠ACB =90°,∴∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠BCE ,∵AC =BC ,∴△BEC ≌△CDA (AAS );应用1:如图②,连接AC ,过点B 作BH ⊥DC ,交DC 的延长线于点H ,∵∠ADC =90°,AD =6,CD =8,∴AC =10,∵BC =10,AB 2=200,∴AC 2+BC 2=AB 2,。

南通市八年级上学期期末数学试卷 (解析版)

南通市八年级上学期期末数学试卷 (解析版)

南通市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,613.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A .B .C .D .4.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .5.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条6.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:507.在平面直角坐标系中,将函数3y x 的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)8.下列各式中,属于分式的是( ) A .x ﹣1B .2mC .3b D .34(x+y ) 9.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( ) A .1个B .2个C .3个D .4个10.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.13.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.14.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.15.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 16.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.17.4的算术平方根是 . 18.在2,227,254-,3.14,这些数中,无理数有__________个. 19.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.20.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .三、解答题21.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.22.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x 张(x≥9).(1)分别用含x 的式子表示甲、乙两个厂家购买桌椅所需的金额; (2)购买的椅子至少多少张时,到乙厂家购买更划算.23.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.24.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.25.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x 小时,快车行驶的路程为y 1千米,慢车行驶的路程为y 2千米,图中折线OAEC 表示y 1与x 之间的函数关系,线段OD 表示y 2与x 之间的函数关系,请解答下列问题:(1)甲、乙两地相距 千米,快车休息前的速度是 千米/时、慢车的速度是 千米/时;(2)求图中线段EC 所表示的y 1与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.四、压轴题26.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.27.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△; (2)求证:点G 是EF 的中点.30.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t , 根据题意得到12-3t=t , 解得:t=3, 故选B .本题考查一元一次方程及平行四边形的判定,难度不大.2.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.4.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.5.B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222-=-=AC CD543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.6.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案. 【详解】由图象知走前一半路程用的时间为1小时, 所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40, 故选B . 【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.7.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.8.B解析:B 【解析】 【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式. 【详解】解:2m是分式, 故选:B . 【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.9.C解析:C 【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.10.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 13.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.14.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.15.【解析】首先把两边同时乘以,可得 ,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ ,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时, 解析:34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.16.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】【解析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可.【详解】解:如图所示,连接AN ,设NC x =,则8DNx , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+, 解得:3x =,即5DN cm . 在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.17.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.18.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义. 19.15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA ⊥AB ,∵BD 平分解析:15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA ⊥AB ,∵BD 平分∠ABC ,∴AD=DE=3,∴△BDC 的面积是:12×DE×BC=12×10×3=15,考点:角平分线的性质.20.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半. 【详解】解:依题意有S 阴影=12×4×4=8cm 2. 故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键. 三、解答题21.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】2AB BC =因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.22.(1)甲厂家所需金额为: 1680+80x ;乙厂家所需金额为: 1920+64x ;(2)16张.【解析】【分析】(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.【详解】解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x ﹣9)=1680+80x ;乙厂家所需金额为:(3×800+80x )×0.8=1920+64x ;(2)由题意,得:1680+80x >1920+64x ,解得:x >15.答:购买的椅子至少16张时,到乙厂家购买更划算.【点睛】本题考查一元一次不等式的应用,正确理解题目中的数量关系是本题的解题关键.23.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩ ∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.24.见解析【解析】【分析】由CE=DE易得∠ECD=∠EDC,结合AB∥CD易得∠AEC=∠BED,由此再结合AE=BE,CE=DE 即可证得△AEC≌△BED,由此即可得到AC=BD.【详解】∵CE DE=,∴ECD EDC∠=∠,∵//AB CD,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.25.(1)300,75,60;(2)y 1=100x ﹣150(3≤x ≤4.5);(3)点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【解析】【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A 、B 两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E 坐标,根据快车比慢车提前0.5小时到达目的地可得点C 坐标,然后利用待定系数法求解即可;(3)易得y 2与x 之间的函数关系式,然后只要求直线EC 与直线OD 的交点即得点F 坐标,为此只要解由直线EC 与直线OD 的的解析式组成的方程组即可,进而可得点F 的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E 的横坐标为:2+1=3,则点E 的坐标为(3,150),快车从点E 到点C 用的时间为:300÷60﹣0.5=4.5(小时),则点C 的坐标为(4.5,300),设线段EC 所表示的y 1与x 之间的函数表达式是y 1=kx +b ,把E 、C 两点代入,得:4.53003150k b k b +=⎧⎨+=⎩,解得:100150k b =⎧⎨=-⎩, 即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x ≤4.5);(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,即点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.四、压轴题26.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.27.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP =AB -AP =12-203=163, 则CN =BP =163 即at =163, ∵t =103, ∴a =1.6符合题意综上所述,满足条件的t 的值有:t =6.4或t =103【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.28.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩,A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB,//OG FE∴,FEP OGP∴∠=∠,FEP OPE∴∠=∠,CEP CEF FEP∠=∠+∠,CEP CEF OPE∴∠=∠+∠,CEF CEP OPE∴∠=∠-∠,3()BCD CEP OPE∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.29.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC=,利用AAS得到AFH CAD∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD=,再EK AD⊥,交DG延长线于点K,同理可得到AD EK=,等量代换得到FK EH=,再由一对直角相等且对顶角相等,利用AAS得到FHG EKG≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1)∵FH AG⊥,90AEH EAH∴∠+∠=︒,90FAC∠=︒,90FAH CAD∴∠+∠=︒,AFH CAD∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.30.(1)①见解析;②DE=297;(2)DE的值为517【解析】【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,。

江苏省南通市八年级(上)期末数学试卷(含答案)

江苏省南通市八年级(上)期末数学试卷(含答案)
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC的度数可以求出来.”
小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”
24.阅读下列材料:
∵ < < ,即2< <3
∴ 的整数部分为2,小数部分为 ﹣2
请根据材料提示,进行解答:
(1) 的整数部分是.
(2) 的小数部分为m, 的整数部分为n,求m+n﹣ 的值.
25.计算:
(1) ;
(2) .
四、压轴题
26.如图1所示,直线 与 轴负半轴, 轴正半轴分别交于 、 两点.
江苏省南通市八年级(上)期末数学试卷(含答案)
一、选择题
1.已知点 在一、三象限的角平分线上,则 的值为()
A. B.0C.1D.2
2.下列四组线段 , , ,能组成直角三角形的是()
A. , , B. , ,
C. , , D. , ,
3.计算 ()
A.5B.-3C. D.
4.已知点P(1+m,3)在第二象限,则 的取值范围是()
②将线段AB沿y轴负方向平移n个单位,若平移后的线段AB与线段CD有公共点,求n的取值范围.
③当m<−1式,连接AD,若线段AD沿直线AB方向平移得到线段BE,连接DE与直线y=−2交于点F,则点F坐标为.(用含m的式子表达)
28.如图1,矩形 的顶点 、 分别在 轴与 轴上,且点 ,点 ,点 为矩形 、 两边上的一个点.

江苏省南通市八年级(上)期末数学试卷(含答案)

江苏省南通市八年级(上)期末数学试卷(含答案)

江苏省南通市八年级(上)期末数学试卷(含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80° B .90° C .100° D .110° 2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1- B .0C .1D .23.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===4.对函数31y x =-,下列说法正确的是( ) A .它的图象过点(3,1)- B .y 值随着x 值增大而减小 C .它的图象经过第二象限 D .它的图象与y 轴交于负半轴 5.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒7.在下列各数中,无理数有( )33224,3,8,9,07π A .1个B .2个C .3个D .4个8.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2)9.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体 B .个体 C .样本 D .样本容量 10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )A .2B .1.9C .2.0D .1.90二、填空题11.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 12.点A (3,-2)关于x 轴对称的点的坐标是________.13.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.14.4的平方根是 .15.计算:32()x y -=__________.16.点(2,1)P 关于x 轴对称的点P'的坐标是__________.17.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.18.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题21.已知y 与2x -成正比例,且当1x =时,2y =-. (1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.22.如图,在△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为15cm,AC=6cm,求DC长.23.某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数.24.(新知理解)如图①,若点A、B在直线l同侧,在直线l上找一点P,使AP BP+的值最小.作法:作点A关于直线l的对称点A',连接A B'交直线l于点P,则点P即为所求.(解决问题)如图②,AD是边长为6cm的等边三角形ABC的中线,点P、E分别在AD、AC上,则PC PE+的最小值为 cm;(拓展研究)如图③,在四边形ABCD的对角线AC上找一点P,使APB APD∠=∠.(保留作图痕迹,并对作图方法进行说明)25.阅读下列材料:∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是.(2)7的小数部分为m,11的整数部分为n,求m+n﹣7的值.四、压轴题26.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明. 29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.D解析:D【解析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.4.D解析:D 【解析】 【分析】根据一次函数的性质,对每一项进行判断筛选即可. 【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确. 故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质.5.C解析:C 【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C . 【考点】估算无理数的大小.6.C解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.C解析:C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.10.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.二、填空题11.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.12.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.13.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 16.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x 轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m =,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.19.3;【解析】【分析】过D 作DE⊥AB 于E ,DF⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE⊥AB 于E ,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y随x的增大而增大,∴当-1<x<2时,y的范围为-6<y<0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.22.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=8cm,即可得出答案.【详解】解:(1)∵AD⊥BC,BD=DE∴AD垂直平分BE,∵EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.23.(1)见解析;(2)见解析;(3)740人【解析】【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频率为48÷400=0.12,70.5~80.5的频数为400×0.2=80,90.5~100.5的频率为148÷400=0.37,补全频数分布表如下:(3)2000×0.37=740(人),答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题的关键,也是本题的突破口.24.(1)33;(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--cm),∴PC+PE的最小值为3cm;(2)【拓展研究】方法1:如图③,作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,点P 即为所求,连接BP ,则∠APB=∠APD .方法2:如图④,作点D 关于AC 的对称点D',连接D'B 并延长与AC 的交于点P ,点P 即为所求,连接DP ,则∠APB=∠APD .25.(1)2;(2)1【解析】【分析】(1479<(291116<<,进而得出答案.【详解】解:(1479<∴273<<,72. 故答案为:2;(2)由(1)可得出,72m =, 91116<,∴n =3,∴772371m n +-=+=.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根. 四、压轴题26.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时,∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A,B四个点能构成一个菱形,此时Q点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG =∠FEH .在△BCG 和△EFH 中,∵∠CGB =∠FHE ,∠CBG =∠FEH ,BC =EF ,∴△BCG ≌△EFH .∴CG =FH .又∵AC =DF .∴Rt △ACG ≌△DFH .∴∠A =∠D .在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解.②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣13;(3)设点E的坐标为(a,a+2),则点T的坐标为(33a+,23a+),当∠THD=90°时,点E与点T的横坐标相同,∴33a+=a,解得,a=32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a+=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.。

江苏省南通市八年级上第一学期期末数学试卷

江苏省南通市八年级上第一学期期末数学试卷

江苏省南通市八年级上第一学期期末数学试卷一、选择题1.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 2.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .163.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<324.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1B .3C .2D .55.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA6.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-7.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A.12cm B.1cm C.2cm D.32cm8.一组不为零的数a,b,c,d,满足a cb d=,则以下等式不一定成立的是()A.ac=bdB.a bb+=c dd+C.9ab-=9cd-D.99a ba b-+=99c dc d-+9.下列各数中,无理数是()A.πB.C.D.10.下列交通标志图案是轴对称图形的是()A.B.C.D.二、填空题11.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y 轴翻折到第一象限,则点C的对应点C′的坐标是_____.12.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y与年数x之间的函数关系为________.13.已知点P(a,b)在一次函数y=x+1的图象上,则b﹣a=_____.14.矩形ABCD中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.15.若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.16.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B点后,B点的位置可以用数对表示为__________.17.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.18.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.19.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.20.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.三、解答题21.如图所示,在ABC ∆中,BAC ∠的平分线AD 交BC 于点D ,DE 垂直平分AC ,垂足为点E .求证:BAD C ∠=∠.22.(1)计算:04(51)+- (2)解方程:23(1)120x --= 23.先化简,再求值:35(2)362x x x x -÷+---,其中53x =- 24.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处. (1)求CE 的长; (2)求点D 的坐标.25.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB 的长为____.(2)在坐标轴上是否存在点P ,使△ABP 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.四、压轴题26.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标.(2)求△BOC的面积.(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.①求d与t的函数解析式(写出自变量的取值范围).②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t的取值范围.27.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.28.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A ,B ,C 三点的坐标; (2)点D 是折线A —B —C 上一动点.①当点D 是AB 的中点时,在x 轴上找一点E ,使ED +EB 的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E 点的坐标.②是否存在点D ,使△ACD 为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由29.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______. (2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.30.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①. (1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P点的位置,逐项判断即可开.【详解】3≈1.7322≈1.4145 2.2367≈2.646,所以A项≈1.732,B项≈2.414,C项≈1.646,D项≈3.236观察数轴上P点的位置,B项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.2.A解析:A【解析】【分析】平方为44,由此可得出答案.【详解】4±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.3.B解析:B【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.4.D解析:D【解析】【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.5.B【解析】试题分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选B.考点:全等三角形的判定.6.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7.D解析:D【解析】【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=12AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.8.C解析:C 【解析】 【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【详解】 解:一组不为零的数a ,b ,c ,d ,满足a cb d=, ∴a b c d =,11a c b d +=+,即a b c d b d++=,故A 、B 一定成立; 设a ck b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++, ∴9999a b c da b c d--=++,故D 一定成立; 若99a c b d --=则99a c b b d d -=-,则需99b d=, ∵b 、d 不一定相等,故不能得出99a cb d--=,故D 不一定成立. 故选:C . 【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.9.A解析:A 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 A. π是无理数; B.=2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.B解析:B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.二、填空题11.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 12.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.13.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.14.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.15.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.16.【解析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.17.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.18.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴331k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式. 20.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.三、解答题21.见解析【解析】【分析】利用角平分线的定义得到BAD DAE ∠=∠,然后利用垂直平分线的性质得到DA DC =,则DAE C ∠=∠,从而使问题得解.【详解】解:∵AD 平分BAC ∠∴BAD DAE ∠=∠,∵DE 垂直平分AC ,∴DA DC =,∴DAE C ∠=∠,∴BAD C ∠=∠【点睛】本题考查角平分线的定义和垂直平分线的性质,掌握相关性质正确推理论证是本题的解题关键.22.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)01)原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.23.()133x +【解析】【分析】先根据分式混合运算法则进行化简,再代入已知值求值.【详解】 解:35(2)362x x x x -÷+--- =()2345()3222x x x x x --÷---- =()239322x x x x --÷-- =()()()323233x x x x x --⨯-+- =()133x +当3x =时,原式==【点睛】考核知识点:二次根式化简求值.先根据分式性质进行化简是关键.24.(1)4 (2)(0,5)【解析】【分析】(1)根据轴对称的性质以及勾股定理即可求出线段C 的长;(2)在Rt △DCE 中,由DE =OD 及勾股定理可求出OD 的长,进而得出D 点坐标.【详解】解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt △ABE 中,AE =AO =10,AB =8,∴BE =22221086AE AB -=-=,∴CE =BC ﹣BE =4;(2)在Rt △DCE 中,DC 2+CE 2=DE 2,又∵DE =OD ,∴()22284OD OD -+=,∴OD =5, ∴()05D ,.【点睛】本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.25.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长(2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标.【详解】解:(1) ∵A (4,0)、B (0,3).∴OA=3,OB=4, 22435AB ∴=+=(2)当点P 在y 轴上时当AB=BP 时, 此时OP=3+5=8或OP=5-3=2,∴P 点坐标为(0,8)或(0,-2);当AB=AP 时,此时OP=BO=3,∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴2224(3)x x +=-7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭ 当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1, ∴P 点坐标为(9,0)或(-1,0);当AB=BP 时,此时OP=AO=4, ∴P 点坐标为(-4,0);当AP=BP 时,设P(x ,0),∴2223(4)x x +=- :78x =;∴P 点坐标为7,08⎛⎫ ⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫ ⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.四、压轴题26.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017. 【解析】【分析】(1)将点B 坐标代入解析式可求直线AB 解析式,即可求点A 坐标;(2)联立方程组可求点C 坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y xy x⎧=⎪⎪⎨⎪=+⎪⎩,解得:83xy=⎧⎨=⎩,∴点C(8,3),∴△BOC的面积=12×12×3=18;(3)①如图,∵点D的横坐标为t,∴点D(t,﹣34t+9),点E(t,38t),当t<8时,d=﹣34t+9﹣38t=﹣98t+9,当t>8时,d=38t+34t﹣9=98t﹣9;②∵以点H(12,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,∴12≤t≤1或919829918t tt t⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩,∴12≤t≤1或7617≤t≤8017.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.27.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.28.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E 的位置见解析,E (43-,0);②D 点的坐标为(-1,3)或(45,125) 【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b,得b =4,∴直线BC为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点∴D(-2,2)点B关于x轴的对称点B1的坐标为(0,-4),设直线DB1的解析式为y kx b=+,把D(-2,2),B1(0,-4)代入,得224k bb-+=⎧⎨=-⎩,解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO +∠AFO =∠CBO +∠BFD ,∠AFO =∠BFD ,∴∠FAO=∠CBO ,又∵AO=BO ,∠AOF=∠BOC ,∴△AOF ≌△BOC (ASA )∴OF=OC=2,∴点F 的坐标为(0,2),设直线AD 的解析式为y mx n =+,将A (-4,0)与F (0,2)代入得402m n n -+=⎧⎨=⎩, 解得1,22m n ==, ∴122y x =+, 联立12224y x y x ⎧=+⎪⎨⎪=-+⎩,解得:45125x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴D 的坐标为(45,125). 综上所述:D 点的坐标为(-1,3)或(45,125) 【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.29.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.30.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)一、选择题1.若a 满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1C .x=3D .x=-33.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( ) A .B .C .D .4.下列交通标识中,是轴对称图形的是( ) A .B .C .D .5.64的立方根是( ) A .4B .±4C .8D .±86.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD .以上都不对8.下列各数中,无理数是( ) A .πB .C .D .9.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( ) A .1个B .2个C .3个D .4个10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题11.17.85精确到十分位是_____.12.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;13.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________. 14.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.15.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.16.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.17.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______. 18.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:以A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为____.三、解答题21.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 22.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE . (1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.23.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3)点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标; (3)判断△ABC 的形状.并说明理由.24.解方程:32322x x x -=+- 25.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.四、压轴题26.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.27.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积; (2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数; (3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .(1)如图①,求证:CE AE BE +=;(提示:在BE 上截取BF DE =,连接AF .)(2)如图②、图③,请直接写出线段CE ,AE ,BE 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若26BD AE ==,则CE =__________.30.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】只有0和1的算术平方根与立方根相等. 【详解】 3a a =∴a 为0或1. 故选:C . 【点睛】本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.也考查了算术平方根.2.A解析:A 【解析】当x =1时,分母为零,没有意义,所以是增根.故选A .3.C解析:C 【解析】 【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确. 【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误. 故选:C . 【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.4.B解析:B 【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B5.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.6.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠ ∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+ 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.7.A解析:A 【解析】 【分析】 【详解】 ∵k=﹣2<0,∴y 随x 的增大而减小, ∵1<2, ∴a >b . 故选A .8.A解析:A 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 A. π是无理数; B. =2,是有理数; C. 是有理数; D.=2,是有理数.故选:A . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C 【解析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.10.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 13.【解析】【分析】根据一次函数的性质,即可求出k的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴10k ->,∴1k >;故答案为:1k >.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.14.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B 点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B 点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.15.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵一次函数y=kx+1的图象经过点P (-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【解析】试题分析:解:设y=x+b ,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.17.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.19.(3,4)【解析】分析:首先根据点A 和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A 的坐标为(-4,-1),A′的坐标为(-2,2), ∴平移法则为:先向 解析:(3,4)【解析】分析:首先根据点A 和点A ′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B ′的坐标.详解:∵A 的坐标为(-4,-1),A ′的坐标为(-2,2), ∴平移法则为:先向右平移2个单位,再向上平移3个单位, ∴点B ′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20.x2+y2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为: (x -0)2+(y -0)2=1,即x2+y2=1,故答案为: x2+y2=1.解析:x 2+y 2=1【解析】因为原点为圆心,过点P (1,0)的圆即是以(0,0)半径为1的圆,则标准方程为:(x -0)2+(y -0)2=1,即x 2+y 2=1,故答案为: x 2+y 2=1.三、解答题21.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.22.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】 此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.23.(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可;(2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=,∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 24.x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x 2-6x-2x-4=3x 2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.25.(1)75;3.6;4.5;(2) 当2 3.6x <≤时,135270y x =-;当3.6 4.5x <≤时,60y x =.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B 地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a =270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M ,(3.6,216)N ,(4.5,270)Q .设当2 3.6x <≤时的解析式为11y k x b =+,1111203.6216k b k b +=⎧⎨+=⎩, 解得11135270k b =⎧⎨=-⎩ ∴当2 3.6x <≤时,135270y x =-,设当3.6 4.5x <≤时的解析式为22y k x b =+,则22223.62164.5270k b k b +=⎧⎨+=⎩, 解得22600k b =⎧⎨=⎩, 当3.6 4.5x <≤时,60y x =.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.四、压轴题26.(1)5y x =+;(2)223)PB 的长为定值52 【解析】【分析】(1)先求出A 、B 两点坐标,求出OA 与OB ,由OA= OB ,求出m 即可;(2)用勾股定理求AB ,再证AMO OBN ∆≅∆,BN=OM ,由勾股定理求OM 即可; (3)先确定答案定值,如图引辅助线EG ⊥y 轴于G ,先证AOB EBG ∆≅∆,求BG 再证BFP GEP ∆≅∆,可确定BP 的定值即可.【详解】(1)对于直线:5L y mx m =+.当0y =时,5x =-.当0x =时,5y m =.()5,0A ∴-,()0,5B m .OA OB =.55m ∴=.解得1m =.∴直线L 的解析式为5y x =+.(2)5OA =,17AM =.∴由勾股定理,2222OM OA AM =-=.180AOM AOB BON ∠+∠+∠=︒.90AOB ∠=︒.90AOM BON ∴∠+∠=︒.90AOM OAM ∠+∠=︒.BON OAM ∴∠=∠.在AMO ∆与OBN ∆中,90BON OAM AMO BNO OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩.()AMO OBN AAS ∴∆≅∆.22BN OM ∴==..(3)如图所示:过点E 作EG y ⊥轴于G 点.AEB ∆为等腰直角三角形,AB EB ∴=90ABO EBG ∠+∠=︒.EG BG ⊥,90GEB EBG ∴∠+∠=︒.ABO GEB ∴∠=∠.AOB EBG ∴∆≅∆.5BG AO ∴==,OB EG =OBF ∆为等腰直角三角形,OB BF ∴=BF EG ∴=.BFP GEP ∴∆≅∆.1522BP GP BG ∴===. 【点睛】本题考查求解析式,线段的长,判断定值问题,关键是掌握求坐标,利用条件OA= OB ,求OM ,用勾股定理求AB ,再证AMO OBN ∆≅∆,构造 AOB EBG ∆≅∆,求BG ,再证BFP GEP ∆≅∆.27.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH ∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD ⊥x 轴于D,BE ⊥x 轴于E,如图1,∵A (﹣2,2)、B (4,4),∴AD =OD =2,BE =OE =4,DE =6,∴S △ABC =S 梯形ABED ﹣S △AOD ﹣S △AOE =12×(2+4)×6﹣12×2×2﹣12×4×4=8; (2)作CH // x 轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.5或4.5【解析】【分析】=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等(1)在BE上截取BF DE边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】=,连接AF,(1)证明:在BE上截取BF DE在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,∴CE+AE= BF+FE =BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE =60°∴∠EAF=∠BAE+∠BAF =60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF= BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF =60°∴∠EAF=∠BAF+∠BAE =60°∴△AFE为等边三角形,∴EF=AE,∴CE =EF+CF= AE + BE ,即AE+BE=CE ;(3)在(1)的条件下,若26BD AE ==,则AE=3,∵CE+AE=BE ,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.5;在(2)的条件下,若26BD AE ==,则AE=3,因为图②中,CE+BE=AE ,而BD=BE-DE=BE-CE ,所以BD 不可能等于2AE ;图③中,若26BD AE ==,则AE=3,∵AE+BE=CE ,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.5.即CE=1.5或4.5.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.30.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.。

苏科版南通市八年级上学期期末数学试卷 (解析版)

苏科版南通市八年级上学期期末数学试卷 (解析版)

苏科版南通市八年级上学期期末数学试卷 (解析版) 一、选择题 1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.4的平方根是( )A .2B .2±C .2D .2± 3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)6.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 7.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大8.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .9.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=- 10.下列标志中属于轴对称图形的是( )A .B .C .D . 11.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 13.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL15.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.17.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.18.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.21.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.22.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.23.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)24.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)25.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.三、解答题26.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A .(1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标;(3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.27.计算:2201931125272-⎛⎫-+- ⎪⎝⎭28.人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是60︒的等腰三角形是等边三角形.29.如图,在△ABC 中,AB =AC =2,∠B =36°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.30.解方程:323 22xx x-= +-31.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 3.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.C解析:C【解析】试题分析:直线y=﹣5x+3与y轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C.考点:一次函数的图象和性质.5.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.6.A解析:A【解析】【分析】根据二次根式的性质,将所求式子化简为3329a b a b a b a-=23a b a ab ab a b a ⨯⨯-⨯⨯即可求解.【详解】解:∵a >0,b >0,∴3329a b a b a b a -=23a b a ab ab ab a ⨯⨯-⨯⨯=15233ab ab ab -= 故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.7.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.8.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.9.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a 2⋅a 3=a 5,故A 错误;B. (−a 2)3=−a 6,故B 错误;C. a 10÷a 9=a(a≠0),故C 正确;D. (−bc)4÷(−bc)2=b2c2,故D错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.10.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.11.D解析:D【解析】试题分析:根据a>0,b<0和第四象限内的坐标符号特点可确定p在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.13.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.14.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.15.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB,∴CH=AC BCAB⋅=245,∴AH=185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题16.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12=AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.18.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.19.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.20.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.21.22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm和9cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 22.3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.23.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).24.轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11解析:y轴【解析】【分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键. 25.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB=2253-=4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.三、解答题26.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA=2234+=5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.27.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.28.详见解析【分析】根据题意,给出已知和求证,加以证明即可得解.【详解】已知:如下图,ABC ∆是等腰三角形,∠A =60°,证明:ABC ∆是等边三角形.证明:∵ABC ∆是等腰三角形∴AB=AC∴∠B=∠C∵∠A =60°∴∠B=∠C=18060602︒-︒=︒ ∴ABC ∆是等边三角形. 【点睛】本题主要考查了等边三角形的判定,熟练掌握等边三角形的判定证明是解决本题的关键.29.(1)16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质,得到答案;(2)当DC =2时,利用∠DEC +∠EDC =144°,∠ADB +∠EDC =144°,得到∠ADB =∠DEC ,根据AB =DC =2,证明△ABD ≌△DCE ;(3)分DA =DE 、AE =AD 、EA =ED 三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】(1)∵AB =AC ,∴∠C =∠B =36°.∵∠ADE =36°,∠BDA =128°.∵∠EDC =180°﹣∠ADB ﹣∠ADE =16°,∴∠AED =∠EDC +∠C =16°+36°=52°.故答案为:16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由:∵AB =2,DC =2,∴AB =DC .∵∠C =36°,∴∠DEC +∠EDC =144°.∵∠ADE =36°,∴∠ADB +∠EDC =144°,∴∠ADB =∠DEC ,在△ABD 和△DCE 中,ADB DEC B CAB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE (AAS);(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形,①当DA =DE 时,∠DAE =∠DEA =72°,∴∠BDA =∠DAE +∠C =70°+40°=108°;②当AD =AE 时,∠AED =∠ADE =36°,∴∠DAE =108°,此时,点D 与点B 重合,不合题意;③当EA =ED 时,∠EAD =∠ADE =36°,∴∠BDA =∠EAD +∠C =36°+36°=72°;综上所述:当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键. 30.x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x 2-6x-2x-4=3x 2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50︒,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)
A. B.
C. D.
5.若 是完全平方式,则实数 的值为()
A. B. C. D.
6.下列图案中,属于轴对称图形的是()
A. B.
C. D.
7.如图,折叠 ,使直角边 落在斜边 上,点 落到点 处,已知 , ,则 的长为()cm.
A.6B.5C.4D.3
8.如果 ,且 ,那么点 在()
A.第一象限B.第二象限C.第三象限D.第四象限
18.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为_____.
19.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
20.点P(3,-4)到x轴的距离是_____________.
三、解答题
21.如图,在 中, , , 是 边上的中线,那么 与 有怎样的数量关系?试证明你的结论.
(1)在如图2所示的平面直角坐标系 中,已知 , .
①在点P,点Q中,___________是点S关于原点O的“正矩点”;
②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:
点_________是点___________关于点___________的“正矩点”,写出一种情况即可;
(1)当点 运动到点 处,过点 作 的垂线交直线 于点 ,证明 ,并求此时点 的坐标;
(2)点 是直线 上的动点,问是否存在点 ,使得以 为顶点的三角形和 全等,若存在求点 的坐标以及此时对应的点 的坐标,若不存在,请说明理由.
29.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.
9.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于( )

江苏省南通市八年级(上)期末数学试卷解析版

江苏省南通市八年级(上)期末数学试卷解析版

江苏省南通市八年级(上)期末数学试卷解析版一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( )A.(2,3)-B.()4,5-C.(1,0)D.(8,1)--2.下列四组数,可作为直角三角形三边长的是A.456cm cm cm、、B.123cm cm cm、、C.234cm cm cm、、D.123cm cm cm、、3.如图,在ABC∆中,31C∠=︒,ABC∠的平分线BD交AC于点D,如果DE垂直平分BC,那么A∠的度数为( )A.31︒B.62︒C.87︒D.93︒4.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩5.下列图案属于轴对称图形的是()A. B.C.D.6.在平面直角坐标系中,点()3,2P-关于x轴对称的点的坐标是()A.()3,2B.()2,3-C.()3,2-D.()3,2--7.下列四组线段a、b、c,能组成直角三角形的是()A.4a=,5b=,6c=B.3a=,4b=,5c=C .2a =,3b =,4c =D .1a =,b =3c =8.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >09.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下:当12y y >时,自变量x 的取值范围是( ) A .2x >- B .2x <-C .1x >-D .1x <-10.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52D .y =12x +12二、填空题11.“徐宿淮盐”铁路是一条连接徐州与盐城的高速铁路,全长约为316000米.将数据316000用四舍五入法精确到万位,并用科学记数法表示为____________.12.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值,则m +n 的值为_____.13.等边三角形绕一点至少旋转_____°与自身完全重合.14.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 15.圆周率π=3.1415926…精确到千分位的近似数是_____. 16.在实数范围内有意义的条件是__________. 17.4的算术平方根是 .18.计算:8的平方根______,-8的立方根是_____. 19.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.20.若某个正数的两个平方根分别是21a +与25a -,则a =_______.三、解答题21.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆. 22.(模型建立)如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆∆≌; (模型应用) ①已知直线1l :443y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕着点A 逆时针旋转45︒至直线2l ,如图2,求直线2l 的函数表达式;②如图3,在平面直角坐标系中,点()8,6B,作BA y ⊥轴于点A ,作BC x ⊥轴于点C ,P 是线段BC 上的一个动点,点Q 是直线26y x =-上的动点且在第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.23.如图,等边三角形ABC 的边长为8,点E 是边BC 上一动点(不与点,B C 重合),以BE 为边在BC 的下方作等边三角形BDE ,连接,AE CD .(1)在运动的过程中,AE 与CD 有何数量关系?请说明理由. (2)当BE=4时,求BDC ∠的度数.24.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x+的值;(2)当k 10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.25.求下列各式中的x : (1)2x 2=8(2)(x ﹣1)3﹣27=0四、压轴题26.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒. ①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.27.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.28.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC交BF 于点E . (1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ; (3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC,再根据角平分线的性质,得到∠ABC的度数,最后利用三角形内角和即可解决.【详解】∵DE垂直平分BC,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=, 180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C 【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.4.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.5.D解析:D 【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D 有一条对称轴,由此即可得出结论.详解:A 、不能找出对称轴,故A 不是轴对称图形; B 、不能找出对称轴,故B 不是轴对称图形; C 、不能找出对称轴,故C 不是轴对称图形; D 、能找出一条对称轴,故D 是轴对称图形. 故选D .点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.6.D解析:D 【解析】 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--. 故选:D . 【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.7.B解析:B 【解析】 【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案. 【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误; B.因为32+42=52,所以能围成直角三角形,此选项正确; C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误; 故选:B. 【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.8.D解析:D 【解析】画函数的图象,选项A, 点(1,0)代入函数,01=,错误. 由图可知,B ,C 错误,D,正确. 选D.9.B解析:B【解析】【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k2x+b1中y随x的增大而减小,y2=k2x+b2中y随x的增大而增大.且两个函数的交点坐标是(-2,-3).则当x<-2时,y1>y2.故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.10.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.二、填空题11.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:53.210【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】316000≈320000=3.2×105.故答案为:3.2×105.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.12.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.13.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等, 所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.14.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.15.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.16.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x>解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.17.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.18.-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±2)2=8,∴8的平方根是:±2;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±2,解析:±-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±)2=8,∴8的平方根是:±;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±,-2.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.19.【解析】【分析】过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】连接AC,过点C作CD⊥AB,则CD的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.20.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】 ∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题21.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A 的坐标可建立平面直角坐标系;(2)先作出点C ,再分别作出点A 、B 、C 关于y 轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.22.【模型建立】详见解析;【模型应用】①721y x =--;②Q 点坐标为(4,2)或(203,223)..【解析】【分析】模型建立:根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定△ACD≌△CBE;模型应用:①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=2,CD=OB=3,求得C(-3,5),最后运用待定系数法求直线l2的函数表达式;②分两种情况考虑:如图3,∠AQP=90°,AQ=PQ,设Q点坐标为(a,2a-6),利用三角形全等得到a+6-(2a-6)=8,得a=4,易得Q点坐标;如图4,同理求出Q的坐标.【详解】模型建立:证明:∵AD CD⊥,BE EC⊥∴90D E∠=∠=︒.∵CB CA=,∠ACB=90°.∴1809090ACD BCE︒︒∠+∠=-=︒.又∵90EBC BCE∠+∠=︒,∴ACD EBC∠=∠.在ACD∆与CBE∆中,D EACD EBCCA CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEC CDA∆∆≌.模型应用:如图2,过点B作BC AB⊥交2l于C,过C作CD y⊥轴于D,∵45BAC∠=︒,∴ABC∆为等腰直角三角形.由(1)可知:CBD BAO∆∆≌,∴BD AO=,CD OB=.∵144,3:l y x=+∴令0y=,得3x=-,∴()30A-,,令0x =,得4y =,∴()0,4B .∴3BD AO ==,4CD OB ==,∴437OD =+=.∴()4,7C -.设2l 的解析式为y kx b =+∴7403k b k b =-+⎧⎨=-+⎩∴721k b =-⎧⎨=-⎩ 2l 的解析式:721y x =--.分以下两种情况:如图3,当∠AQP=90°时,AQ=PQ ,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F .在△AQE 和△QPF 中,由(1)可得,△AQE ≌△QPF (AAS ),AE=QF ,设点Q 的坐标为(a,2a-6),即6-(2a-6)=8-a ,解得a=4.此时点Q 的坐标为(4,2).如图4:当∠AQP=90°时,AQ=PQ 时,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F ,设点Q 的坐标为(a,2a-6),则AE=2a-12,FQ=8-a .,在△AQE 和△QPF 中,同理可得△AQE ≌△QPF (AAS ),AE=QF ,即2a-12=8-a ,解得a=203. 此时点Q 的坐标为(203,223).综上所述:A 、P 、Q 可以构成以点Q 为直角顶点的等腰直角三角形,点Q 的坐标为 (4,2)或(203,223). 【点睛】 本题考查一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.23.(1)AE=CD ,理由见解析;(2)90°【解析】【分析】(1)如图,证明△ABE ≌△CBD ,即可解决问题.(2)证明AE ⊥BC ,证明∠BDC=∠AEB ,即可解决问题.【详解】解:(1)AE=CD ;理由如下:∵△ABC 和△BDE 等边三角形∴AB=BC ,BE=BD ,∠ABC=∠EBD=60°;在△ABE 与△CBD 中,AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBD (SAS ),∴AE=CD .(2)∵BE=4,BC=8∴E 为BC 的中点;又∵等边三角形△ABC ,∴AE ⊥BC ;由(1)知△ABE ≌△CBD ,∴∠BDC=∠AEB=90°.【点睛】本题考查全等三角形的判定及其性质的应用问题;解题关键是观察图形,准确找出图形中隐含的等量关系、全等关系.24.(1)5;(2);(3)见解析【解析】【分析】(1)根据22242()4x x x x+=+-代入可得结果; (2)先根据2x x +=22242()4x x x x +=+-的值,再由2x x -=解;(3)由224xx +=+可知题目错误,由错误题目求解可以得出结果错误. 【详解】解:(1)当3k =时,23x x +=, 222242()4345x x x x+=+-=-=;(2)当k =2x x +=222242()446x x x x+=+-=-=,2x x ∴-===(3)由题可知x>0,∴2244xx +=+≥,42x x∴+,即使当2x x +时,22242()42x x x x+=+-=, ∴224+x x 的值也不对; ∴题干错误,答案错误,故老师指出了两个错误.【点睛】此题考查了完全平方公式的运用.将所求式子进行适当的变形是解本题的关键.25.(1)x =±2;(2)x =4【解析】【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x 2=8,∴x 2=4,∴x =±2;(2)∵(x ﹣1)3﹣27=0∴(x ﹣1)3=27,∴x ﹣1=3,∴x =4.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.四、压轴题26.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.27.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.28.(1)详见解析;(2)36(04)2BDE t t S-+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】 (1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3), D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99 AF KF CP CF PK CP CP CP ==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)
27.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
A.x>-1B.x<-1C.x<-2D.无法确定
9.某篮球运动员的身高为1.96cm,用四舍五人法将1.96精确到0.1的近似值为( )
A.2B.1.9C.2.0D.1.90
10.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为( )
A. B. C. D.
(1)求证: ;
(2)求线段 的长.
四、压轴题
26.如图所示,在平面直角坐标系 中,已知点 的坐标 ,过 点作 轴,垂足为点 ,过点 作直线 轴,点 从点 出发在 轴上沿着轴的正方向运动.
(1)当点 运动到点 处,过点 作 的垂线交直线 于点 ,证明 ,并求此时点 的坐标;
(2)点 是直线 上的动点,问是否存在点 ,使得以 为顶点的三角形和 全等,若存在求点 的坐标以及此时对应的点 的坐标,若不存在,请说明理由.
三、解答题
21.(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△CDA≌△BEC.
(Hale Waihona Puke 型运用)(2)如图2,直线l1:y= x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.

南通市海门市2015~2016年八年级上期末数学试卷含答案解析

南通市海门市2015~2016年八年级上期末数学试卷含答案解析
5% 8% 15% 20% 40% 12%
从表中看出全班视力数据的众数是 .
14.计算:(▱2a▱2b3)÷(a3b▱1)3= .
15.已知一直角三角形的两直角边长分别为 6 和 8,则斜边上中线的长度是 .
【考点】有理数大小比较.
【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.
【解答】解:这四个数在数轴上的位置如图所示:
由数轴的特点可知,这四个数中最小的数是▱3.
故选 A.
【点评】本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键
变指数相加;合并同类项系数相加字母及指数不变,可得答案.
证明过程或演算步骤
19.计算:
(1)(▱ )▱1▱ +(1▱ )0▱| ▱2|
(2)[(x+2y)(x▱2y)▱(x+4y)2]÷4y.
20.解方程组: .
21.已知 a▱ ( + ),b▱ ( ▱ ),求 a2▱ab+b2 的值.
8.如图,△ABC 中,AB=AC,AD=BD=BC,则∠A 的度数是( )
A.30° B.36° C.45° D.20°
9.若顺次连接四边形 ABCD 各边中点所得四边形是矩形,则四边形 ABCD 必然是( )
A.菱形 B.对角线相互垂直的四边形
C.正方形 D.对角线相等的四边形
10.已知 a▱b=3,b+c=▱4,则代数式 ac▱bc+a2▱ab 的值为( )
A.4 B.▱4 C.3 D.▱3
二、填空题:本大题共 8 小题,每小题 2 分,共 16 分.不需写出解答过程,请把答案直接填写在

南通市八年级(上)期末数学试卷含答案

南通市八年级(上)期末数学试卷含答案

4. 在 △ ������������������中,∠������������������ = 90°,CD 是斜边 AB 上的高,∠������ = 30°,以下说法错误的是 ()
A. ������������ = 2������������
B. ������������ = 2������������
三、计算题(本大题共 2 小题,共 12.0 分)
19.
解方程:
������
������ +1 Nhomakorabea=
2������ 3������ +
3
+1.
20. 小江利用计算器计算15 × 15,25 × 25,…,95 × 95,有如下发现: 15 × 15 = 225 = 1 × 2 × 100 + 25,
25 × 25 = 625 = 2 × 3 × 100 + 25 35 × 35 = 1225 = 3 × 4 × 100 + 25, 小江观察后猜测:如果用字母 a 代表一个正整数,则有如下规律: (������ × 10 + 5)2 = ������(������ + 1) × 100 + 25. 但这样的猜测是需要证明之后才能保证它的正确性. 请给出证明.
四、解答题(本大题共 6 小题,共 52.0 分) 21. 计算或求值
C. ������������ = 3������������
D. ������������ = 2������������
5. 下列计算正确的是( )
A.
5+ 2
1
+
5−1 2
=
2
5
C.
5+ 2

苏科版江苏省南通市八年级上学期期末数学试卷 (解析版)

苏科版江苏省南通市八年级上学期期末数学试卷 (解析版)

苏科版江苏省南通市八年级上学期期末数学试卷 (解析版) 一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个 3.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .16 4.下列四个图形中,不是轴对称图案的是( )A .B .C .D .5.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 7.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个8.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有()A.②③B.①③C.①④D.②④9.已知a>0,b<0,那么点P(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限10.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤11.下列计算正确的是()A.5151+22+-=25B.51+﹣51-=2C.515122+-⨯=1 D.515122--⨯=3﹣2512.如图,已知AB AD=,下列条件中,不能作为判定ABC≌ADC条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠=D .ACB ACD ∠=∠ 13.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm14.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°15.下列交通标志图案是轴对称图形的是( )A .B .C .D .二、填空题16.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.17.已知22139273m ⨯⨯=,求m =__________.18.等腰三角形中有一个角的度数为40°,则底角为_____________.19.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax b y kx --=⎧⎨--=⎩的解是 _______.20.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.21.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷 (解析版)

江苏省南通市八年级上学期期末数学试卷(解析版)一、选择题1.如图,在正方形网格中,若点(1,1)A,点(3,2)C-,则点B 的坐标为()A.(1,2)B.(0,2)C.(2,0)D.(2,1)2.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.3.下列各式从左到右变形正确的是()A.0.220.22a b a ba b a b++=++B.231843214332x y x yx yx y++=--C.n n am m a-=-D.221a ba b a b+=++4.当12(1)a-+与13(2)a--的值相等时,则()A.5a=-B.6a=-C.7a=-D.8a=-5.下列长度的三条线段不能组成直角三角形的是( )A.1.5,2.5,3 B.1,3,2 C.6,8,10 D.3,4,56.下到图形中,不是轴对称图形的是()A.B.C.D.7.在平面直角坐标系中,把直线34y x=-+沿x轴向左平移2个单位长度后,得到的直线函数表达式为()A.31y x=-+B.32y x=-+C.31y x=--D.32y x=--8.某种鲸鱼的体重约为1.36×105kg ,关于这个近似数,下列说法正确的是( ) A .它精确到百位B .它精确到0.01C .它精确到千分位D .它精确到千位9.在下列各数中,无理数有( ) 33224,3,,8,9,07π A .1个 B .2个C .3个D .4个 10.点M (3,-4)关于y 轴的对称点的坐标是( ) A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3) 二、填空题11.9的平方根是_________.12.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.13.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.14.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.15.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.16.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 17.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

江苏省南通市八年级(上)期末数学试卷

江苏省南通市八年级(上)期末数学试卷

八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.如果二次根式x−2有意义,那么x的取值范围是()A. x≠2B. x≥0C. x>2D. x≥23.如果将分式2xx+y中的字母x与y的值分别扩大为原来的10倍,那么这个分式的值()A. 不改变B. 扩大为原来的20倍C. 扩大为原来的10倍D. 缩小为原来的1104.下列各式中,是最简二次根式的是()A. 12B. 25m3C. 13D. 35.计算(-2ab)3的结果是()A. −2a3b3B. −6a3b3C. −8a3b3D. 8a3b36.下列计算正确的是()A. 3+2=5B. 12−3=3C. 3×2=6D. 82=47.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,8128.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A. (a−b)2=a2−2ab+b2B.(a+b)2=a2+2ab+b2C. 2a(a+b)=2a2+2abD. (a+b)(a−b)=a2−b29.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()A. 102B. 104C. 105D. 510.当x分别取-2019,-2018,-2017,……,-2,-1,0,1,12,13,……,12017,12018,12019时,分别计算分式x2−1x2+1的值,再将所得结果相加,其和等于()A. −1B. 1C. 0D. 2019二、填空题(本大题共8小题,共24.0分)11.分解因式:a2-4b2=______.12.计算1a−1−aa−1的结果为______.13.已知x2+y2-2x+6y+10=0,则x+y=______.是______.15.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是______.16.若分式方程式x−1x−2=mx−2+2无解,则m的值为______.17.那么第5行中的第2个数是______,第n(n>1,且n是整数)行的第2个数是______.(用含n的代数式表示)18.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为______度.三、计算题(本大题共2小题,共18.0分)19.解方程:(1)2x=3x+1;(2)x+1x−1-4x2−1=1.20.已知x2-x-2=0,求代数式3x−3x2−1÷3xx+1-1x−1的值.四、解答题(本大题共8小题,共78.0分)21.(1)(2+3)2+3(2−3)(2)a−1a−2÷a2−2a+12a−422.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(-1,4),C(-3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标.23.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?24.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.25.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.26.我们知道,假分数可以化为整数与真分数的和的形式.例如:32=1+12.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像x+1x−1,x2x−2,…这样的分式是假分式;像4x−2,2xx2+1,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式.例如:x+1x−1=(x−1)+2x−1=x−1x−1+2x−1=1+2x−1;x2x−2=x2−4+4x−2=(x+2)(x−2)+4x−2=x+2+4x−2.(1)将分式x−1x+2化为整式与真分式的和的形式;(2)如果分式2x2−1x−1的值为整数,求x的整数值.27.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=______°,∠C=______°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.28.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】D【解析】解:由题意得,x-2≥0,解得x≥2.故选:D.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.【答案】A【解析】解:x、y都扩大10倍,==,所以分式的值不改变.故选:A.把分式中的x换成10x,y换成10y,然后根据分式的基本性质进行化简即可.本题考查了分式的基本性质,熟记性质是解题的关键.解:A、=2,不是最简二次根式,故本选项错误;B 、=5m,不是最简二次根式,故本选项错误;C、中被开方数中有分母,不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选:D.根据最简二次根式的定义对各选项分析判断后利用排除法求解.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:原式=-=-.故选:C.原式分子分母分别立方,计算即可得到结果.此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.6.【答案】B【解析】解:A、与不是同类项,不能合并,故本选项错误;B、-=-=,故本选项正确;C、×=,故本选项错误;D、==2,故本选项错误.故选:B.根据二次根式的加减法则进行计算即可.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系7.【答案】B【解析】解:A、72+242=252,故正确;B、(3)2+(4)2≠(5)2,故错误;C、32+42=52,故正确;D、42+(7)2=(8)2,故正确.故选:B.本题可根据勾股定理的逆定理分别计算各个选项,选出正确的答案.解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.8.【答案】C【解析】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:C.由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.9.【答案】A【解析】解:根据图形可得:AB=AC==,BC==,∠BAC=90°,设△ABC中BC的高是x,则AC•AB=BC•x,×=•x,x=.故选:A.根据所给出的图形求出AB、AC、BC的长以及∠BAC的度数,再根据三角形的面积公式列出方程进行计算即可.此题考查了勾股定理,用到的知识点是勾股定理、三角形的面积公式,关键是根据三角形的面积公式列出关于x的方程.10.【答案】A【解析】解:∵将x=a代入得:,将x=-代入得:==,∴+=0,当x=0时,=-1,故当x取-2019,-2018,-2017,……,-2,-1,0,1,,……,,,时,得出分式的值,再将所得结果相加,其和等于:-1.故选:A.设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.11.【答案】(a+2b)(a-2b)【解析】解:a2-4b2=(a+2b)(a-2b).故答案为:(a+2b)(a-2b).直接用平方差公式进行分解.平方差公式:a2-b2=(a+b)(a-b).12.【答案】-1【解析】解:原式==-1.故答案为:-1.根据同分母的分式想加减,分母不变,把分子相加减进行计算即可.本题考查的是分式的加减法,在解答此类题目时要注意通分、约分的灵活应用.13.【答案】-2【解析】解:原方程变形为:x2-2x+1+y2+6y+9=0,即(x-1)2+(y+3)2=0,∴(x-1)2=0,(y+3)2=0,即x-1=0,y+3=0,∴x=1,y=-3,∴x+y=-2.本题可将10拆成9+1,然后配出两个平方的式子,然后根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”解出x、y的值,然后代入x+y中即可解出本题.本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.题中应先把方程变形为两个平方的和再作答.14.【答案】3【解析】解:∵△ABC是边长为2的等边三角形,BD是AC边上的中线,∴∠ACB=60°,BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°,∴BD=BC•sin60°=2×=,∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°,∴BD=DE=.故答案为:.先根据等边三角形的性质和锐角三角函数(或勾股定理)求出BD的长,再判断出△BDE是等腰三角形即可.考查的是等边三角形的性质,利用等边三角形“三线合一”的性质是解答此题的关键.15.【答案】25【解析】解:如图:(1)AB===25;(2)AB===5;(3)AB===5.所以需要爬行的最短距离是25.要求正方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.解答此题要注意以下几点:(1)将立体图形展开的能力;(2)分类讨论思想的应用;(3)正确运用勾股定理.16.【答案】1【解析】解:去分母得:x-1=m+2x-4,把x=2代入得:2-1=m+4-4,解得:m=1,故答案为:1.分式方程去分母转化为整式方程,根据分式方程无解得到x-2=0,求出x的值,代入整式方程即可求出m的值.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.【答案】32(n−1)2+2【解析】解:第五行的第二个数是,第n行的第二个数的算术平方根是,故答案为:3,.根据观察,可得规律(n-1)最后一个数是(n-1),可得第n行的第二个数的算术平方根,可得答案.本题考查了算术平方根,观察得出规律是解题关键.18.【答案】108【解析】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC-∠ABO=63°-27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°.故答案为:108.连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,根据全等三角形的性质可得OB=OC,根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.19.【答案】解:(1)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(2)去分母得:(x+1)2-4=x2-1,去括号得:x2+2x+1-4=x2-1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解.【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【答案】解:原式=3(x−1)(x+1)(x−1)•x+13x-1x−1=1x-1x−1=x−1−xx(x−1)=-1x2−x,∵x2-x-2=0,∴x2-x=2,则原式=-12.【解析】原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)(2+3)2+3(2−3)=2+26+3+6-3=2+36;(2)a−1a−2÷a2−2a+12a−4=a−1a−2•2(a−2)(a−1)2=2a−1.【解析】(1)根据完全平方公式、合并同类二次根式的运算法则计算;(2)根据分式的乘除法法则计算.本题考查的是二次根式的混合运算、分式的乘除法,掌握二次根式的混合运算法则、分式的乘除法法则是解题的关键.22.【答案】解:(1)如图,(2)点A′的坐标为(4,0),点B′的坐标为(-1,-4),点C′的坐标为(-3,-1).【解析】(1)根据关于x轴对称的点的坐标特征得到点A′的坐标为(4,0),点B′的坐标为(-1,-4),点C′的坐标为(-3,-1),然后描点;(2)由(1)可得到三个对应点的坐标.本题考查了关坐标与图形-对称:关于x轴对称:横坐标相等,纵坐标互为相反数;关于y轴对称:纵坐标相等,横坐标互为相反数.23.【答案】解:设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,根据题意得x−y=52(3−2.9)x=(4−3.6)y,解得x=10y=5.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.【解析】设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,题中有两个等量关系:小明从家到学校乘地铁的里程-小伟从家到学校的里程=5,小明每千米享受的优惠金额=小伟每千米享受的优惠金额×2,依此列出方程组,解方程组即可.本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.24.【答案】解:根据图中数据,由勾股定理可得:AB=AC2−BC2=652−252=60(米).∴该河流的宽度为60米.【解析】从实际问题中找出直角三角形,利用勾股定理进行计算即可得到该河流的宽度.此题考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.25.【答案】解:如图所示.【解析】作点P关于直线OA的对称点P′,作点Q关于直线OB的对称点B′,连接P′B′分别交OA,OB于点M、N,则点MN即为所求.本题考查的是轴对称-最短路线问题,熟知“两点之间线段最短”是解答此题的关键.26.【答案】解:(1)原式=(x+2)−3x+2=x+2x+2-3x+2=1-3x+2;(2)原式=2x2−2+1x−1=2(x+1)(x−1)+1x−1=2(x+1)+1x−1,∵分式的值为整数,且x为整数,∴x-1=±1,∴x=2或0.【解析】(1)根据题意把分式化为整式与真分式的和的形式即可;(2)根据题中所给出的例子把原式化为整式与真分式的和形式,再根据分式的值为整数即可得出x的值.本题考查了分式的混合运算,熟知分式混合运算的法则是解答此题的关键.27.【答案】36 72【解析】解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB-AN=BC-AE,CE=AE-AC=AE-BD,∴BN+CE=BC-BD=CD,即CD=BN+CE.(1)BA=BC,且DB=DA=AC可得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C;(2)①由(1)可知∠BAD=∠CAD=36°,且∠AHN=∠AHE=90°,可求得∠ANH=∠AEH=54°,可得AN=AE;②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE.本题主要考查等腰三角形的判定和性质,掌握等角对等边、等边对等角是解题的关键,注意方程思想的应用.28.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,∴x=53,∴53≤CF≤3.故答案为:53≤CF≤3.【解析】当点E与B重合时,CF最小,先利用勾股定理求出AG,设CF=FG=x,在Rt△DFG中,利用勾股定理列出方程即可解决问题,当F与D重合时,CF最大.由此即可解决问题.本题考查了翻折变换的性质、矩形的性质、勾股定理,解题的关键是熟练掌握矩形和翻折变换的性质,取特殊点找到CF的最大值、最小值,属于中考常考题型.。

南通市八年级上学期期末数学试卷 (解析版)

南通市八年级上学期期末数学试卷 (解析版)

南通市八年级上学期期末数学试卷 (解析版)一、选择题1.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1B .3C .2D .56.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-7.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .2C .2.4D .3.5 8.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.59.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.12.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .13.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.14.若关于x 的方程233x mx +=-的解不小于1,则m 的取值范围是_______. 15.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.16.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________.17.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.18.分解因式:12a 2-3b 2=____.19.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题21.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗. 小敏在思考问题时,有如下思路:连接AC .结合小敏的思路作答:(1)若只改变图1中四边形ABCD 的形状(如图2),则四边形EFGH 还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题; (2)如图2,在(1)的条件下,若连接AC ,BD .①当AC 与BD 满足什么条件时,四边形EFGH 是菱形,写出结论并证明; ②当AC 与BD 满足什么条件时,四边形EFGH 是矩形,直接写出结论.22.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明): ①作B 的平分线BD 交边AC 于点D ; ②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.23.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ;(2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米? 24.求下列各式中x 的值: (1)240x -=; (2)3216x =-25.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE . (1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).28.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P点,如图3.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.29.如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?30.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据无理数的定义解答即可. 【详解】227,0.101001是有理数;3. 故选B. 【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B解析:B 【解析】 【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可. 【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数, ∴对称点的坐标为(-2,-3). 故答案为(-2,-3). 【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,3.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.4.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.5.D解析:D【解析】【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】P=在平面直角坐标系中,点(1,2)故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.6.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7.B解析:B【解析】【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,22222222GH GE HE =+=+=,故选:B .【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为直角三角形且能够求出两条直角边的长是解题的关键.8.C解析:C【解析】【分析】直接把y =5代入y =2x+1,解方程即可.【详解】解:当y =5时,5=2x+1,解得:x =2,故选:C .【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.9.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.10.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.12.【解析】【分析】设行驶xkm ,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm ,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.13.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.14.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.15.x<-1.【解析】【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴解析:x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方, 即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.16.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+ 2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 17.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【解析:m +3n =120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【详解】解:∵点D 是BC 边的中点,DE ⊥BC ,∴PB=PC ,∴∠PBC=∠PCB ,∵BP 平分∠ABC ,∴∠PBC=∠ABP ,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB ∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.18.3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。

南通市八年级(上)期末数学试卷解析版

南通市八年级(上)期末数学试卷解析版

南通市八年级(上)期末数学试卷解析版一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .323.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .454.1(1)1a a--变形正确的是( ) A .1-B .1a -C .1a --D .1a --5.下列图形是轴对称图形的是( )A .B .C .D .6.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条 7.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .13 2C .6,8,10D .3,4,58.在下列黑体大写英文字母中,不是轴对称图形的是( ) A .B .C .D .9.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 10.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.4的算术平方根是 .12.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.13.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.14.112242=__________. 15.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度; 16.23(3)2716-=_____. 17.4的平方根是 .18.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.19.如图,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图像与直线123,,n l l l l 分别变于点123,,,n A A A A ;函数3y x =的图像与直线123,,,n l l l l 分别交于点123,,,n B B B B ,如果11OA B ∆的面积记的作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形n 1n n n 1A A B B --的面积记作n S ,那么2020S =________.20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值. x ··· 1 2 3 5 7 9 ··· y···1.983.952.631.581.130.88···小腾根据学习一次函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出: ①x =4对应的函数值y 约为________;②该函数的一条性质:__________________. 22.计算:(1)23(5)427-+; (2)12426(8)18÷+-. 23.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -. (1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).24.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车 乙种客车 载客量(座/辆) 60 45 租金(元/辆)550450(1)设租用甲种客车x 辆,租车总费用为y 元.求出y (元)与x (辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.25.如图,已知直线l 1:y 1=x +b 经过点A (﹣5,0),交y 轴于点B ,直线l 2:y 2=﹣2x ﹣4与直线l 1:y 1=x +b 交于点C ,交y 轴于点D .(1)求b 的值; (2)求△BCD 的面积;(3)当0≤y 2<y 1时,则x 的取值范围是 .(直接写出结果)四、压轴题26.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________) 所以CD FE =(________) 因为AB AC =(已知) 所以ACB B =∠∠(________) 所以EFB B ∠=∠(等量代换) 所以BE FE =(________) 所以CD BE =27.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .(1)如图①,求证:DAM ≌BCM ; (2)已知点N 是BC 的中点,连接AN . ①如图②,求证:ACN ≌BCM ;②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .28.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度; (2)当2t =时,请说明//PQ BC ; (3)设BCQ ∆的面积为()2S cm,求S 与t 之间的关系式.29.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.30.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究. (深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】222,11∴点A2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.4.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】11a-有意义,10a∴->,10a∴-<,(a∴-==故选C.【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.5.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A、C、D中不是轴对称图形,而B是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.6.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222AC CD-=-=543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.7.A解析:A 【解析】 【分析】根据勾股定理的逆定理,分别判断即可. 【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形; 故选:A. 【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.C解析:C 【解析】 【分析】根据轴对称图形的概念对各个大写字母判断即可得解. 【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意. 故选:C . 【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.A解析:A 【解析】 【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可. 【详解】∵DE 是AC 的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 10.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.二、填空题11.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.12.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.13.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,AD BFA B AF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=40°,∴∠P=180°-∠A-∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.14.【解析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.15.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.16.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键. 解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】3344=-+=故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.17.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.18.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为a >b .【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.19.4039【解析】【分析】根据直线解析式求出An−1Bn−1,AnBn的值,再根据直线ln−1与直线ln互相平行并判断出四边形An−1AnBn Bn−1是梯形,然后根据梯形的面积公式求出Sn的表解析:4039【解析】【分析】根据直线解析式求出A n−1B n−1,A n B n的值,再根据直线l n−1与直线l n互相平行并判断出四边形A n−1A n B n B n−1是梯形,然后根据梯形的面积公式求出S n的表达式,然后把n=2020代入表达式进行计算即可得解.【详解】根据题意,A n−1B n−1=3(n−1)−(n−1)=3n−3−n+1=2n−2,A nB n=3n−n=2n,∵直线l n−1⊥x轴于点(n−1,0),直线l n⊥x轴于点(n,0),∴A n−1B n−1∥A n B n,且l n−1与l n间的距离为1,∴四边形A n−1A n B n B n−1是梯形,S n=12(2n−2+2n)×1=12(4n−2)=2n-1,当n=2020时,S2020=2×2020-1=4039故答案为:4039.【点睛】本题是对一次函数的综合考查,读懂题意,根据直线解析式求出A n−1B n−1,A n B n的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.20.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.(1)作图见解析;(2)①2(2.1到1.8之间都正确);②该函数有最大值(其他正确性质都可以).【解析】试题分析:(1)描点即可作出函数的图象;(2)①观察图象可得出结论;②观察图象可得出结论.试题解析:(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).考点:函数图象,开放式数学问题.22.(1)6;(2. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得 333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.24.(1)y=100x+3150;(2)5,3650.【解析】【分析】(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;(2)根据题意确定出x 的取值范围,再根据一次函数的增减性即可得.【详解】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥133.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.25.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE△≌△,(ASA)∴CD FE=(全等三角形对应边相等)∵AB AC=(已知)∴ACB B=∠∠(等边对等角)∴EFB B∠=∠(等量代换)∴BE FE=(等角对等边)∴CD BE=;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC CBC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,由(1)知,△DAM≌△BCM,∴∠DBC=∠ADB,∴AD∥BC,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.28.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.29.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.30.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省南通市海门市八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上1.(2分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.22.(2分)已知∠α=32°,则∠α的余角为()A.58°B.68°C.148°D.168°3.(2分)使式子有意义的x的范围是()A.x≠2B.x≤﹣2C.x≥2D.x≤24.(2分)下列运算不正确的是()A.x6÷x3=x3B.(﹣x3)4=x12C.x2•x3=x5D.x3+x3=x6 5.(2分)化简+的结果是()A.x+2B.x﹣1C.﹣x D.x6.(2分)下列根式中,属于最简二次根式的是()A.﹣B.C.D.7.(2分)下列四组数据中,“不能”作为直角三角形的三边长的是()A.3,4,6B.5,12,13C.6,8,10D.,,28.(2分)如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A.30°B.36°C.45°D.20°9.(2分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形10.(2分)已知a﹣b=3,b+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为()A.4B.﹣4C.3D.﹣3二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上11.(2分)数0.000001用科学记数法可表示为.12.(2分)分解因式:x2y﹣4y=.13.(2分)一次体检中,某班学生视力结果如下表:从表中看出全班视力数据的众数是.14.(2分)计算:(﹣2a﹣2b3)÷(a3b﹣1)3=.15.(2分)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是.16.(2分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,AC的长为12cm,则△BCE的周长等于cm.17.(2分)若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m 的取值范围是.18.(2分)a、b为实数,且ab=1,设P=,Q=,则P Q (填“>”、“<”或“=”).三、解答题:本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤19.(8分)计算:(1)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|(2)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y.20.(6分)解方程组:.21.(6分)已知a﹦(+),b﹦(﹣),求a2﹣ab+b2的值.22.(6分)先化简,再求值:(﹣x+1),其中x为﹣1≤x≤2的整数.23.(6分)如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.24.(6分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.25.(5分)如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.(1)原点是(填字母A,B,C,D );(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为(写出可能的所有点P的坐标)26.(6分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?27.(7分)如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.28.(8分)如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.2015-2016学年江苏省南通市海门市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上1.(2分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选:A.2.(2分)已知∠α=32°,则∠α的余角为()A.58°B.68°C.148°D.168°【解答】解:∠α的余角是:90°﹣32°=58°.故选:A.3.(2分)使式子有意义的x的范围是()A.x≠2B.x≤﹣2C.x≥2D.x≤2【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:C.4.(2分)下列运算不正确的是()A.x6÷x3=x3B.(﹣x3)4=x12C.x2•x3=x5D.x3+x3=x6【解答】解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B正确;C、同底数幂的乘法底数不变指数相加,故C正确;D、合并同类项系数相加字母及指数不变,故D错误;故选:D.5.(2分)化简+的结果是()A.x+2B.x﹣1C.﹣x D.x【解答】解:+=﹣===x;故选:D.6.(2分)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【解答】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含能开得尽方的因数或因式,故D错误;故选:B.7.(2分)下列四组数据中,“不能”作为直角三角形的三边长的是()A.3,4,6B.5,12,13C.6,8,10D.,,2【解答】解:A、42+32≠62,不是直角三角形,故此选项正确;B、122+52=132,是直角三角形,故此选项错误;C、62+82=102,是直角三角形,故此选项错误;D、()2+()2=22,是直角三角形,故此选项错误;故选:A.8.(2分)如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A.30°B.36°C.45°D.20°【解答】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.故选:B.9.(2分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD 必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.10.(2分)已知a﹣b=3,b+c=﹣4,则代数式ac﹣bc+a2﹣ab的值为()A.4B.﹣4C.3D.﹣3【解答】解:∵ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b)=(a﹣b)(c+a),∵a﹣b=3,b+c=﹣4,∴a+c=﹣1,∴ac﹣bc+a2﹣ab=3×(﹣1)=﹣3;故选:D.二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上11.(2分)数0.000001用科学记数法可表示为1×10﹣6.【解答】解:0.000 001=1×10﹣6.故答案为:1×10﹣6.12.(2分)分解因式:x2y﹣4y=y(x+2)(x﹣2).【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).13.(2分)一次体检中,某班学生视力结果如下表:从表中看出全班视力数据的众数是 1.0.【解答】解:众数是一组数据中出现次数最多的数据,1.0占全班人数的40%,故1.0是众数.故答案为:1.0.14.(2分)计算:(﹣2a﹣2b3)÷(a3b﹣1)3=﹣.【解答】解:原式=(﹣2a﹣2b3)÷(a9b﹣3)=﹣2a﹣2﹣9b3﹣(﹣3)=﹣2a﹣11b6=﹣.故答案为:﹣.15.(2分)已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是5.【解答】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为5.16.(2分)如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,AC的长为12cm,则△BCE的周长等于20cm.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵BC=8cm,AC的长为12cm,∴△BCE的周长=BC+CE+BE=BC+CE+AE=BC+AC=20cm.故答案为:20.17.(2分)若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m 的取值范围是m<﹣2.【解答】解:∵点P(1﹣m,2+m)关于x轴对称点在第一象限,∴点P在第四象限,∴,解得:m<﹣2.∴m的取值范围是:m<﹣2,故答案为m<﹣2.18.(2分)a、b为实数,且ab=1,设P=,Q=,则P=Q (填“>”、“<”或“=”).【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.三、解答题:本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤19.(8分)计算:(1)(﹣)﹣1﹣+(1﹣)0﹣|﹣2|(2)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y.【解答】解:(1)原式=﹣2﹣+1﹣2+=﹣3;(2)原式=(x2﹣4y2﹣x2﹣8xy﹣16y2)÷4y=(﹣20y2﹣8xy)÷4y=﹣5y﹣2x.20.(6分)解方程组:.【解答】解:,②﹣①得:y=﹣2,把y=﹣2代入②得:x=﹣1,则方程组的解为.21.(6分)已知a﹦(+),b﹦(﹣),求a2﹣ab+b2的值.【解答】解:a2﹣ab+b2,=(a﹣b)2+ab,∵a﹦(+),b﹦(﹣),∴a2﹣ab+b2,=[﹣(﹣)]2+[×(﹣)],=3+,=3.522.(6分)先化简,再求值:(﹣x+1),其中x为﹣1≤x≤2的整数.【解答】解:原式=•=•=∵x为﹣1≤x≤2的整数,∴x=0,∴原式=1.23.(6分)如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.【解答】解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.24.(6分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.25.(5分)如图,在3×3的正方形网格(每个小正方形的边长均为1)中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴(水平线为横轴),建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称.(1)原点是B(填字母A,B,C,D );(2)若点P在3×3的正方形网格内的坐标轴上,且与四个格点A,B,C,D,中的两点能构成面积为1的等腰直角三角形,则点P的坐标为(﹣2,0)或(0,0)或(0,﹣2)或(﹣1,﹣1)或(1,﹣1)(写出可能的所有点P的坐标)【解答】解:(1)当以点B为原点时,A(﹣1,﹣1),C(1,﹣1),则点A和点C关于y轴对称,故答案为:B.(2)符合题意的点P的位置如图所示.根据图形可知点P的坐标为(﹣2,0)或(0,0)或(0,﹣2)或(﹣1,﹣1)或(1,﹣1),.故答案为:(﹣2,0)或(0,0)或(0,﹣2)或(﹣1,﹣1)或(1,﹣1).26.(6分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.27.(7分)如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°;(3)∠ABC+∠EPC=180°,理由:解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.28.(8分)如图,矩形AOBC,点A、B分别在x、y轴上,对角线AB、OC交于点D,点C(,1),点M是射线OC上一动点.(1)求证:△ACD是等边三角形;(2)若△OAM是等腰三角形,求点M的坐标;(3)若N是OA上的动点,则MA+MN是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】解:(1)∵C(,1),∴AC=1,OA=,∴OC=2,∴∠COA=30°,∠OCA=60°,∵矩形AOBC,∴∠ABC=∠OCB=30°,∴∠ADC=60°,∴△ACD是等边三角形;(2)△OAM是等腰三角形,当OM=MA时,此时点M与点D重合,∵C(,1),点D为OC中点,∴M(,).当OM1=OA时,做M1E⊥OA,垂足为E,如下图:∴OM1=OA=,由(1)知∠M1OA=30°,∴M1E=,OE=,∴M1(,).当OA=AM2时,做M2F⊥OA,垂足为F,如上图:AM2=,由(1)知∠COA=∠AM2O=30°,∴∠M2AF=60°,∴AF=,M2F=,M2(,).综上所述:点M坐标为M(,)、(,)、(,).(3)存在,做点A关于直线OC对称点为G,如下图:则AG⊥OC,且∠GOA=60°,OG=OA=,∴ON=,GN=,∵点A、G关于直线OC对称,∴MG=MA,∴MA+MN=MG+MN,∵N是OA上的动点,∴当GN⊥x轴时,MA+MN最小,∴存在MA+MN存在最小值,最小值为.。

相关文档
最新文档